Skip to main content

Detection of Chromothripsis in Plants

  • Protocol
  • First Online:
Chromothripsis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1769))

Abstract

Chromothripsis, or chromosome shattering, occurs after chromosomes missegregate, are pulverized and subsequently repaired erroneously, leading to highly complex structural rearrangements. In plants, chromothripsis has been observed as a result of mitotic malfunction connected with the incomplete loss of haploid inducer chromosomes during uniparental genome elimination. Uniparental genome elimination, a process that results in haploid induction, is a phenomenon that typically results in the loss of an entire parental chromosome set in early embryos, resulting in haploid plants. In Arabidopsis thaliana, genome elimination can be achieved via the manipulation of the centromere-specific histone H3 variant, CENH3. Genomic characterization of F1 progeny resulting from CENH3-mediated genome elimination crosses in Arabidopsis revealed haploids (~39%), diploids (~25%), and aneuploids (~37%). Within the aneuploid class, ~11% show evidence for chromothripsis. Here, we present a protocol to identify Arabidopsis aneuploids that have inherited chromothriptic chromosomes during genome elimination crosses and describe in detail how to perform in silico reconstructions for individuals with chromothripsis using the somatic mutation finder (SMuFin) tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alioto TS, Buchhalter I, Derdak S et al (2015) A comprehensive assessment of somatic mutation detection in cancer using whole-genome sequencing. Nat Commun 6:10001. https://doi.org/10.1038/ncomms10001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Britt AB, Kuppu S (2016) Cenh3: an emerging player in haploid induction technology. Front Plant Sci 7:357. https://doi.org/10.3389/fpls.2016.00357

    Article  PubMed  PubMed Central  Google Scholar 

  3. Crasta K, Ganem NJ, Dagher R et al (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature 482:53–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gernand D, Rutten T, Varshney A et al (2005) Uniparental chromosome elimination at mitosis and interphase in wheat and pearl millet crosses involves micronucleus formation, progressive heterochromatinization, and DNA fragmentation. Plant Cell 17:2431–2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Henry IM, Zinkgraf MS, Groover AT et al (2015) A system for dosage-based functional genomics in poplar. Plant Cell 27:2370–2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ishii T, Karimi-Ashtiyani R, Houben A (2016) Haploidization via chromosome elimination: means and mechanisms. Annu Rev Plant Biol 6:421–438

    Article  Google Scholar 

  7. Kloosterman WP, Tavakoli-Yaraki M, van Roosmalen MJ et al (2012) Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms. Cell Rep 1:648–655

    Article  CAS  PubMed  Google Scholar 

  8. Korbel JO, Campbell PJ (2013) Criteria for inference of chromothripsis in cancer genomes. Cell 152:1226–1236

    Article  CAS  PubMed  Google Scholar 

  9. Leibowitz ML, Zhang CZ, Pellman D (2015) Chromothripsis: a new mechanism for rapid karyotype evolution. Annu Rev Genet 49:183–211

    Article  CAS  PubMed  Google Scholar 

  10. Liu P, Erez A, Nagamani SC et al (2011) Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 146:889–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maheshwari S, Tan EH, West A et al (2015) Naturally occurring differences in CENH3 affect chromosome segregation in zygotic mitosis of hybrids. PLoS Genet 11(1):e1004970. https://doi.org/10.1371/journal.pgen.1004970

    Article  PubMed  PubMed Central  Google Scholar 

  12. McDermott DH, Gao JL, Liu Q et al (2015) Chromothriptic cure of WHIM syndrome. Cell 160:686–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Neff MM, Neff JD, Chory J et al (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis Thaliana genetics. Plant J 14:387–392

    Article  CAS  PubMed  Google Scholar 

  14. Pellestor F, Gatinois V, Puechberty J et al (2014) Chromothripsis: potential origin in gametogenesis and preimplantation cell divisions. A review. Fertil Steril 102:1785–1796

    Article  PubMed  Google Scholar 

  15. Ravi M, Chan SW (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464:615–618

    Article  CAS  PubMed  Google Scholar 

  16. Ravi M, Marimuthu MP, Tan EH et al (2014) A haploid genetics toolbox for Arabidopsis Thaliana. Nat Commun 5:5334. https://doi.org/10.1038/ncomms6334

    Article  CAS  PubMed  Google Scholar 

  17. Stephens PJ, Greenman CD, Fu B et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:27–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Subrahmanyam N, Kasha K (1973) Selective chromosomal elimination during haploid formation in barley following interspecific hybridization. Chromosoma 42:111–125

    Article  Google Scholar 

  19. Tan EH, Comai L, Henry IM (2016) Chromosome dosage analysis in plants using whole genome sequencing. Bio-protocol 6(13): e1854. https://doi.org/10.21769/BioProtoc.1854

  20. Tan EH, Henry IM, Ravi M et al (2015) Catastrophic chromosomal restructuring during genome elimination in plants. elife 4:e06516. https://doi.org/10.7554/eLife.06516

    PubMed  PubMed Central  Google Scholar 

  21. Zhang CZ, Leibowitz ML, Pellman D (2013) Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements. Genes Dev 27:2513–2530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang CZ, Spektor A, Cornils H et al (2015) Chromothripsis from DNA damage in micronuclei. Nature 522:179–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zinkgraf M, Haiby K, Lieberman MC et al (2016) Creation and genomic analysis of irradiation hybrids in Populus. Curr Protoc. Plant Biol 1:431–450. https://doi.org/10.1002/cppb.20025

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luca Comai or Ek Han Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Henry, I.M., Comai, L., Tan, E.H. (2018). Detection of Chromothripsis in Plants. In: Pellestor, F. (eds) Chromothripsis. Methods in Molecular Biology, vol 1769. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7780-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7780-2_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7779-6

  • Online ISBN: 978-1-4939-7780-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics