Skip to main content

Microwave-Assisted Reactions in Green Chemistry

  • Reference work entry
  • First Online:
Book cover Green Chemistry and Chemical Engineering
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology,

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Primary Literature

  1. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, Oxford

    Google Scholar 

  2. Coish P, McGovern E, Zimmerman JB, Anastas PT (2017) The value-adding connections between the Management of Ecoinnovation and the principles of green chemistry and green engineering. In: Török B, Dransfield T (eds) Green chemistry: an inclusive approach. Elsevier, Oxford, p 985

    Google Scholar 

  3. Török B (2017) Sustainable synthesis. In: Török B, Dransfield T (eds) Green chemistry: an inclusive approach. Elsevier, Oxford, pp 49–89

    Google Scholar 

  4. Constable DJC, Kimenez-Gonzalez C (2012) Evaluating the Greennes of synthesis. In: Li CJ (ed) Handbook of green chemistry-green processes, vol 7. Green synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  5. Sheldon RA (2012) Fundamentals of green chemistry: efficiency in reaction design. Chem Soc Rev 41:1437–1451

    Article  CAS  PubMed  Google Scholar 

  6. Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558

    Article  CAS  PubMed  Google Scholar 

  7. Kokel A, Török B (2018) Sustainable production of fine chemicals and materials using non-toxic renewable sources. Toxicol Sci 161:214–224. https://doi.org/10.1093/toxsci/kfx214

    Article  CAS  Google Scholar 

  8. Simon MO, Li CJ (2012) Green chemistry oriented organic synthesis in water. Chem Soc Rev 41:1415–1427

    Article  CAS  PubMed  Google Scholar 

  9. Han X, Poliakoff M (2012) Continuous reactions in supercritical carbon dioxide: problems, solutions and possible ways forward. Chem Soc Rev 41:1428–1436

    Article  CAS  PubMed  Google Scholar 

  10. Clouthierzab CM, Pelletier JN (2012) Expanding the organic toolbox: a guide to integrating biocatalysis in synthesis. Chem Soc Rev 41:1585–1605

    Article  CAS  Google Scholar 

  11. Himmelberger JA, Cole KE, Dowling DP (2017) Biocatalysis: nature’s chemical toolbox. In: Török B, Dransfield T (eds) Green chemistry: an inclusive approach. Elsevier, Oxford, pp 471–512

    Google Scholar 

  12. Jiménez-González C, Constable DJC, Ponder CS (2012) Evaluating the “greenness” of chemical processes and products in the pharmaceutical industry – a green metrics primer. Chem Soc Rev 41:1485–1498

    Article  PubMed  Google Scholar 

  13. Gedye R, Smith F, Westaway K, Ali H, Baldisera L, Laberge L, Rousell J (1986) The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett 27:279–282

    Article  CAS  Google Scholar 

  14. Giguere RJ, Bray TL, Duncan SM, Majetich G (1986) Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett 27:4945–4948

    Article  CAS  Google Scholar 

  15. Baig RNB, Varma RS (2012) Alternative energy input: mechanochemical, microwave and ultrasound-assisted organic synthesis. Chem Soc Rev 41:1559–1584

    Article  CAS  PubMed  Google Scholar 

  16. Horikoshi S, Serpone N (eds) (2016) Microwaves in catalysis: methodology and applications. Wiley-VCH, Weinheim

    Google Scholar 

  17. Varma RS (2012) Green chemistry with microwave energy. In: Meyers RA (ed) Encyclopedia of sustainability science and technology, 1st edn. Springer Science + Business Media, New York, pp 4642–4673. https://doi.org/10.1007/978-1-4419-0851-3

    Chapter  Google Scholar 

  18. Cseri L, Razali M, Pogany P, Szekely G (2017) Organic solvents in sustainable synthesis and engineering. In: Török B, Dransfield T (eds) Green chemistry: an inclusive approach. Elsevier, Oxford, pp 513–553

    Google Scholar 

  19. Turner C, Wang J (2017) Green solvents: a solution of air pollution and climatic changes. Curr Opin Green Sustain Chem 5:II–III

    Article  Google Scholar 

  20. Capello C, Fischer U, Hungerbuehler K (2007) What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem 9:927–934

    Article  CAS  Google Scholar 

  21. Shanab K, Neudorfer C, Schirmer E, Spreitzer H (2013) Green solvents in organic synthesis: an overview. Curr Org Chem 17:1179–1187

    Article  CAS  Google Scholar 

  22. Arridos G, Laali KK (2017) Ionic liquids as novel media and catalysts for electrophilic/onium ion chemistry and metal-mediated reactions. In: Török B, Dransfield T (eds) Green chemistry: an inclusive approach. Elsevier, Oxford, pp 555–608

    Google Scholar 

  23. Garcia-Alvarez J, Vidal C (2013) Deep eutectic solvents (DES) as new green and bio-renewable solvents for metal-mediated homogeneous catalysis. Abstracts of papers. Am Chem Soc 245

    Google Scholar 

  24. Cintas P, Tagliapietra S, Gaudino EC, Palmisano G, Cravotto G (2014) Glycerol: a solvent and a building block of choice for microwave and ultrasound irradiation procedures. Green Chem 16:1056–1065

    Article  CAS  Google Scholar 

  25. Rajabi F, Pineda A, Naserian S, Mariana Balu A, Luque R, Romero AA (2013) Aqueous oxidation of alcohols catalysed by recoverable iron oxide nanoparticles supported on aluminosilicates. Green Chem 15:1232–1237

    Article  CAS  Google Scholar 

  26. Omri M, Pourceau G, Becuwe M, Wadouachi A (2016) Improvement of gold-catalyzed oxidation of free carbohydrates to corresponding Aldonates using microwaves. ACS Sustain Chem Eng 4:2432–2438

    Article  CAS  Google Scholar 

  27. Ramos NC, Echevarria A, Valbon A, Bortoluzzi AJ, Guedes GP, Rodrigues-Santos CE (2016) Regioselective synthesis of imines (2-N-amine-3-N-(phenylmethylene)-5-pyridine) in water under microwave irradiation. Cogent Chem 2:1207863

    Article  CAS  Google Scholar 

  28. Cheng H, Liu R, Wang Q, Wu C, Yu Y, Zhao F (2012) Selective reduction of phenol derivatives to cyclohexanones in water under microwave irradiation. New J Chem 36:1085–1090

    Article  CAS  Google Scholar 

  29. Liu R, Wang Y, Cheng H, Yu Y, Zhao F, Arai M (2013) Reduction of citral in water under typical transfer hydrogenation conditions-reaction mechanisms with evolution of and hydrogenation by molecular hydrogen. J Mol Catal A Chem 366:315–320

    Article  CAS  Google Scholar 

  30. Henriques CA, Pinto SMA, Aquino GLB, Pineiro M, Calvete MJF, Pereira MM (2014) Ecofriendly porphyrin synthesis by using water under microwave irradiation. ChemSusChem 7:2821–2824

    Article  CAS  PubMed  Google Scholar 

  31. Wagare DS, Netankar PD, Shaikh M, Farooqui M, Durrani A (2017) Highly efficient microwave-assisted one-pot synthesis of 4-aryl-2-aminothiazoles in aqueous medium. Environ Chem Lett 15:475–479

    Article  CAS  Google Scholar 

  32. Feng E, Zhou Y, Zhao F, Chen X, Zhang L, Jiang H, Liu H (2012) Gold-catalyzed tandem reaction in water: an efficient and convenient synthesis of fused polycyclic indoles. Green Chem 14:1888–1895

    Article  CAS  Google Scholar 

  33. Wang S, Cheng C, Wu F, Jiang B, Shi F, Tu S, Rajale T, Li G (2011) Microwave-assisted multi-component reaction in water leading to highly regioselective formation of benzo[f]azulen-1-ones. Tetrahedron 67:4485–4493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Thi Thu Trang T, Ermolat’ev D, Van der Eycken E (2015) Facile and diverse microwave-assisted synthesis of secondary propargylamines in water using CuCl/CuCl2. RSC Adv 5:28921–28924

    Article  CAS  Google Scholar 

  35. Park S, Cho H, Lee S, Lee Y (2017) Microwave-assisted C-C coupling reaction using polymer-supported electron-rich oxime palladacycles in aqueous condition. Tetrahedron Lett 58:2670–2674

    Article  CAS  Google Scholar 

  36. Hanhan M, Senemoglu Y (2012) Microwave-assisted aqueous Suzuki coupling reactions catalyzed by ionic palladium(II) complexes. Transit Metal Chem 37:109–116

    Article  CAS  Google Scholar 

  37. Liew KH, Loh PL, Juan JC, Yarmo MA, Yusop RM (2014) QuadraPure-supported palladium nanocatalysts for microwave-promoted Suzuki cross-coupling reaction under aerobic condition. Sci World J 2014:796196

    Article  CAS  Google Scholar 

  38. Ge D, Zhang X, Chen S, Pu L, Yu X (2015) Microwave-assisted synthesis of 2-pyridinylethyl indazoles. Tetrahedron Lett 56:4811–4814

    Article  CAS  Google Scholar 

  39. Francavilla M, Intini S, Luchetti L, Luque R (2016) Tunable microwave-assisted aqueous conversion of seaweed-derived agarose for the selective production of 5-hydroxymethyl furfural/levulinic acid. Green Chem 18:5971–5977

    Article  CAS  Google Scholar 

  40. Antonetti C, Melloni M, Licursi D, Fulignati S, Ribechini E, Rivas S, Parajó JC, Cavani F, Raspolli Galletti AM (2017) Microwave-assisted dehydration of fructose and inulin to HMF catalyzed by niobium and zirconium phosphate catalysts. Appl Catal B Env 206:364–377

    Article  CAS  Google Scholar 

  41. Bhanja P, Modak A, Chatterjee S, Bhaumik A (2017) Bifunctionalized mesoporous SBA-15: a new heterogeneous catalyst for the facile synthesis of 5-Hydroxymethylfurfural. ACS Sus Chem Eng 5:2763–2773

    Article  CAS  Google Scholar 

  42. Cabrera DML, Libero FM, Alves D, Perin G, Lenardao EJ, Jacob RG (2012) Glycerol as a recyclable solvent in a microwave-assisted synthesis of disulfides. Green Chem Lett Rev 5:329–336

    Article  CAS  Google Scholar 

  43. Keenan CS, Murphree SS (2017) Rapid and convenient conversion of nitroarenes to anilines under microwave conditions using nonprecious metals in mildly acidic medium. Synth Commun 47:1085–1089

    Article  CAS  Google Scholar 

  44. Wang L, Shi L, Liu L, Li Z, Xu T, Hao W, Li G, Tu S, Jiang B (2017) Synthesis of Diastereoenriched Oxazolo[5,4-b]indoles via catalyst-free multicomponent Bicyclizations. J Org Chem 82:3605–3611

    Article  CAS  PubMed  Google Scholar 

  45. Zhang M, Liu P, Liu Y, Shang Z, Hu H, Zhang Z (2016) Magnetically separable graphene oxide anchored sulfonic acid: a novel, highly efficient and recyclable catalyst for one-pot synthesis of 3,6-di(pyridin-3-yl)-1H-pyrazolo[3,4-b]pyridine-5-carbonitriles in deep eutectic solvent under microwave irradiation. RSC Adv 6:106160–106170

    Article  CAS  Google Scholar 

  46. Dadhania AN, Patel VK, Raval DK (2017) Ionic liquid promoted facile and green synthesis of 1,8-dioxo-octahydroxanthene derivatives under microwave irradiation. J Saudi Chem Soc 21:163–169

    Article  CAS  Google Scholar 

  47. Mondal S, Patra BC, Bhaumik A (2017) One-pot synthesis of Polyhydroquinoline derivatives through organic-solid-acid-catalyzed Hantzsch condensation reaction. ChemCatChem 9:1469–1475

    Article  CAS  Google Scholar 

  48. Martinez J, Sanchez L, Javier Perez F, Carranza V, Delgado F, Reyes L, Miranda R (2016) Uncatalysed production of Coumarin-3-carboxylic acids: a green approach. J Chem 2016:4678107

    Article  CAS  Google Scholar 

  49. Zhou W, Zhang X, Sun X, Wang B, Wang J, Bai L (2013) Microwave-assisted synthesis of quinoxaline derivatives using glycerol as a green solvent. Russ Chem Bull 62:1244–1247

    Article  CAS  Google Scholar 

  50. Zhang X, Zhou W, Yang M, Wang J, Bai L (2012) Microwave-assisted synthesis of benzothiazole derivatives using glycerol as green solvent. J Chem Res 2012:489–491

    Article  CAS  Google Scholar 

  51. Cravotto G, Orio L, Gaudino E, Martina K, Tavor D, Wolfson A (2011) Efficient synthetic protocols in glycerol under heterogeneous catalysis. ChemSusChem 4:1130–1134

    Article  CAS  PubMed  Google Scholar 

  52. Perrier A, Keller M, Caminade A, Majoral J, Ouali A (2013) Efficient and recyclable rare earth-based catalysts for Friedel-crafts acylations under microwave heating: dendrimers show the way. Green Chem 15:2075–2080

    Article  CAS  Google Scholar 

  53. Schäfer C, Ellstrom C, Sood A, Alonzo J, Landge S, Tran C, Török B (2018) Environmentally benign, microwave-assisted chemoselective N hydroxyalkylation of indoles with trifluoroacetaldehyde methyl hemiacetal. ARKIVOC ii:122–130

    Google Scholar 

  54. Török B, Sood A, Bag S, Kulkarni A, Borkin D, Lawler E, Dasgupta S, Landge S, Abid M, Zhou W, Foster M, LeVine H, Török M (2012) Structure-activity relationships of Organofluorine inhibitors of β-amyloid self-assembly. ChemMedChem 7:910–919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Kamimura A, Murata K, Tanaka Y, Okagawa T, Matsumoto H, Kaiso K, Yoshimoto M (2014) Rapid conversion of sorbitol to isosorbide in hydrophobic ionic liquids under microwave irradiation. ChemSusChem 7:3257–3259

    Article  CAS  PubMed  Google Scholar 

  56. Huang Y, Yang T, Zhou M, Pan H, Fu Y (2016) Microwave-assisted alcoholysis of furfural alcohol into alkyl levulinates catalyzed by metal salts. Green Chem 18:1516–1523

    Article  CAS  Google Scholar 

  57. Zhang Y, Xia X, Duan M, Han Y, Liu J, Luo M, Zhao C, Zu Y, Fu Y (2016) Green deep eutectic solvent assisted enzymatic preparation of biodiesel from yellow horn seed oil with microwave irradiation. J Mol Catal B Enzym 123:35–40

    Article  CAS  Google Scholar 

  58. Horikoshi S, Kamata M, Mitani T, Serpone N (2014) Control of microwave-generated hot spots. 6. Generation of hot spots in dispersed catalyst particulates and factors that affect catalyzed organic syntheses in heterogeneous media. Ind Eng Chem Res 53:14941–14947

    Article  CAS  Google Scholar 

  59. Kokel A, Schäfer C, Török B (2017) Application of microwave-assisted heterogeneous catalysis in sustainable synthesis design. Green Chem 19:3729–3751

    Article  CAS  Google Scholar 

  60. Frija LMT, Alegria ECBA, Sutradhar M, Cristiano MLS, Ismael A, Kopylovich MN, Pombeiro AJL (2016) Copper(II) and cobalt(II) tetrazole-saccharinate complexes as effective catalysts for oxidation of secondary alcohols. J Mol Catal A Chem 425:283–290

    Article  CAS  Google Scholar 

  61. Sutradhar M, Martins LMDRS, Guedes da Silva MFC, Pombeiro AJL (2015) Oxidovanadium complexes with tridentate aroylhydrazone as catalyst precursors for solvent-free microwave-assisted oxidation of alcohols. Appl Catal A Gen 493:50–57

    Article  CAS  Google Scholar 

  62. Karmakar A, Martins LMDRS, Guedes da Silva MFC, Hazra S, Pombeiro AJL (2015) Solvent-free microwave-assisted Peroxidative oxidation of alcohols catalyzed by Iron(III)-TEMPO catalytic systems. Catal Lett 145:2066–2076

    Article  CAS  Google Scholar 

  63. Walid Amer W, Abdelouahdi K, Ramananarivo HR, Zahouily M, Essassi EM, Fihri A, Solhy A (2013) Oxidation of benzylic alcohols into aldehydes under solvent-free microwave irradiation using new catalyst-support system. Curr Org Chem 17:72–78

    Article  Google Scholar 

  64. Fu R, Yang Y, Jin W, Gu H, Zeng X, Chai W, Ma Y, Wang Q, Yi J, Yuan R (2016) Microwave-assisted heteropolyanion-based ionic liquid promoted sustainable protocol to N-heteroaryl amides via N-directing dual catalyzed oxidative amidation of aldehydes. RSC Adv 6:107699–107707

    Article  CAS  Google Scholar 

  65. Fu R, Yang Y, Zhang YJ, Shao J, Xia X, Ma Y, Yuan R (2016) Direct oxidative amidation of aldehydes with amines catalyzed by heteropolyanion-based ionic liquids under solvent-free conditions via a dual-catalysis process. Org Biomol Chem 14:1784–1793

    Article  CAS  PubMed  Google Scholar 

  66. Martins LMDRS, Hazra S, Guedes da Silva MFC, Pombeiro AJL (2016) A sulfonated Schiff base dimethyltin(IV) coordination polymer: synthesis, characterization and application as a catalyst for ultrasound- or microwave-assisted Baeyer-Villiger oxidation under solvent-free conditions. RSC Adv 6:78225–78233

    Article  CAS  Google Scholar 

  67. Yadav A, Biswas S, Mobin SM, Samanta S (2017) Efficient cu(OTf)2-catalyzed and microwave-assisted rapid synthesis of 3,4-fused chromenopyridinones under neat conditions. Tetrahedron Lett 58:3634–3639

    Article  CAS  Google Scholar 

  68. Ozil M, Mentese E, Kahveci B (2012) Synthesis and reduction reaction of novel triazole compounds in the solid-media condition by using microwave method. Eur J Chem 3:442–446

    Article  CAS  Google Scholar 

  69. Khajuria R, Saini Y, Kapoor KK (2013) A solvent-free synthesis of ethyl 3,5-diaryl-1H-pyrrole-2-carboxylates via triethylphosphite mediated reductive cyclization of ethyl 2-nitro-5-oxo-3,5-diarylpentanoates under microwave irradiation. Tetrahedron Lett 54:5699–5702

    Article  CAS  Google Scholar 

  70. Khajuria R, Kapoor KK (2014) One-pot, solvent-free cascade Michael-reductive cyclization reaction for the synthesis of ethyl 3,5-disubstituted-1H-pyrrole-2-carboxylates under microwave irradiation. Curr Microw Chem 1:110–118

    Article  CAS  Google Scholar 

  71. Brun E, Safer A, Carreaux F, Bourahla K, L’helgoua’ch JM, Bazureau JP, Villalgordo JM (2015) Microwave-assisted condensation reactions of Acetophenone derivatives and activated methylene compounds with aldehydes catalyzed by boric acid under solvent-free conditions. Molecules 20:11617–11631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rocchi D, González JF, Menéndez JC (2014) Montmorillonite clay-promoted, solvent-free cross-aldol condensations under focused microwave irradiation. Molecules 19:7317–7326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Zhang DW, Zhang YM, Zhang YL, Zhao TQ, Liu HW, Gan YM, Gu Q (2015) Efficient solvent-free synthesis of bis(indolyl)methanes on SiO2 solid support under microwave irradiation. Chem Papers 69:470–478

    CAS  Google Scholar 

  74. Penieres-Carrillo JG, Luna-Mora RA, López-Cortés JG, Ortega-Jiménez F, Valdez-Rojas JE, García-Estrada JG, Fernández-Aulis F, Álvarez-Toledano C (2017) Synthesis of novel benzimidazole-diindolylmethane hybrid compounds within the green chemistry context. ARKIVOC iv:210–221

    Article  Google Scholar 

  75. Varghese A, Nizam A, Kulkarni R, George L (2012) Amberlite IR-120H: an improved reusable solid phase catalyst for the synthesis of nitriles under solvent free microwave irradiation. Eur J Chem 3:247–251

    Article  CAS  Google Scholar 

  76. Ghodke S, Chudasama U (2013) Solvent free synthesis of coumarins using environment friendly solid acid catalysts. Appl Catal A Gen 453:219–226

    Article  CAS  Google Scholar 

  77. Chavan OS, Shioorkar MG, Jadhav SA, Sakhare MA, Pawar YM, Shivaji B, Chavan SB, Baseer MA (2017) Envirocat EPZ-10: an efficient catalyst for synthesis of coumarins by Pechmann reactin under solvent free microwave irradiation method. Heterocyclic Lett 7:377–380

    CAS  Google Scholar 

  78. Bandyopadhyay D, Rhodes E, Banik BK (2013) A green, chemoselective, and practical approach toward N-(2-azetidinonyl) 2,5-disubstituted pyrroles. RSC Adv 3:16756–16764

    Article  CAS  Google Scholar 

  79. Luque R, Macquarrie DJ (2009) Efficient solvent- and metal-free Sonogashira protocol catalysed by 1,4-diazabicyclo(2.2.2) octane (DABCO). Org Biomol Chem 7:1627–1632

    Article  CAS  PubMed  Google Scholar 

  80. Baran T, Sargin I, Kaya M, Mentes A (2016) An environmental catalyst derived from biological waste materials for green synthesis of biaryls via Suzuki coupling reactions. J Mol Catal A Chem 420:216–221

    Article  CAS  Google Scholar 

  81. Pandey G, Török B (2017) K-10 montmorillonite-catalyzed solid phase diazotizations: environmentally benign coupling of diazonium salts with aromatic hydrocarbons to biaryls. Green Chem 19:5390–5395

    Article  CAS  Google Scholar 

  82. Bettanin L, Botteselle GV, Godoi M, Braga AL (2014) Green synthesis of 1,3-diynes from terminal acetylenes under solvent-free conditions. Green Chem Lett Rev 7:105–112

    Article  CAS  Google Scholar 

  83. Staderini M, Cabezas N, Bolognesi ML, Carlos Menéndez J (2013) Solvent- and chromatography-free amination of π-deficient nitrogen heterocycles under microwave irradiation. A fast, efficient and green route to 9-aminoacridines, 4-aminoquinolines and 4-aminoquinazolines and its application to the synthesis of the drugs amsacrine and bistacrine. Tetrahedron 69:1024–1030

    Article  CAS  Google Scholar 

  84. Saba S, Rafique J, Braga AL (2015) Synthesis of unsymmetrical Diorganyl chalcogenides under greener conditions: use of an iodine/DMSO system, solvent- and metal-free approach. Adv Synth Catal 357:1446–1452

    Article  CAS  Google Scholar 

  85. Saikia P, Sharma G, Gogoi S, Boruah RC (2015) Cascade imination, Buchwald–Hartwig cross coupling and cycloaddition reaction: synthesis of pyrido[2,3-d]pyrimidines. RSC Adv 5:23210–23212

    Article  CAS  Google Scholar 

  86. Villemin D, Belhadj Z, Cheikh N, Choukchou-Braham N, Bar N, Lohier JF (2013) Solventless convenient synthesis of new cyano-2-aminopyridine derivatives from enaminonitriles. Tetrahedron Lett 54:1664–1668

    Article  CAS  Google Scholar 

  87. Vaddula BR, Varma RS, Leazer J (2013) Mixing with microwaves: solvent-free and catalyst-free synthesis of pyrazoles and diazepines. Tetrahedron Lett 54:1538–1541

    Article  CAS  Google Scholar 

  88. Kokel A, Török B (2017) Microwave-assisted solid phase diazotation: a method for the environmentally benign synthesis of benzotriazoles. Green Chem 19:2515–2519

    Article  CAS  Google Scholar 

  89. Valizadeh H, Dinparast L, Noorshargh S, Heravi MM (2016) Microwave assisted synthesis of hydroxychromenes using imidazole-functionalized silica nanoparticles as a catalyst under solvent-free conditions. C R Chim 19:395–402

    Article  CAS  Google Scholar 

  90. Kumar SV, Muthusubramanian S, Perumal S (2015) A solvent- and catalyst-free domino reaction for the efficient synthesis of 3-arylthiazolidine-2- thiones under microwave irradiation. RSC Adv 5:90451–90456

    Article  CAS  Google Scholar 

  91. Babu M, Pitchumani K, Ramesh P (2013) An expeditious synthesis of Flavonols promoted by montmorillonite KSF clay and assisted by microwave irradiation under solvent-free conditions. Helv Chim Acta 96:1269–1272

    Article  CAS  Google Scholar 

  92. Nahakpam L, Chingakham BS, Laitonjam WS (2015) Polymer-supported Tribromide as a new solid phase and recyclable catalyst for the synthesis of 2-(N-Arylamino)benzothiazoles under solvent-free microwave irradiation conditions. J Heterocyclic Chem 52:267–272

    Article  CAS  Google Scholar 

  93. Naidoo S, Jeena V (2016) A green, solvent-free one-pot synthesis of disubstituted quinolines via A3-coupling using 1mol % FeCl3. Heterocycles 92:1655–1664

    Article  CAS  Google Scholar 

  94. Ansari AJ, Sharma S, Pathare RS, Gopal K, Sawant DM, Pardasani RT (2016) Solvent–free multicomponent synthesis of biologically–active fused–imidazo heterocycles catalyzed by reusable Yb(OTf)3 under microwave irradiation. Chem Select 1:1016–1021

    CAS  Google Scholar 

  95. Mirzai M, Valizadeh H (2012) Microwave-promoted synthesis of 3,4-dihydropyrimidin-2(1H)-(thio)ones using IL-ONO as recyclable base catalyst under solvent-free conditions. Synth Commun 42:1268–1277

    Article  CAS  Google Scholar 

  96. Harikrishnan PS, Rajesh SM, Perumal S, Almansour AI (2013) A microwave-mediated catalyst- and solvent-free regioselective Biginelli reaction in the synthesis of highly functionalized novel tetrahydropyrimidines. Tetrahedron Lett 54:1076–1079

    Article  CAS  Google Scholar 

  97. Shinde VV, Lee SD, Jeong YS, Jeong YT (2015) P-Toluenesulfonic acid doped polystyrene (PS-PTSA): solvent-free microwave assisted cross-coupling-cyclization–oxidation to build one-pot diversely functionalized pyrrole from aldehyde, amine, active methylene, and nitroalkane. Tetrahedron Lett 56:859–865

    Article  CAS  Google Scholar 

  98. Bala BD, Rajesh SM, Perumal S (2012) An eco-friendly sequential catalyst- and solvent-free four-component stereoselective synthesis of novel 1,4-pyranonaphthoquinones. Green Chem 14:2484–2490

    Article  CAS  Google Scholar 

  99. Ingold M, Loṕez GV, Porcal W (2014) Green conditions for Passerini three-component synthesis of tocopherol analogues. ACS Sust Chem Eng 2:1093–1097

    Article  CAS  Google Scholar 

  100. Tran PH, Nguyen HT, Hansen PE, Le TN (2017) Greener Friedel-crafts acylation using microwave-enhanced reactivity of bismuth Triflate in the Friedel-crafts Benzoylation of aromatic compounds with benzoic anhydride. Chem Select 2:571–575

    CAS  Google Scholar 

  101. Yaragorla S, Singh G, Saini PL, Reddy MK (2014) Microwave assisted, Ca(II)-catalyzed Ritter reaction for the green synthesis of amides. Tetrahedron Lett 55:4657–4660

    Article  CAS  Google Scholar 

  102. Barreto AFS, Salvador CEM, Rosalba TPF, Andrade CKZ (2017) Microwave-assisted Aminolysis of lactones under solvent- and catalyst-free conditions. Curr Microw Chem 4:168–172

    Article  CAS  Google Scholar 

  103. Mohsenzadeh F, Aghapoor K, Darabi HR, Jalali MR, Halvagar MR (2016) Greener aminolysis of epoxides on BiCl3/SiO2. C R Chim 19:978–985

    Article  CAS  Google Scholar 

  104. Fabian L, Gómez M, Kuran JAC, Moltrasio G, Moglioni A (2014) Efficient microwave-assisted esterification reaction employing Methanesulfonic acid supported on alumina as catalyst. Synth Commun 44:2386–2392

    Article  CAS  Google Scholar 

  105. Ma LJ, Inokuchi T (2010) Solvent-free microwave-assisted multi-component reaction for preparation of 2-amino-1-aryl-2-(cyclohex-1-enyl)ethanones as precursors of pseudoephedrine analogues. Chem Commun 46:7037–7039

    Article  CAS  Google Scholar 

  106. Benaskar F, Patil N, Rebrov V, Schouten J, Hessel V (2016) Microwaves in Cu-catalyzed organic synthesis in batch and flow mode. In: Horikoshi S, Serpone N (eds) Microwaves in catalysis: methodology and applications. Wiley-VCH, Weinheim, pp 124–130

    Google Scholar 

  107. Gronnow MJ, White RJ, Clark JH, Macquarrie DJ (2005) Energy efficiency in chemical reactions: a comparative study of different reaction techniques. Org Process Res Dev 9:516–518

    Article  CAS  Google Scholar 

  108. Razzaq T, Kappe CO (2008) On the energy efficiency of microwave-assisted organic reactions. ChemSusChem 1:123–132

    Article  CAS  PubMed  Google Scholar 

  109. Moseley JD, Woodman EK (2009) Energy efficiency of microwave- and conventionally heated reactors compared at meso scale for organic reactions. Energy Fuel 23:5438–5447

    Article  CAS  Google Scholar 

  110. Devine WG, Leadbeater NE (2011) Probing the energy efficiency of microwave heating and continuous-flow conventional heating as tools for organic chemistry. ARKIVOC 2011:127–143

    Google Scholar 

  111. Pinchukova NA, Chebanov VA, Gorobets NY, Gudzenko LV, Ostras KS, Shishkin OV, Hulshof LA, Voloshko AY (2011) Beneficial energy-efficiencies in the microwave-assisted vacuum preparation of Polyphosphoric acid. Chem Eng Process 50:1193–1197

    Article  CAS  Google Scholar 

  112. Moseley JD, Kappe CO (2011) A critical assessment of the greenness and energy efficiency of microwave-assisted organic synthesis. Green Chem 13:794–806

    Article  CAS  Google Scholar 

  113. Qaroush AK, Al-Hamayda AS, Khashman YK, Vagin SI, Troll C, Rieger B (2013) Highly efficient isocyanate-free microwave-assisted synthesis of [6]-oligourea. Catal Sci Tech 3:2221–2226

    Article  CAS  Google Scholar 

  114. Lee CL, Jou CJG (2014) Using low energy-consuming microwave technology to regenerate high carbon-containing Pt catalyst. Environ Pol 3:41–47

    CAS  Google Scholar 

  115. Kundu A, Gupta BS, Hashim MA, Sahu JN, Mujawar M, Redzwan G (2015) Optimisation of the process variables in production of activated carbon by microwave heating. RSC Adv 5:35899–35908

    Article  CAS  Google Scholar 

  116. Cho H, Török F, Török B (2014) Energy efficiency of heterogeneous catalytic microwave-assisted organic reactions. Green Chem 16:3623–3634

    Article  CAS  Google Scholar 

  117. Bennaki H, Colacino E, Andre C, Guenoun F, Martinez J, Lamaty F (2008) Microwave-assisted multi-step synthesis of novel pyrrolo-[3,2-c]quinoline derivatives. Tetrahedron 64:5949–5955

    Article  CAS  Google Scholar 

  118. Coquerel Y, Colacino E, Rodriguez J, Martinez J, Lamaty F (2013) Microwaves-assisted stereoselective synthesis, Chapter 5. In: Andrushko V, Andrushko N (eds) Stereoselective synthesis of drugs and natural products. Wiley, Hoboken, pp 145–166

    Google Scholar 

  119. Strauss CR (2009) On scale up of organic reactions in closed vessel microwave systems. Org Process Res Dev 13:915–923

    Article  CAS  Google Scholar 

  120. Dallinger D, Lehmann H, Moseley JD, Stadler A, Kappe CO (2011) Scale-up of microwave-assisted reactions in a multimode bench-top reactor. Org Process Res Dev 15:841–854

    Article  CAS  Google Scholar 

  121. Lee DS, Amara Z, Poliakoff M, Harman T, Reid G, Rhodes B, Brough S, McInally T, Woodward S (2015) Investigating scale-up and further applications of DABAL-Me3 promoted amide synthesis. Org Process Res Dev 19:831–840

    Article  CAS  Google Scholar 

  122. Kim D, Seol SK, Chang WS (2016) Energy efficiency of a scaled-up microwave-assisted transesterification for biodiesel production. Korean J Chem Eng 33:527–531

    Article  CAS  Google Scholar 

  123. Schmink JR, Kormos CM, Devine VG, Leadbeater NE (2010) Exploring the scope for scale-up of organic chemistry using a large batch microwave reactor. Org Process Res Dev 14:205–214

    Article  CAS  Google Scholar 

  124. Protasova LN, Bulut M, Ormerod D, Buekenhoudt A, Berton J, Stevens CV (2013) Latest highlights in liquid-phase reactions for organic synthesis in microreactors. Org Process Res Dev 17:760–791

    Article  CAS  Google Scholar 

  125. Porta R, Benaglia M, Puglisi A (2016) Flow chemistry: recent developments in the synthesis of pharmaceutical products. Org Process Res Dev 20:2–25

    Article  CAS  Google Scholar 

  126. Matsuzawa M, Togashi S (2016) Pilot plant for continuous flow microwave-assisted chemical reactions. In: Horikoshi S, Serpone N (eds) Microwaves in catalysis: methodology and applications. Wiley-VCH, Weinheim, pp 141–154

    Google Scholar 

  127. Sheldon RA, Arends I, Hanefeld U (2014) Green chemistry and catalysis, 2nd edn. Wiley-VCH, Weinhem

    Google Scholar 

  128. Pálinkó I (2017) Heterogeneous catalysis: a fundamental pillar of sustainable synthesis. In: Török B, Dransfield T (eds) Green chemistry: an inclusive approach. Elsevier, Oxford, pp 415–447

    Google Scholar 

  129. Bag S, Dasgupta S, Török B (2011) Microwave-assisted heterogeneous catalysis: an environmentally benign tool for contemporary organic synthesis. Curr Org Synth 8:237–261

    Article  CAS  Google Scholar 

  130. Varma RS (2002) Clay and clay-supported reagents in organic synthesis. Tetrahedron 58:1235–1255

    Article  CAS  Google Scholar 

  131. Polshettiwar V, Varma RS (2008) Microwave-assisted organic synthesis and transformations using benign reaction media. Acc Chem Res 41:629–639

    Article  CAS  PubMed  Google Scholar 

  132. Abid M, Török B, Huang X (2009) Microwave-assisted tandem processes for the synthesis of N-heterocycles. Aus J Chem 62:208–222

    Article  CAS  Google Scholar 

  133. Daştan A, Kulkarni A, Török B (2012) Environmentally benign synthesis of heterocyclic compounds by combined microwave-assisted heterogeneous catalytic approaches. Green Chem 14:17–37

    Article  Google Scholar 

  134. Cho H, Schäfer C, Török B (2016) Microwave-assisted solid acid catalysis, Chapter 10. In: Horikoshi S, Serpone N (eds) Microwaves in catalysis – fundamental research and scale-up technology. Wiley-VCH, Weinheim, pp 193–212

    Google Scholar 

  135. Whittaker AG, Mingos DMP (2000) Arcing and other microwave characteristics of metal powders in liquid systems. J Chem Soc Dalton Trans 2000:1521–1526

    Article  Google Scholar 

  136. Dressen MHCL, van de Kruijs BHP, Meuldijk J, Vekemans JAJM, Hulshof LA (2007) Vanishing microwave effects: influence of heterogeneity. Org Process Res Dev 11:865–869

    Article  CAS  Google Scholar 

  137. Sauks JM, Mallik D, Lawryshyn Y, Bender T, Organ M (2014) A continuous-flow microwave reactor for conducting high-temperature and high-pressure chemical reactions. Org Process Res Dev 18:1310–1314

    Article  CAS  Google Scholar 

  138. Skillinghaug B, Rydfjord J, Savmarker J, Larhed M (2016) Microwave heated continuous flow palladium(II)-catalyzed Desulfitative synthesis of aryl ketones. Org Process Res Dev 20:2005–2011

    Article  CAS  Google Scholar 

  139. Kumpiņa I, Isaksson R, Sävmarker J, Wannberg J, Larhed M (2016) Microwave promoted Transcarbamylation reaction of Sulfonylcarbamates under continuous-flow conditions. Org Process Res Dev 20:440–445

    Article  CAS  Google Scholar 

  140. Engen K, Sävmarker J, Rosenström U, Wannberg J, Lundbäck J, Jenmalm-Jensen A, Larhed M (2014) Microwave heated flow synthesis of Spiro-oxindole Dihydroquinazolinone based IRAP inhibitors. Org Process Res Dev 18:1582–1588

    Article  CAS  Google Scholar 

  141. Konda V, Rydfjord J, Sävmarker J, Larhed M (2014) Safe palladium-catalyzed cross-couplings with microwave heating using continuous-flow silicon carbide reactors. Org Process Res Dev 18:1413–1418

    Article  CAS  Google Scholar 

  142. Patil NG, Benaskar F, Rebrov EV, Meuldijk J, Hulshof LA, Hessel V, Schouten JC (2014) Scale-up of microwave assisted flow synthesis by transient processing through Monomode cavities in series. Org Process Res Dev 18:1400–1407

    Article  CAS  Google Scholar 

  143. Marwan EI (2016) Hydrated calcined Cyrtopleura costata seashells as an effective solid catalyst for microwave-assisted preparation of palm oil biodiesel. Energ Conver Manage 117:319–325

    Article  CAS  Google Scholar 

  144. Buasri A, Lukkanasiri M, Nernrimnong R, Tonseeya S, Rochanakit K, Wongvitvichot V, Masaard U, Loryuenyong V (2016) Rapid transesterification of Jatropha curcas oil to biodiesel using novel catalyst with a microwave heating system. Korean J Chem Eng 3:3388–3400

    Article  CAS  Google Scholar 

  145. Singh V, Veena V, Sharma YC (2017) Low cost Guinea fowl bone derived recyclable heterogeneous catalyst for microwave assisted transesterification of Annona squamosal L. seed oil. Energ Conver Manage 138:627–637

    Article  CAS  Google Scholar 

  146. Wu Y, Zhang C, Liu Y, Fu Z, Dai B, Yin D (2012) Biomass char sulfonic acids (BC-SO3H)-catalyzed hydrolysis of bamboo under microwave irradiation. Bioresources 7:5950–5959

    Google Scholar 

  147. Kayser H, Müller CR, Garcia-Gonzalez CA, Smirnova I, Leitner W, de Maria PD (2012) Dried chitosan-gels as organocatalysts for the production of biomass-derived platform chemicals. Appl Catal A Gen 445:180–186

    Article  CAS  Google Scholar 

  148. Khan K, Siddiqui ZN (2015) An efficient synthesis of tri- and Tetrasubstituted Imidazoles from Benzils using functionalized chitosan as biodegradable solid acid catalyst. Ind Eng Chem Res 54:6611–6618

    Article  CAS  Google Scholar 

  149. Wang D, Zhang E, Xu T, Sheng J, Zou Y (2016) Sequential C-C, C-O, and C-N bond-forming reaction of methyl (−)-3-dehydroshikimate, Malononitrile, and Bromoalkanes: simple synthesis of 2-(Alkylamino)-3-cyanobenzofurans from a biomass-derived substrate. Synlett 27:287–293

    CAS  Google Scholar 

  150. Yadav GD, Hude MP, Talpade AD (2015) Microwave assisted process intensification of lipase catalyzed transesterification of 1,2 propanediol with dimethyl carbonate for the green synthesis of propylene carbonate: novelties of kinetics and mechanism of consecutive reactions. Chem Eng J 281:199–208

    Article  CAS  Google Scholar 

Books and Reviews

  • Török B, Dransfield T (eds) (2017) Green chemistry: an inclusive approach. Elsevier, Oxford

    Google Scholar 

  • Li CJ (ed) (2012) Handbook of green chemistry-green processes, vol 7. Green synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  • d Hoz A, Loupy A (eds) (2012) Microwaves in organic synthesis, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  • Kappe CO, Stadler A, Dallinger D (2012) Microwaves in organic and medicinal chemistry, 2nd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Polshettiwar V, Nadagouda MN, Varma RS (2009) Microwave-assisted chemistry: a rapid and sustainable route to synthesis of organics and nanomaterials. Aus J Chem 62:16–26

    Article  CAS  Google Scholar 

  • Gawande MB, Shelke SN, Zboril R, Varma RS (2014) Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics. Acc Chem Res 47:1338–1348

    Article  CAS  PubMed  Google Scholar 

  • Tierney JP, Lidström P (2005) Microwave-assisted organic synthesis. Oxford, Blackwell

    Book  Google Scholar 

  • Kappe CO, Dallinger D, Murphree SS (2008) Practical microwave synthesis for organic chemists-Stategies, instruments, and protocols. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Leadbeater N (ed) (2010) Microwave heating as a tool for sustainable chemistry. CRC Press, Boca Raton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christian Schäfer or Béla Török .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kokel, A., Schäfer, C., Török, B. (2019). Microwave-Assisted Reactions in Green Chemistry. In: Han, B., Wu, T. (eds) Green Chemistry and Chemical Engineering. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9060-3_1008

Download citation

Publish with us

Policies and ethics