Skip to main content

Fuel Cell Comparison to Alternate Technologies

  • Reference work entry
  • First Online:
Fuel Cells and Hydrogen Production
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media LLC 2017

Glossary

Battery:

A battery or voltaic cell consists of one or more electrochemical cells which store and convert chemical energy into electric energy.

Electrochemical capacitor:

An electrochemical capacitor (supercapacitor, ultracapacitor, or double-layer capacitor) is an electrochemical device that can store and convert energy by charging/discharging the electrochemical double-layer of two electrodes with large surface areas and thus large double layer capacitances.

Electromobility:

Electromobility is a mobility concept in which electric vehicles instead of vehicles powered by internal combustion engines are used.

Fuel cell:

A fuel cell is an electrochemical cell that can convert the chemical energy stored in a given fuel into electrical energy.

Ragone plot:

A Ragone plot compares the performances of different energy storing devices by plotting power densities or specific power [W/kg] versus energy densities or specific energy [Wh/kg].

Definition of the Subject and Its Importance

The...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. DOE/EIA-0484 (2010) National energy information center, EI-30, U.S. Energy Information Administration, Forrestal Building, Washington, DC 20585

    Google Scholar 

  2. Kunze-Liebhäuser J, Stimming U (2009) Electrochemical versus heat engine energy technology: a tribute to Wilhelm Ostwald’s visionary statements. Angew Chem Int Ed 48:9230–9237

    Article  Google Scholar 

  3. Black WZ, Hartley JG (1985) Thermodynamics. Harper & Row, New York, pp 339–429

    Google Scholar 

  4. Sundar Pethaiah S, Paruthimal Kalaignan G, Sasikumar G, Ulaganathan M, Swaminathan V (2013) Development of nano-catalyzed membrane for PEM fuel cell applications. J Solid State Electrochem. https://doi.org/10.1007/s10008-013-2211-3

    Article  Google Scholar 

  5. Sundar Pethaiah S, Subiantoro A, Stimming U (2013) The application of intermediate temperature fuel cell for auxiliary power unit of the air conditioning system in an electric vehicle. In: 223rd ECS meeting, Toronto

    Google Scholar 

  6. Armand M, Tarascon J-M (2008) Building better batteries. Nature 45:652–657

    Article  Google Scholar 

  7. Kotz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498

    Article  Google Scholar 

  8. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  Google Scholar 

  9. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269

    Article  Google Scholar 

  10. Jacoby M (2010) Rechargeable metal-air batteries. Chem Eng News 88:29–31

    Article  Google Scholar 

  11. Cairns EJ, Albertus P (2010) Batteries for electric and hybrid-electric vehicles. Annu Rev Chem Biomol Eng 1:299–320

    Article  Google Scholar 

  12. Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) Lithium-air battery: promise and challenges. J Phys Chem Lett 1:2193–2203

    Article  Google Scholar 

  13. Zhang HM, Zhang Y, Liu ZH, Wang XL (2009) Redox flow battery technology. Prog Chem 21:2333–2340

    Google Scholar 

  14. De Leon CP, Frias-Ferrer A, Gonzalez-Garcia J, Szanto DA, Walsh FC (2006) Redox flow cells for energy conversion. J Power Sources 160:716–732

    Article  Google Scholar 

  15. Weber AZ, Mench MM, Meyers JP et al (2011) Redox flow batteries: a review. J Appl Electrochem 41:1137–1164

    Article  Google Scholar 

  16. Ponce de Leon C, Friasferrer A, Gonzalezgarcia J et al (2006) Redox flow cells for energy conversion. J Power Sources 160:716–732

    Article  Google Scholar 

  17. Skyllas-Kazacos M, Grossmith F (1987) Efficient vanadium redox flow cell. J Electrochem Soc 134:2950–2954

    Article  Google Scholar 

  18. Friedl J, Bauer C, Rinaldi A, Stimming U (2013) Electron transfer kinetics of the VO2+/VO2+-reaction on multi-walled carbon nanotubes. Carbon 63:228–239

    Article  Google Scholar 

  19. Li L, Kim S, Wang W et al (2010) A stable vanadium redox-flow battery with high energy density for large-scale energy storage. Adv Energy Mater 1:394–400

    Article  Google Scholar 

  20. Skyllas-Kazacos M, Chakrabarti MH, Hajimolana SA et al (2011) Progress in flow battery research and development. J Electrochem Soc 158:R55–R79

    Article  Google Scholar 

  21. Zhang M, Moore M, Watson JS et al (2012) Capital cost sensitivity analysis of an all-vanadium redox-flow battery. J Electrochem Soc 159:A1183–A1188

    Article  Google Scholar 

  22. Cluzel VC, Dougles C (2012) Final Report for the Committee on Climate Change. Cost and performance of EV batteries. Cambridge

    Google Scholar 

  23. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313:1760–1763

    Article  Google Scholar 

  24. Lee SW, Yabuuchi N, Gallant BM, Chen S, Kim B-S, Hammond PT, Shao-Horn Y (2010) High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat Nanotechnol 5:531–537

    Article  Google Scholar 

  25. Gerischer H, Tributsch H (1968) Electrochemical studies on the spectral sensitization of ZnO single crystals Ber unsenges. Phys Chem 72:437–445

    Google Scholar 

  26. Hauffe K, Danzmann HJ, Pusch H, Range J, Volz H (1970) New experiments on the sensitization of zinc oxide by means of the electrochemical cell technique. J Electrochem Soc 117:993–999

    Article  Google Scholar 

  27. Myamlin VA, Pleskov YV (1967) Electrochemistry of semiconductors. Plenum, New York

    Book  Google Scholar 

  28. Gratzel M (2003) Applied physics: solar cells to dye for. Nature 421:586–587

    Article  Google Scholar 

  29. Gratzel M (2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A 164:3–14

    Article  Google Scholar 

  30. Hagfeldt A, Gratzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95:49–68

    Article  Google Scholar 

  31. Hagfeldt A, Gratzel M (2000) Molecular photovoltaics. Acc Chem Res 33:269–277

    Article  Google Scholar 

  32. Ellis AB, Kaiser SW, Wrighton MS (1976) Visible light to electrical energy conversion. Stable cadmium sulfide and cadmium selenide photoelectrodes in aqueous electrolytes. J Am Chem Soc 98:1635–1637

    Article  Google Scholar 

  33. Ellis AB, Bolts JM, Wrighton MS (1977) Characterization of n-type semiconducting indium phosphide photoelectrodes. J Electrochem Soc 124:1603–1607

    Article  Google Scholar 

  34. Hodes G, Manassen J, Cahen D (1976) Photoelectrochemical energy onversion and storage using polycrystalline chalcogenide electrodes. Nature 261:403–404

    Article  Google Scholar 

  35. Miller B, Heller A (1976) Semiconductor liquid junction solar cells based on anodic sulfide films. Nature 262:680–681

    Article  Google Scholar 

  36. Wurfel U, Peters M, Hinsch A (2008) Detailed experimental and theoretical investigation of the electron transport in a dye solar cell by means of a three-electrode configuration. J Phys Chem C 112:1711–1720

    Article  Google Scholar 

  37. Chen C, Wang M, Li J, Pootrakulchote N, Alibabaei L, Ngoc-le C, Decoppet J-D, Tsai J-H, Grätzel C, C-G W, Zakeeruddin SM, Grätzel M (2009) Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano 3:3103

    Article  Google Scholar 

  38. Gratzel M (2007) Photovoltaic and photoelectrochemical conversion of solar energy. Philos Trans R Soc A 365:993–1005

    Article  Google Scholar 

  39. Wagner FT, Lakshmanan B, Mathias MF (2010) Electrochemistry and the future of the automobile. J Phys Chem Lett 1:2204–2219

    Article  Google Scholar 

  40. Wang MQ (2007) Greenhouse gases, regulated emissions, and energy use in transportation (GREET). The Argonne National Laboratory, Argonne. www.transportation.anl.gov/modeling_simulation/GREET/index.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Kunze-Liebhäuser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kunze-Liebhäuser, J., Paschos, O., Pethaiah, S.S., Stimming, U. (2019). Fuel Cell Comparison to Alternate Technologies. In: Lipman, T., Weber, A. (eds) Fuel Cells and Hydrogen Production. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7789-5_157

Download citation

Publish with us

Policies and ethics