Skip to main content

Isolation and Analysis of a Genome-Edited Single-Hepatocyte from a Cas9 Transgenic Mouse Line

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1874))

Abstract

The primary cells isolated from the freshly dissected organ are thought to be different from those cultured for a long time in vitro. For instance, hepatocytes isolated in situ from the liver, display the ability to produce albumin, cultured for about a week often tend to cease production of albumin, including loss of proliferation capability. Thus, it is difficult to perform genome editing (i.e., production of genome-edited hepatocytes by in vitro gene delivery) in such cultured cells. Furthermore, hepatic cell lines available so far do not produce albumin and they would also have lost several characteristics of native liver cells. This poses a serious disadvantage when researchers want to study gene expression profiles under specific experimental settings, for example before and after genome editing. However, this demerit can be overcome if genome-editing is performed in situ in liver and single hepatocytes (both genome-edited and wild-type) can be isolated for analysis immediately following transient gene editing. Previously, we demonstrated successful isolation of genome-edited single hepatocytes, using mice expressing systemic Cas9 transgene (called “sCAT” mouse) and by tail-vein-mediated hydrodynamics-based gene delivery of gRNA targeted to Albumin gene (Sakurai et al., Sci Rep 6:20011, 2016). Here, we describe the detailed protocols for collection and analysis of single genome-edited hepatocytes, which will be useful for many types of hepatocyte functional studies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826. https://doi.org/10.1126/science.1232033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Platt RJ, Chen S, Zhou Y et al (2014) CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159:440–455. https://doi.org/10.1016/j.cell.2014.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dow LE, Fisher J, O’Rourke KP et al (2015) Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol 33:390–394. https://doi.org/10.1038/nbt.3155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sakurai T, Kamiyoshi A, Kawate H et al (2016) A non-inheritable maternal Cas9-based multiple-gene editing system in mice. Sci Rep 6:20011. https://doi.org/10.1038/srep20011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carroll KJ, Makarewich CA, McAnally J et al (2016) A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9. Proc Natl Acad Sci U S A 113:338–343. https://doi.org/10.1073/pnas.1523918113

    Article  CAS  PubMed  Google Scholar 

  8. Chu VT, Graf R, Wirtz T et al (2016) Efficient CRISPR-mediated mutagenesis in primary immune cells using CrispRGold and a C57BL/6 Cas9 transgenic mouse line. Proc Natl Acad Sci U S A 113:12514–12519. https://doi.org/10.1073/pnas.1613884113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nakao H, Harada T, Nakao K et al (2016) A possible aid in targeted insertion of large DNA elements by CRISPR/Cas in mouse zygotes. Genesis 54:65–77. https://doi.org/10.1002/dvg.22914

    Article  CAS  PubMed  Google Scholar 

  10. Zhang L, Zhou J, Han J et al (2016) Generation of an oocyte-specific Cas9 transgenic mouse for genome editing. PLoS One 11:e0154364. https://doi.org/10.1371/journal.pone.0154364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cebrian-Serrano A, Zha S, Hanssen L et al (2017) Maternal supply of Cas9 to zygotes facilitates the efficient generation of site-specific mutant mouse models. PLoS One 12:e0169887. https://doi.org/10.1371/journal.pone.0169887

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nagy A, Marina Gertsenstein M, Kristina Vintersten K et al (eds) (2003) Manipulating the mouse embryo: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  13. Kawai S, Takagi Y, Kaneko S et al (2011) Effect of three types of mixed anesthetic agents alternate to ketamine in mice. Exp Anim 60:481–487

    Article  CAS  PubMed  Google Scholar 

  14. Liu F, Song Y, Liu D (1999) Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 6:1258–1266. https://doi.org/10.1038/sj.gt.3300947

    Article  CAS  PubMed  Google Scholar 

  15. Kamiyoshi A, Sakurai T, Ichikawa-Shindo Y et al (2006) Endogenous alphaCGRP protects against concanavalin A-induced hepatitis in mice. Biochem Biophys Res Commun 343:152–158. https://doi.org/10.1016/j.bbrc.2006.02.132

    Article  CAS  PubMed  Google Scholar 

  16. Sakurai T, Watanabe S, Kamiyoshi A et al (2014) A single blastocyst assay optimized for detecting CRISPR/Cas9 system-induced indel mutations in mice. BMC Biotechnol 14:69. https://doi.org/10.1186/1472-6750-14-69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by JSPS KAKENHI Grants (Nos. 26293085, 26670153 and 16K15233) from the Japanese Ministry of Education, Culture, Sports, Science, and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Sakurai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sakurai, T., Kamiyoshi, A., Ohtsuka, M., Gurumurthy, C.B., Sato, M., Shindo, T. (2019). Isolation and Analysis of a Genome-Edited Single-Hepatocyte from a Cas9 Transgenic Mouse Line. In: Liu, C., Du, Y. (eds) Microinjection. Methods in Molecular Biology, vol 1874. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8831-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8831-0_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8830-3

  • Online ISBN: 978-1-4939-8831-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics