Skip to main content

Direct Estimation of Metabolic Flux by Heavy Isotope Labeling Simultaneous with Pathway Inhibition: Metabolic Flux Inhibition Assay

  • Protocol
  • First Online:
Metabolic Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1862))

Abstract

Heavy isotope labeled metabolites are readily detected by mass spectrometry and are commonly used to analyze the rates of metabolic reactions in cultured cells. The ability to detect labeled metabolites—and infer fluxes—is influenced by a number of factors that can confound simplistic comparative assays. The accumulation of labeled metabolites is strongly influenced by the pool size of the metabolite of interest and also by changes in downstream reactions, which are not always fully perceived. Here, we describe a method that overcomes some of these limitations and allows simple calculation of reaction rates under low nutrient, rapid reaction rate conditions. Acutely increasing the pool of the metabolite of interest (by adding a pulse of excess unlabeled nutrient to the cells) rapidly increases accumulation of labeled metabolite, facilitating a more accurate assessment of reaction rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buescher JM, Antoniewicz MR, Boros LG, Burgess SC, Brunengraber H, Clish CB, DeBerardinis RJ, Feron O, Frezza C, Ghesquiere B, Gottlieb E, Hiller K, Jones RG, Kamphorst JJ, Kibbey RG, Kimmelman AC, Locasale JW, Lunt SY, Maddocks OD, Malloy C, Metallo CM, Meuillet EJ, Munger J, Noh K, Rabinowitz JD, Ralser M, Sauer U, Stephanopoulos G, St-Pierre J, Tennant DA, Wittmann C, Vander Heiden MG, Vazquez A, Vousden K, Young JD, Zamboni N, Fendt SM (2015) A roadmap for interpreting (13)C metabolite labeling patterns from cells. Curr Opin Biotechnol 34:189–201. https://doi.org/10.1016/j.copbio.2015.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Labuschagne CF, van den Broek NJ, Mackay GM, Vousden KH, Maddocks OD (2014) Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. Cell Rep 7(4):1248–1258. https://doi.org/10.1016/j.celrep.2014.04.045

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

ODKM and ACN are funded by Cancer Research UK Career Development Fellowship C53309/A19702. KHV and CFL are funded by CRUK Grant C596/A10419.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver D. K. Maddocks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, T., Labuschagne, C.F., Vousden, K.H., Maddocks, O.D.K. (2019). Direct Estimation of Metabolic Flux by Heavy Isotope Labeling Simultaneous with Pathway Inhibition: Metabolic Flux Inhibition Assay. In: Fendt, SM., Lunt, S. (eds) Metabolic Signaling. Methods in Molecular Biology, vol 1862. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8769-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8769-6_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8768-9

  • Online ISBN: 978-1-4939-8769-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics