Skip to main content

Conditional Genetic Ablation Mouse Models as a Tool to Study Cancer Immunosurveillance In Vivo

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1884))

Abstract

Over the last decades, it has been established that the immune system is crucial for the impediment of cancer development by recognizing and destroying transformed cells. This process has been termed cancer immunosurveillance. Small animal models have significantly facilitated our understanding of it. Dissecting the contribution of any specific immune cell type participating in this process requires the ability to specifically target it while leaving the other immune components as well as the cancer model system unperturbed in vivo. Here, we provide a simple and rapid protocol for the generation of transgenic mice expressing Cre recombinase in a cell type-specific manner—in our example we chose cells expressing Ncr1, which encodes for the surface protein NKp46—and the use of those mice to ablate NKp46+ cells in order to study their role in a model of cancer immunosurveillance against experimental pulmonary metastases. This protocol can easily be adapted to target other cell types and other cancer models.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Smyth MJ, Dunn GP, Schreiber RD (2006) Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 90:1–50. https://doi.org/10.1016/S0065-2776(06)90001-7

    Article  CAS  PubMed  Google Scholar 

  2. Merzoug LB, Marie S, Satoh-Takayama N, Lesjean S, Albanesi M, Luche H, Fehling HJ, Di Santo JP, Vosshenrich CAJ (2014) Conditional ablation of NKp46+ cells using a novel Ncr1(greenCre) mouse strain: NK cells are essential for protection against pulmonary B16 metastases. Eur J Immunol 44:3380–3391. https://doi.org/10.1002/eji.201444643

    Article  CAS  PubMed  Google Scholar 

  3. Rajewsky K, Gu H, Kühn R, Betz UA, Müller W, Roes J, Schwenk F (1996) Conditional gene targeting. J Clin Invest 98:600–603. https://doi.org/10.1172/JCI118828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Walzer T, Blery M, Chaix J, Fuseri N, Chasson L, Robbins SH, Jaeger S, Andre P, Gauthier L, Daniel L, Chemin K, Morel Y, Dalod M, Imbert J, Pierres M, Moretta A, Romagne F, Vivier E (2007) Identification, activation, and selective in vivo ablation of mouse NK cells via NKp46. Proc Natl Acad Sci U S A 104:3384–3389

    Article  CAS  Google Scholar 

  5. Serafini N, Vosshenrich CAJ, Di Santo JP (2015) Transcriptional regulation of innate lymphoid cell fate. Nat Rev Immunol 15:415–428. https://doi.org/10.1038/nri3855

    Article  CAS  PubMed  Google Scholar 

  6. Eckelhart E, Warsch W, Zebedin E, Simma O, Stoiber D, Kolbe T, Rülicke T, Mueller M, Casanova E, Sexl V (2011) A novel Ncr1-Cre mouse reveals the essential role of STAT5 for NK-cell survival and development. Blood 117:1565–1573. https://doi.org/10.1182/blood-2010-06-291633

    Article  CAS  PubMed  Google Scholar 

  7. Narni-Mancinelli E, Chaix J, Fenis A, Kerdiles YM, Yessaad N, Reynders A, Gregoire C, Luche H, Ugolini S, Tomasello E, Walzer T, Vivier E (2011) Fate mapping analysis of lymphoid cells expressing the NKp46 cell surface receptor. Proc Natl Acad Sci U S A 108:18324–18329. https://doi.org/10.1073/pnas.1112064108

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lodolce JP, Burkett PR, Koka RM, Boone DL, Ma A (2002) Regulation of lymphoid homeostasis by interleukin-15. Cytokine Growth Factor Rev 13:429–439

    Article  CAS  Google Scholar 

  9. Ranson T, Vosshenrich CAJ, Corcuff E, Richard O, Müller W, Di Santo JP (2003) IL-15 is an essential mediator of peripheral NK-cell homeostasis. Blood 101:4887–4893. https://doi.org/10.1182/blood-2002-11-3392

    Article  CAS  PubMed  Google Scholar 

  10. Overwijk WW, Restifo NP (2001) B16 as a mouse model for human melanoma. Curr Protoc Immunol Chapter 20:Unit 20.1. https://doi.org/10.1002/0471142735.im2001s39

    Article  CAS  PubMed  Google Scholar 

  11. B16 Murine Melanoma. In: Tumor models in cancer research. Beverly AT (ed.). Springer

    Google Scholar 

  12. Fidler IJ (1973) The relationship of embolic homogeneity, number, size and viability to the incidence of experimental metastasis. Eur J Cancer 9(3):223–227. https://doi.org/10.1016/S0014-2964(73)80022-2

    Article  CAS  PubMed  Google Scholar 

  13. Hart IR (1979) The selection and characterization of an invasive variant of the B16 melanoma. Am J Pathol 97:587–600

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Poste G, Doll J, Hart IR, Fidler IJ (1980) In vitro selection of murine B16 melanoma variants with enhanced tissue-invasive properties. Cancer Res 40:1636–1644

    CAS  PubMed  Google Scholar 

  15. Fidler IJ (1973) Selection of successive tumour lines for metastasis. Nat New Biol 242:148–149

    Article  CAS  Google Scholar 

  16. Schmidt-Supprian M, Rajewsky K (2007) Vagaries of conditional gene targeting. Nat Immunol 8:665–668. https://doi.org/10.1038/ni0707-665

    Article  CAS  PubMed  Google Scholar 

  17. Song AJ, Palmiter RD (2018) Detecting and avoiding problems when using the Cre-lox system. Trends Genet. https://doi.org/10.1016/j.tig.2017.12.008

    Article  CAS  Google Scholar 

  18. Sadikot RT, Blackwell TS (2008) Bioluminescence: imaging modality for in vitro and in vivo gene expression. In: Advanced protocols in oxidative stress I. Humana Press, New York, pp 383–394

    Chapter  Google Scholar 

  19. Curtis A, Calabro K, Galarneau J-R, Bigio IJ, Krucker T (2011) Temporal variations of skin pigmentation in C57Bl/6 mice affect optical bioluminescence quantitation. Mol Imaging Biol 13:1114–1123. https://doi.org/10.1007/s11307-010-0440-8

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work received funding from the Institut Pasteur, INSERM, LNCC (Equipe Labellisée Ligue Contre le Cancer), and ANR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian A. J. Vosshenrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dupont, M., Vosshenrich, C.A.J. (2019). Conditional Genetic Ablation Mouse Models as a Tool to Study Cancer Immunosurveillance In Vivo. In: López-Soto, A., Folgueras, A. (eds) Cancer Immunosurveillance. Methods in Molecular Biology, vol 1884. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8885-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8885-3_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8884-6

  • Online ISBN: 978-1-4939-8885-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics