Skip to main content

Predicting the Functional Potential of the Microbiome from Marker Genes Using PICRUSt

  • Protocol
  • First Online:
Microbiome Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1849))

Abstract

Marker-gene sequencing is a cost-effective method of taxonomically profiling microbial communities. Unlike metagenomic approaches, marker-gene sequencing does not provide direct information about the functional genes that are present in the genomes of community members. However, by capitalizing on the rapid growth in the number of sequenced genomes, it is possible to infer which functions are likely associated with a marker gene based on its sequence similarity with a reference genome. The PICRUSt tool is based on this idea and can predict functional category abundances based on an input marker gene. In brief, this method requires a reference phylogeny with tips corresponding to taxa with reference genomes as well as taxa lacking sequenced genomes. A modified ancestral state reconstruction (ASR) method is then used to infer counts of functional categories for taxa without reference genomes. The predictions are written to pre-calculated files, which can be cross-referenced with other datasets to quickly generate predictions of functional potential for a community. This chapter will give an in-depth description of these methods and describe how PICRUSt should be used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Segata N, Huttenhower C (2011) Toward an efficient method of identifying core genes for evolutionary and functional microbial phylogenies. PLoS One 6:e24704

    Article  CAS  Google Scholar 

  2. Snel B, Bork P, Huynen MA (1999) Genome phylogeny based on gene content. Nat Genet 21:108–110

    Article  CAS  Google Scholar 

  3. Langille MG, Zaneveld J, Caporaso JG et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821

    Article  CAS  Google Scholar 

  4. Gevers D, Kugathasan S, Denson LA et al (2014) The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15:382–392

    Article  CAS  Google Scholar 

  5. Zarraonaindia I, Owens S, Weisenhorn P et al (2015) The Soil Microbiome Influences Grapevine-Associated Microbiota. MBio 6:e02527–e02514

    Article  Google Scholar 

  6. Morrow KM, Bourne DG, Humphrey C et al (2015) Natural volcanic CO2 seeps reveal future trajectories for host-microbial associations in corals and sponges. ISME J 9:894–908

    Article  CAS  Google Scholar 

  7. Aßhauer KP, Wemheuer B, Daniel R, Meinicke P (2015) Tax4Fun: Predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31:2882–2884

    Article  Google Scholar 

  8. Iwai S, Weinmaier T, Schmidt BL et al (2016) Piphillin: improved prediction of metagenomic content by direct inference from human microbiomes. PLoS One 11:e0166104

    Article  Google Scholar 

  9. Quast C, Pruesse E, Yilmaz P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:590–596

    Article  Google Scholar 

  10. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  Google Scholar 

  11. Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  Google Scholar 

  12. McDonald D, Clemente JC, Kuczynski J et al (2012a) The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome. GigaScience 1:7

    Article  Google Scholar 

  13. McDonald D, Price MN, Goodrich J et al (2012b) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610–618

    Article  CAS  Google Scholar 

  14. Markowitz VM, Chen IMA, Palaniappan K et al (2014) IMG 4 version of the integrated microbial genomes comparative analysis system. Nucleic Acids Res 42:D560–D567

    Article  CAS  Google Scholar 

  15. Matsen FA, Kodner RB, Armbrust EV (2010) pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform 11:538

    Article  Google Scholar 

  16. Berger SA, Krompass D, Stamatakis A (2011) Performance, accuracy, and web server for evolutionary placement of short sequence reads under maximum likelihood. Syst Biol 60:291–302

    Article  Google Scholar 

  17. Felsenstein J (1985) Phylogenies and the Comparative Method. Am Nat 125:1–15

    Article  Google Scholar 

  18. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  CAS  Google Scholar 

  19. Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124

    Article  CAS  Google Scholar 

  20. Callahan BJ, McMurdie PJ, Rosen MJ et al (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583

    Article  CAS  Google Scholar 

  21. Amir A, McDonald D, Navas-Molina JA et al (2017) Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2:e00191–e00116

    PubMed  PubMed Central  Google Scholar 

  22. Kanehisa M, Goto S, Sato Y et al (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:109–114

    Article  Google Scholar 

  23. Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278:631–637

    Article  CAS  Google Scholar 

  24. Burge SW, Daub J, Eberhardt R et al (2013) Rfam 11.0: 10 years of RNA families. Nucleic Acids Res 41:226–232

    Article  Google Scholar 

  25. Swofford DL, Maddison WP (1987) Reconstructing ancestral character states under Wagner parsimony. Math Biosci 87:199–229

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the other coauthors of PICRUSt who helped develop and test the software, as well as the many users from the PICRUSt mailing list that have provided insightful questions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morgan G. I. Langille .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Douglas, G.M., Beiko, R.G., Langille, M.G.I. (2018). Predicting the Functional Potential of the Microbiome from Marker Genes Using PICRUSt. In: Beiko, R., Hsiao, W., Parkinson, J. (eds) Microbiome Analysis. Methods in Molecular Biology, vol 1849. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8728-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8728-3_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8726-9

  • Online ISBN: 978-1-4939-8728-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics