Skip to main content

2D and 3D In Vitro Co-Culture for Cancer and Bone Cell Interaction Studies

  • Protocol
  • First Online:
Bone Research Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1914))

Abstract

Co-culture assays are used to study the mutual interaction between cells in vitro. This chapter describes 2D and 3D co-culture systems used to study cell-cell signaling crosstalk between cancer cells and bone marrow adipocytes, osteoblasts, osteoclasts, and osteocytes. The chapter provides a step-by-step guide to the most commonly used cell culture techniques, functional assays, and gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suva LJ et al (2011) Bone metastasis: mechanisms and therapeutic opportunities. Nat Rev Endocrinol 7(4):208ā€“218

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  2. Waning DL, Guise TA (2014) Molecular mechanisms of bone metastasis and associated muscle weakness. Clin Cancer Res 20(12):3071ā€“3077

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  3. Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2(8):584ā€“593

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Roodman GD (2004) Mechanisms of bone metastasis. N Engl J Med 350(16):1655ā€“1664

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Croucher PI, McDonald MM, Martin TJ (2016) Bone metastasis: the importance of the neighbourhood. Nat Rev Cancer 16(6):373ā€“386

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Kaemmerer E et al (2017) Innovative in vitro models for breast cancer drug discovery. Drug Discov Today Dis Model 21:11ā€“16

    ArticleĀ  Google ScholarĀ 

  7. Arrigoni C et al (2014) Direct but not indirect co-culture with osteogenically differentiated human bone marrow stromal cells increases RANKL/OPG ratio in human breast cancer cells generating bone metastases. Mol Cancer 13:238

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  8. Arrigoni C et al (2016) In vitro co-culture models of breast cancer metastatic progression towards bone. Int J Mol Sci 17(9)

    ArticleĀ  PubMed CentralĀ  Google ScholarĀ 

  9. Sebastian A et al (2015) Cancer-osteoblast interaction reduces sost expression in osteoblasts and up-regulates lncRNA MALAT1 in prostate cancer. Microarrays (Basel) 4(4):503ā€“519

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. Chen Y et al (2011) Regulation of breast cancer-induced bone lesions by beta-catenin protein signaling. J Biol Chem 286(49):42575ā€“42584

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  11. Zheng Y et al (2014) Direct crosstalk between cancer and osteoblast lineage cells fuels metastatic growth in bone via auto-amplification of IL-6 and RANKL signaling pathways. J Bone Miner Res 29(9):1938ā€“1949

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Nicolin V et al (2008) Breast adenocarcinoma MCF-7 cell line induces spontaneous osteoclastogenesis via a RANK-ligand-dependent pathway. Acta Histochem 110(5):388ā€“396

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Bersini S et al (2014) A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials 35(8):2454ā€“2461

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Di Maggio N et al (2011) Toward modeling the bone marrow niche using scaffold-based 3D culture systems. Biomaterials 32(2):321ā€“329

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  15. Wang R et al (2005) Three-dimensional co-culture models to study prostate cancer growth, progression, and metastasis to bone. Semin Cancer Biol 15(5):353ā€“364

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Orriss IR, Taylor SE, Arnett TR (2012) Rat osteoblast cultures. Methods Mol Biol 816:31ā€“41

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Taylor SE, Shah M, Orriss IR (2014) Generation of rodent and human osteoblasts. Bonekey Rep 3:585

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  18. Bakker AD, Klein-Nulend J (2012) Osteoblast isolation from murine calvaria and long bones. Methods Mol Biol 816:19ā€“29

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  19. Czekanska EM et al (2012) In search of an osteoblast cell model for in vitro research. Eur Cell Mater 24:1ā€“17

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  20. Czekanska EM et al (2014) A phenotypic comparison of osteoblast cell lines versus human primary osteoblasts for biomaterials testing. J Biomed Mater Res A 102(8):2636ā€“2643

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Costa-Rodrigues J, Fernandes A, Fernandes MH (2011) Reciprocal osteoblastic and osteoclastic modulation in co-cultured MG63 osteosarcoma cells and human osteoclast precursors. J Cell Biochem 112(12):3704ā€“3713

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Henriksen K et al (2012) Generation of human osteoclasts from peripheral blood. Methods Mol Biol 816:159ā€“175

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. Marino S et al (2014) Generation and culture of osteoclasts. Bonekey Rep 3:570

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  24. Abbott RD et al (2016) The use of silk as a scaffold for mature, sustainable unilocular adipose 3D tissue engineered systems. Adv Healthc Mater 5(13):1667ā€“1677

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  25. Moreau JE et al (2007) Tissue-engineered bone serves as a target for metastasis of human breast cancer in a mouse model. Cancer Res 67(21):10304ā€“10308

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Kapoor S, Kundu SC (2016) Silk protein-based hydrogels: Promising advanced materials for biomedical applications. Acta Biomater 31:17ā€“32

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  27. Zhang X, Reagan MR, Kaplan DL (2009) Electrospun silk biomaterial scaffolds for regenerative medicine. Adv Drug Deliv Rev 61(12):988ā€“1006

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  28. Pallotta I et al (2011) Three-dimensional system for the in vitro study of megakaryocytes and functional platelet production using silk-based vascular tubes. Tissue Eng Part C Methods 17(12):1223ā€“1232

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  29. Numata K et al (2011) Spider silk-based gene carriers for tumor cell-specific delivery. Bioconjug Chem 22(8):1605ā€“1610

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  30. Mandal BB, Kundu SC (2009) Non-mulberry silk gland fibroin protein 3-D scaffold for enhanced differentiation of human mesenchymal stem cells into osteocytes. Acta Biomater 5(7):2579ā€“2590

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Bellas E et al (2012) In vitro 3D full-thickness skin-equivalent tissue model using silk and collagen biomaterials. Macromol Biosci 12(12):1627ā€“1636

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  32. Bellas E, Marra KG, Kaplan DL (2013) Sustainable three-dimensional tissue model of human adipose tissue. Tissue Eng Part C Methods 19(10):745ā€“754

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  33. Sun L, Reagan MR, Kaplan DL (2010) Role of Cartilage Forming Cells in Regenerative Medicine for Cartilage Repair. Orthop Res Rev 2010(2):85ā€“94

    PubMedĀ  Google ScholarĀ 

  34. Sundelacruz S, Kaplan DL (2009) Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine. Semin Cell Dev Biol 20(6):646ā€“655

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  35. Kim HJ et al (2007) Bone regeneration on macroporous aqueous-derived silk 3-D scaffolds. Macromol Biosci 7(5):643ā€“655

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. Mandal BB et al (2012) High-strength silk protein scaffolds for bone repair. Proc Natl Acad Sci U S A 109(20):7699ā€“7704

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  37. Reagan MR et al (2014) Investigating osteogenic differentiation in multiple myeloma using a novel 3D bone marrow niche model. Blood 124(22):3250ā€“3259

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  38. Correia C et al (2012) Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells. Acta Biomater 8(7):2483ā€“2492

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  39. Goldstein RH et al (2010) Human bone marrow-derived MSCs can home to orthotopic breast cancer tumors and promote bone metastasis. Cancer Res 70(24):10044ā€“10050

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  40. Kwon H et al (2010) Development of an in vitro model to study the impact of BMP-2 on metastasis to bone. J Tissue Eng Regen Med 4(8):590ā€“599

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  41. Momen-Heravi F et al (2013) Current methods for the isolation of extracellular vesicles. Biol Chem 394(10):1253ā€“1262

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  42. Orriss IR et al (2014) Optimisation of the differing conditions required for bone formation in vitro by primary osteoblasts from mice and rats. Int J Mol Med 34(5):1201ā€“1208

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  43. Faust J et al (1999) Osteoclast markers accumulate on cells developing from human peripheral blood mononuclear precursors. J Cell Biochem 72(1):67ā€“80

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  44. Daigneault M et al (2010) The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One 5(1):e8668

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  45. Bodine PV, Vernon SK, Komm BS (1996) Establishment and hormonal regulation of a conditionally transformed preosteocytic cell line from adult human bone. Endocrinology 137(11):4592ā€“4604

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  46. Shah KM et al (2016) Osteocyte isolation and culture methods. Bonekey Rep 5:838

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  47. Delgado-Calle J et al (2016) Bidirectional notch signaling and osteocyte-derived factors in the bone marrow microenvironment promote tumor cell proliferation and bone destruction in multiple myeloma. Cancer Res 76(5):1089ā€“1100

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  48. Augst A et al (2008) Effects of chondrogenic and osteogenic regulatory factors on composite constructs grown using human mesenchymal stem cells, silk scaffolds and bioreactors. J R Soc Interface 5(25):929ā€“939

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  49. Wang Y et al (2006) Stem cell-based tissue engineering with silk biomaterials. Biomaterials 27(36):6064ā€“6082

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  50. Park SH et al (2010) Relationships between degradability of silk scaffolds and osteogenesis. Biomaterials 31(24):6162ā€“6172

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  51. Kim HJ et al (2008) Bone tissue engineering with premineralized silk scaffolds. Bone 42(6):1226ā€“1234

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

Download references

Acknowledgments

We gratefully acknowledge Dr. Aymen I Idris for donating images and his valuable advice and support. S.M. work is supported by the Multiple Myeloma Research Foundation. J.D.C. work is supported by the American Society of Hematology Scholar Award and the International Myeloma Foundation Brian D. Novis Junior Research Grant. M.R.R. the NIH/NIGMS U54GM115516, P30GM106391, P20GM121301, and P30GM103392; the NIH/NIDDK (R24 DK092759-01); the NIH/NIAMS P30AR066261; the American Cancer Society (Research Grant #IRG-16-191-33); and start-up funds from the Maine Medical Center Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Marino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Marino, S., Bishop, R.T., de Ridder, D., Delgado-Calle, J., Reagan, M.R. (2019). 2D and 3D In Vitro Co-Culture for Cancer and Bone Cell Interaction Studies. In: Idris, A. (eds) Bone Research Protocols. Methods in Molecular Biology, vol 1914. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8997-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8997-3_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8996-6

  • Online ISBN: 978-1-4939-8997-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics