Skip to main content

The Mouse Retinal Organoid Trisection Recipe: Efficient Generation of 3D Retinal Tissue from Mouse Embryonic Stem Cells

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1834))

Abstract

The introduction of stem cell-based technologies for the derivation of three-dimensional retinal tissues, the so-called retinal organoids, offers many new possibilities for vision research: Organoids facilitate studies on retinal development and in vitro retinal disease modeling, as well as being valuable for drug testing. Further, retinal organoids also provide an unlimited cell source for cell replacement therapies. Here, we describe our protocol for efficiently differentiating large, stratified retinal organoids from mouse embryonic stem cells: unbiased manual dissection of the developing retinal organoid at an early stage into three evenly sized neuroepithelial portions (trisection step) doubles the yield of high-quality organoids. We also describe some useful applications of the protocol, e.g., generation of rod- or cone-enriched retinal organoids, AAV transfection, and cell birth dating. In addition, we provide details of how to process retinal organoids for single organoid gene expression analysis, immunohistochemistry, and electron microscopy.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gonzalez-Cordero A, West EL, Pearson RA, Duran Y, Carvalho LS, Chu CJ, Naeem A, Blackford SJI, Georgiadis A, Lakowski J, Hubank M, Smith AJ, Bainbridge JWB, Sowden JC, Ali RR (2013) Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina. Nat Biotechnol 31(8):741–747. https://doi.org/10.1038/nbt.2643

    Article  CAS  PubMed  Google Scholar 

  2. Decembrini S, Koch U, Radtke F, Moulin A, Arsenijevic Y (2014) Derivation of traceable and transplantable photoreceptors from mouse embryonic stem cells. Stem Cell Rep 2(6):853–865. https://doi.org/10.1016/j.stemcr.2014.04.010

    Article  CAS  Google Scholar 

  3. Santos-Ferreira T, Volkner M, Borsch O, Haas J, Cimalla P, Vasudevan P, Carmeliet P, Corbeil D, Michalakis S, Koch E, Karl MO, Ader M (2016) Stem cell-derived photoreceptor transplants differentially integrate into mouse models of cone-rod dystrophy. Invest Ophthalmol Vis Sci 57(7):3509–3520. https://doi.org/10.1167/iovs.16-19087

    Article  CAS  PubMed  Google Scholar 

  4. Gonzalez-Cordero A, Kruczek K, Naeem A, Fernando M, Kloc M, Ribeiro J, Goh D, Duran Y, Blackford SJI, Abelleira-Hervas L, Sampson RD, Shum IO, Branch MJ, Gardner PJ, Sowden JC, Bainbridge JWB, Smith AJ, West EL, Pearson RA, Ali RR (2017) Recapitulation of human retinal development from human pluripotent stem cells generates transplantable populations of cone photoreceptors. Stem Cell Rep 9(3):820–837. https://doi.org/10.1016/j.stemcr.2017.07.022

    Article  Google Scholar 

  5. Kruczek K, Gonzalez-Cordero A, Goh D, Naeem A, Jonikas M, Blackford SJI, Kloc M, Duran Y, Georgiadis A, Sampson RD, Maswood RN, Smith AJ, Decembrini S, Arsenijevic Y, Sowden JC, Pearson RA, West EL, Ali RR (2017) Differentiation and transplantation of embryonic stem cell-derived cone photoreceptors into a mouse model of end-stage retinal degeneration. Stem Cell Rep 8(6):1659–1674. https://doi.org/10.1016/j.stemcr.2017.04.030

    Article  CAS  Google Scholar 

  6. Phillips MJ, Perez ET, Martin JM, Reshel ST, Wallace KA, Capowski EE, Singh R, Wright LS, Clark EM, Barney PM, Stewart R, Dickerson SJ, Miller MJ, Percin EF, Thomson JA, Gamm DM (2014) Modeling human retinal development with patient-specific induced pluripotent stem cells reveals multiple roles for visual system homeobox 2. Stem Cells 32(6):1480–1492. https://doi.org/10.1002/stem.1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T, Sasai Y (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472(7341):51–56. https://doi.org/10.1038/nature09941

    Article  CAS  PubMed  Google Scholar 

  8. Busskamp V, Krol J, Nelidova D, Daum J, Szikra T, Tsuda B, Juttner J, Farrow K, Scherf BG, Alvarez CP, Genoud C, Sothilingam V, Tanimoto N, Stadler M, Seeliger M, Stoffel M, Filipowicz W, Roska B (2014) miRNAs 182 and 183 are necessary to maintain adult cone photoreceptor outer segments and visual function. Neuron 83(3):586–600. https://doi.org/10.1016/j.neuron.2014.06.020

    Article  CAS  PubMed  Google Scholar 

  9. La Torre A, Lamba DA, Jayabalu A, Reh TA (2012) Production and transplantation of retinal cells from human and mouse embryonic stem cells. In: Wang S-Z (ed) Retinal development: methods and protocols. Humana Press, Totowa, NJ, pp 229–246. https://doi.org/10.1007/978-1-61779-848-1_16

    Chapter  Google Scholar 

  10. Lamba DA, Karl MO, Ware CB, Reh TA (2006) Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci U S A 103(34):12769–12774. https://doi.org/10.1073/pnas.0601990103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Osakada F, Ikeda H, Mandai M, Wataya T, Watanabe K, Yoshimura N, Akaike A, Sasai Y, Takahashi M (2008) Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol 26(2):215–224. https://doi.org/10.1038/nbt1384

    Article  CAS  PubMed  Google Scholar 

  12. Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, Saito K, Yonemura S, Eiraku M, Sasai Y (2012) Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10(6):771–785. https://doi.org/10.1016/j.stem.2012.05.009

    Article  CAS  PubMed  Google Scholar 

  13. Hiler D, Chen X, Hazen J, Kupriyanov S, Carroll PA, Qu C, Xu B, Johnson D, Griffiths L, Frase S, Rodriguez AR, Martin G, Zhang J, Jeon J, Fan Y, Finkelstein D, Eisenman RN, Baldwin K, Dyer MA (2015) Quantification of retinogenesis in 3D cultures reveals epigenetic memory and higher efficiency in iPSCs derived from rod photoreceptors. Cell Stem Cell 17(1):101–115. https://doi.org/10.1016/j.stem.2015.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Volkner M, Zschatzsch M, Rostovskaya M, Overall RW, Busskamp V, Anastassiadis K, Karl MO (2016) Retinal organoids from pluripotent stem cells efficiently recapitulate retinogenesis. Stem Cell Rep 6(4):525–538. https://doi.org/10.1016/j.stemcr.2016.03.001

    Article  CAS  Google Scholar 

  15. Yaron O, Farhy C, Marquardt T, Applebury M, Ashery-Padan R (2006) Notch1 functions to suppress cone-photoreceptor fate specification in the developing mouse retina. Development 133(7):1367–1378. https://doi.org/10.1242/dev.02311

    Article  CAS  PubMed  Google Scholar 

  16. Jadhav AP, Mason HA, Cepko CL (2006) Notch 1 inhibits photoreceptor production in the developing mammalian retina. Development 133(5):913–923. https://doi.org/10.1242/dev.02245

    Article  CAS  PubMed  Google Scholar 

  17. Nelson BR, Hartman BH, Georgi SA, Lan MS, Reh TA (2007) Transient inactivation of Notch signaling synchronizes differentiation of neural progenitor cells. Dev Biol 304(2):479–498. https://doi.org/10.1016/j.ydbio.2007.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schön C, Biel M, Michalakis S (2015) Retinal gene delivery by adeno-associated virus (AAV) vectors: Strategies and applications. Eur J Pharm Biopharm 95(Part B):343–352. https://doi.org/10.1016/j.ejpb.2015.01.009

    Article  CAS  PubMed  Google Scholar 

  19. Kurth T, Weiche S, Vorkel D, Kretschmar S, Menge A (2012) Histology of plastic embedded amphibian embryos and larvae. Genesis 50(3):235–250. https://doi.org/10.1002/dvg.20821

    Article  CAS  PubMed  Google Scholar 

  20. Venable JH, Coggeshall R (1965) A simplified lead citrate stain for use in electron microscopy. J Cell Biol 25(2):407

    Article  CAS  Google Scholar 

  21. Tokuyasu KT (1980) Immunochemistry on ultrathin frozen sections. Histochem J 12(4):381–403. https://doi.org/10.1007/BF01011956

    Article  CAS  PubMed  Google Scholar 

  22. Slot JW, Geuze HJ (2007) Cryosectioning and immunolabeling. Nat Protoc 2(10):2480–2491

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funding programs for DZNE Helmholtz and TU Dresden CRTD (M.K.), DFG (KA2794/3-1; SPP1738) (M.K.), and MedDrive TU Dresden UKD-Medical Faculty (M.K.). We thank Sara Oakeley (Basel, Switzerland) and Felix Wagner (DZNE, Dresden) for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike O. Karl .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Organoid trisection using single-step cutting technique (MP4 58363 kb)

Organoid trisection using two-step cutting technique (MP4 91134 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Völkner, M., Kurth, T., Karl, M.O. (2019). The Mouse Retinal Organoid Trisection Recipe: Efficient Generation of 3D Retinal Tissue from Mouse Embryonic Stem Cells. In: Weber, B.H.F., Langmann, T. (eds) Retinal Degeneration. Methods in Molecular Biology, vol 1834. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-8669-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8669-9_9

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8668-2

  • Online ISBN: 978-1-4939-8669-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics