Skip to main content

Electrotaxis: Cell Directional Movement in Electric Fields

  • Protocol
  • First Online:
Cell Migration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1749))

Abstract

Electrotaxis plays an important role during embryogenesis, inflammation, wound healing, and tumour metastasis. However, the mechanisms at play during electrotaxis are still poorly understood. Therefore intensive studies on signaling pathways involved in this phenomenon should be carried out. In this chapter, we described an experimental system for studying electrotaxis of Amoeba proteus, mouse embryonic fibroblasts (MEF), Walker carcinosarcoma cells WC256, and bone marrow adherent cells (BMAC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bear JE, Haugh JM (2014) Directed migration of mesenchymal cells: where signaling and the cytoskeleton meet. Curr Opin Cell Biol 30:74–82

    Article  CAS  PubMed  Google Scholar 

  2. Nuccitelli R, Nuccitelli P, Li C, Narsing S, Pariser DM, Lui K (2011) The electric field near human skin wounds declines with age and provides a noninvasive indicator of wound healing. Wound Repair Regen 19:645–655

    Article  PubMed  PubMed Central  Google Scholar 

  3. McCaig CD, Rajnicek AM, Song B, Zhao M (2005) Controlling cell behavior electrically: current views and future potential. Physiol Rev 85:943–978. https://doi.org/10.1152/physrev.00020.2004

    Article  PubMed  Google Scholar 

  4. Martin-Granados C, McCaig CD (2013) Harnessing the electric spark of life to cure skin wounds. Adv Wound Care 3:127–138

    Article  Google Scholar 

  5. Sheridan DM, Isseroff RR, Nuccitelli R (1996) Imposition of a physiologic DC electric field alters the migratory response of human keratinocytes on extracellular matrix molecules. J Invest Dermatol 106:642–646

    Article  CAS  PubMed  Google Scholar 

  6. Cooper MS, Schliwa M (1986) Motility of cultured fish epidermal cells in the presence and absence of direct current electric fields. J Cell Biol 102:1384–1399

    Article  CAS  PubMed  Google Scholar 

  7. Kim MS, Lee MH, Kwon B-J, Koo M-A, Seon GM, Park J-C (2015) Golgi polarization plays a role in the directional migration of neonatal dermal fibroblasts induced by the direct current electric fields. Biochem Biophys Res Commun 460:255–260

    Article  CAS  PubMed  Google Scholar 

  8. Djamgoz MBA, Mycielska M, Madeja Z, Fraser SP, Korohoda W (2001) Directional movement of rat prostate cancer cells in direct-current electric field: involvement of voltagegated Na+ channel activity. J Cell Sci 114:2697–2705

    Article  CAS  Google Scholar 

  9. Sroka J, Krecioch I, Zimolag E, Lasota S, Rak M, Kedracka-Krok S, Borowicz P, Gajek M, Madeja Z (2016) Lamellipodia and membrane blebs drive efficient electrotactic migration of rat walker carcinosarcoma cells WC 256. PLoS One 11:e0149133

    Article  PubMed  PubMed Central  Google Scholar 

  10. Krecioch I, Madeja Z, Lasota S, Zimolag E, Sroka J (2015) The role of microtubules in electrotaxis of rat Walker carcinosarcoma WC256 cells. Acta Biochim Pol 62:401–406

    Article  CAS  PubMed  Google Scholar 

  11. Zimolag E, Borowczyk-Michalowska J, Kedracka-Krok S, Skupien-Rabian B, Karnas E, Lasota S, Sroka J, Drukala J, Madeja Z (2017) Electric field as a potential directional cue in homing of bone marrow-derived mesenchymal stem cells to cutaneous wounds. Biochim Biophys Acta, Mol Cell Res 1864:267–279

    Article  CAS  Google Scholar 

  12. Rapp B, De Boisfleury-Chevance A, Gruler H (1988) Galvanotaxis of human granulocytes – dose-response curve. Eur Biophys J 16:313–319

    Article  CAS  PubMed  Google Scholar 

  13. Chang PC, Sulik GI, Soong HK, Parkinson WC (1996) Galvanotropic and galvanotaxic responses of corneal endothelial cells. J Formos Med Assoc 95:623–627

    CAS  PubMed  Google Scholar 

  14. Zhao M, Bai H, Wang E, Forrester JV, McCaig CD (2004) Electrical stimulation directly induces pre-angiogenic responses in vascular endothelial cells by signaling through VEGF receptors. J Cell Sci 117:397–405

    Article  CAS  PubMed  Google Scholar 

  15. Li L, El-Hayek YH, Liu B, Chen Y, Gomez E, Wu X, Ning K, Li L, Chang N, Zhang L, Wang Z, Hu X, Wan Q (2008) Direct-current electrical field guides neuronal stem/progenitor cell migration. Stem Cells 26:2193–2200

    Article  CAS  PubMed  Google Scholar 

  16. Pullar CE, Baier BS, Kariya Y, Russell AJ, Horst BAJ, Marinkovich MP, Isseroff RR (2006) Beta4 integrin and epidermal growth factor coordinately regulate electric field-mediated directional migration via Rac1. Mol Biol Cell 17:4925–4935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Poo M, Robinson KR (1977) Electrophoresis of concanavalin A receptors along embryonic muscle cell membrane. Nature 265:602–605

    Article  CAS  PubMed  Google Scholar 

  18. Zhao M, Pu J, Forrester JV, McCaig CD (2002) Membrane lipids, EGF receptors, and intracellular signals colocalize and are polarized in epithelial cells moving directionally in a physiological electric field. FASEB J 16:857–859

    Article  CAS  PubMed  Google Scholar 

  19. Orida N, Poo MM (1978) Electrophoretic movement and localisation of acetylcholine receptors in the embryonic muscle cell membrane. Nature 275:31–35

    Article  CAS  PubMed  Google Scholar 

  20. Fang KS, Ionides E, Oster G, Nuccitelli R, Isseroff RR (1999) Epidermal growth factor receptor relocalization and kinase activity are necessary for directional migration of keratinocytes in DC electric fields. J Cell Sci 112(Pt 12):1967–1978

    Article  CAS  PubMed  Google Scholar 

  21. Hart FX (2006) Integrins may serve as mechanical transducers for low-frequency electric fields. Bioelectromagnetics 27:505–508

    Article  PubMed  Google Scholar 

  22. Ozkucur N, Perike S, Sharma P, Funk RHW (2011) Persistent directional cell migration requires ion transport proteins as direction sensors and membrane potential differences in order to maintain directedness. BMC Cell Biol 12:4

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rajnicek AM (2006) Temporally and spatially coordinated roles for Rho, Rac, Cdc42 and their effectors in growth cone guidance by a physiological electric field. J Cell Sci 119:1723–1735

    Article  CAS  PubMed  Google Scholar 

  24. Zhao M, Dick A, Forrester JV, McCaig CD (1999) Electric field-directed cell motility involves up-regulated expression and asymmetric redistribution of the epidermal growth factor receptors and is enhanced by fibronectin and laminin. Mol Biol Cell 10:1259–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Meng X, Arocena M, Penninger J, Gage FH, Zhao M, Song B (2011) PI3K mediated electrotaxis of embryonic and adult neural progenitor cells in the presence of growth factors. Exp Neurol 227:210–217

    Article  CAS  PubMed  Google Scholar 

  26. Labanowski J (1979) Analysis of conditions for preparative electrophoresis of cells and subcellular fractions. Dissertation, Jagiellonian University

    Google Scholar 

  27. Prescott DM, James TW (1955) Culturing of Amoeba proteus on Tetrahymena. Exp Cell Res 8:256–258

    Article  CAS  PubMed  Google Scholar 

  28. Sroka J, von Gunten M, Dunn GA, Keller HU (2002) Phenotype modulation in non-adherent and adherent sublines of Walker carcinosarcoma cells: the role of cell-substratum contacts and microtubules in controlling cell shape, locomotion and cytoskeletal structure. Int J Biochem Cell Biol 34:882–899

    Article  CAS  PubMed  Google Scholar 

  29. C a E, Nuccitelli R (1984) Embryonic fibroblast motility and orientation can be influenced by physiological electric fields. J Cell Biol 98:296–307

    Article  Google Scholar 

  30. Gruler H, Nuccitelli R (1991) Neural crest cell galvanotaxis: new data and a novel approach to the analysis of both galvanotaxis and chemotaxis. Cell Motil Cytoskeleton 19:121–133

    Article  CAS  PubMed  Google Scholar 

  31. Sroka J, Antosik A, Czyż J, Nalvarte I, Olsson JM, Spyrou G, Madeja Z (2007) Overexpression of thioredoxin reductase 1 inhibits migration of HEK-293 cells. Biol Cell 99:677–687

    Article  CAS  PubMed  Google Scholar 

  32. Sroka J, Kamiński R, Michalik M, Madeja Z, Przestalski S, Korohoda W (2004) The effect of triethyllead on the motile activity of walker 256 carcinosarcoma cells. Cell Mol Biol Lett 9:15–30

    CAS  PubMed  Google Scholar 

  33. McCutcheon M (1946) Chemotaxis in leukocytes. Physiol Rev 26:319–336

    Article  CAS  PubMed  Google Scholar 

  34. Korohoda W, Madeja Z, Sroka J (2002) Diverse chemotactic responses of Dictyostelium discoideum amoebae in the developing (temporal) and stationary (spatial) concentration gradients of folic acid, cAMP, Ca2+ and Mg2+. Cell Motil Cytoskeleton 53:1–25

    Article  CAS  PubMed  Google Scholar 

  35. Korohoda W, Golda J, Sroka J, Wojnarowicz A, Jochym P, Madeja Z (1997) Chemotaxis of Amoeba proteus in the developing pH gradient within a pocket-like chamber studied with the computer assisted method. Cell Motil Cytoskeleton 38:38–53

    Article  CAS  PubMed  Google Scholar 

  36. Cassidy-Hanley DM (2012) Tetrahymena in the laboratory: strain resources, methods for culture, maintenance, and storage. Methods Cell Biol 109:237–276

    Article  PubMed  PubMed Central  Google Scholar 

  37. Korohoda W, Mycielska M, Janda E, Madeja Z (2000) Immediate and long-term galvanotactic responses of Amoeba proteus to dc electric fields. Cell Motil Cytoskeleton 45:10–26

    Article  CAS  PubMed  Google Scholar 

  38. Grys M, Madeja Z, Korohoda W (2017) Avoiding the side effects of electric current pulse application to electroporated cells in disposable small volume cuvettes assures good cell survival. Cell Mol Biol Lett 22:1

    Article  PubMed  PubMed Central  Google Scholar 

  39. Masuzzo P, Van Troys M, Ampe C, Martens L (2016) Taking aim at moving targets in computational cell migration. Trends Cell Biol 26:88–110

    Article  PubMed  Google Scholar 

  40. Waligórska A, Wianecka-Skoczeń M, Nowak P, Korohoda W (2007) Some difficulties in research into cell motile activity under isotropic conditions. Folia Biol (Praha) 55:9–16

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Science Centre 2012/07/B/NZ3/02909, Poland. Faculty of Biochemistry, Biophysics, and Biotechnology of Jagiellonian University is a partner of the Leading National Research Center (KNOW) supported by the Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolanta Sroka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sroka, J., Zimolag, E., Lasota, S., Korohoda, W., Madeja, Z. (2018). Electrotaxis: Cell Directional Movement in Electric Fields. In: Gautreau, A. (eds) Cell Migration. Methods in Molecular Biology, vol 1749. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-7701-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7701-7_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-7700-0

  • Online ISBN: 978-1-4939-7701-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics