Skip to main content

Two Applications of Gold Nanostars to Hippocampal Neuronal Cells: Localized Photothermal Ablation and Stimulation of Firing Rate

  • Protocol
  • First Online:
Use of Nanoparticles in Neuroscience

Part of the book series: Neuromethods ((NM,volume 135))

Abstract

We present a procedure to synthesize gold nanostars which are readily internalized by mouse hippocampal cells. These nanoparticles tend to localize close to the nuclei and have a surface plasmon resonance in the near infrared therefore we can stimulate their luminescence with two-photon technology while imaging structural or functional neuronal fluorescent markers. This allows us to evaluate the effect of the nanoparticles on the neuron’s behavior without any other external stimuli. We found that these nanoparticles increase the firing rate by modifying the activity of the potassium channels. In addition, by increasing the intensity of the laser used for imaging, we can stimulate the one-photon surface plasmon mode of the nanoparticles to destroy single cells and organelles containing nanostars while neighboring cells remain intact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110((14)):7238–7248. https://doi.org/10.1021/Jp057170o

    Article  CAS  PubMed  Google Scholar 

  2. Tsai CLC, Chen J-C, Wang WJ (2001) Near-infrared absorption property of biological soft tissue constituents. J Med Biol Eng 21(1):7–14

    Google Scholar 

  3. Bardhan R, Chen W, Perez-Torres C, Bartels M, Huschka RM, Zhao LL, Morosan E, Pautler RG, Joshi A, Halas NJ (2009) Nanoshells with targeted simultaneous enhancement of magnetic and optical imaging and Photothermal therapeutic response. Adv Funct Mater 19(24):3901–3909

    Article  CAS  Google Scholar 

  4. Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19(3):409–453

    Article  CAS  Google Scholar 

  5. Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103(21):4212–4217

    Article  CAS  Google Scholar 

  6. Prescott SW, Mulvaney P (2006) Gold nanorod extinction spectra. J Appl Phys 99((12)):123504. https://doi.org/10.1063/1.2203212

    Article  Google Scholar 

  7. Chen JY, Wang DL, Xi JF, Au L, Siekkinen A, Warsen A, Li ZY, Zhang H, Xia YN, Li XD (2007) Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Letters 7((5)):1318–1322. https://doi.org/10.1021/Nl070345g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kumar PS, Pastoriza-Santos I, Rodriguez-Gonzalez B, Garcia de Abajo FJ, Liz-Marzan LM (2008) High-yield synthesis and optical response of gold nanostars. Nanotechnology 19((1)):015606. https://doi.org/10.1088/0957–4484/19/01/015606

    Article  Google Scholar 

  9. Nehl CL, Liao HW, Hafner JH (2006) Optical properties of star-shaped gold nanoparticles. Nano Lett 6((4)):683–688. https://doi.org/10.1021/Nl052409y

    Article  CAS  PubMed  Google Scholar 

  10. Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Nanoengineering of optical resonances. Chem Phys Lett 288(2–4):243–247

    Article  CAS  Google Scholar 

  11. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302(5644):419–422

    Article  CAS  PubMed  Google Scholar 

  12. Loo C, Lin A, Hirsch L, Lee MH, Barton J, Halas NJ, West J, Drezek R (2004) Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 3(1):33–40

    Article  CAS  PubMed  Google Scholar 

  13. Kereselidze Z, Romero VH, Peralta XG, Santamaria F (2012) Gold nanostar synthesis with a silver seed mediated growth method. J Vis Exp 59:3570. https://doi.org/10.3791/3570

    Google Scholar 

  14. Zhang K, Fang H, Chen Z, Taylor JS, Wooley KL (2008) Shape effects of nanoparticles conjugated with cell-penetrating peptides (HIV Tat PTD) on CHO cell uptake. Bioconjug Chem 19(9):1880–1887. https://doi.org/10.1021/bc800160b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang SL, Li J, Lykotrafitis G, Bao G, Suresh S (2009) Size-dependent endocytosis of nanoparticles. Adv Mater 21(4):419–424. https://doi.org/10.1002/adma.200801393

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jung S, Bang M, Kim BS, Lee S, Kotov NA, Kim B, Jeon D (2014) Intracellular gold nanoparticles increase neuronal excitability and aggravate seizure activity in the mouse brain. PLoS One 9(3):e91360. https://doi.org/10.1371/journal.pone.0091360

    Article  PubMed  PubMed Central  Google Scholar 

  17. James FH, Daniel NS, Henry MS (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49(18):N309

    Article  Google Scholar 

  18. Mendoza KC, VD ML, Kim S, Griffin JD (2010) In vitro application of gold nanoprobes in live neurons for phenotypical classification, connectivity assessment, and electrophysiological recording. Brain Res 1325:19–27

    Article  CAS  PubMed  Google Scholar 

  19. Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1(3):325–327. https://doi.org/10.1002/smll.200400093

    Article  CAS  PubMed  Google Scholar 

  20. Iversen TG, Skotland T, Sandvig K (2011) Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today 6(2):176–185. https://doi.org/10.1016/j.nantod.2011.02.003

    Article  CAS  Google Scholar 

  21. Alkilany A, Murphy C (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 12(7):2313–2333. https://doi.org/10.1007/s11051-010-9911-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang Z, Liu ZW, Allaker RP, Reip P, Oxford J, Ahmad Z, Ren G (2010) A review of nanoparticle functionality and toxicity on the central nervous system. J R Soc Interface 7(Suppl 4):S411–S422. https://doi.org/10.1098/rsif.2010.0158.focus

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Salinas K, Kereselidze Z, DeLuna F, Peralta XG, Santamaria F (2014) Transient extracellular application of gold nanostars increases hippocampal neuronal activity. J Nanobiotechnology 12:31

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hu M, Chen J, Li Z-Y, Au L, Hartland GV, Li X, Marquez M, Xia Y (2006) Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35(11):1084–1094

    Article  CAS  PubMed  Google Scholar 

  25. El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34(4):257–264. https://doi.org/10.1021/Ar960016n

    Article  CAS  PubMed  Google Scholar 

  26. Huang XH, Jain PK, El-Sayed IH, El-Sayed MA (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostic and therapy. Nanomedicine (Lond) 2(5):681–693. https://doi.org/10.2217/17435889.2.5.681

    Article  CAS  Google Scholar 

  27. Lu W, Xiong C, Zhang G, Huang Q, Zhang R, Zhang JZ, Li C (2009) Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres. Clin Cancer Res 15(3):876–886. [pii]. https://doi.org/10.1158/1078-0432.CCR-08-1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang YF, Sefah K, Bamrungsap S, Chang HT, Tan W (2008) Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods. Langmuir 24(20):11860–11865. https://doi.org/10.1021/la801969c

    Article  CAS  PubMed  Google Scholar 

  29. Tam F, Chen AL, Kundu J, Wang H, Halas NJ (2007) Mesoscopic nanoshells: geometry-dependent plasmon resonances beyond the quasistatic limit. J Chem Phys 127(20):6. https://doi.org/10.1063/1.2796169

    Article  Google Scholar 

  30. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 100(23):13549–13554. https://doi.org/10.1073/pnas.2232479100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang X, Qian W, El-Sayed IH, El-Sayed MA (2007) The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy. Lasers Surg Med 39(9):747–753. https://doi.org/10.1002/Lsm.20577

    Article  PubMed  Google Scholar 

  32. Romero VH, Kereselidze Z, Egido W, Michaelides EA, Santamaria F, Peralta XG (2014) Nanoparticle assisted photothermal deformation of individual neuronal organelles and cells. Biomed Opt Express 5(11):4002–4012. https://doi.org/10.1364/Boe.5.004002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang AZ, Gu F, Zhang L, Chan JM, Radovic-Moreno A, Shaikh MR, Farokhzad OC (2008) Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opin Biol Ther 8(8):1063–1070. https://doi.org/10.1517/14712598.8.8.1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shenoy D, Fu W, Li J, Crasto C, Jones G, DiMarzio C, Sridhar S, Amiji M (2006) Surface functionalization of gold nanoparticles using hetero-bifunctional poly(ethylene glycol) spacer for intracellular tracking and delivery. Int J Nanomedicine 1(1):51–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Albanese A, Tang PS, Chan WCW (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14(16):1. https://doi.org/10.1146/annurev-bioeng-071811-150124

    Article  CAS  PubMed  Google Scholar 

  36. Santamaria F, Wils S, De Schutter E, Augustine GJ (2011) The diffusional properties of dendrites depend on the density of dendritic spines. Eur J Neurosci 34(4):561–568. https://doi.org/10.1111/j.1460-9568.2011.07785.x

    Article  PubMed  PubMed Central  Google Scholar 

  37. Santamaria F, Wils S, De Schutter E, Augustine GJ (2006) Anomalous diffusion in Purkinje cell dendrites caused by spines. Neuron 52(4):635–648. https://doi.org/10.1016/j.neuron.2006.10.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This project was supported by the NIH/NIGMS MARC U*STAR GM07717, the National Institute on Minority Health and Health Disparities RCMI G12MD007591 from the National Institutes of Health and the NSF PREM DMR 0934218.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fidel Santamaria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Santamaria, F., Peralta, X.G. (2018). Two Applications of Gold Nanostars to Hippocampal Neuronal Cells: Localized Photothermal Ablation and Stimulation of Firing Rate. In: Santamaria, F., Peralta, X. (eds) Use of Nanoparticles in Neuroscience. Neuromethods, vol 135. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7584-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7584-6_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7582-2

  • Online ISBN: 978-1-4939-7584-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics