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Abstract

Natural selection is a fundamental force shaping organismal evolution, as it both maintains function and
enables adaptation and innovation. Viruses, with their typically short and largely coding genomes, experi-
ence strong and diverse selective forces, sometimes acting on timescales that can be directly measured.
These selection pressures emerge from an antagonistic interplay between rapidly changing fitness require-
ments (immune and antiviral responses from hosts, transmission between hosts, or colonization of new host
species) and functional imperatives (the ability to infect hosts or host cells and replicate within hosts).
Indeed, computational methods to quantify these evolutionary forces using molecular sequence data were
initially, dating back to the 1980s, applied to the study of viral pathogens. This preference largely emerged
because the strong selective forces are easiest to detect in viruses, and, of course, viruses have clear
biomedical relevance. Recent commoditization of affordable high-throughput sequencing has made it
possible to generate truly massive genomic data sets, on which powerful and accurate methods can yield
a very detailed depiction of when, where, and (sometimes) how viral pathogens respond to various selective
forces.

Here, we present recent statistical developments and state-of-the-art methods to identify and characterize
these selection pressures from protein-coding sequence alignments and phylogenies. Methods described
here can reveal critical information about various evolutionary regimes, including whole-gene selection,
lineage-specific selection, and site-specific selection acting upon viral genomes, while accounting for
confounding biological processes, such as recombination and variation in mutation rates.

Key words Virus evolution, Molecular evolution, Recombination, Positive selection, Relaxed selec-
tion, Phylogenetics, Codon models

1 Introduction

Natural selection is a powerful evolutionary force that shapes gen-
omes of all living organisms. A variety of computational approaches
have been developed to measure the strength and direction of
selection directly from genomic data. Given an alignment of
homologous gene sequences, the strength of natural selection act-
ing on a given gene or genes can be measured in a phylogenetic
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context using codon models [1, 3]. A typical analysis on viral gen-
omes, for example, might be performed for a single gene repre-
sented by isolates from different individuals (e.g., sequences from
many HIV-1-infected hosts) or from different hosts (e.g., primate
lentiviruses).

In the context of codon models, selection is typically measured
using AN/dS (also referred to as w, or Ka/Ks), which represents
the ratio of the non-synonymous evolutionary rate (4N) to the
synonymous evolutionary rate (4S). The synonymous evolutionary
rate is used to provide a baseline rate of neutral evolution because
the average selective effect of a synonymous substitution is assumed
to be negligible compared to the effect of a non-synonymous
substitution. ' The selective regime can be deduced by establishing,
with a degree of statistical confidence, that AN/4S differs from
unity, i.e., the neutral expectation where AN/4S = 1. Diversifying,
balancing, or (sometimes) directional selection yields AN/dS > 1,
whereas purifying selection effects AN/d4S < 1. Comparative meth-
ods for selection detection estimate 4N/dS, or dS and AN sepa-
rately, at sites and/or branches and perform a statistical test to
establish on which side of the neutral expectation the inferences
fall. As with any statistical procedure applied to finite data, each
inference can be a false positive or a false negative, although meth-
ods typically take care to control the rates of both.

While the question “Is this gene under selection?” is an obvious
one, the nearly universally applicable answer to this question is
“yes.”. That is because a functional gene is (or has been) subject
to some form of selection, e.g., negative selection to maintain
essential features. On the other extreme is the question that has
an immediate biological significance: “Is changing a leucine to an
arginine at position 209 in gene X along a specific branch in the
phyvlogeny adaptive?”. Without additional information, such as a
carefully experimentally measured fitness impact of introducing
said substitution, current comparative sequence approaches cannot
answer this question. Indeed, such a scenario presents a sample size
of one, which cannot be statistically meaningtul.

In this chapter, we present a collection of statistical methods,
each of which is designed to carefully address a biological question
somewhere on the spectrum between the two extremes: sufficiently
specific to be interesting, yet general enough to be answerable
based only on the evolutionary history of homologous sequences.
We will not discuss the technical details of codon substitution
methods here (for details, please see one of the excellent available
reviews Anisimova and Kosiol [1], Delport et al. [3], Yang [44], or
the primary methods papers including Goldman and Yang [8],

! We note that there are a variety of well-documented situations where synonymous substitutions can have strong
effects on fitness [11, 30].
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Kosakovsky Pond and Muse [13], Muse and Gaut [27], Nielsen
and Yang [29]). Instead, we present each method operationally
(“How and when does one wuse this method?”), by addressing the

following points:

1. What biological question is the method designed to answer?
2. What are the recommended applications?

3. What is the statistical procedure and statistical test used to
establish significance for this method?

4. How should one interpret positive and negative test results?

5. Rules of thumb for when this method is likely to work well, and
when it is not.

We conclude by discussing how inferences can accommodate
potentially confounding biological processes, including intragenic
recombination and mutation rate variation. It is critical to model
these processes, both in their own right and because ignoring their
effects could bias selection inference tools and yield misleading
results.

2 Materials

The data used throughout the following tutorials and exercises
are available at https: //github.com /veg/evogenomics_hyphy. A
“README?” file in the top directory of this repository provides
a detailed description of all contents. Importantly, all datasets
used here reside in the datasets directory. Please refer to
http: //www.hyphy.org for instructions on downloading and instal-
ling HyPhy to your system. All exercises have been validated using
version 2.3.4. Throughout, we will use the hyphymp executable
(MP = multiprocessor). For all analyses, you will need the following
information:

(a) the full path to all files being analyzed (alignment and tree),
e.g., /home/user/data/alignment.fna,

(b) the genetic code (in almost all cases, universal), and

(c) level of statistical significance; suggestions are given below.

All methods will produce a final file of results in JSON (Java-
Script Object Notation) format, a highly extensible format that is
simple, relatively compact, and both machine- and human-
readable. JSON output files can be visually and interactively exam-
ined within our new web application, hyphy-vision, accessible at
vision.hyphy.org.

All methods employ the general time reversible (GTR) nucleo-
tide model for initial branch length optimization and correcting
nucleotide substitution biases, followed by fitting a Muse—Gaut
model (with general time reversible nucleotide biases) to obtain
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preliminary AN/ dS estimates (see Kosakovsky Pond and Frost [12]
for a detailed model description) for selection inference. Codon
frequencies are estimated using the CF3x4 procedure [15]. In our
view, the historical rationale for using simpler evolutionary models
(e.g., K80, F81, or HKY85), namely, computational cost, to fit
nucleotide data is no longer relevant.

Finally, we recommend different P-value thresholds depending
on the given analysis method. As site-level methods (FEL, SLAC,
and MEME) tend to be conservative on biological data, we recom-
mend significance as P < 0.1 (or posterior probability > 0.9 for
FUBAR). By contrast, we recommend significance as P < 0.05 for
alignment-wide methods—BUSTED, RELAX, and aBSREL.

3 Methods

3.1 How to Run a
Selection Analysis

There is a uniform workflow to run any of the described methods,
either locally (on one’s own computer and /or a high-performance
computing environment) in HyPhy or using the Datamonkey
web-service, available at www.datamonkey.org. The version of
HyPhy that supports all of the analyses is a command-line program,
i.e., it must be run from a terminal prompt (similar to most other
bioinformatics packages) in Linux or Mac OS X. It is also possible
to run the program in Windows, with an appropriate POSIX emu-
lation environment (e.g., MinGW) installed.

To execute a selection analysis locally, the following steps will
need to be taken.

1. Prepare your coding sequence alignment. In general, any
duplicate sequences should be removed before analysis. Most
importantly, it is imperative that the sequence alignment be in
the correct reading frame, meaning that alignment must be
performed with codon structure in mind. A common approach
to ensure this criterion is met is to generate the alignment using
translated amino-acid data and then back-translate to the orig-
inal nucleotide sequences.

2. Prepare a phylogenetic tree from the multiple sequence align-
ment. Note that certain analyses may require a labeled phylo-
genetic tree, as indicated within each subsequent tutorial. Keep
in mind that for most selection analyses, a tree topology is a
nuisance parameter. Hence, while it is advisable to use good
practices when inferring trees, minor errors in tree inference
tend to have minor effects on gene- and site-level inference. A
notable exception occurs when lineage-specific selection is
investigated; in this case, ensuring high-quality tree topologies
is important.
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3. An essential and strongly recommended step before analyzing
data for selection is to screen sequences for recombination. If
recombinant sequences are naively analyzed without an appro-
priate phylogenetic correction, inference results are likely to be
biased (Posada et al. [33]) (see the section on Screening
sequences for recombination later in this chapter).

4. Prepare your data (alignment and phylogeny) for input to
HyPhy. There are three ways to provide a dataset for HyPhy
analysis, each of which will trigger a different analysis prompt at
runtime:

e Two separate files containing the alignment and phylogeny,
respectively. In this circumstance, HyPhy issues two succes-
sive prompts: the first for the file containing the alignment,
and the second for the file containing the tree.

e A ssingle file containing an alignment in one of the formats
supported by HyPhy (FASTA, MEGA, and PHYLIP), with a
Newick-formatted phylogeny included at the bottom of this
file. In this circumstance, HyPhy issues two successive
prompts: the first for the file containing the alignment, and
the second asking whether to accept the tree found in the file

Wy, M

(provide the affirmative response, €.g., “y,” to accept it).

e A NEXUS file containing both the alignment and phylog-
eny. In this circumstance, HyPhy automatically accepts the
provided phylogeny and therefore only issues a single
prompt for the file containing the alignment. This is also
the format that can be used to specify partitioned data,
which is necessary to account for recombination.

5. Execute the appropriate method in HyPhy, selecting options
suitable for the specific analysis.

Each method will provide live on-the-screen progress updates
and, when finished, a text summary of the analysis. The output is
generated in Markdown,” which can either be read directly as text
or formatted using one of many Markdown viewers.

When an analysis is finished, HyPhy will write a JSON file with
numerous details about the analysis to disk. By convention, this file
will be placed in the same directory as the input alignment file, with
the added <method>.json extension, e.g., f£lu_ha.nex.
BUSTED.json for an input alignment named f£lu_ha.nex ana-
lyzed by the method BUSTED. All results contained in this JSON
file can be explored visually within a web browser using a web
application from the hyphy-vision suite of tools, accessible at
vision.hyphy.org. Since JSON files can be easily accessed by

2With the exception of GARD.
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scripting and data-analysis languages, these are also well-suited for
incorporation into pipelines.?

When run through www.datamonkey.org, this entire workflow
is automated: one simply uploads an alignment, selects options for
the analysis, and waits for the job to finish. Once the job has
completed, the results will be displayed in an interactive application
within the web browser. Note that Datamonkey will automatically
remove duplicate sequences before executing any analysis.

3.2 BUSTED

What Biological Question Is the Method Designed to
Answer?:

Is there evidence that some sites in the alignment have been
subject to positive diversifying selection, either pervasive
(throughout the evolutionary tree) or episodic (only on some
lineages)? In other words, BUSTED asks whether a given gene
has been subject to positive, diversifying selection at any site, at
any time [26]. If a priovi information about lineages of interest
is available (eg., due to migration, change in the environment,
etc.), thew BUSTED can be restricted to test for selection only on
a subset of tree lineages, potentially boosting power.

Recommended Applications

1. Annotating a collection of alignments with a binary attribute:
Has this alignment been subject to positive diversifying selec-
tion (yes/no)? [34].

2. Testing small- or low-divergence alignments (i.e., <~ 10
sequences) for evidence of positive diversifying selection,
where neither branch- nor site-level methods have sufficient
power to detect weak, but present, signal.

Statistical Test Procedure:

Each (branch, site) paiv evolves with o; < 0, < 1, or w3 > 1,
with the ratio chosen independently of other (branch, site) pairs
with probability p1, p2, p3 (normalized to sum to 1). The three-
rate ® distribution is estimated jointly from the entive align-
ment, i.c., rates ave shaved by all (branch,site) combinations.
Therefore, BUSTED is technically a “branch-site” model [16],
although it is not intended to detect individual sites which drive
sugnal of selection.

3 Note that the method GARD does not provide markdown output or a JSON, and output is in a different format.
This may be updated in a future HyPhy release.
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The test for episodic diversifying selection is performed by

comparing the full model versus the nested null model, where w3
is constrained to 1. Statistical significance is obtained by the likeli-
hood ratio test, assuming the y3 asymptotic distribution of the
likelihood ratio statistic under the null model.

When only some of the branches are chosen for testing, and the

remainder are designated as the background, two independent
three-rate w distributions are fitted: one for the test branches, and
one for the background branches. Testing for selection is carried
out by constraining the distribution on the test branches as
described above.

primates

Example Analysis:
1o begin, we will perform a BUSTED analysis using a dataset of

primate-specific KSR2, kinase suppressor of RAS2, genes from

Enard et al. [5]. This gene bas been smplicated as a so-called
virus-intevacting protein,” and previous work bas suggested it
has experienced adaptation in mammalion lineages due to
selective pressuves exerted by viruses [5]. We will test all lineages

for positive selection (vather than specifying a subset of “test”

branches), thereby asking the question: “Has KSR2 been subject

to diversifying selection at some time during evolution in
?J)

To run BUSTED, open a terminal session and enter HYPHYMP

from the command line to launch the HyPhy analysis menu. Enter
1 (Selection Analyses) and then 5 to reach the BUSTED analysis
menu, and supply values for the following prompts:

1

3.

4.

. Choose genetic code. This option tells HyPhy which transla-

tion table to use for codon-level analyses. Enter 1 to use the
Universal genetic code.

Select a coding sequence alignment file. Provide the full path
to the dataset of interest: /path/to/data/ksr2.fna.

A tree was found in the data file.. . Would you like to use it
(y/n)? Enter “y” to use the tree.

Choose the set of branches to test for selection. Enter 1 to
test all branches for selection.

BUSTED will now run to completion, printing status indica-

tors to screen while it runs. For an example of how this output will
look when rendered into HTML (or similarly, PDF), see this link:
http: //bit.ly /2vsRZrh.
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Listing 1 Partial BUSTED screen output:

#H#H# Branches to test for selection in the BUSTED analysis
* Selected 15 Dbranches to test in the BUSTED analysis: ‘HUM, PAN, Node6, GOR,
Node5, PON, Node4, GIB, Node3, MAC, BAB, Nodel2, Node2, MAR, BUS‘

#H4# Obtaining branch lengths and nucleotide substitution biases under the
nucleotide GTR model
* Log ( L ) = -5768.01, AIC - ¢ = 11582.06 (23 estimated parameters)

#H## Obtaining the global omega estimate based on relative GTR branch lengths

and nucleotide substitution biases

* Log ( L) = -5342.48, AIC - ¢ = 10745.17 (30 estimated parameters)

* non - synonymous / synonymous rate ratio for *test* = 0.0342

#H# Improving branch lengths , nucleotide substitution biases, and global dN/dS
ratios under a full codon model

* Log ( L ) = -5333.46, AIC - c = 10727.13 (30 estimated parameters)

* non - synonymous / synonymous rate ratio for *test* = 0.0307

#H## Performing the full (dN / dS > 1 allowed) branch-site model fit

* Log ( L) = -5319.67, AIC - ¢ = 10707.62 (34 estimated parameters)

* For * test * branches , the following rate distribution for branch-site

combinations was inferred

| Selection mode | dan/ds | Proportion, %| Notes |
= |[~mmmmmmmmmmeee |~mmmmmmmmmeee |~ menmmmnnee |
| Negative selection | 0.024 | 99.151 | |
| Negative selection | 0.085 | 0.812 | |
| Diversifying selection | 118.143 | 0.037 | |

#H## Performing the constrained (dN/dS > 1 not allowed) model fit
* Log ( L) = -5326.18, AIC - ¢ = 10718.63 (33 estimated parameters)
* For * test * branches under the null (no dN/dS > 1 model), the following

rate distribution for branch-site combinations was inferred

| Selection mode \ dN/ds | Proportion, %] Notes |
= mmmmmmm R | mmmmm e | -mmmm oo |
| Negative selection | 0.000 | 10.598 | |
| Negative selection | 0.000 | 86.086 | Collapsed rate class |
| Neutral evolution | 1.000 | 3.316 | |
## Branch - site unrestricted statistical test of episodic diversification
[BUSTED]

Likelihood ratio test for episodic diversifying positive selection, **p =

0.0015**,
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The results printed to the terminal indicate a highly significant
result (P = 0.0015) in the test for whole-gence selection. Analysis
with BUSTED therefore provides robust evidence that KSR2
experienced episodic positive selection in the primates. Because
we performed the original BUSTED analysis on the entive tree
(i.c., without a specified set of test branches), we do not know
Sfrom this vesult along which lineages KSR2 was subject to posi-
tive selection. We can conclude only that a non-zero proportion of
sites on some lineage (s) in the primate tree experienced diversify-

inyg selection pressuve.

The output additionally provided information about the spe-
cific BUSTED model fits to the test data, including the inferred w
distributions and corresponding weights. The BUSTED alternative
model (shown under the output header Performing the full (
dN/dS >1 allowed) branch-sitemodel fit) found that a very
small proportion (only ~0.037%) of sites evolved under a very large
w of over 100 (118.143 ). Importantly, neither of these estimates is
precise because they were derived from a small subset of the data. As
such, all the BUSTED tests establish the fact that the proportion of
sites along test lineages (here, the entire phylogeny) with @ > 1 is
non-zero. For example, it BUSTED had inferred a rate category of
® = 10 on a different gene, it would noz be correct to claim that
this gene evolves under weaker selection than does KSR2. A formal
statistical test would have to be carried out to establish such a claim.

Conversely, had the result not been statistically significant, we
would not be able to reject the null hypothesis that no positive
selection had occurred in KSR2. Importantly, however, a negative
finding wonld not unequivocally rule out the presence of positive
selection. This outcome could be due to a lack of statistical power
wherein the provided data did not contain a sufficiently strong

selection.

BUSTED’s fixed a priori assumption of model complexity
(a three-rate w distribution) may lead to over-parameterized
(or under-parameterized) models. For example, in the constrained
model for KSR2, two of the three rate classes have the same value of
®(0.0), implying that one of them is unnecessary. HyPhy will report
this to the screen as a diagnostic message Collapsed rate
class, but there is no corrective action that needs to be taken.

These messages simply point to low-complexity data.

We will additionally take this opportunity to showcase the
visual power of our accompanying web browser, HyPhy-Vision.
Figure 1 displays the rendering of the output ksr2.fna.
BUSTED.json as it appears in HyPhy-Vision. On this site, users
can interactively view and explore inference results, view figures and

charts, and perform other tasks.
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Fig. 1 Example analysis visualization in HyPhy-Vision of BUSTED results. (a) The summary section provides a
brief overview of the analysis performed, including information about the inputted data (which can be
downloaded via the linked file name) and primary results from the hypothesis test performed. (b) The
model statistics section provides information about models fitted to the data. In BUSTED, this section
additionally includes an interactive display of site evidence ratios, which can be interpreted as a descriptive
measure for which sites may have contributed to the selection signal. (¢) The tree section displays the
phylogeny as fitted under all inferred models and data partitions, if specified. Tree views can be toggled under
the Options drop-down menu. (d) Graphical views of each model’s inferred w distribution can be viewed when
clicking on a given row’s plot icon in the Model fits table seen in (b)

Rules of Thumb for BUSTED Use

1. Best applied to small- or medium-sized datasets (e.g., up to
100 sequences). Larger datasets will take longer to run and may
not be well described by a fixed complexity model.

2. If one suspects that only a small subset of lineages is subject to
selection, e.g., because the phenotype, environment, or fitness
changed along those branches, designating those a priori as the
test set will significantly boost power.

3. In simulation studies, BUSTED performs best when a suffi-
cient proportion (5-10%) of branch site combinations is sub-
ject to positive diversifying selection, and the effect size (w
value) is reasonably large (e.g., > 3).
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What Biological Question Is the Method Designed to
Answer?:

Is there evidence that the strength of selection has been relaxed
(o7 conversely intensified) on a specified group of lineages (Test)
relative to o set of reference lineages (Reference)? We note that
the RELAX framework can perform this specific hypothesis test
as well as fit a suite of descriptive models which address, for
example, overall rate differences between test and veference
branches or lineage-specific infevences of selection relaxation.
We focus our attention here on RELAX’s hypothesis testing
abilities. More information about descriptive analyses is avail-
able on byphy.org as well as in RELAXs primary publication
[43]. Importantly, RELAX is not designed to detect diversify-
inyg selection specifically.

Recommended Applications

1. Testing for a systematic shift (relaxation/intensification) in
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the distribution of selection pressure associated with major
biological transitions such as hosting switching in viruses [6]
or lifestyle evolution in bacteria (i.e., transition from free-living
to endosymbiotic lifestyle [43]).

. Comparing selective regimes between two subsets of

branches in the tree, e.g., to investigate selective differences

among transmission routes in HIV-1 [42].

Statistical Test Procedure:

Given a tree with at least two sets of branches, one of which is
designated as Test, and the other as Reference, the core version
of RELAX compares two nested models, which follow the same
generval framework as BUSTED. Each (branch, site) combina-
tion is dvawn independently from a 3-rate o distribution. The
evolutionary rvates for Test branches arve functions of those for
Reference branches. Specifically, oress = O forence> Where K is
the relaxation ov intensification pavameter. The alternative
model infers K from the data, and the null model sets K = 1.
Statistical significance is obtained by the likelihood ratio test,
assuming they? asymptotic distribution under the null model. A
significant vesult of K > 1 indicates that selection strength has
been intensified along the test branches, and a significant result
of K < 1 indicates that selection strength has been relaxed along
the test branches. In other words, for K < 1 the Test ® values
shrink toward neutrality (o0 = 1) relative to Reference, and for
K > 1 they move away from neutrality.
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If some branches in the tree belong to neither the 7Zest or the
Reference set, they are allocated to a group with its own ( Unclassi-
fied) distribution of @, which is uncoupled from the testing
procedure.

Example Analysis:

We will perform a RELAX analysis using a dataset of Influ-
enza A PB2 subunit sequences from Tamuri et al. [41]. The
PB2 subunit, which is part of influenza’s RNA polymerase
complex, has emerged as a critical determinant of influenza
infectivity and, as a consequence, host range [9, 18]. The dataset
we examine bere contains sequences from both avian host and
human host strains.* Previous studies have shown that this host
switch is correlated with significant shifts in selection pressuves
and preferved amino acids at key sites in PB2 [36, 40, 41]. We
now re-analyze this dataset using RELAX to ask a different but
related question: “Was the shift from avian to human hosts

associated with a rvelaxation of selection pressuves in Influenza
A PB2?”

RELAX requires an a priori specification of test and reference
lineages, although not all lineages in a tree need to be classified. As
such, you must label your test (and reference, if desired) branches in
the input phylogeny. We provide an online widget to assist with tree
labeling at http://phylotree.hyphy.org. The dataset we have
provided for this analysis already has a labeled phylogeny, with the
human host lineages labeled as “test.”

To run RELAX, open a terminal session and enter HYPHYMP
from the command line to launch the HyPhy analysis menu. Enter
1 (Selection Analyses) and then 7 to reach the RELAX analysis
menu, and supply values for the following prompts:

1. Choose genetic code. Enter 1 to use the Universal
genetic code.

2. Select a coding sequence alignment file. Provide the full path
to the dataset of interest: /path/to/data/pb2.fna.

3. A tree was found in the data file. . .Would you like to use it
(y/n)? Enter “y” to use the tree.

4. Choose the set of branches to test for selection. This option
asks you to specify the /abel inside your tree used to specify the
test lineages. You can either select all unlabeled branches, or
HyPhy will show all labels it found in the tree you provided.

*The original dataset in Tamuri et al. [41] contained 401 sequences. For the purposes of this chapter, we analyze a
subset of this alignment with only 35 sequences (20 from avian and 15 from human hosts), thereby achieving a
tractable runtime on a personal machine.
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Enter 1 to select the branches labeled as “test” as the test set in
RELAX analysis. Note that when multiple labels are present in
your tree, HyPhy will issue an additional prompt to choose the
set of Reference branches, in the event that some branches
should remain Unclassified.

5. Analysis type. This option asks you to specify the scope of
RELAX analysis. Selecting “Minimal” will run the RELAX
hypothesis test, and selecting “All” will run hypothesis testing
and fit two additional descriptive models, described earlier.
Here, we will perform only hypothesis testing to determine
whether the data shows evidence for a relaxation or intensifica-
tion of selection intensity between the test and reference
lineages. Enter the option 2 to run the “Minimal” analysis.

RELAX will now run to completion, printing status indicators
to screen while it runs.

Listing 2 Partial RELAX screen output:
#H## Obtaining branch lengths and nucleotide substitution biases under the

nucleotide GTR model
* Log ( L) = -16755.26, AIC - ¢ = 33660.66 (75 estimated parameters)

#H## Obtaining the global omega estimate based on relative GTR branch lengths

and nucleotide substitution biases

* Log ( L) = -14410.97, AIC - c = 28988.46 (83 estimated parameters)
* non - synonymous / sSynonymous rate ratio for *Reference* = 0.0401

* non - synonymous / sSynonymous rate ratio for *Test* = 0.0604

#4# Improving branch lengths , nucleotide substitution biases, and global dN/dS
ratios under a full codon model

* Log ( L) = -14354.67, AIC - ¢ = 28875.86 (83 estimated parameters)
* non - synonymous / synonymous rate ratio for *Reference* = 0.0358

* non - synonymous / synonymous rate ratio for *Test* = 0.0609

#H## Fitting the alternative model to test K != 1

* Log ( L ) = -14337.22, AIC - ¢ = 28849.02 (87 estimated parameters)
* Relaxation / intensification parameter (K) = 0.73

* The following rate distribution was inferred for **test** branches

| Selection mode | dN/ds | Proportion, %| Notes |

| Negative selection | 0.031 | 94.752 | |
| Negative selection | 0.086 | 2.951 | |
| Diversifying selection | 1.406 | 2.297 | |
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* The following rate distribution was inferred for **reference** branches

| Selection mode | dN/ds | Proportion, %| Notes |

\
| Negative selection | 0.009 | 94.752 | |
| Negative selection | 0.035 | 2.951 | |
| Diversifying selection | 1.591 | 2.297 | |
#H# Fitting the null (K := 1) model
* Log ( L ) = -14342.33, AIC - c = 28857.22 (86 estimated parameters)

* The following rate distribution for test/reference branches was inferred

| Selection mode | dN/ds | Proportion, %| Notes |

| Negative selection | 0.010 | 94.149 | |
| Negative selection | 0.021 | 3.391 | |
| Diversifying selection | 1.735 | 2.460 | |
## Test for relaxation ( or intensification) of selection [RELAX]
Likelihood ratio test ** p = 0.0014**.

> Evidence for * relaxation of selection* among **test** branches _relative_ to

the **reference** branches at P<=0.05

Interpreting Results:

On this data, RELAX has inferved a velaxation parameter
K= 0.73 with a highly significant P = 0.0014. Therefore,
there is evidence to veject the null hypothesis that selection pres-
sure has not been shifted in the test (heve, human host) lineages.
We instead have strong evidence that selection has been relaxed
(because the inferred K < 1) in the human host lineages. In
other words, selection in the test branches has genevally moved
towards nentrality (o = 1) compared to the refevence branches.
This finding is consistent with the evolutionary changes that
typically occur durving a virus host-switching event, whervein
selection  stvingency will be wveduwced to facilitate viral
adaptation.

Keep in mind that RELAX defines relaxation (or intensifica-
tion) in a fairly restrictive fashion. In other words, all selective
regimes (i.e., all w rates), both negative and positive, must weaken
or strengthen. Therefore, certain relaxation scenarios, for example,
when only positive selection is relaxed but negative selection is
maintained, may result in a non-significant RELAX test even
though selection has changed.



3.4 aBSREL

Evolution of Viral Genomes: Interplay Between Selection, Recombination. .. 441

Rules of Thumb for RELAX Use

1. Always provide a labeled phylogeny indicating which branches
to include in the “test” lineages. You can additionally label
“reference” lineages if you wish to keep some branches as
unclassified. It is convenient to use the phylotree.js online
widget at http://phylotree.hyphy.org/ to label branches
before analysis.

It is often of interest to determine whether a specific lineage or
lineage(s) have been subject to selection. Such analyses have histor-
ically been performed using the so-called branch or branch-site
class of models, which allow evolutionary rates to vary across
branches or across sites and branches [16, 45, 46]. Early versions
of branch-site models allowed users to compare selection pressure
on a pre-selected branch sets of “foreground” branches to a
pre-selected set of “background” branches, on which positive selec-
tion was disallowed [45, 46]. (Note that this approach is similar to
how BUSTED performs gene-wide selection inference [26].) Later
efforts demonstrated that disallowing positive selection on back-
ground branches could lead to highly elevated false positive rates
and advocated a strategy wherein any branch, regardless of data
partition, could evolve at any rate [16]. This strategy has been
described as the BS-REL model in HyPhy [16]. However, in
BS-REL, each branch was constrained to have three rate categories,
an assumption with little justification.

Since then, we have developed a greatly improved branch-site
model called aBSREL (“adaptive branch-site random eftects likeli-
hood”). Rather than assuming that each branch should be fit with
three rate classes, aBSREL infers, using small-sample Akaike Infor-
mation Criterion correction (AICc), the optimal number of rate
categories per branch. In this manner, computational complexity
and the number of parameters are greatly reduced, leading to a
tractable runtime for larger datasets that could not otherwise be
studied with earlier branch-site models.

What Biological Question Is the Method Designed to
Answer?:

Like classical branch-site models, aBSREL asks whether some
proportion of sites is subject to positive selection alony specific
branches or lineages of a phylogeny.

Recommended Applications

1. Exploratory testing for evidence of lineage-specific positive
diversifying selection in small- to medium-sized alignments
(up to 100 sequences).
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2. Targeted testing of branches selected a priori for positive
diversifying selection. This includes alignments with prohibi-
tive runtimes under older branch-site models (up to ~1000
sequences) [37].

Statistical Test Procedure:

aBSREL uses the information-theoretic criterion AIC. to auto-
matically determine the complexity of the evolutionary process at
every branch [37]. As a heuristic optimization, aBSREL will
always examine branches in order from longest to shortest,
because longer branches temnd to be the ones vequiving more
complex models. In this adaptive model, one rate class is allowed
to assume any value of ® > 1, whereas for any other inferved
rate class is constrained as o < 1. In the null model, all ®
categories ave constrained as ® < 1. For any branch inferred
to have sufficient rate variation (i.c., more than one rate cate-
gory) where one vate cateqory is described by o > 1, aBSREL
will proceed to fit o null model to this branch. In other words, if
the maximum-inferved ® < 1 on a branch, the null model will
have the same exact fit as the alteynative model, and the result-
wng P-value is 1. The test for lineage-specific diversifying selec-
tion is performed by comparing the full model versus the nested
null model, and statistical significance is obtained by the likeli-
hood ratio test. Significance is evaluated using a mixture of
50%y3, 20%y3, and 30%y3 distributions (proportions deter-
mined via simulations Smith et al. [37]). Finally, aBSREL will
corvect all P-values obtained from individual tests for multiple
compavisons using the Bonferroni—Holm procedure to control
family-wise false-positive rates (i.e., the probability of generating
one or more folse positives, when all null hypotheses arve correct).

One can either select a specific set of branches in order to test a
specific a priori hypothesis or one can perform an exploratory
analysis across the entire phylogeny by testing all branches for
selection. The former approach may have substantially more
power to detect selection, especially if only a few branches in a
large tree are chosen, due to the decreased volume of multiple
testing. However, the approach does carry the risk of failing to
identify branches subject to positive selection that have not been
included in the test set.
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Example Analysis:

Here, we will demonstrate aBSREL use and interpretation
using o dataset of HIV-1 env sequences collected from an epide-
miologically linked donor—recipient transmission pair [7]. This
dataset can be found in the provided file hivi_transmission.

fna.

To run aBSREL, open a terminal session and enter HYPHYMP
from the command line to launch the HyPhy analysis menu. Enter
1 (Selection Analyses) and then 6 to reach the aBSREL analysis
menu, and supply values for the following prompts:

1. Choose genetic code. This option tells HyPhy which transla-
tion table to use for codon-level analyses. Enter 1 to use the
Universal genetic code.

2. Select a coding sequence alignment file. Provide the full path
to the dataset of interest: /path/to/hivl_transmission.
fna.

3. A tree was found in the data file.. . Would you like to use it
(y/n)? Enter “y” to use the included tree.

4. Choose the set of branches to test for selection. You can now
select on which branches aBSREL should conduct a formal
hypothesis test for positive selection. Enter 1 to test all
branches for selection.

aBSREL will now run to completion, printing status indicators
to screen while it runs (some output abbreviated).

Listing 3 Partial aBSREL screen output:

#H## Obtaining branch lengths and nucleotide substitution biases under the
nucleotide GTR model
* Log ( L ) = -5524.50, AIC - ¢ = 11153.08 (52 estimated parameters)

#H## Fitting the baseline model with a single dN/dS class per branch, and no
site-to-site variation.

* Log ( L) = -5402.40, AIC - ¢ = 11009.72 (102 estimated parameters)

* Branch - level non - synonymous / synonymous rate ratio distribution has median
0.66, and 95% of the weight in 0.00--5.41

#H## Determining the optimal number of rate classes per branch using a step up

procedure



444 Stephanie J. Spielman et al.

| 0564 _22
| 0564 _7
| separator
| Separator
| 0564 _4
| 0564 _4
| 0564 _3
| 0564 _3
| 0564 _9
Node53
0557 _6
0557 _21
0557 _7

#H## Rate
* 38
* 6

| Length |Rates|

|
.01 |
.01 |
o1 |
.01 |
.01 |
.01 |
.01 |
.01 |

O O O O O O O O
D W N WD W NN NN

.00
.00
.00
.00

o o o o
NN

class analy

branches with

branches with

Max. dN/dS | Log(L)
1.96 (52.27%) | -5402.
0.74 ( 5.19%) | -5402

197.32 ( 3.95%) | -5397.
180.22 ( 4.08%) | -5397.
29.79 ( 2.15%) | -5394
29.78 ( 2.15%) | -5394
126.86 ( 3.14%) | -5388.
135.96 ( 3.05%) | -5388.
10.01 ( 8.61%) | -5388
1.00 (100.00%) | -5371.
27.66 (100.00%) | -5371
0.25 ( 1.96%) | -5371
0.25 ( 1.96%) | -5371
ses summary
KERLx* rate classes
KEQHK rate classes

41

.40

53
53

.37
.37

59
59

.37

63

.32
.30
.30

| AIC-c

10976

(114 estimated parameters)

.46
10975.
10975.
10975.

83
80
80

[y

11009.
11009.
11004.
11004.
11001.
11001.
10994.
10994.
10994.

10971.
10971.
10971.
10971.

.43015
.00000
.00029
.03281
.00030
.00000
.48208

.00000

1.00000

#H## Improving parameter estimates of the adaptive rate class model
* Log ( L ) = -5370.66, AIC - ¢ = 10970.49

#H## Testing selected branches for selection

| Branch | Rates | Max. dN/dS |
| e | | |
| 0564 _22 | 1 | 1.22 (100.00%) | 0.11 |
| 0564 _7 | 1 | 0.61 (100.00%) | 0.00 |
| Separator | 2 | 197.72 ( 3.95%) | 14.13 |
| 0564 _4 | 2 | 28.89 ( 2.15%) | .81 |
| 0564 _3 \ 2 | 127.66 ( 3.14%) | 14.06 |
| 0564 _9 | 1 | 0.72 (100.00%) | 0.00 |
| 0564 _1 | 1 | 1.07 (100.00%) | 0.01 |
| 0557 _21 | 1 | 1.00 (100.00%) | 0.00 |
| 0557 _7 | 1 | 1.00 (100.00%) | 0.00 |
#H## Adaptive branch site random effects likelihood test
Likelihood ratio test for

Bonferroni corrected _p =

tested.
* Node35 , p - value
* Separator , p - valu

* 0564 _3

, p - value

72
72
02
02
74
74
22
22
22

76
76
76
76

Test LRT | Uncorrected p-value

|Best AIC-c so far|

episodic diversifying positive selection at Holm-

0.0500_ found **3** branches under selection among **44**

e

0.00018
0.01251
0.01266
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Interpreting Results:

The ﬁVSt pVi%tEﬂl markdown table ("Determining the optimal
number of rate classes per branch using a step up procedure ")
summarizes the model selection process. For example, when two ®
rates weve assigned to branch Separator, this improved the AIC,
score of the fit (compared to the single-vate model) from
11, 009.72 to 11, 004.02. However, allocating three o rates to
the same branch worsens the score to 11, 008.06. Therefore the
aBSREL model will use two ® rates at the branch.

The second printed markdown table ("Testing selected
branchesfor selection")shows the results of tests for episodic
selection on individual branches. At branch 0564 4, for example,
the tested model includes two w rates, with the positive selection
class taking on value 28.89 (2.15% proportion of the mixture).
Constraining this rate to range between 0 and 1 yields the likeli-
hood ratio test statistic of 4.81, which maps to a P-value (before
multiple test correction) of 0.03281.

Finally, aBSREL reports three branches under episodic diversi-
fying selection pressure. Further examination of results using
HyPhy-Vision shows that these branches are found (a) along the
transmission event from donor to recipient, and (b) within a highly
diverged clade in the donor (Fig. 2). The first finding is consistent
with an expected increase in evolutionary rate when a virus infects a
new host and encounters novel host immunity, and the second
finding is consistent with intrahost adaptive dynamics of the
donor’s long-term HIV infection. Importantly, a close examination
of the markdown-output table under the header "Testing
selected branches for selection" reveals several nodes
with uncorrected P-values whose significance was lost upon apply-
ing the Bonferroni-Holm correction, e.g., 0564_4 whose uncor-
rected P = 0.03281. This result illustrates the potential loss of
power incurred by this aBSREL exploratory analysis.

Rules of Thumb for aBSREL Use

1. A priori identification of branches to test for selection will
generally increase power to detect selection on those branches.
That said, to maintain statistical robustness, we strongly disconr-
age performing multiple separate tests for selection on different
branch sets. Such an approach will necessarily introduce false
positives. In such a case, we recommend performing an explor-
atory analysis wherein all branches are considered.

2. Exploratory analyses of very large datasets are unlikely to yield
many significant results, because correcting for multiple testing
will reduce power as the number of branches grows, while the
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0557_12
0557_21
0557 22
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Fig. 2 HyPhy-Vision tree viewer depicting the fitted aBSREL Adaptive model to HIV-1 data. Branches are
colored by their inferred w distribution, as indicated in the legend. Lineages identified as positive selection at
P < 0.05 after correction for multiple testing are shown with thick branches, with color distributions
representing the relative values and proportions of inferred w categories. Note that taxon labels beginning
with “0554” represent HIV-1 sequences derived from the donor patient, and labels beginning with “0557”
represent HIV-1 sequences derived from the recipient patient

amount of statistical signal does not increase for larger datasets.
One option is to thin out large phylogenies (before performing
any testing), retaining major clades and lineages of interest.
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3.5 Site-Level
Selection: MEME, FEL,
SLAC, and FUBAR

What Biological Question Is the Method Designed to
Answer?:

The methods FEL, SLAC, and FUBAR address the question:
Which site(s) in a gene are subject to pervasive, i.e., consistently
across the entive phylogeny, diversifying selection? MEME
addresses a move general question: Which site(s) in a gene are
subject to pervasive or episodic, i.e., only on a single lineage or
subset of lineages, diversifying selection?

Recommended Applications

1. MEME is the sole method in HyPhy for detecting selection at

individual sites that considers both pervasive and episodic selec-
tion. MEME is therefore our recommended method if maxi-
mum power is desired.

. The phenomenon of pervasive selection is generally most prev-
alent in pathogen evolution and any biological system influ-
enced by evolutionary arms race dynamics (or balancing
selection), including adaptive immune escape by viruses. As
such, FEL, SLAC, and FUBAR are ideally suited to identify
sites under positive selection which represent candidate sites
subject to strong selective pressures across the entire phylog-
eny. Each of these methods has a particular use case as well:

¢ FEL is our reccommended method for analyzing small-to-
medium size datasets when one wishes only to study perva-
sive selection at individual sites.

¢ FUBAR is our recommended method for detecting perva-
sive selection at individual sites on large (> 500 sequences)
datasets for which other methods have prohibitive runtimes,
unless you have access to a computer cluster.

e SLAC provides legacy functionality as a counting-based
method adapted for phylogenetic applications. In general,
this method will be the least statistically robust.

Statistical Test Procedure:

Each method presented herve employs a distinct algorithmic
approach to inferving selection. FEL uses maximum likelibood
to fit & codon model to each site, thereby estimating a value for

dN and dS at each site. FEL tests for selection with the likelihood

ratio test using the y3 distribution, asking whether the dN
estimate is significantly greater than the inferved dS estimate.

(continued)
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SLAC represents the most basic infevence method and is an
extension of the Suzuki—Gojobori counting-based method [39]
for phylogenetically related sequences (as opposed to sequence
pairs). SLAC uses maximum likelihood to infer ancestral char-
acters for each site across the phylogeny and then divectly counts
the number of synonymous and non-synonymous changes which
have occurved at each site over evolutionary time. SLAC then
tests for selection by testing whether or not there are too many or
oo few non-synonymous changes compared to what is expected
under nentrality. The neutval expectation is devived based on
the phylogeny-wide estimated numbers of synonymous and
non-synonymous nucleotide sites at a given codon. The statistical
test employs the binomial distribution to compute significance,
eg., how likely is it to observe 13 non-synonymous and 1 synony-
mous substitutions at a site, if the expected synonymous to
non-synonymous substitution count vatio under neuwtvality is 1:4?

MEME employs a mixed-effects maximum likelihood
approach. For each site, MEME infers two o vate classes and
corvesponding weights vepresenting the probability that the site
evolves under each rate class at a given branch. To this end,
MEME infers a single o (dS) parameter and two separate 3
(dN) parameters, p_ and B,. The ® rates per site, therefore,
consist of P./o and B_/ /0. MEME wuses this framework to fit a
null and alternative model each, both wmodels enforcing the
constraint p_< o. The null model disallows positive selection by
enforcing the constraint B, < o, whereas the alternative model
places no constraint on ... MEME uses the likelihood ratio test to
compare between null and alternative model fits, with signifi-
cance assessed using the mixture of 33 %y, 30%y3, and 37 %y3.

FUBAR takes o Bayesian approach to selection infevence
and is a particular case of statistical models developed in the
context of document classification (latent Dirvichlet allocation).
The key innovation to FUBAR’s approach is its use of an a priovs
specified grid of AN and dS values (typically 20 x 20), span-
ning the range of negative, neutral, and positive selection
regimes, whose likelthoods can be pre-computed and wsed
throughout analysis (vather than having to re-compute likeli-
hoods during optimization as traditional random-effects
approaches do [12, 29]). This approach, combined with other
algorithmic advances, speeds computation time by at least an
order of magnitude compared to FEL, while yielding compara-
ble statistical performance. FUBAR estimates every model
parameter except the proportion of sites allocated to each grid
point using simple (and fust) nucleotide models. The proportions
are estimated using an MCMC procedure, and non-neutral
evolution at each site is inferved using a stvaightforward naive

(continued)
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empivical Bayes approach [29]. Sites ave called positively or
negatively selected if the corvesponding postevior probabilities
are sufficiently high.

Note that FEL and SLAC report both positively and negatively
selected sites, but MEME and FUBAR report only sites under
positive selection.

Example Analysis:

We will demonstrate the use and interpretation of site-level
methods using data from influenza strain H3N2 (the “Hong
Konyg fin”), the primary civculating strain of seasonal influ-
enzn since the late 1960s. We specifically will assess selection on
the H3 hemagylutinin, the influenza surface protein which is
responsible for host cell binding. Hemagglutinin experiences
rapid evolution triggeved by host immune escape, and previous
studies have identified numerous signatures of positive diversify-
ing selection in H3 sequences with o particular concentration
around the host-binding domain [28].

We base analyses here on an alignment from Meyer and Wilke
[22] of H3 sequences sampled over time since the 1991-1992
influenza season. We removed all partial and strongly outlying
sequences (i.e., those with excessive divergence) from the original
dataset before proceeding, yielding 2555 sequences to comprise
our “full” H3 dataset. We further subsetted this alignment to two
smaller alignments with comparable numbers of taxa but spanning
different evolutionary time frames: The first smaller alignment
(“trunk”) contains 163 sequences sampled along the influenza
H3 trunk, whereas the second smaller alignment (“shallow”) con-
tains 121 sequences sampled from a single clade (Fig. 3). There-
fore, while these two smaller datasets contain a comparable number
of sequences, the trunk dataset spans a much longer time frame and
contains substantially more sequence divergence relative to the
shallow dataset. Indeed, the trunk dataset has a total tree length
(sum of branch lengths, in units substitutions/site /unit time) of
0.43, whereas the shallow dataset had a total tree length of 0.12,
meaning that the trunk dataset contains nearly four times the
amount of sequence divergence seen in the shallow dataset. We
have compiled results for all three datasets analyzed with all four
methods (Table 1). We now describe, using the trunk dataset as an
example, how to run each of these analyses in HyPhy.
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Fig. 3 Phylogeny of H3 hemagglutinin sequences analyzed here. Tip colors indicate those selected for each
dataset

Table 1
Sites identified as positively selected across the H3 datasets analyzed here

Dataset Method Sites under selection at P < 0.1*

Full H3 MEME (16) 19,47,61,69,110, 151, 154,156,173, 208,236, 241,277,
278,292, 538

Full H3 FEL (15) 19, 47,61, 69,110, 154,156,173, 236, 237, 241,277, 278,
292,538

Full H3 SLAC (19) 19, 47,61, 69,110,137, 154,156, 158,173,189, 208, 236,
237,241,277,278,292, 505, 546

Full H3 FUBAR (13) 47,61, 69,110, 154,160,173, 208, 236, 237, 241,278, 538

Shallow H3  MEME (2) 49, 320

Shallow H3 ~ FEL (2) 49, 241

Shallow H3 SLAC None

Shallow H3  FUBAR 3) 19,49, 241

)

Trunk H3  MEME 6) 64, 154, 171, 208, 242, 402
Trunk H3  FEL 3) 64, 154, 208
Trunk H3 SLAC 2) 154, 208

Trunk H3 FUBAR  (6) 61,64, 69, 154, 208,242

(
(
(
(

Bold sites are those identified by multiple methods for a given dataset. Bold italicized sites are those identified in more
than one dataset, generally by more than one method. Numbers in parentheses give the total number of positively
selected sites identified with the given method and dataset

* For FUBAR, significance is assessed as posterior probability > 0.9
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FEL: Launch HyPhy from the command line, and enter
options 1 (Selection Analyses) and then 2 to reach the FEL analysis
menu, and supply values for the following prompts:

1. Choose genetic code. Enter 1 to use the Universal genetic code.

2. Select a coding sequence alignment file. Provide the full path
to the dataset of interest: /path/to/data/h3_trunk.fna.

3. A tree was found in the data file. . . Would you like to use it
(y/n)?. Enter “y” to use the tree.

4. Choose the set of branches to test for selection. This option
allows you to specify which branches along which site-level
inference should be performed. Enter 1 to test all branches
for selection.

5. Use synonymous rate variation?. This option asks you to spec-
ify whether the 4§ parameter in the codon model should be
allowed to vary across sites (“Yes”) or be fixed to 1 at all sites
(“No”). Enter 1 to use a model with synonymous rate variation.

6. Select the P-value used to perform the test at (permissible
range = [0,1], default value = 0.1). Provide the default
threshold of 0. 1.

FEL will now run to completion and print status indicators to
the screen, including results for any site found to be under selection
(either positive or negative). Abbreviated results are shown below.

Listing 4 Partial FEL screen output:

#H# Obtaining branch lengths and nucleotide rates under the GTR model
* Log ( L) = -7506.06

#H# Obtaining the global omega estimate based on relative GTR branch lengths

and nucleotide substitution biases

* Log ( L) = -7302.10

* non - synonymous / sSynonymous rate ratio for *test* = 0.2923

#H## Improving branch lengths , nucleotide substitution biases, and global dN/dS
ratios under a full codon model

* Log ( L ) = -7289.65

* non - synonymous / synonymous rate ratio = 0.2598

#H# For partition 1 these sites are significant at p <=0.1

| Codon | Partition | alpha |  beta | LRT | Selection detected? |
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\ 146
\ 152
\ 154
\ 159
\ 164
\ 176
\ 177
\ 181
\ 190
\ 201
\ 208

#H#

* %

Found

R N e T = = = T = W =S

| 3.818 | 0.000 | 7.336 | Neg. p = 0.0068
| 1.968 | 0.000 | 3.634 | Neg. p = 0.0566
| 0.000 | 3.912 | 4.652 | Pos. p = 0.0310
| 4.413 | 0.716 | 2.972 | Neg. p = 0.0847
| 2.082 | 0.000 | 2.713 | Neg. p = 0.0995
| 1.659 | 0.000 | 2.986 | Neg. p = 0.0840
| 6.393 | 0.000 | 8.421 | Neg. p = 0.0037
| 1.928 | 0.000 | 3.286 | Neg. p = 0.0699
| 2.085 | 0.000 | 2.715 | Neg. p = 0.0994
| 1.645 | 0.000 | 3.370 | Neg. p = 0.0664
| 0.000 | 3.625 | 4.668 | Pos. p = 0.0307
_3_ sites under pervasive positive diversifying and _115_

sites under negative selection at p <= 0.1**

Inference details for codons with significant likelihood ratio
tests for positive or negative selection are reported to the screen.

Codon The codon where non-neutral evolution has
been detected.
Partition Allows one to keep track which subset of the

alignment a particular site belongs to. This is
important for recombination-corrected parti-
tion analyses.

alpha Site-specific synonymous substitution rate
beta Site-specific non-synonymous substitution rate
LRT Site-specific likelihood ratio test statistic for

non-neutral evolution (alpha # beta)
Selection detected?  Selection classification (positive or negative)
and the corresponding P-value

Note that the “Codon” and “Partition” columns are common
to all site-specific analyses.

MEME and SLAC: SLAC and MEME follow identical menu
prompts as FEL, with the exception that only FEL will prompt
for synonymous rate variation. Instead, SLAC has a different
prompt for Step 5: Select the number of samples used to assess
ancestral reconstruction uncertainty. If this number is positive,
then HyPhy will draw samples from the distribution of ancestral
states and use them to measure whether or not inference is sensitive
to ancestral inference uncertainty. When you encounter this option,
provide the default value of 100 (or 0 to forego sampling). MEME
does not emit any additional prompts.
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Listing 5 Partial SLAC screen output:

#H## For partition 1 these sites are significant at p <=0.1

| Codon | Partition]| S | N | das | an |Selection detected? |
P | £mmmmeee | =mmmmee |+--mmm | rmmmee | =mmmmm R |
| 146 | 1 | 3.000 | 0.000 | 3.000 | 0.000 | Neg. p = 0.037 |
| 154 | 1 | 0.000 | 8.000 | 0.000 | 4.000 | Pos. p = 0.039 |
| 177 | 1 | 3.000 | 0.000 | 4.038 | 0.000 | Neg. p = 0.020 |
| 208 | 1 | 0.000 | 6.000 | 0.000 | 2.994 | Pos. p = 0.089 |
#H# Ancestor sampling analysis

> Generating 100 ancestral sequence samples to obtain confidence intervals

Resampling results for partition 1

|Codon|Part. |S[median, IQR] |N[median, IQR] |dS[median, IQR] |dN[median, IQR] |p-value [median, IQR] |

| 146 [1]3.00[3.00-3.00]]0.00[0.00-0.00]]3.00[3.00-3.00]]0.00[0.00-0.00]]0.04[0.04-0.04].]
[154 [1]0.00[0.00-0.00]1|8.00[8.00-8.001] 0.00 [0.00-0.00]|4.00[4.00-4.001]0.04[0.04-0.04] |
[ 177]21]3.00[3.00-4.00]|0.00[0.00-0.00]| 4.04 [4.04-5.38]]0.00[0.00-0.00]]0.02[0.01-0.02] |
| 208 1]0.00[0.00-0.00]] 6.00 [6.00-6.00]] 0.00 [0.00-0.00]|2.99[2.99-2.99]1|0.09[0.09-0.09] |

SLAC reports several key quantities for codons with significant
P-values for positive or negative selection to the screen.

S The number of synonymous substitutions
inferred at this site

NS The number of non-synonymous substitutions
inferred at this site

ds Estimated site-specific synonymous rate

dN Estimated site-specific non-synonymous rate

Selection detected?  Selection classification (positive or negative)
and the corresponding P-value for the binomial
test

If the user elected to perform ancestral resampling, another
table is reported, showing how much these quantities are affected
by ancestral state reconstruction uncertainty. For example, at codon
177, some ancestral reconstructions yielded 3 synonymous substi-
tutions, whereas others yielded 4; however, this was not sufficient
to move the P-value on different sides of the threshold.
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Listing 6 Partial MEME screen output:

| Codon |Partition | alpha |beta+ | p+ |LRT |Episodic selection detected? |#branches]|
R e I T I e |immmmmmm- o
| 64 | 1 | 0.000|14.717]0.204|3.512 | Yes, p = 0.0816 | 5 |
| 154 | 1 | 0.000|35.302|0.145|5.334| Yes, p = 0.0317 | 8 |
| 171 | 1 | 0.000 |45.005|0.017|5.753 | Yes, p = 0.0256 | 1 |
| 208 | 1 | 0.000|59.749|0.089|5.554 | Yes, p = 0.0283 \ 6 |
| 242 | 1 | 1.839 |34.114]0.216|4.273 | Yes, p = 0.0549 \ 7 |
| 402 | 1 | 0.000|10.476]0.091|3.493] Yes, p = 0.0824 \ 2 |
#H## *x Found _6_ sites under episodic diversifying positive selection at p
<= 0.1**

MEME prints information only about codons subject to posi-
tive selection, since MEME does not directly test for negative

selection.

alpha Site-specific synonymous substitution
rate

beta+ Site-specific non-synonymous substi-
tution rate for the positive selection
category

p+ Site-specific weight (~ proportion of

branches) assigned for the positive
selection category

LRT Site-specific likelihood ratio test sta-
tistic for episodic diversifying selec-
tion (beta+ > 1 and p+ > 0)

Episodic selection detected? Selection classification (yes) and the
corresponding P-value

# branches An exploratory estimate of the num-
ber of individual branches which have
sufficient empirical Bayes support for
positive selection; since MEME pools
signal from multiple branches, there
may be overall evidence for selection,
without necessarily implicating any
individual branches.

FUBAR: To run FUBAR, launch HyPhy from the command line,

and enter options 1 (Selection Analyses) and then 4 to reach the

FUBAR analysis menu, and supply values for the following

prompts’:

® Note that for all prompts with default values, simply pressing enter will choose this default.
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. Choose genetic code. Enter 1 to use the Universal

genetic code.

. Select a coding sequence alignment file. Provide the full path

to the dataset of interest: /path/to/data/h3_trunk.fna.

. A tree was found in the data file. .. Would you like to use it

(y/n)?. Enter “y” to use the tree.

. Number of grid points per dimension. This option controls

how fine the FUBAR analysis is by setting the range of possible
AN and 48 values that can be inferred, along an N x N grid.
We will use the default value of 20 (leading toa 20 x 20 grid of
AN/ dS ratios). FUBAR will now pre-compute likelihoods for
each value in the grid.

. Number of MCMC chains to run. This option determines

the number of Markov Chain Monte Carlo chains to run
during Bayesian inference of evolutionary rates. Enter the
default value of 5 to run 5 chains.

. The length of each chain. This option controls for how long

each MCMC chain should be run. Enter the default value of
2000000 to run each chain for two million generations (thus
obtaining two million samples).

. Use this many samples as burn-in. This option determines

how many initial samples drawn from the MCMC chain should
be discarded as burn-in, as is standard in Bayesian analyses.
Enter the default value of 1000000, leading to a final value of
one-million draws per chain.

. How many samples should be drawn from each chain. This

option determines the final number of samples to draw from
the full set of one-million draws per chain. Enter the default
value of 100.

. The concentration parameter of the Dirichlet prior. This

option controls the shape of the Dirichlet prior distribution.
Enter the default value of 0. 5.

Listing 7 Partial FUBAR screen output:

#H#

Tabulating site - level results
| Codon |Partition| alpha | beta | N.eff |Posterior prob for positive selection|
J— J— A U U ——— o — N
| 61 | 1 | 0.753 | 4.365| 64.549 | Pos. posterior = 0.9262
| 64 | 1 | 0.753 | 3.920| 77.106 | Pos. posterior = 0.9095 |
| 69 | 1 | 0.730 | 4.447| 64.182 | Pos. posterior = 0.9325
| 154 | 1 | 0.637 | 6.595| 53.312 | Pos. posterior = 0.9826 |
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| =208 | 1
| 242 | 1

## FUBAR inferred

| 0.622 | 5.908| 55.794 | Pos. posterior = 0.9731
| 2.215 | 12.055| 1489.879 | Pos. posterior = 0.9131 |

6 sites subject to diversifying positive selection at

posterior probability >= 0.9

of these , 0.36
of 0-2 )

are expected to be false positives (95% confidence interval

Like other site analyses, FUBAR will print a number of infer-
ences about each individual site detected to be under pervasive
positive selection

alpha The posterior estimate of the synonymous
substitution rate at a site

beta The posterior estimate of  the
non-synonymous substitution rate at a site

N.eff An estimate of the effective sample size for

inferring positive selection at this site; smaller
values (e.g., < 20) imply that the MCMC
procedure may have failed to sample the
parameter space well, and longer chains
(or more chains) might be warranted
Posterior prob The estimated posterior probability for per-
for positive selection  vasive diversifying selection (AN/d4S > 1).

Interpreting Results:

Sites identified as positively selected by each method, across all
three datasets, arve given in Table 1. In general, we expect
MEME to be the most comprehensive and robust of all site-level
methods becanse it uniquely considers both pervasive and epi-
sodic selection [24]. In addition, power studies bave shown that
FUBAR is expected to outperform FEL and SLAC under most
circumstances [25]. Finally, we expect that SLAC will be the
least robust method due to its reliance on a relatively naive
counting-based approach [12].

These expectations are generally borne out in the results
obtained here in our brief study of H3 selection. For the full H3
dataset of 2555 sequences, MEME identified 16 sites, and FEL
identified 15 sites under positive selection. All sites were identical
except for the following: MEME uniquely identified sites 151 and
208, and FEL uniquely identified with 237. Interestingly, site
208 was additionally identified as positively selected by all methods
on the trunk H3 dataset. Combined, these results demonstrate
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MEME’s ability to identify sites subject to both pervasive and
episodic selection, as site 208 appears to be under pervasive selec-
tion only along the H3 trunk. Because FEL uses a less stringent test
statistic distribution (x2 ) to call significance, occasionally sites
subject to pervasive selection near the significance thresholds may
be detected by FEL but missed by MEME (e.g., site 237, with FEL
reporting P = 0.08 and MEME reporting P = 0.105).

FUBAR identified two fewer selected sites in the full H3 align-
ment compared to FEL (which is a directly comparable test),
missing sites 19 (posterior 0.83), 277 (posterior 0.59), and
292 (posterior 0.89) relative to FEL, but adding site 160 (FEL
P=0.8).

In addition to differences across methods, we expect to see
some important differences for sites inferred across the full, shallow,
and trunk H3 datasets. Because the trunk and full H3 datasets span
similar time frames, we expect sites returned for these two datasets
to have the most overlap. In addition, sites found to be under
selection in the shallow lineage may not be detected across the
full H3 phylogeny, as selection may have been fleeting, weak, or
constrained to the specific shallow clade examined here. For exam-
ple, site 49 was specifically selected in the shallow H3 lineage alone,
as indicated by three of the four methods. In contrast, sites 19 and
241 were found to be selected in both the shallow and the full H3
datasets, but this signal was not apparent when the trunk lineage
was examined independently, perhaps because these sites experi-
ence only transient changes that do not propagate along the trunk.

What are some potential reasons for seeing discrepancies in
inferences across H3 datasets? The site 154, for example, is posi-
tively selected in both the full H3 phylogeny and the trunk H3
lineage, but not the shallow H3 lineage. This result suggests that
site 154 may have experienced pervasive selection throughout H3
evolution, but its signal in the shallow clade alone was either too
weak to detect or selection was attenuated in the shallow clade. In
addition, sites which appeared only in the shallow clade analyses
may have experienced lineage-specific selection where the signal
was too weak to detect when the entire phylogeny was considered.

Furthermore, while MEME, FEL, and FUBAR were able to
detect selected sites in the shallow H3 lineage, SLAC did not
identify any such sites. This is because SLAC requires a large
number of substitutions, which are unlikely to have occurred in
the shallow sample, to achieve significance. Overall, we emphasize
that in many cases different site-level methods will not identify
exactly the same set of sites under selection, although, as the H3
example shows, the agreement between is typically good.
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Rules of Thumb for Site-Level Detection of Selection
1. Small datasets, i.e., < 10 sequences (especially when coupled

with low divergence), are unlikely to yield any sites under
selection. Consider using gene-wide methods like BUSTED
or aBSREL to look for selection in these cases.

. On large datasets (e.g., > 500 sequences), all methods tend to

give similar results (but see the MEME exception below),
hence the default method of choice is FUBAR, since its run
time is dramatically shorter than FEL or MEME, and its statis-
tical performance is better than SLAC.

. MEME tends to be the most sensitive method, because it is the

only one designed to detect episodic selection. Indeed, some-
times SLAC, FEL, or FUBAR may all call a site subject to
episodic positive selection site negatively selected, if a burst of
selection is followed by strong conservation. MEME is often
able to tease the two processes apart and correctly call such sites
positively selected. Hence, MEME should be the preferred
method, unless computationally prohibitive.

4. We cannot universally recommend running all the available

methods on a given dataset and then aggregating the results,
as done in Table 1, for several reasons. Firstly, while it may be
tempting to use agreement between all methods as a hedge
against false positives, i.¢., calling a site selected only if all the
methods agreed on it, reduces the power of the analysis to that
of the least sensitive method. Secondly, while comparing the
sites on which methods disagree can potentially reveal critical
information (e.g., a site detected by MEME but not FUBAR
may be under strong episodic selection), considerable effort
and diligence must be put into disentangling meaningful
biological differences from statistical artifacts. Thirdly, statisti-
cal strategy must be informed before the analysis commences
by deciding which is more important to optimize: does one
care more about specificity (reducing false positives) or sensi-
tivity (reducing false negatives)? For example, if little is known
about a gene, it may be advisable to generate the most inclusive
list of sites that could be subject to selection for subsequent
testing using other approaches; in this case, the most sensitive
method or the union of all methods may be appropriate.

5. We strongly recommend against performing multiple testing or

false discovery rate correction on individual site results. Firstly,
methods are calibrated to not generate excessive false positives
on strictly neutral data. In most genes, most sites will be under
relatively strong negative selection, making the statistical test-
ing procedure conservative. Secondly, multiple testing
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corrections will nearly always vield no significant results on
small to moderate sized datasets. Thirdly, some key assump-
tions of methods for correcting false discovery rates are not
applicable for site-level testing. For example, a typical collec-
tion of results from site-level testing will contain very few, if
any, true sites with P-values supporting neutrality (4N/
as=1).

A critical aspect of sequence analysis we have not yet covered is the
detection of and correction for intragenic recombination in an
alignment of homologous sequences. Because recombination is
such a key biological process in many viral pathogens, we strongly
advocate screening an alignment for recombination before pro-
ceeding with additional analyses, unless there is a sound biological
reason to discount (i.e., intragenic recombination Influenza A is
negligibly rare). Indeed, because recombination causes different
regions of an alignment to be related by different phylogenies, its
presence can heavily influence selection detection and other down-
stream applications.

There are many computational approaches to finding evidence
of recombination in a sequence alignment [32], however at their
core, many such methods look for evidence of phylogenetic incon-
gruence. Here, we demonstrate one such method, GARD (genetic
algorithms for recombination detection) that we have found to
perform very well among a wide range of approaches on simulated
data [14]. Note that at this time, GARD will not produce a JSON
file as output but instead several text files containing inference
information, as well as a final partitioned alignment for downstream
use if recombination was detected.

What Biological Question Is the Method Designed to
Answer?:

Have sequences in the given alignment undergone vecombina-
tion, and if so what ave the vecombination breakpoints and
segment-specific phylogenies?

Recommended Applications:

GARD is geared towards mapping the breakpoints and detecting
segments of the alignment which can be adequately described by a
single tree topology. Therefore, alignments, particularly alignments
of viral sequences, should be screened for the presence of recombi-
nation before performing any selection inference. The NEXUS
output from GARD can be directly used as input for most down-
stream selection detection analyses.
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Statistical Test Procedure:

GARD employs o genetic algovithm to find a solution to a complex
optimization problem by mimicking processes of biological evolu-
tion (mutation, recombination, and selection) in a population of
competing solutions. In this application of genetic algovithms, we
are evolving a population of “chromosomes” that specify different
numbers and locations of recombination breakpoints in the align-
ment with the objective of detecting topological incongruence, i.e.,
support for diffevent phylogenies by separate vegions of the align-
ment. The “fitness” of each chromosome is determined by using
maximum likelibood methods to evaluate a separvate phylogeny
for each non-recombinant fragment defined by the breakpoints
(eg., to the left and to the right of o breakpoint in Fig. 4), and
computing a goodness of fit (AIC.) for each such model. The genetic
algovithm seavches for the number and placement of brealkpoints
yielding the best AIC. and also reports confidence values for
inferved breakpoint locations based on the contribution of each
considered model weighted by how well the model fit the data. For
computational expedience, the curvent implementation of GARD
infers topologies for each segment using neighbor joining [37]
based on the TNY3 pairwise distance estimator [41] and then
fits a user-specified nucleotide evolutionary model using maximum
Likelihood to obtain AIC. scoves.

| A |

[ = 1l

|
A

R .
(0]

Fig. 4 Phylogenetic incongruence caused by the presence of a recombinant
sequence in an alignment. Sequence R is a product of homologous recombina-
tion between sequences A and B. Phylogenies reconstructed from sequences A,
B, R and an outgroup sequence (0) will differ based on which part of the
alignment is being considered. To the left of the breakpoint, R clusters with A,
whereas to the right of the breakpoint R clusters with B

L.
s
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Example Analysis 1: We will demonstrate the use of GARD, as well
as its benefits for downstream analysis, using a dataset consisting of 13
Hlycoprotein sequences from Cache Valley Fever virus (cve. fna). We
will first use GARD to detect vecombination in this dataset, and then
we will process both the GARD-informed data and the oviginal
alignment (with no recombination assumed) with FEL to see how
the presence of recombination may confound selection inference.

Importantly, GARD specifically requives the use of HyPhy’s MPI-
enabled executable, HYPHYMPI. To run GARD from the command
line, you will need an operating system with a MPI headers and
libravies installed so that this executable can be compiled. Here, we
will descvibe how to use GARD from the command line, but we
emphasize that GARD is fully implemented and available on www.
datamonkey.org and takes the same input options described heve.

To run GARD, open a terminal session and start HYPHYMPI
in the appropriate MPI environment (¢g., MPIRUN in OpenMPI)
Sfrom the command line to launch the HyPhy analysis menu. Enter
12 (Recombination) and then 1 to rveach the GARD analysis menu,
and supply values for the following prompts:

1. Nucleotide file to screen: Provide the full path to the dataset
of interest: /path/to/data/cvf.fna.

2. Please enter a 6-character model designation (e.g., 010010
defines HKY85). This option controls which nucleotide sub-
stitution model is to be used for analysis, using PAUP nota-
tional shorthand. The six-character shorthand allows the user
to specity the entire spectrum from F81 (000000) to GTR
(012345), which we recommend as default option. Provide
the value 012345 for this prompt.

3. Rate variation options. This option determines how site-to-
site rate variation should be modeled. The option None will
discount site-to-site rate variation, allowing the analysis to run
several times faster than other options but also creating the risk
of mistaking rate heterogeneity for recombination. As such, we
can only recommend this option for extremely small align-
ments (i.e., 3-5 sequences). The option General Discrete
(the default) models rate variation using an N bin general
discrete distribution, and option Beta-Gamma models rate
variation using an adaptively discretized distribution, a more
flexible version of the standard Gamma+4 model. Enter option
2 to select the General Discrete model.

4. How many distribution bins [2-32]?. If rate variation was
selected in the previous step, this option allows the user to
decide how many different rate classes should be included in
the model. We recommend using 3 rate classes by default, as both
General Discrete and Beta-Gamma distributions are flexible
enough to reliably capture rate variability in the majority of align-
ments with only a few rate classes. Therefore, enter the value 3.
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5. Save results to. For this option, provide a full path to the
output file to which you would like GARD to write results.
The supplied file name will ultimately contain an HTML-for-
matted summary of the analysis. HyPhy will generate several
other files with names obtained by appending suffixes (as in
<file name>_suffix) to the main result file. In particular,
the _finalout file stores the original alignment in NEXUS
format with inferred non-recombinant sections of the alignment
saved in the ASSUMPTIONS block and trees inferred for each
partition in the TREES block. This NEXUS file can be input into
many recombination-aware analyses in HyPhy and other pro-
grams that can read NEXUS. The _ga_details file contains
two lines of information about each model examined by the
genetic algorithm: its AICc score and the location of breakpoints
in the model. Finally, the _ga_splits file stores information
about the location of breakpoints and trees inferred for each
alignment region under the best model found by the GA.

GARD will now run to completion, printing status indica-
tors to screen while it runs:

Listing 8 Partial GARD output:
Fitting a baseline nucleotide model...

Done with single partition analysis. Log (L) =-5921.9511901113, ¢c-AIC =11914.85153276497
Starting the GA ...

GENERATION 2 with 1 breakpoints (~0% converged)
Breakpoints ¢ - AIC Deltac - AIC [BP 1]

011914.85

111804.56 110.291 1393
GA has considered 92/ 328 (92 over all runs) unique models
Total run time 0 hrs 0 mins 2 seconds
Throughput 46.00 models/second

Allocated time remaining 999 hrs 59 mins 58 seconds (approx. 165599908 more models.)

GENERATION 52 with 4 breakpoints (~100% converged)
Breakpoints c - AIC Deltac - AIC [BP 1] [BP 2] [BP 3] [BP 4]

011914.85

111804.56 110.291 1445

211783.92 20.638 617 1490

311778.94 4.978 587 962 1475

411778.94 0.000 587 962 1475
GA has considered 268/ 473490550 (1356 over all runs) unique models
Total run time 0 hrs 4 mins 2 seconds
Throughput 5.60 models/second

Allocated time remaining 999 hrs 55 mins 58 seconds (approx. 20170544.82644628 more models.)

Performing the final optimization...
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Interpreting Results:

GARD found evidence of recombination in this dataset with
three breakpoints, yielding a 135.9 point AIC. improvement
over the model without recombination. Amonyg all models with
three breakpoints in the Cache Valley Virus glycoprotein align-
ment, the best model places them at nucleotides 587, 962, and
1475. Importantly, if GARD had reported that the best model
had 0 breakpoints, we conld conclude that no evidence of recom-
bination had been found. Note that because genetic algorithms
are stochastic, theve is no guavantee that veplicate runs will
converge to exactly the same quantitative vesults. When theve is
a strong signal of recombination breakpoints in the data, how-
ever, the qualitative vesults (number and geneval location of
breakpoints) should be fairly robust.

Example Analysis 2: The NEXUS file that GARD produced is a
partitioned dataset, wherein different groups of sites ave described by
different trees. Most HyPhy selection analyses discussed here,® includ-
ing MEME, FUBAR, FEL, SLAC, and BUSTED, are able to analyze
partitioned data. To demonstrate the importance of screeming for
recombination, we will now compare results for o FEL analysis per-
Sformed on the oviginal alignment of 13 Cache Valley Virus glycopro-
teins, as well as on the GARD-inferved parvtitioned alignment. All
steps beve were carvied out as described eavlier in this chapter.

Interpreting Results:

FEL infevence on the GARD-processed partitioned Cache Valley
Virus data does not detect sites under selection at P < 0.1. By
contrast, FEL infevence on the unpartitioned Cache Valley
Virus data (i.c., not pre-scveened for vecombination) detects
three positively selected sites ar P < 0.1 (212, 516, and 558 at
P =0.08 P =0.03 and P =0.09, respectively). From these
results, we can clearly tell that not screeming or vecombination
has the potential for adverse consequence including an increased
false positive rate as seen here. As such, we strongly enconrage
users to screen alignments for recombination if such processes ave
suspected before proceeding to selection detection.

3.8 Accounting for A critical genomic process that one must consider when detecting
Synonymous Rate selection is the phenomenon of synonymous rate variation, wherein
Variation the rate of synonymous codon evolution (represented by 4§ in the

S Note that neither aBSREL nor RELAX accepts partitioned data because they require a consistent phylogeny to
define branch sets.
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context of codon models and representing mutation rate) varies
across species, genes, and even intragenic positions. In particular,
intragenic synonymous rate variation has been identified across
domains of life [11, 20, 30] and can arise from a variety of evolu-
tionary processes, including selection on mRNA secondary struc-
ture [2], gene expression [4], GC-biased gene conversion [10], and
other neutral mutation processes. For example, even the genomic
context of a given nucleotide can influence its mutation rate;
indeed, experimental work has shown that GC-neighboring sites
can feature up to a 75-fold increase in mutation rate [20, 38]. In
addition, the synonymous rate at certain sites may be elevated due
to the mutational vulnerability of the non-template DNA strand
during transcription [20]. These processes must be accounted for
in order to ensure an appropriate baseline 48 is used when testing
for selection.

We demonstrate the importance of considering synonymous
rate variation for selection inference using a dataset of 10 mamma-
lian CD2 genes, which code for a specific T-cell surface adhesion
molecule [21]. We use FEL to detect selection in this dataset under
two specifications: with synonymous rate variation (“yes” in
prompt 4 in the FEL analysis menu), and without synonymous
rate variation (“no” in prompt 4 in the FEL analysis menu).

Interpreting Results:

At P < 0.1, analysis of CD2 with synonymous rate variation
revealed o total of 14 sites under positive selection. By contrast,
CD2 analysis with FEL without dS variation only detected four
sites under positive selection (Fig. 5). Similarly, analysis with dS
variation vevealed 27 sites under purifying selection, but analy-
sis without dS variation rvevealed only 15 sites under purifying
selection. Most importantly, all sites detected when dS was fixed
to 1 were a subset of the sites identified by the model with dS
variation (Fig. 5). Together, these results demonstrate that
wynoring dS variation can induce both an increased false nega-
tive rate regavding positive selection detection and an overall
decrease in power to detect any selective vegime. We acknowledge
that it is possible that the opposite conclusion might be true,
namely, that additional sites identified by FEL with dS varia-
tion might instead be fulse positives. However, in our experience,
this is much less frequently the case [12].
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Fig. 5 Sites identified as positively (red) and negatively (blue) selected in CD2 at P < 0.1 by FEL run with
(above the line) and without dS variation (below the line). Sites with arrows represent those identified as
selected by FEL with dS variation that were not identified by FEL when dS variation was ignored

4 Tips

Here we provide some helpful notes on HyPhy usage.

¢ An actively maintained board for usage questions and filing bug

reports is available at https://github.com/veg/hyphy/
issues.

Each HyPhy analysis described here will export a JSON file. This
file can either be uploaded to HyPhy-Vision for visual exami-
nation, or it can be easily parsed using a standard scripting
language using standard packages, for example, the json pack-
age in Python or the jsonLite package in R. All fields used in
these output files are defined in http: //hyphy.org.

Mac OS(X) users may need to install a new set of compilers (i.e.,
gce-6) that are compatible with openMP in order to have full
functionality from the HYPHYMP executable, as is described on
the HyPhy website.

5 Exercises

1. Earlier, we performed a BUSTED analysis without designating

a specific subset of test lineages. For this exercise, we will
analyze the HIV-1 transmission dataset with BUSTED in two
different ways: testing all branches, and testing only recipient-
derived HIV-1 sequences. The input data for this exercise, with
an appropriately labeled phylogeny, is available in exercises/
hivl transmission_exercisel.fna. For select branches
labeled A11 or test as the test lineages.

e Isthere evidence (compare model fits using the small sample
AIC) that test branches have a different selective regime
than the rest of the tree?

e The entire dataset should provide evidence for episodic
diversification, but the recipient only analysis should return
a negative result. What does this mean biologically, i.e.,
where does the selection signal come from?
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2. Investigate the effect of recombination of site-specific inference
of episodic selection using MEME. Run MEME on exer-
cises/cvf.fna (single partition data, i.e., assuming no
recombination), and then on the same dataset screened for
recombination using GARD exercises/cvf_gard.nexus,
testing for selection on all branches, with P=0.1. Compare
the list of sites detected to be under selection by the two
analyses.

e Which analysis generated more positive results?

e Do you think these results are true or false positives? How
does this compare to the FEL analysis we described in the
text?

e Compare site-wise estimates of substitution rates (e.g., a)
between the two analyses. Is there a discernible bias intro-
duced by not accounting for recombination?

3. When analyzing intraspecies or intrahost data, AN/dS esti-
mates may be inflated due to the fact that not all observed
sequence variation are due to substitutions, but some are sim-
ply mutations that have not yet been filtered by selection
[17, 23, 31, 35]. In other words, 4N/dS may be elevated by
intraspecies/intrahost polymorphism that should not necessar-
ily be attributed to positive selection. One simple approach to
mitigating this undesirable effect is to restrict site-specific ana-
lyses to Internal branches only. Internal branches are less
likely to contain spurious polymorphic variants because they
encompass at least one process on which selection can act (i.e.,
transmission and/or multiple rounds of replication). Apply
MEME and FEL to an intrahost sample of HIV-1 sequences,
found in exercises/JS1774.nex, from an infected individ-
ual analyzed in Lorenzo-Redondo et al. [19] first choosing to
test A1l branches, and next choosing Internal branches.

4. Compare the lists of selected sites between All/Internal ana-
lyses. How different are they?

5. Use RELAX to formally test whether or not selective regimes
(AN/dS distributions) are different between terminal and
internal branches in exercises/JS1774.nex.
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