Skip to main content

Membrane Proteomics in Gram-Positive Bacteria: Two Complementary Approaches to Target the Hydrophobic Species of Proteins

  • Protocol
  • First Online:
Microbial Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1841))

Abstract

This protocol represents a detailed instruction how to prepare protein samples in order to raise mass spectrometry-based identification and quantification rates with respect to the challenging class of membrane proteins. This will increase comprehensiveness of global proteome studies on the one hand but could also be of interest for researchers targeting specific membrane proteins or membrane protein sequences on the other hand. The protocol is a composite of two parts, one focusing on the identification of protein sequences exterior to a cellular membrane (loops of integral membrane proteins, peripheral membrane proteins), and the other part targeting primarily protein domains spanning the lipid bilayer. The feasibility of the protocol, as it is described here, was originally shown for the gram-positive pathogenic bacterium Staphylococcus aureus but should be applicable to any kind of membrane protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fagerberg L, Jonasson K, Heijne v G et al (2010) Prediction of the human membrane proteome. Proteomics 10:1141–1149

    Article  CAS  Google Scholar 

  2. Blonder J, Goshe MB, Moore RJ et al (2002) Enrichment of integral membrane proteins for proteomic analysis using liquid chromatography-tandem mass spectrometry. J Proteome Res 1:351–360

    Article  CAS  PubMed  Google Scholar 

  3. Fischer F, Wolters D, Rögner M, Poetsch A (2006) Toward the complete membrane proteome: high coverage of integral membrane proteins through transmembrane peptide detection. Mol Cell Proteomics 5:444–453

    Article  CAS  PubMed  Google Scholar 

  4. Gilmore JM, Washburn MP (2010) Advances in shotgun proteomics and the analysis of membrane proteomes. J Proteome 73:2078–2091

    Article  CAS  Google Scholar 

  5. Helbig AO, Heck AJ, Slijper M (2010) Exploring the membrane proteome--challenges and analytical strategies. J Proteome 73:868–878

    Article  CAS  Google Scholar 

  6. Speers AE, Wu CC (2007) Proteomics of integral membrane proteins--theory and application. Chem Rev 107:3687–3714

    Article  CAS  PubMed  Google Scholar 

  7. Cech NB, Enke CG (2000) Relating electrospray ionization response to nonpolar character of small peptides. Anal Chem 72:2717–2723

    Article  CAS  PubMed  Google Scholar 

  8. Tabb DL, Huang Y, Wysocki VH, Yates JR 3rd (2004) Influence of basic residue content on fragment ion peak intensities in low-energy collision-induced dissociation spectra of peptides. Anal Chem 76:1243–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fujiki Y, Hubbard AL, Fowler S, Lazarow PB (1982) Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J Cell Biol 93:97–102

    Article  CAS  PubMed  Google Scholar 

  10. Eymann C, Dreisbach A, Albrecht D et al (2004) A comprehensive proteome map of growing Bacillus subtilis cells. Proteomics 4:2849–2876

    Article  CAS  PubMed  Google Scholar 

  11. Speers AE, Blackler AR, Wu CC (2007) Shotgun analysis of integral membrane proteins facilitated by elevated temperature. Anal Chem 79:4613–4620

    Article  CAS  PubMed  Google Scholar 

  12. Wolff S, Hahne H, Hecker M, Becher D (2008) Complementary analysis of the vegetative membrane proteome of the human pathogen Staphylococcus aureus. Mol Cell Proteomics 7:1460–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yu Y, Gilar M, Lee PJ et al (2003) Enzyme-friendly, mass spectrometry-compatible surfactant for in-solution enzymatic digestion of proteins. Anal Chem 75:6023–6028

    Article  CAS  PubMed  Google Scholar 

  14. Masuda T, Tomita M, Ishihama Y (2008) Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J Proteome Res 7:731–740

    Article  CAS  PubMed  Google Scholar 

  15. Masuda T, Saito N, Tomita M, Ishihama Y (2009) Unbiased quantitation of Escherichia coli membrane proteome using phase transfer surfactants. Mol Cell Proteomics 8:2770–2777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Blackler AR, Speers AE, Ladinsky MS, Wu CC (2008) A shotgun proteomic method for the identification of membrane-embedded proteins and peptides. J Proteome Res 7:3028–3034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Whitelegge JP (2013) Integral membrane proteins and bilayer proteomics. Anal Chem 85:2558–2568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Taylor SW, Fahy E, Zhang B et al (2003) Characterization of the human heart mitochondrial proteome. Nat Biotechnol 21:281–286

    Article  CAS  PubMed  Google Scholar 

  19. Graham RL, Pollock CE, O'Loughlin SN et al (2007) Multidimensional analysis of the insoluble sub-proteome of Oceanobacillus iheyensis HTE831, an alkaliphilic and halotolerant deep-sea bacterium isolated from the Iheya ridge. Proteomics 7:82–91

    Article  CAS  PubMed  Google Scholar 

  20. Candiano G, Bruschi M, Musante L et al (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25:1327–1333

    Article  CAS  PubMed  Google Scholar 

  21. Lassek C, Burghartz M, Chaves-Moreno D et al (2015) A metaproteomics approach to elucidate host and pathogen protein expression during catheter-associated urinary tract infections. Mol Cell Proteomics 14:989–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schook W, Puszkin S, Bloom W et al (1979) Mechanochemical properties of brain clathrin: interactions with actin and alpha-actinin and polymerization into basketlike structures or filaments. Proc Natl Acad Sci U S A 76:116–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Okamoto T, Schwab RB, Scherer PE, Lisanti MP (2001) Analysis of the association of proteins with membranes. In: Current Protocols in Cell Biology. John Wiley & Sons, Inc., Hoboken., Chapter 5, unit 5.4, pp 1–17

    Google Scholar 

  24. Rombouts I, Lagrain B, Brunnbauer M et al (2013) Improved identification of wheat gluten proteins through alkylation of cysteine residues and peptide-based mass spectrometry. Sci Rep 3:2279

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Research Foundation Grant SFB/TR34.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Sievers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sievers, S. (2018). Membrane Proteomics in Gram-Positive Bacteria: Two Complementary Approaches to Target the Hydrophobic Species of Proteins. In: Becher, D. (eds) Microbial Proteomics. Methods in Molecular Biology, vol 1841. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8695-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8695-8_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8693-4

  • Online ISBN: 978-1-4939-8695-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics