Skip to main content

Evaluation of Blood–Brain Barrier Permeability and Integrity in Juvenile Rodents: Dynamic Contrast-Enhanced (DCE), Magnetic Resonance Imaging (MRI), and Evans Blue Extravasation

  • Protocol
  • First Online:
Blood-Brain Barrier

Part of the book series: Neuromethods ((NM,volume 142))

Abstract

Focal ischemic stroke is the result of a blockage in an artery that leads to decreased blood flow to the neuronal cells in the brain. The middle cerebral artery (MCA) is the most common artery that is occluded in adult and pediatric stroke patients. The pathophysiology is challenging to study in either of these populations because of the highly variable clinical state in humans. Many of these variables can be eliminated when using in vivo models of stroke in rodents. Here, we describe a technique called the transient MCA occlusion (tMCAo) model in a juvenile rat model of stroke. This technique utilizes a filament that is advanced to block the origin of the MCA to induce focal ischemia. The filament is then retracted 60–90 min later allowing for secondary reperfusion. By incorporating reperfusion, this model mimics embolic strokes in humans and provides the opportunity to uncover injury associated with reflow through ischemic tissue. We are particularly interested in the reperfusion-induced injury to the blood–brain barrier (BBB) that follows after blood flow to the ischemic brain is restored.

Our goal is to provide the reader with guidelines on how to execute the tMCAo surgical procedure, with notes highlighting the advantages and limitations of the method. We also include directions on how to conduct the techniques used to evaluate the permeability of the blood–brain barrier including Evans blue extravasation, a histological procedure, and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI), a technique used to evaluate blood–brain barrier permeability that can be applied to study stroke in a rodent model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BBB:

Blood–brain barrier

CCA:

Common carotid artery

DCE:

Dynamic contrast-enhanced imaging

EB:

Evans Blue

ECA:

External carotid artery

ICA:

Internal carotid artery

MCA:

Middle cerebral artery

MCAo:

Middle cerebral artery occlusion

RPM:

Revolutions per minute

tMCAo:

Transient middle cerebral artery occlusion

TTC:

Triphenyl tetrazolium chloride

References

  1. Engel O, Kolodziej S, Dirnagl U, Prinz V (2011) Modeling stroke in mice - middle cerebral artery occlusion with the filament model. J Vis Exp 47:e2423. https://doi.org/10.3791/2423

    Article  Google Scholar 

  2. Tsze DS, Valente JH (2011) Pediatric stroke: a review. Emerg Med Int 2011:1–10. https://doi.org/10.1155/2011/734506

    Article  Google Scholar 

  3. Uluç K, Miranpuri A, Kujoth GC, Aktüre E, Başkaya MK (2011) Focal cerebral ischemia model by endovascular suture occlusion of the middle cerebral artery in the rat. J Vis Exp (48). doi:https://doi.org/10.3791/1978

  4. Kawamura S, Shirasawa M, Fukasawa H, Yasui N (1991) Attenuated neuropathology by nilvadipine after middle cerebral artery occlusion in rats. Stroke 22(1):51–55. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1987673

    Article  CAS  Google Scholar 

  5. Takano K, Tatlisumak T, Bergmann AG, Gibson DG, Fisher M (1997) Reproducibility and reliability of middle cerebral artery occlusion using a silicone-coated suture (Koizumi) in rats. J Neurol Sci 153(1):8–11. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9455971

    Article  CAS  Google Scholar 

  6. Carmichael ST (2005) Rodent models of focal stroke: size, mechanism, and purpose. NeuroRx 2(3):396–409. https://doi.org/10.1602/neurorx.2.3.396

    Article  PubMed  PubMed Central  Google Scholar 

  7. Langheinrich AC, Yeniguen M, Ostendorf A, Marhoffer S, Kampschulte M, Bachmann G et al (2010) Evaluation of the middle cerebral artery occlusion techniques in the rat by in-vitro 3-dimensional micro- and nano computed tomography. BMC Neurol 10:36. https://doi.org/10.1186/1471-2377-10-36

    Article  PubMed  PubMed Central  Google Scholar 

  8. Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20(1):84–91 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2643202

    Article  CAS  Google Scholar 

  9. Garcia JH, Wagner S, Liu KF, Hu XJ (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 26(4):627–634; discussion 635. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7709410

    Article  CAS  Google Scholar 

  10. Merali Z, Huang K, Mikulis D, Silver F, Kassner A (2017) Evolution of blood-brain-barrier permeability after acute ischemic stroke. PLoS One 12(2):e0171558. https://doi.org/10.1371/journal.pone.0171558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Patlak CS, Blasberg RG (1985) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab 5(4):584–590. https://doi.org/10.1038/jcbfm.1985.87

    Article  CAS  PubMed  Google Scholar 

  12. Ewing JR, Knight RA, Nagaraja TN, Yee JS, Nagesh V, Whitton PA et al (2003) Patlak plots of Gd-DTPA MRI data yield blood-brain transfer constants concordant with those of 14C-sucrose in areas of blood-brain opening. Magn Reson Med 50(2):283–292. https://doi.org/10.1002/mrm.10524

    Article  PubMed  Google Scholar 

  13. Merali Z, Leung J, Mikulis D, Silver F, Kassner A (2015) Longitudinal assessment of imatinib’s effect on the blood-brain barrier after ischemia/reperfusion injury with permeability MRI. Transl Stroke Res 6(1):39–49. https://doi.org/10.1007/s12975-014-0358-6

    Article  CAS  PubMed  Google Scholar 

  14. Canazza A, Minati L, Boffano C, Parati E, Binks S (2014) Experimental models of brain ischemia: a review of techniques, magnetic resonance imaging, and investigational cell-based therapies. Front Neurol 5:1–15. https://doi.org/10.3389/fneur.2014.00019

    Article  Google Scholar 

  15. Mhairi Macrae I (1992) New models of focal cerebral ischaemia. Br J Clin Pharmacol 34(4):302–308. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1457262

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Kassner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Domi, T., Honarvar, F., Kassner, A. (2019). Evaluation of Blood–Brain Barrier Permeability and Integrity in Juvenile Rodents: Dynamic Contrast-Enhanced (DCE), Magnetic Resonance Imaging (MRI), and Evans Blue Extravasation. In: Barichello, T. (eds) Blood-Brain Barrier. Neuromethods, vol 142. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8946-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8946-1_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8945-4

  • Online ISBN: 978-1-4939-8946-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics