Skip to main content

Modeling Traumatic Brain Injury In Vitro

  • Protocol
  • First Online:
Pre-Clinical and Clinical Methods in Brain Trauma Research

Part of the book series: Neuromethods ((NM,volume 139))

Abstract

Traumatic brain injury (TBI) is unique among neurological afflictions in that it is induced by a discrete physical event. To understand the relationship between mechanical loading and the evolution of structural and functional alterations of neural cells, TBI researchers have utilized in vitro models. These models were engineered to mimic loading conditions relevant for clinical TBI and to allow for the microscopic study of the cellular responses in real time. Collectively, this high degree of experimental control has resulted in robust platforms that enable the exploration of biological mechanisms involved in the progression of neural cellular injury. This chapter presents detailed background and methodology pertaining to two established in vitro models used in the field: (1) “stretch” injury to two-dimensional (2-D) cultures, and (2) simple shear deformation applied to three-dimensional (3-D) cell-containing matrices. The stretch injury paradigm uses a rapid pressure-pulse to stretch an elastic silicone membrane on which neural cells are cultured. The resulting deformation can be either biaxial or uniaxial, and is commonly applied to 2-D neuronal cultures with isolated axonal projections to model tensile loading in aligned axonal tracts, believed to be a proximal cause of diffuse axonal injury, the “hallmark” pathology of closed-head TBI. Rapid shear deformation to 3-D neural cellular constructs is applied using a linear actuator and is designed to replicate the complex loading conditions experienced by brain cells during inertial loading, with shear being the dominant mode of deformation in the nearly incompressible brain. This model has been utilized to study the acute and longer-term responses of 3-D neuronal cultures or 3-D neuronal-astrocytic cocultures to heterogeneous strain fields representative of loading patterns in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith DH, Meaney DF (2000) Axonal damage in traumatic brain injury. Neuroscientist 6(6):483–495

    Article  Google Scholar 

  2. Cullen DK, Harris JP, Browne KD, Wolf JA, Duda JE, Meaney DF, Margulies SS, Smith DH (2016) A porcine model of traumatic brain injury via head rotational acceleration. Methods Mol Biol 1462:289–324. https://doi.org/10.1007/978-1-4939-3816-2_17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Margulies SS, Thibault LE, Gennarelli TA (1990) Physical model simulations of brain injury in the primate. J Biomech 23(8):823–836

    Article  PubMed  CAS  Google Scholar 

  4. Meaney DF, Smith DH, Shreiber DI, Bain AC, Miller RT, Ross DT, Gennarelli TA (1995) Biomechanical analysis of experimental diffuse axonal injury. J Neurotrauma 12(4):689–694

    Article  PubMed  CAS  Google Scholar 

  5. Meaney DF, Thibault KL, Gennarelli TA, Thibault LE (1993) Experimental investigation of the relationship between head kinematics and intracranial tissue deformation. In: ASME Bioengineering Conference, Breckenridge, Colorado. ASME, pp 8–11

    Google Scholar 

  6. Magou GC, Guo Y, Choudhury M, Chen L, Hususan N, Masotti S, Pfister BJ (2011) Engineering a high throughput axon injury system. J Neurotrauma 28(11):2203–2218. https://doi.org/10.1089/neu.2010.1596

    Article  PubMed  Google Scholar 

  7. Smith DH, Wolf JA, Lusardi TA, Lee VM, Meaney DF (1999) High tolerance and delayed elastic response of cultured axons to dynamic stretch injury. J Neurosci 19(11):4263–4269

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Cargill RS 2nd, Thibault LE (1996) Acute alterations in [Ca2+]i in NG108-15 cells subjected to high strain rate deformation and chemical hypoxia: an in vitro model for neural trauma. J Neurotrauma 13(7):395–407

    Article  PubMed  Google Scholar 

  9. Ellis EF, McKinney JS, Willoughby KA, Liang S, Povlishock JT (1995) A new model for rapid stretch-induced injury of cells in culture: characterization of the model using astrocytes. J Neurotrauma 12(3):325–339

    Article  PubMed  CAS  Google Scholar 

  10. LaPlaca MC, Cullen DK, McLoughlin JJ, Cargill RS 2nd (2005) High rate shear strain of three-dimensional neural cell cultures: a new in vitro traumatic brain injury model. J Biomech 38(5):1093–1105

    Article  PubMed  Google Scholar 

  11. LaPlaca MC, Thibault LE (1997) An in vitro traumatic injury model to examine the response of neurons to a hydrodynamically-induced deformation. Ann Biomed Eng 25(4):665–677

    Article  CAS  PubMed  Google Scholar 

  12. Morrison B 3rd, Elkin BS, Dolle JP, Yarmush ML (2011) In vitro models of traumatic brain injury. Annu Rev Biomed Eng 13:91–126. https://doi.org/10.1146/annurev-bioeng-071910-124706

    Article  PubMed  CAS  Google Scholar 

  13. Pfister BJ, Weihs TP, Betenbaugh M, Bao G (2003) An in vitro uniaxial stretch model for axonal injury. Ann Biomed Eng 31(5):589–598

    Article  PubMed  Google Scholar 

  14. Cohen AS, Pfister BJ, Schwarzbach E, Sean Grady M, Goforth PB, Satin LS (2007) Injury-induced alterations in CNS electrophysiology. Prog Brain Res 161:143–169

    Article  PubMed  CAS  Google Scholar 

  15. LaPlaca MC, Simon CM, Prado GR, Cullen DK (2007) CNS injury biomechanics and experimental models. Prog Brain Res 161:13–26. https://doi.org/10.1016/S0079-6123(06)61002-9

    Article  PubMed  CAS  Google Scholar 

  16. Morrison B 3rd, Saatman KE, Meaney DF, McIntosh TK (1998) In vitro central nervous system models of mechanically induced trauma: a review. J Neurotrauma 15(11):911–928

    Article  PubMed  Google Scholar 

  17. Cullen DK, Vernekar VN, LaPlaca MC (2011) Trauma-induced plasmalemma disruptions in three-dimensional neural cultures are dependent on strain modality and rate. J Neurotrauma 28(11):2219–2233. https://doi.org/10.1089/neu.2011.1841

    Article  PubMed  PubMed Central  Google Scholar 

  18. Iwata A, Stys PK, Wolf JA, Chen X-H, Taylor AG, Meaney DF, Smith DH (2004) Traumatic axonal injury induces proteolytic cleavage of the voltage-gated sodium channels modulated by tetrodotoxin and protease inhibitors. J Neurosci 24:4605–4613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Magou GC, Pfister BJ, Berlin JR (2015) Effect of acute stretch injury on action potential and network activity of rat neocortical neurons in culture. Brain Res 1624:525–535. https://doi.org/10.1016/j.brainres.2015.07.056

    Article  PubMed  CAS  Google Scholar 

  20. Pfister B, Oyler G, Betenbaugh M, Bao G (2004) The effects of BclXL and Bax over-expression on stretch-injury induced neural cell death. Mech Chem Biosyst 1(4):233–243

    PubMed  Google Scholar 

  21. von Reyn CR, Mott RE, Siman R, Smith DH, Meaney DF (2012) Mechanisms of calpain mediated proteolysis of voltage gated sodium channel alpha-subunits following in vitro dynamic stretch injury. J Neurochem 121(5):793–805. https://doi.org/10.1111/j.1471-4159.2012.07735.x

    Article  CAS  Google Scholar 

  22. Abdul-Muneer PM, Conte AA, Haldar D, Long M, Patel RK, Santhakumar V, Overall CM, Pfister BJ (2017) Traumatic brain injury induced matrix metalloproteinase2 cleaves CXCL12alpha (stromal cell derived factor 1alpha) and causes neurodegeneration. Brain Behav Immun 59:190–199. https://doi.org/10.1016/j.bbi.2016.09.002

    Article  PubMed  CAS  Google Scholar 

  23. Kao CQ, Goforth PB, Ellis EF, Satin LS (2004) Potentiation of GABA(A) currents after mechanical injury of cortical neurons. J Neurotrauma 21(3):259–270

    Article  PubMed  Google Scholar 

  24. Rzigalinski BA, Weber JT, Willoughby KA, Ellis EF (1998) Intracellular free calcium dynamics in stretch-injured astrocytes. J Neurochem 70(6):2377–2385

    Article  PubMed  CAS  Google Scholar 

  25. Sherman SA, Phillips JK, Costa JT, Cho FS, Oungoulian SR, Finan JD (2016) Stretch injury of human induced pluripotent stem cell derived neurons in a 96 well format. Sci Rep 6:34097. https://doi.org/10.1038/srep34097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Lusardi TA, Rangan J, Sun D, Smith DH, Meaney DF (2004) A device to study the initiation and propagation of calcium transients in cultured neurons after mechanical stretch. Ann Biomed Eng 32(11):1546–1558

    Article  PubMed  Google Scholar 

  27. Wolf JA, Stys PK, Lusardi T, Meaney D, Smith DH (2001) Traumatic axonal injury induces calcium influx modulated by tetrodotoxin-sensitive sodium channels. J Neurosci 21(6):1923–1930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Geddes DM, Cargill RS 2nd, LaPlaca MC (2003) Mechanical stretch to neurons results in a strain rate and magnitude-dependent increase in plasma membrane permeability. J Neurotrauma 20(10):1039–1049

    Article  PubMed  Google Scholar 

  29. Yuen TJ, Browne KD, Iwata A, Smith DH (2009) Sodium channelopathy induced by mild axonal trauma worsens outcome after a repeat injury. J Neurosci Res 87(16):3620–3625. https://doi.org/10.1002/jnr.22161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Cullen DK, LaPlaca MC (2006) Neuronal response to high rate shear deformation depends on heterogeneity of the local strain field. J Neurotrauma 23(9):1304–1319. https://doi.org/10.1089/neu.2006.23.1304

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan J. Pfister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bonder, D.E., Keating, C.E., Chandra, N., Cullen, D.K., Pfister, B.J. (2018). Modeling Traumatic Brain Injury In Vitro. In: Srivastava, A., Cox, C. (eds) Pre-Clinical and Clinical Methods in Brain Trauma Research. Neuromethods, vol 139. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8564-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8564-7_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8563-0

  • Online ISBN: 978-1-4939-8564-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics