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Abstract

Cellular signaling, predominantly mediated by phosphorylation through protein kinases, is found to be
deregulated in most cancers. Accordingly, protein kinases have been subject to intense investigations in
cancer research, to understand their role in oncogenesis and to discover new therapeutic targets. Despite
great advances, an understanding of kinase dysfunction in cancer is far from complete.

A powertful tool to investigate phosphorylation is mass-spectrometry (MS)-based phosphoproteomics,
which enables the identification of thousands of phosphorylated peptides in a single experiment. Since every
phosphorylation event results from the activity of a protein kinase, high-coverage phosphoproteomics data
should indirectly contain comprehensive information about the activity of protein kinases.

In this chapter, we discuss the use of computational methods to predict kinase activity scores from
MS-based phosphoproteomics data. We start with a short explanation of the fundamental features of the
phosphoproteomics data acquisition process from the perspective of the computational analysis. Next, we
briefly review the existing databases with experimentally verified kinase-substrate relationships and present a
set of bioinformatic tools to discover novel kinase targets. We then introduce different methods to infer
kinase activities from phosphoproteomics data and these kinase-substrate relationships. We illustrate their
application with a detailed protocol of one of the methods, KSEA (Kinase Substrate Enrichment Analysis).
This method is implemented in Python within the framework of the open-source Kinase Activity Toolbox
(kinact), which is freely available at http: //github.com/saezlab /kinact/.
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1 Introduction

Protein kinases are major effectors of cellular signaling, in the
context of which they form a highly complex and tightly regulated
network that can sense and integrate a multitude of external stimuli
or internal cues. This kinase network exerts control over cellular
processes of fundamental importance, such as the decision between
proliferation and apoptosis [1]. Deregulation of kinase signaling
can lead to severe diseases and is observed in almost every type of
cancer [2]. For instance, a single constitutively active kinase,
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originating from the fusion of the BCR and ABL genes, can give
rise to and sustain chronic myeloid leukemia [3]. Accordingly, the
small molecule inhibitor of the BCR-ABL kinase, Imatinib, has
shown unprecedented therapeutic effectiveness in affected
patients [4].

Fueled by these promising clinical results, due to the essential
role for kinases in the patho-mechanism of cancer, and because
kinases are in general pharmacologically tractable [5], a range of
new kinase inhibitors has been approved or is in development for
different cancer types [6]. However, not all eligible patients
respond equally well, and in addition, cancers often develop resis-
tance to initially successful therapies. This calls for a deeper under-
standing of kinase signaling and opens up the possibility of
exploiting this knowledge therapeutically [7].

By definition, the activity of a kinase is reflected in the occur-
rence of phosphorylation events catalyzed by this kinase. Thus,
analysis of kinase activity was traditionally achieved by monitoring
the phosphorylation status of a limited number of sites known to be
targeted by the kinase of interest using immunochemical techni-
ques [8]. This, however, requires substantial prior-knowledge and
yields a comparably low throughput. Other approaches exist, e.g.,
protein kinase activity assays [9, 10] or attempts to measure kinase
activity with chromatographic beads functionalized with ATP or
small molecule inhibitors [11].

Mass spectrometry-based techniques to measure phosphoryla-
tion can identify thousands of phosphopeptides in a single sample
with ever-increasing coverage, throughput, and quality, nourished
by technological advances and dramatically increased performance
of MS instruments in recent years [12-14]. High-coverage phos-
phoproteomics data should indirectly contain information about
the activity of many active kinases. The high-content nature of
phosphoproteomics data, however, poses challenges for computa-
tional analysis. For example, only a small subset of the described
phosphorylation sites can be explicitly associated with functional
impact [15].

As a means to extract functional insight, methods to infer
kinase activities from phosphoproteomics data based on prior-
knowledge about kinase-substrate relationships have been put for-
ward [16-19]. The knowledge about kinase-substrate relation-
ships, compiled in databases like PhosphoSitePlus [20] or
Phospho.ELM [21], covers only a limited set of interactions. Alter-
natively, computational resources to predict kinase-substrate rela-
tionships based on kinase recognition motifs and contextual
information have been used to enrich the collections of substrates
per kinase [22, 23], but the accuracy of such kinase-substrate
relationships has not been validated experimentally for most cases.
The inferred kinase activities can in turn be used to reconstruct
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kinase network circuitry or to predict therapeutically relevant fea-
tures such as sensitivity to kinase inhibitor drugs [17].

In this chapter, we start with a brief description of phosphopro-
teomics data acquisition, highlighting challenges for the computa-
tional analysis that may arise out of the experimental process.
Subsequently, we will present different computational methods for
the estimation of kinase activities based on phosphoproteomics data,
preceded by the kinase-substrate resources these methods use. One
of these methods, namely KSEA (Kinase-Substrate Enrichment
Analysis), will be explained in more detail in the form of a guided,
stepwise protocol, which is available as part of the Python open-
source Toolbox kinact (for Kinase Activity Scoring) at http: /www.
github.com/saezlab /kinact/.

2 Phosphoproteomics Data Acquisition

2.1 Phosphopeptide
Enrichment

For a summary of technical variations or available systems for the
experimental setup of phosphoproteomics data acquisition, we
would like to refer the interested reader to dedicated publications
such as [24, 25]. We provide here a short overview about the
experimental process to facilitate the understanding of common
challenges that may arise for the data analysis that we will focus on.

Mass spectrometry-based detection of peptides with posttrans-
lational modifications (PTM) usually requires the same steps, inde-
pendent of the modification of interest: (1) cell lysis and protein
extraction with special focus on PTM preservation, (2) digestion of
proteins with an appropriate protease, (3) enrichment of peptides
bearing the modification of interest, and (4) analysis of the peptides
by LC-MS/MS [26]. After the experimental work, additional data
processing steps are required to identify the position of the modifi-
cation, e.g., the residue that is phosphorylated. For almost every
step, different protocols are available, starting from various pro-
teases for protein digestion to different data acquisition methods
for MS [24].

Naturally, the enrichment of phosphopeptides is a pivotal step for
phosphoproteomics. Next to the enrichment method used, the
choice of the protease [27] or the MS ionization method [28] also
has an impact on the part of the phosphoproteome that is sampled.
For phosphopeptide enrichment, the field is dominated by immobi-
lized metal affinity chromatography (IMAC) and metal oxide affinity
chromatography (MOAC), which all exploit the affinity of the phos-
phorylation toward metal ions. Popular techniques include Fe®*-
IMAC, Ti**-IMAC [29], or TiO>-MOAC. Alternatively, more tra-
ditional biochemical methods involving immunoaffinity purification
are also in use for enrichment of phosphopeptides, although these
are generally limited to studies of phosphotyrosine [30].


http://www.github.com/saezlab/kinact/
http://www.github.com/saezlab/kinact/

106 Jakob Wirbel et al.

2.2 Data Acquisition

Of note, the different enrichment methods show little overlap
in the detected phosphopeptides, although this can also be
observed for replicates of runs using the identical enrichment
method, as discussed below [31].

After enrichment, the phosphopeptides are separated chro-
matographically, usually by reversed phase liquid chromatography
(RPLC), and then enter the mass spectrometer for tandem MS
analysis (MS/MS), completing the workflow of LC-MS/MS. Var-
iations in the chromatography method used as well as the multitude
of mass spectrometry instrument types are reviewed in detail else-
where [24]. Generally, the quality of the chromatographic separa-
tion will have a big impact on the number of phosphopeptides that
can confidently be identified. Chromatography runs of higher
quality also take more time, so that a tradeoff between resolution
and throughput must be devised for each experiment.

For most phosphoproteomics studies so far, the MS instrument is
operated in the data-dependent acquisition (DDA) mode. Therein,
precursor ions from a first survey scan are selected—typically based
on relative ion abundance—in order to generate fragmentation
spectra in a second MS run [32], for which a database search yields
the corresponding peptide sequences [33]. As a result, peptide
detection in DDA is on the one hand biased toward high abun-
dance species, but also considerably irreproducible due to stochas-
tic precursor ion selection [34]. This inherent under-sampling of
DDA usually leads to missing data points in LC-MS/MS datasets.
However, this problem may be solved to some extent by extracting
ion chromatograms of the peptides that are missing in some of the
runs that are being compared [35-38], by matching across samples
[39], or with the accurate mass and retention tag method [40].

In an alternative operation mode, selected reaction monitor-
ing/multiple reaction monitoring (SRM/MRM), the presence and
abundance of only a limited set of pre-specified peptides with
known fragmentation spectra is surveyed [41]. This targeted
approach overcomes many of the issues of shotgun methods, but
is usually not feasible for large-scale investigation of the complete
phosphoproteome.

Data-independent acquisition (DIA), e.g., SWATH-MS [42]
tries to address the shortcoming of both established data acquisi-
tion strategies in order to combine the throughput of DDA with
the reproducibility of SRM. In DIA, fragmentation spectra are
generated for all precursor ions in a specific window of ./ z ratios,
leading to a complete map of fragmentation spectra, followed by
computational extraction of quantitative information for known
spectra. For phosphoproteomics, DIA-MS has already been applied
to investigate insulin signaling [43] or histone modifications
[44]. However, the spectra generated by DIA-MS are usually
highly complex and require intricate data extraction techniques,
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which is even more challenging for modified peptides. Recently, a
computational resource for the detection of modified peptides has
been put forward [45]. Overall, the available methods for DIA have
as yet to mature in order to challenge the use of DDA in large-scale
studies of the phosphoproteome [24].

As for regular proteomics, several experimental methods or post-
acquisition tools exist to quantitate detected phosphopeptides.
Those can roughly be divided into isotope labeling and label-free
quantitation. In general, stable isotope labeling requires more
experimental effort than label-free quantitation, but at the same
time enables multiplexing of samples with different isotopes or
combinations.

Stable isotope labeling by metabolic incorporation of amino
acids (SILAC) is mainly used for cell cultures, in the medium of
which different stable isotopes are provided that will be
incorporated into the proteins of the cells. At the point of analysis,
cell extracts are mixed and then jointly investigated with mass
spectrometry. Mass differences between peptide pairs due to the
isotopic labeling can be exploited for relative quantitation
[46]. Currently, up to three conditions (light, medium, heavy)
can be multiplexed. Further developments of SILAC even pro-
duced an in-vivo SILAC mouse model for the proteomic and
phosphoproteomic analysis of skin cancerogenesis [47 ] and super-
SILAC for the analysis of tissues [48], in which a metabolically
labeled, tissue-specific protein mix from several cell lines, represent-
ing the complexity of the investigated proteome, is mixed with the
tissue lysate as internal standard for quantification.

Chemical modification of peptides with tandem mass tags
(TMT) or isobaric tags for relative and absolute quantitation
(iTRAQ) are two different methods based on tags with reactive
groups that bind to peptidyl amines in the peptides after protein
digestion. Again, different samples are mixed before mass spec-
trometry analysis, whereas for TMT or iTRAQ up to eight samples
can be multiplexed. In the first MS run, the peptides with different
isobaric tags are indistinguishable, but upon fragmentation in the
second MS run, each tag generates a unique reporter ion fragmen-
tation spectrum, which can be used for relative quantitation of the
tagged peptides [49, 50].

Label-free quantitation (LFQ), on the other hand, relies mainly
on post-acquisition data analysis, so that no modification of the
essential experimental workflow needs to be implemented. Com-
parison of an—in theory—unlimited number of different samples is
therefore possible, which is associated with the downside of pro-
longed analysis time as multiplexing samples is not possible. While
label-free approaches usually provide a deeper coverage of the
proteome than label-based methods, the reproducibility and preci-
sion of quantification are inferior, so that more technical replicates
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2.4 Phosphosite
Assignment

are needed for confident quantification in LFQ [51]. Typically,
label-free quantitation is achieved by integration of peak area mea-
surements, i.e. the area under the curve, for individual peptides
[52] or spectral counting, which reflects that the probability to
sample more abundant peptides is higher [53].

For the case of phosphoproteomics, in contrast to regular
proteomics, an additional challenge for quantitation arises from
the fact that information from different peptides of the same pro-
tein cannot be integrated. While in regular proteomics the abun-
dances of every peptide in the protein can be combined, the
quantitation of a single phosphosite depends on direct measure-
ments of peptides with the specific modification. Therefore, the
sample sizes in phosphoproteomics quantitation are much smaller
and can even consist of the measurement of only a single
peptide [24].

Furthermore, different phosphosites within the same protein
will in many cases not show similar pattern of phosphorylation
dynamics. This may give rise to problems for subsequent analysis,
if this analysis is conducted on protein rather than on phosphosite
level.

Phosphopeptides in large-scale phosphoproteomics experiments
are identified from LC-MS/MS runs by interpreting MS /MS spec-
tra using a suitable search engine. Several of such search engines
now exist; popular ones include Mascot, Sequest, Protein Prospec-
tor, and Andromeda [54-57]. The process of determining peptide
sequences from MS/MS data involves matching the mass to charge
ratios of fragment ions in MS/MS spectra to the theoretical frag-
mentation of all protein-derived peptides in protein databases.
Depending on the organism being investigated, protein databases
from UniProt or NCBI are used. Each search engine has its own
scoring system to reflect the confidence of peptide identification,
which is a function of MS and MS/MS spectral quality. The false
discovery rate (FDR) may be determined by performing parallel
searches against scrambled or reversed protein databases containing
the same number of sequences as the authentic protein database.
The FDR is then calculated as the ratio of positive peptide identi-
fications in the decoy database divided by those derived from the
forward search. An FDR of 1% at the peptide level is normally
considered adequate.

Deriving peptide sequences with these methods is a relatively
straightforward process. However, site localization can be a prob-
lem when peptide sequences contain more than one amino acid
residue that can be phosphorylated. To address this problem, sev-
eral methods to determine precise localization of phosphorylation
within a phosphopeptide have been published. Ascore uses a prob-
abilistic approach to assess correct site assignment [58] and the
algorithm has been applied alongside the Sequest search engine.
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The Mascot delta score, introduced by the Kuster group, simply
determines the differences in Mascot scores between the different
possibilities for phosphosite localization within a phosphopeptide
[59]. The larger the delta score, the greater the probability of
correct site assignment. Other similar methods have been published
[60] and some of them are now incorporated into search engines
[61]. The output of the phosphopeptide identification step gener-
ally contains scores for both the probability of correct peptide
sequence identification and phosphosite localization.

Although the available experimental methods for MS-based phos-
phoproteomics data acquisition have evolved considerably over the
last years, leading to a steadily increasing number of detected
phosphosites, several limitations remain for the investigation of
signaling processes using phosphoproteomics data.

While it has been estimated that there are around 500,000
phosphorylation sites in the human proteome [62], the number of
phosphosites that can be identified in a single MS experiment usually
ranks around 10,000 to up to 40,000 [63]. Therefore, the sampled
phosphoproteomic picture is incomplete. It has to be taken into
account though, that, not all possible phosphorylation sites are
expected to be modified at the same time point. This is caused by
context-dependent regulation of phosphosites. For example, some
phosphosites are controlled differentially at different cell cycle stages,
while others only change under specific external stimulation such as
growth factors or other effector molecules [64, 65]. The hope is
therefore that a significantly larger portion of phosphosites could be
mapped with improving technology and by increasing the diversity
of biologically relevant conditions analyzed. So far though, in differ-
ent MS runs or replicates, usually a distinct set of phosphosites is
detected, as the selection of precursor ions is stochastic. This leads to
incomplete datasets with a high number of missing data points,
challenging computational investigation of the data such as cluster-
ing or correlation analysis. However, as discussed above, approaches
in which phosphopeptide intensities are compared across MS run
post-acquisition minimize this problem [38].

The functional impact of a phosphorylation event is known only
in the minority of cases [ 15]. Indeed, it has been hypothesized that a
substantial fraction of phosphorylation sites are non-functional [66],
since phosphorylation sites tend to be poorly conserved throughout
species [67]. Although approaches to studying the function of indi-
vidual phosphorylation events have been proposed [68], it may be
that a large part of the detected phosphosites serves no function at
all. Thus, non-functional sites add a substantial amount of noise to
phosphoproteomics data and complicate the computational analysis.

The inference of kinase activity from phosphoproteomics data
that will be described in the next section aims to overcome these
limitations, by the integration of the information from many
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phosphosites, along prior knowledge on kinases-substrate relation-
ships, into a single measure for the kinase activity. It is important
though to keep in mind that any bias in the experimental workflow
will affect these scores. In particular, since highly abundant precur-
sor ions are more likely to be selected for fragmentation and there-
fore detection, targets of upregulated kinases are more probably
detected. Therefore, highly active kinases will be preferentially
detected, although downregulated kinases may be identified when
comparing different conditions.

3 Computational Methods for Inference of Kinase Activity

3.1 Resources for
Kinase-Substrate
Relationships

Traditionally, biochemical methods have been common to study
kinase activities in vitro and are still broadly used [69, 70]. However,
on the one hand those methods are generally limited in throughput
and time-consuming. On the other hand in vitro methods might
not accurately reflect the in vivo activities of kinases in a specific
cellular context. MS-based methods have also been applied for
assaying kinase activity [9, 10]. Here, the abundances of known
target phosphosites are monitored by MS after an in vitro enzy-
matic reaction.

Since every phosphorylation event results—by definition—
from the activity of a kinase, phosphoproteomics data should be
suitable to infer the activity of many kinases from a comparably low
experimental effort. This task requires computational analysis of the
detected phosphorylation sites (phosphosites), since thousands of
phosphosites can routinely be measured in a single experiment.
Several methods have been proposed in recent years, all of which
utilize prior knowledge about kinase-substrate interactions, either
from curated databases or from information about kinase recogni-
tion motifs.

As the large-scale detection of phosphorylation events using mass
spectrometry became routine, many freely available databases that
collect experimentally verified phosphosites have been set up,
including PhosphoSitePlus [20], Phospho.ELM [21], Signor
[71], or PHOSIDA [72], to name just a few. The databases differ
in size and aim; PHOSIDA for example provides a tool for the
prediction of putative phosphorylation sites and recently also added
acetylation and other posttranslational modification sites to its
scope. Phospho.ELM computes a score for the conservation of a
phosphosite. Signor is focused on interactions between proteins
participating in signal transduction. PhosphoNetworks [73] is ded-
icated to kinase-substrate interactions, but the information is on
the level of proteins, not phosphosites. The arguably most promi-
nent database for expert-edited and curated interactions between
kinases and individual phosphosites (that have not been derived
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from in vitro studies) is PhosphoSitePlus, currently encompassing
16,486 individual kinase-substrate relationships [04-2015]. For
Saccharomyces cerevisine, the database PhosphoGRID provides
analogous information [74]. Specific information about targets of
phosphatases can be found in DEPOD [75]. Also in the Phospho.
ELM database, phosphosites have been associated with regulating
kinases, although this information is available for only about 10% of
the 37,145 human phosphosites in the database [04-2015].

As it has been estimated that there are between 100,000 [76]
and 500,000 [62] possible phosphosites in the human proteome,
the evident low coverage of the curated databases motivated the
development of computational tools to predict in vivo kinase-
substrate relationships. These methods identify putative new
kinase-substrate relationships based on experimentally derived
kinase recognition motifs, which was pioneered by Scansite [77]
that uses position-specific scoring matrices (PSSMs) obtained by
positional scanning of peptide libraries [78] or phage display meth-
ods [79]. Another approach, Netphorest [80] tries to classify phos-
phorylation sites according to the relevant kinase family instead of
predicting individual kinase-substrate links. However, the in vitro
specificity of kinases differs significantly from the kinase activity
inside of the cell, biasing the experimentally identified kinase rec-
ognition motifs [81]. The integration of contextual information,
for example co-expression, protein-protein interactions, or subcel-
lular colocalization, markedly improves the accuracy of the predic-
tions [69]. The software packages NetworKIN [82] (recently
extended in the context of the resource KinomeXplorer [22], cor-
recting for biases caused by over-studied proteins) and iGPS [23]
are examples for methods that combine information about kinase
recognition motifs, in vivo phosphorylation sites, and contextual
information, e.g., from the STRING database [83]. Recently,
Wagih et al. presented a method to predict kinase specificity for
kinases without any known phosphorylation sites [84]. Based on
the assumption that functional interaction partners of kinases
(derived from the STRING database) are more likely to be phos-
phorylated by the respective kinase, they should therefore contain
an amino acid motif conferring kinase specificity. This can then be
uncovered by motif enrichment.

The described methods provide predictions that are very valu-
able but not free from error, for example due to the described
differences in in vitro and in vivo kinase specificity or the influence
of subcellular localization. Thus, the predicted kinase-substrate
interactions should be considered hypotheses to be tested
experimentally [85].

We hereafter present four computational methods to infer
kinase activities from phosphoproteomics data, which use either
curated or computationally predicted kinase-substrate interactions.
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3.2 GSEA

3.3 KAA

Methodologically, inference of kinase activity from phosphoproteo-
mics data is related to the inference of transcription factor activity
based on gene expression data. A plethora of different methods has
been developed for the prediction of transcription factor activity,
e.g., the classical gene set enrichment analysis [86] or elaborated
machine learning methods [87].

For example, Drake et al. [88] analyzed the kinase signaling
network in castration-resistant prostate cancer with GSEA. They
predicted the kinases responsible for each phosphosite with kinase-
substrate interactions from PhosphoSitePlus, kinase recognition
motifs from PHOSIDA, and predictions from NetworKIN. Subse-
quently, they computed the enrichment of each kinase’ targets with
the gene set enrichment algorithm after Subramanian et al. [86],
which corresponds to a Kolmogorov—Smirnov-like statistic. The
significance of the enrichment score is determined based on per-
mutation tests, whereas the p-value depends on the number of
permutations.

Alternatively, the gene set enrichment web-tool Enrichr
[89, 90] can also be used for enrichment of kinases [91]. The
authors compiled kinases-substrate interactions from different
databases and extracted additional interactions manually from the
literature in order to generate kinase-targets sets. Furthermore,
they added protein-protein interactions involving kinases from the
Human Protein Reference Database (HPRD) [92], based on the
assumption that those are highly enriched in kinase-substrate inter-
actions. Using this prior knowledge, the enrichment of the targets
of a kinase is then computed with Fisher’s exact test as described
in [89].

Another approach to link phosphoproteomics data with the activity
of kinases was presented in a publication from Qi et al. [16], which
they termed kinase activity analysis (KAA).

In this study, the authors collected phosphoproteomics data
from adult mouse testis in order to investigate the process of
mammalian spermatogenesis. With the software package iGPS
[23] they predicted putative kinase-substrate relationships for the
detected phosphosites. The authors hypothesized that the number
of links for a given kinase in the predicted kinase-substrate network
can serve as proxy for the activity of this kinase in the specific cell
type. This activity was then compared to the kinase activity back-
ground which was calculated by computing the number of links in
the background kinase-substrate network based on the mouse
phosphorylation atlas by Huttlin et al. [93]. Qi and colleagues
predicted high activity of PLK kinases in adult mouse testis and
could validate this prediction experimentally.

However, there are several limitations of KAA. For once, it is
mainly based on computational predictions of kinase substrate
relationships, which are known to be susceptible to errors
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[69, 85]. Additionally, in their method the activity of a kinase is
only dependent on the number of detected, putative targets. The
abundance of the individual phosphosites or the fold change
between conditions is not taken into account.

De Graaf et al. [94] chose a comparable approach in a study of
the phosphoproteome of Jurkat T cells after stimulation with pros-
taglandin E,. However, they did not explicitly calculate kinase
activities. Instead, they grouped phosphosites into different clusters
with distinct temporal profiles and used the NetworKIN algorithm
[82] to calculate the enrichment of putative targets of a given kinase
in a specific cluster. As a result, they associated kinases with tempo-
ral activity profiles based on the enrichment in one of the detected
clusters.

A method designed specifically for time-course phosphoproteomics
data is the knowledge-based CLUster Evaluation approach, in
short CLUE [18]. This method is based on the assumption that
phosphosites targeted by the same kinase will show similar tempo-
ral profiles, which is utilized to guide a clustering algorithm and
infer kinases associated with these clusters. As in the study by de
Graaf et al. [94], kinases are not associated with distinct values for
activities but rather with temporal activity profiles. The notable
distinction of CLUE is that the clustering is found based on the
prior knowledge about kinase-substrate relationships, as outlined
below.

Methodologically, CLUE uses the k-means clustering algo-
rithm to group the phosphoproteomics data into clusters in which
the phosphosites show similar temporal kinetics. The performance
of k-means clustering is particularly sensitive to the parameter %,
i.e., the number of clusters. CLUE therefore tests a range of differ-
ent values for % and evaluates them based on the enrichment of
kinase-substrate relationships in the identified clusters. The method
utilizes the data from the PhosphoSitePlus database in order to
derive prior knowledge about kinase-substrate relationships. With
Fisher’s exact test the enrichment of the targets of a given kinase in
a specific cluster is tested for significance. The implemented scoring
system penalizes distribution of the targets of a single kinase
throughout several clusters, as well as the combination of unrelated
phosphosites in the same cluster.

CLUE is freely available as R package in the Comprehensive R
Archive Network CRAN under https://cran.r-project.org/web/
packages/ClueR /index.html.

A limitation of CLUE is represented by the fact that possible
‘noise’ in the prior knowledge, i.e., incorrect annotations, poten-
tially derived from cell type-specific kinase-substrate relationships,
can affect the performance of the clustering, although simulations
showed reasonable robustness. CLUE is tailored toward time-
course phosphoproteomics data and associates kinases with
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temporal activity profiles. Since the method does not provide sin-
gular activity scores for each kinase, it may be only partly applicable
to experiments in which the individual responses of kinases to
different treatments or conditions are of interest.

3.5 KSEA Casado et al. [17] presented a method for kinase activity estimation
based on kinase-substrate sets. Using kinase-substrate relationships
derived from the databases PhosphoSitePlus and Phospho.ELM, all
phosphosites that are targeted by a given kinase can be grouped
together into a substrate set (see Fig. 1 for an outline of the work-
flow). In theory, these phosphosites should show similar values,
since they are targeted by the same kinase. However, due to the
transient and therefore inherently noisy nature of phosphorylation,
Casado and colleagues proposed integrating the information from
all phosphosites in the substrate set in order to enhance the signal-
to-noise ratio by signal averaging [95].

For KSEA, log2-transformed fold change data is needed, i.e.,
the change of the abundance of a phosphosite between the initial
and treated states, initial and later time points, or between two
different cell types. Therefore, KSEA activity scores describe the
activity of a kinase in one condition relative to another.

The authors suggested three possible metrics (mean score,
alternative mean score, and delta score) that can be extracted out
of the substrate set and serve as proxy for kinase activity: (1) The
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Fig. 1 Work-flow of methods to obtain Kinase activity scores such as KSEA. As prior knowledge, the targets of
a given kinase are extracted out of curated databases like PhosphoSitePlus. Together with the data of the
detected phosphosites, substrate sets are constructed for each kinase, from which an activity score can be
calculated
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main activity score, also used in following publications [96], is
defined as the mean of the log2 fold changes of the phosphosites
in the substrate set; (2) alternatively, only phosphosites with signifi-
cant fold changes can be considered for the calculation of the mean;
and (3) for the last approach, termed “delta count,” the occurrence
of significantly upregulated phosphosites in the substrate set is
counted, from which the number of significantly downregulated
sites is subtracted. For each method, the significance of the kinase
activity score is tested with an appropriate statistical test. In the
publication of Casado et al., all three measures were in good agree-
ment, even if spanning different numerical ranges (see Fig. 2). The
implementation of these three methods is discussed in detail in the
following section.

Like the other methods described in this section, KSEA
strongly depends on the prior knowledge kinase-substrate relation-
ships available in the freely accessible databases. These are far from
complete and therefore limit the analytical depth of the kinase
activity analysis. Additionally, databases are generally biased toward
well-studied kinases or pathways [22], so that the sizes of the
different substrate sets differ considerably. Casado et al. tried to
address these limitations by integrating information about kinase
recognition motifs and obtained comparable results.

A detailed protocol on how to use KSEA is provided in
Subheading 4.

Recently, Mischnik and colleagues introduced a machine-learning
method to estimate kinase activities and to predict putative kinase-
substrate relationships from phosphoproteomics data [19].

In their model for kinase activity, the effect ¢ of a given kinase
7 on a single phosphosite 7 is modeled with

eji = kj X pj;

as a product of the kinase activity k and the affinity p of kinase j for
phosphosite z. The abundance P of the phosphosite zis expressed as
mean of all effects acting on it, since several kinases can regulate the
same phosphosite:

pr;,= Z eji/ ZZ’]‘;‘
= =

The information about the kinase-substrate relationships is also
derived from the PhosphoSitePlus database. Using a nonlinear
optimization routine, IKAP estimates the described parameters
while minimizing a least square cost function between predicted
and measured phosphosite abundance throughout time points or
conditions. For this optimization, the affinity parameters are esti-
mated globally, while the kinase activities are fitted separately for
each time point.
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Fig. 2 KSEA activity scores for Casein kinase Il subunit alpha. (a) Activity scores for Casein kinase Il subunit
alpha over all time points of the de Graaf dataset [94], calculated as the mean of all phosphosites in the
substrate set. In yellow, the median has been used. (b) Activity scores for Casein kinase Il subunit alpha over
all time points of the de Graaf dataset, calculated as the mean of all significantly regulated phosphosites in the
substrate set. The median is again shown in yellow. (¢) Delta score for Casein kinase Il subunit alpha over all
time points of the de Graaf dataset, calculated as number of significantly upregulated phosphosites minus the
number of significantly downregulated phosphosites in the substrate set. (d) The log2 fold changes for all time
points for all phosphosites in the substrate set of the Casein kinase Il subunit alpha

In a second step, putative new kinase-substrate relationships are
predicted based on the correlation of a phosphosite with the esti-
mated activity of a kinase throughout time points or conditions.
These predictions are then tested by database searches and by
comparison to kinase recognition motifs from NetworKIN.

In contrast to KSEA, which computes the kinase activity based
on the fold changes of the phosphosites in the respective substrate
set, IKAP is built on a heuristic machine learning algorithm and
tries to fit globally the described model of kinase activity and affinity
to the phosphoproteomics data. Therefore, the output of IKAP is
not only a score for the activity of a kinase, but also a value
representing the strength of a specific kinase-substrate interaction
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in the investigated cell type. On the other hand, the amount of
parameters that have to be estimated is rather large, so that a fair
number of experimental conditions or time points are needed for
unique solutions. Mischnik et al. included a function to perform an
identifiability analysis of the obtained kinase activities and could
show in the case of the two investigated example datasets that the
found solutions are indeed unique on the basis of the phosphopro-
teomics measurements.

The MATLAB code for IKAP can be found online under www.
github.com/marcel-mischnik /IKAP/, accompanied by an exten-
sive step-by-step documentation, which we recommend as addi-
tional reading to the interested reader.

4 Protocol for KSEA

4.1 Quick Start

In this section, we present a stepwise, guided protocol for the
KSEA approach to infer kinase activities from phosphoproteomics
data. This protocol (part of the Kinase Activity Toolbox under
https: //github.com /saezlab /kinact) is accompanied by a freely
available script, written in the Python programming language
(Python version 2.7.x) that should enable the use of KSEA for
any phosphoproteomics dataset. We plan to expand Kinact to
other methods in the future. We are going to explain the performed
computations in detail in the following protocol to facilitate under-
standing and to enable a potential re-implementation into other
programming languages.

As an example application, we will use KSEA on the phospho-
proteomics dataset from de Graaf et al. [94], which was derived
from Jurkat T cells stimulated with prostaglandin E, and is available
as supplemental information to the article online at http://www.
mcponline.org/content/13 /9 /2426 /suppl/DC1

As a quick start for practiced Python users, we can use the utility
functions from kinact to load the example dataset. The data should
be organized as Pandas DataFrame containing the log2-
transformed fold changes, while the columns represent different
conditions or time points and the row individual phosphosites. The
p-value of the fold change is optional, but should be organized in
the same way as the data.

import kinact
data_fc, data_p_value = kinact.get_example_data()

print data_fc.head()

>>> 5min 10min 20min 30min 60min
>>> 1D
>>> AOAVK6_S71 -0.319306 -0.484960 -0.798082 -0.856103

-0.928753
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>>> AOFGR8_S743 -0.856661 -0.981951 -1.500412 -1.441868
-0.861470
>>> AOFGR8_S758 -1.445386 -2.397915 -2.692994 -2.794762
-1.553398
>>> AOFGR8_S691 0.271458 0.264596 0.501685 0.461984
0.655501
>>> AQ0JLT2_S226 -0.080786 1.069710 0.519780 0.520883
-0.296040

The kinase-substrate relationships have to be loaded as well
with the function get_kinase_targets(). In this function call, we
can specify with the ‘sources’-parameter, from which databases we
want to integrate the information about kinase-substrate relation-
ships, e.g., PhosphoSitePlus, Phospho.ELM, or Signor. The func-
tion uses an interface to the pypath python package, which
integrates several resources for curated signaling pathways [97]
(see also Note 1).

kin_sub_interactions = kinact.get_kinase_targets(sources=
[*all’])

An important requirement for the following analysis is that the
structure of the indices of the rows of the data and the prior
knowledge need to be the same (see below for more detail). As an
example, KSEA can be performed for the condition of 5 min after
stimulation in the de Graaf dataset using:

activities, p_values = kinact.ksea.ksea_mean (data_fc['5min’],
kin_sub_interactions, mP=data_fc.values.mean(),
delta=data_fc.values.std())

print activities.head()

>>> AKT1 0.243170
>>> AKT2 0.325643
>>> ATM -0.127511
>>> ATR -0.141812
>>> AURKA 1.783135
>>> dtype: float64

Besides the data (data_fc[‘5min’]) and kinase-substrate inter-
actions (kin_sub_interactions), the variables ‘mP” and ‘delta’ are
needed to determine the z-score of the enrichment. The z-score
builds the basis for the p-value calculation. The p-values for all
kinases are corrected for multiple testing with the Benjamini-
Hochberg procedure [98].

In Fig. 2, the different activity scores for the Casein kinase 11
alpha, which de Graaf et al. had associated with increased activity
after prolonged stimulation with prostaglandin E,, are shown
together with the log2 fold change values of all phosphosites that
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are known to be targeted by this kinase. For methods, which use
the mean, the median as more robust measure can be calculated
alternatively. The qualitative changes of the kinase activities
(Fig. 2a—c) are quite similar regardless of the method, and would

not be apparent from looking at any specific substrate phosphosite
alone (Fig. 2d).

In the following, we walk the reader step by step through the
procedure for KSEA. First, we need to organize the data so that
the KSEA functions can interpret it.

In Python, the library Pandas [99] provides useful data struc-
tures and powerful tools for data analysis. Since the provided script
depends on many utilities from this library, we would strongly
advice the reader to have a look at the Pandas documentation,
although it will not be crucial in order to understand the presented
protocol. The library, together with the NumPy [100] package, can
be loaded with:

import pandas as pd

import numpy as np

The data accompanying the article is provided as Excel spread-
sheet and can be imported to python using the pandas ‘read_excel’
function or first be saved as csv-file, using the ‘Save As’ function in
Excel in order to use it as described below. For convenience, in the
referenced Github repository, the data is already stored as csv-file,
so that this step is not necessary. The data can be loaded with the
function ‘read_csv’, which will return a Pandas DataFrame contain-
ing the data organized in rows and columns.

data_raw = pd.read_csv(‘FILEPATH’, sep="',')

In the DataFrame object ‘data_raw’, the columns represent the
different experimental conditions or additional information and the
row’s unique phosphosites. A good way to gain an overview about
the data stored in a DataFrame and to keep track of changes are the
following functions:

print data_raw.head() to show the first five rows of the Data-
Frame or print data_raw.shape in order to show the dimensions of
the DataFrame.

Phosphosites that can be matched to different proteins or
several positions within the same protein are excluded from the
analysis. In this example, ambiguous matching is indicated by the
presence of a semicolon that separates multiple possible identifiers,
and can be removed like this:

data_reduced = data_raw[~data_raw[‘'Proteins’].str.contains

()]
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For more convenient data handling, we will index each phos-
phosite with an unambiguous identifier comprising the UniProt
accession number, the type of the modified residue, and the posi-
tion within the protein. For the example of a phosphorylation of
the serine 59 in the Tyrosine-protein kinase Lck, the identifier
would be P06239_859. The identifier can be constructed by con-
catenating the information that should be provided in the dataset.
In the example of de Graaf et al., the UniProt accession number can
be found in the column ‘Proteins’, the modified residue in ‘Amino
acid’, and the position in ‘Positions within proteins’.

The index is used to access the rows in a DataFrame and will
later be needed to construct the kinase-substrate sets. After the
creation of the identifier, the DataFrame is indexed by calling the
function ‘set_index’.

data_reduced['ID’] = data_reduced]‘'Proteins’] + ‘_’ +
data_reduced[‘'Amino acid’] +
data_reduced[‘'Positions within proteins’]

data_indexed data_reduced.set_index (data_reduced[‘'ID’])

Mass spectrometry data is usually accompanied by several col-
umns containing additional information about the phosphosite
(e.g., the sequence window) or statistics of the database search
(for example the posterior error probability), which are not neces-
sarily needed for KSEA. We therefore extract only the columns of
interest containing the processed data. In the example dataset, the
names of the crucial columns start with ‘Average’, enabling selec-
tion by a simple ‘if” statement. Generally, more complex selection
of column names can be achieved by regular expressions with the
python module ‘re’.

data_intensity = data_indexed[[x for x in data_indexed

if x.startswith(‘Average’)]] # (see Note 2)

Now, we can compute the fold change compared to the con-
trol, which is the condition of 0 min after stimulation. With log(a/
b) = log(a) — log(b), we obtain the fold changes by subtracting
the column with the control values from the rest using the ‘sub’
function of Pandas (see Note 3).

data_fc = data_intensity.sub(data_intensity[‘'Average Log2 In-

tensity Omin’], axis=0)

Further data cleaning (re-naming columns and removal of the
columns for the control time point) results in the final dataset:

data_fc.columns = [x.split()[-1] for x in data_fc] # Rename

columns
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data_fc.drop(’'Omin’, axis=1, inplace=True) # Delete control
column

print data_fc.head()

>>> 5min 10min 20min 30min 60min
>>> 1D
>>> AOAVK6_S71 -0.319306 -0.484960 -0.798082 -0.856103

-0.928753
>>> AOFGR8_S743 -0.856661 -0.981951 -1.500412 -1.441868
-0.861470
>>> AOFGR8_S758 -1.445386 -2.397915 -2.692994 -2.794762
-1.553398
>>> AOFGR8_S691 0.271458 0.264596 0.501685 0.461984
0.655501
>>> AQ0JLT2_S226 -0.080786 1.069710 0.519780 0.520883
-0.296040

If the experiments have been performed with several replicates,
statistical analysis enables estimation of the significance of the fold
change compared to a control expressed by a p-value. The p-value
will be needed to perform KSEA using the ‘Delta count” approach
but may be dispensable for the mean methods. The example dataset
contains a p-value (transformed as negative logarithm with base 10)
in selected columns and can be extracted using:

data_p_value = data_indexed[[x for x in data_indexed
if x.startswith(‘p value’)]]

data_p_value = data_p_value.astype(‘float’) # (see Note 4)

Now, we load the prior knowledge about kinase-substrate relation-
ships. In this example, we use the information provided in the
PhosphoSitePlus database (see Note 5), which can be downloaded
from the website www.phosphosite.org. The organization of the
data from comparable databases, e.g., Phospho.ELM, does not
differ drastically from the one from PhosphoSitePlus and therefore
requires only minor modifications. Using ‘read_csv’ again, we load
the downloaded file with:

ks_rel = pd.read_csv(‘'FILEPATH’, sep='\t’) # (see Note 6)

In this file, every row corresponds to an interaction between a
kinase and a unique phosphosite. However, it must first be
restricted to the organism of interest, e.g., ‘human’ or ‘mouse’,
since the interactions of different organisms are reported together
in PhosphoSitePlus.

ks_rel human =ks_rel.loc[ (ks_rel[ 'KIN_ORGANISM’] == ‘human’) &
(ks_rel['SUB_ORGANISM’'] == ‘human’) ]



122 Jakob Wirbel et al.

4.4 KSEA

Next, we again construct unique identifiers for each phospho-
site using the information provided in the dataset. The modified
residue and its position are already combined in the provided data.

ks_rel_human|[‘'‘psite’] = ks_rel_human[‘'SUB_ACC_ID'] +
‘_ " + ks_rel_human[‘'SUB_MOD_RSD’]

Now, we construct an adjacency matrix for the phosphosites
and the kinases. In this matrix, an interaction between a kinase and
a phosphosite is denoted with a 1, all other fields are filled with a 0.
For this, the Pandas function ‘pivot_table’ can be used:

ks_rel_human[‘value’] = 1 # (see Note 7)
adj_matrix = pd.pivot_table(ks_rel_human, values=‘value’,

index='‘psite’, columns=‘GENE’, fill_value=0)

The result is an adjacency matrix of the form m x » with
m being the number of phosphosites and # the number of kinases.
If a kinase is known to phosphorylate a given phosphosite, the
corresponding entry in this matrix will be a 1, otherwise a 0. A
0 does not mean that there cannot be an interaction between the
kinase and the respective phosphosite, but rather that this specific
interaction has not been reported in the literature. As sanity check,
we can print the number of known kinase-substrate interactions for
each kinase saved in the adjacency matrix:

print adj_matrix.sum(axis=0).sort_values (ascending=False).
head ()

>>> GENE

>>> CDK2 541
>>> CDK1 458
>>> PRKACA 440
>>> CSNK2Al 437
>>> SRC 391

>>> dtype: inté64

In the accompanying toolbox, we provide for each method of
KSEA a custom python function that automates the analysis for
all kinases in a given condition. Here, however, we demonstrate the
principle of KSEA by computing the different activity scores for a
single kinase and a single condition. As an example, the Cyclin-
dependent kinase 1 (CDKI, see Note 8) and the condition of
60 min after prostaglandin stimulation shall be used.

data_condition = data_fc['60min’].copy ()
p_values = data_p_value['‘p value_60vsOmin’]
kinase = ‘CDK1’
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4.4.2 KSEA Using the
Alternative ‘Mean’ Method
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First, we determine the overlap between the known targets of
the kinase and the detected phosphosites in this condition, because
we need it for every method of KSEA. Now, we benefit from having
the same format for the index of the dataset and the adjacency
matrix. We can use the Python function ‘intersection’ to determine
the overlap between two sets.

substrate_set = adj_matrix[kinase] .replace(

0, np.nan) .dropna() .index # (see Note 9)

detected_p_sites = data_condition.index

intersect=list (set(substrate_set).intersection(detected_p_-
sites))

print len(intersect)

>>> 114

For the “mean” method, the KSEA score is equal to the mean of
the fold changes in the substrate set mS.
The significance of the score is tested with a z-statistic using

. mS — mP/m
)
with mP as mean of the complete dataset, m being the size of the
substrate set, and § the standard deviation of the complete dataset,
adapted from the PAGE method for gene set enrichment
[101]. The “mean” method has established itself as the preferred
method in the Cutillas lab that developed the KSEA approach.

mS = data_condition.ix[intersect] .mean()
mP = data_fc.values.mean/()
m = len(intersect)

delta = data_fc.values.std()

z_score = (mS - mP) * np.sqgrt(m) * 1/delta

The z-score can be converted into a p-value with a function
from the SciPy [102] library:

from scipy.stats import norm
p_value_mean = norm.sf (abs(z_score))
print mS, p_value_mean

>>> -0.441268760191 9.26894825183e-07

Alternatively, only the phosphosites in the substrate set that change
significantly between conditions can be considered when comput-
ing the mean of the fold changes in the substrate set. Therefore, we
need a cutoft, determining a significant increase or decrease, respec-
tively, which can be a user-supplied parameter. Here, we use a
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4.4.3 KSEA Using the
“Delta Count” Method

standard level to define a significant change with a cutoff of 0.05.
The significance of the KSEA score is tested as before with the z-
statistic.

cut_off = -np.logl0(0.05)
set_alt = data_condition.ix[intersect] .where (

p_values.ix[intersect] > cut_off) .dropna/()

mS_alt = set_alt.mean()
z_score_alt = (mS_alt - mP) * np.sqgrt(len(set_alt)) * 1/delta
p_value_mean_alt = norm.sf (abs(z_score_alt))

print mS_alt, p_value_mean_alt
>>> -0.680835732551 1.26298232031e-13

In the “Delta count” method, we count the number of phospho-
sites in the substrate set that are significantly increased in the
condition versus the control and subtract the number of phospho-
sites that are significantly decreased.

cut_off = -np.logl0(0.05)

score_delta = len(data_condition.ix[intersect] .where(
(data_condition.ix[intersect] > 0) &
(p_values.ix[intersect] > cut_off)).dropna()) -
len(data_condition.ix[intersect] .where(
(data_condition.ix[intersect] < 0) &

(p_values.ix[intersect] > cut_off)).dropna()) # (see Note 10)

The p-value of the score is calculated with a hypergeometric
test, since the number of significantly regulated phosphosites is a
discrete variable. To initialize the hypergeometric distribution, we
need as variables M = the total number of detected phosphosites,
n = the size of the substrate set, and N = the total number of
phosphosites that are in an arbitrary substrate set and significantly
regulated.

from scipy.stats import hypergeom

M = len(data_condition)

n = len(intersect)

N = len (np.where(
p_values.ix[adj_matrix.index.tolist ()] > cut_off) [0])
hypergeom_dist = hypergeom(M, n, N)
p_value_delta = hypergeom_dist.pmf (len (
p_values.ix[intersect] .where(
p_values.ix[intersect] > cut_off).dropna()))
print score_delta, p_value_delta

>>> -58 8.42823410966e-119
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5 Closing Remarks

In summary, the methods described in this review use different
approaches to calculate kinase activities or to relate kinases to
activity profiles from phosphoproteomics datasets. All of them
utilize prior knowledge about kinase-substrate relationships, either
from curated databases or from computational prediction tools.
Using these methods, the noisy and complex information from
the vast amount of detected phosphorylation sites can be
condensed into a much smaller set of kinase activities that is easier
to interpret. Modeling of signaling pathways or prediction of drug
responses can be performed in a straightforward way with these
kinase activities as shown in the study by Casado et al. [17].

The power of the described methods strongly depends on the
available prior knowledge about kinase-substrate relationships. As
our knowledge increases due to experimental methods like in vitro
kinase selectivity studies [103] or the CEASAR (Connecting
Enzymes And Substrates at Amino acid Resolution) approach
[104], the utility and applicability of methods for inference of
kinase activities will grow as well. Additionally, the computational
approaches for the prediction of possible kinase-substrate relation-
ships are under on-going development [84, 105], increasing the
reliability of the in silico predictions.

Phosphoproteomic data is not only valuable for the analysis of
kinase activities: for example, PTMfunc is a computational resource
that predicts the functional impact of posttranslational modifica-
tions based on structural and domain information [15], and PHO-
NEMeS [96, 106] combines phosphoproteomics data with prior
knowledge kinase-substrate relationships, in a similar fashion as
kinase-activity methods. However, instead of scoring kinases,
PHONEMeS derives logic models for signaling pathways at the
phosphosite level.

For the analysis of deregulated signaling in cancer, mutations in
key signaling molecules can be of crucial importance. Recently,
Creixell and colleagues presented a systematic classification of
genomic variants that can perturb signaling, either by rewiring of
the signaling network or by the destruction of phosphorylation
sites [107]. Another approach was introduced in the last update
of the PhosphoSitePlus database, in which the authors reported
with PTMVar [20] the addition of a dataset that can map missense
mutation onto the posttranslational modifications. With these
tools, the challenging task of creating an intersection between
genomic variations and signaling processes may be addressed.

It remains to be secen how the different scoring metrics for
kinase activity relate to each other, as they utilize different
approaches to extract a kinase activity score out of the data. IKAP
is based on a nonlinear optimization for the model of kinase-
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dependent phosphorylation, KSEA on statistical analysis of the
values in the substrate set of a kinase, and CLUE on the k-means
clustering algorithm together with Fisher’s exact test for enrich-
ment. In a recent publication by Hernandez-Armenta et al. [108],
the authors compiled a benchmark dataset from the literature,
consisting of phosphoproteomic experiments under perturbation.
For each experiment, specific kinases are expected to be regulated,
e.g., EGFR receptor tyrosine kinase after stimulation with EGF.
Using this “gold standard,” the authors assessed how well different
methods for the inference of kinase activities could recapitulate the
expected kinase regulation in the different conditions. All of the
assessed methods performed comparably strongly, but the authors
observed a strong dependency on the prior knowledge about
kinase-substrate relationships. This is a first effort to assess the
applicability, performance, and drawbacks of the different methods,
thereby guiding the use of phosphoproteomics data to infer kinase
activities, from which to derive insights into molecular cancer biol-
ogy and many other processes controlled by signal transduction.

6 Notes

1. To the sources parameter in the function get_kinase_targets,
either a list of kinase-substrate interaction sources that are avail-
able in pypath or ‘all’ in order to include all sources can be
passed. If no source is specified, only the interactions from
PhosphoSitePlus and Signor will be used. The available sources
in pypath are “ARN” (Autophagy Regulatory Network) [109],
“CAl” (Human Hippocampal CAl Region Neurons Signaling
Network) [110], “dbPTM” [111], “DEPOD?” [75], “HPRD”
(Human Protein Reference Database) [92], “MIMP” (Muta-
tion IMpact on Phosphorylation) [112], “Macrophage” (Mac-
rophage pathways) [113], “NRF2ome” [114], “phosphoELM”
[21], “PhosphoSite” [20], “SPIKE” (Signaling Pathway
Integrated Knowledge Engine) [115], “Signalink3” [116],
“Signor” [71], and “TRIP” (Mammalian Transient Receptor
Potential Channel-Interacting Protein Database) [117].

2. The provided code is equivalent to:

intensity_columns = []

for x in data_indexed:

...1f x.starstwith(‘'Average’) :
...... intensity_columns.append (x)

data_intensity = data_indexed[intensity_columns]
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3. In our example, it is not necessary to transform the data to log2
intensities, since the data is already provided after log2-
transformation. But for raw intensity values, the following func-
tion from the NumPy module can be used:

data_log2 = np.log2(data_intensity)

4. Due to a compatibility problem with the output of Excel,
Python recognizes the p-values as string variables, not as floating
point numbers. Therefore, this line is needed to convert the type
of the p-values.

5. The adjacency matrix can also be constructed based on kinase
recognition motifs or kinase prediction scores and the amino
acid sequence surrounding the phosphosite. To use NetworKIN
scores for the creation of the adjacency matrix, kinact will pro-
vide dedicated functions. In the presented example, however, we
focus on the curated kinase-substrate relationships from
PhosphoSitePlus.

6. The file from PhosphoSitePlus is provided as text file in which a
tab (\t’) delimits the individual fields, not a comma. The file
contains a disclaimer at the top, which has to be removed first.
Alternatively, the option ‘skiprows’ in the function ‘read_csv’
can be set in order to ignore the disclaimer.

7. This column is needed, so that in the matrix resulting from pd.
pivot_table the value from this column will be entered.

8. If necessary, mapping between protein names, gene names, and
UniProt-Accession numbers can easily be performed with the
Python module ‘bioservices’, to the documentation of which we
want the refer the reader [118].

9. In this statement, we first select the relevant columns of the
kinase from the connectivity matrix (adj_matrix[kinase]). In
this column, we replace all 0 values with NAs (replace(0, np.
nan)), which are then deleted with dropna(). Therefore, only
those interactions remain, for which a I had been entered in the
matrix. Of these interactions, we extract the index, which is a list
of the phosphosites known to be targeted by the kinase of
interest.

10. The where method will return a copy of the DataFrame, in
which for cases where the condition is not true, NA is returned.
dropna will therefore delete all those occurrences, so that len
will count how often the condition is true.



128

Jakob Wirbel et al.

Acknowledgments

Thanks to Emanuel Gongalves, Aurélien Dugourd, and Claudia
Hernandez-Armenta for comments on the manuscript. For help
with the code, thanks to Emanuel Gongalves.

References

1

10

11

. Gonzalez de

. Jorgensen C, Linding R (2010) Simplistic

pathways or complex networks? Curr Opin
Genet Dev 20:15-22

. Hanahan D, Weinberg RA (2011) Hallmarks
of cancer: the next generation. Cell
144:646-674

. Sawyers CL (1999) Chronic myeloid leuke-

mia. N Engl ] Med 340:1330-1340

. Sawyers CL, Hochhaus A, Feldman E et al

(2002) Imatinib induces hematologic and
cytogenetic responses in patients with chronic
myelogenous leukemia in myeloid blast crisis:
results of a phase II study. Blood
99:3530-3539

. Zhang J, Yang PL, Gray NS (2009) Targeting

cancer with small molecule kinase inhibitors.
Nat Rev Cancer 9:28-39

Castro D, Clarke PA,
Al-Lazikani B et al (2012) Personalized can-
cer medicine: molecular diagnostics, predic-
tive biomarkers and drug resistance. Clin
Pharmacol Ther 93:252-259

. Cutillas PR (2015) Role of phosphoproteo-

mics in the development of personalized cancer
therapies. Proteomics Clin Appl 9:383-395

. Bertacchini J, Guida M, Accordi B et al

(2014) Feedbacks and adaptive capabilities
of the PI3K/Akt/mTOR axis in acute mye-
loid leukemia revealed by pathway selective
inhibition and phosphoproteome analysis.
Leukemia 28:2197-2205

. Cutillas PR, Khwaja A, Graupera M et al

(2006) Ultrasensitive and absolute quantifica-
tion of the phosphoinositide 3-kinase/Akt
signal transduction pathway by mass spec-
trometry. Proc Natl Acad Sci U S A
103:8959-8964

.YuY, Anjum R, Kubota K et al (2009) A site-

specific, multiplexed kinase activity assay using
stable-isotope dilution and high-resolution
mass spectrometry. Proc Natl Acad Sci U S A
106:11606-11611

. McAllister FE, Niepel M, Haas Wetal (2013)

Mass spectrometry based method to increase
throughput for kinome analyses using ATP
probes. Anal Chem 85:4666-4674

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Doll S, Burlingame AL (2015) Mass
spectrometry-based detection and assignment
of protein posttranslational modifications.
ACS Chem Biol 10:63-71

Choudhary C, Mann M (2010) Decoding
signalling networks by mass spectrometry-
based proteomics. Nat Rev Mol Cell Biol
11:427-439

Sabidé E, Selevsek N, Acbersold R (2012)
Mass spectrometry-based proteomics for sys-

tems Dbiology. Curr Opin Biotechnol
23:591-597

Beltrao P, Albanese V, Kenner LR et al (2012)
Systematic functional prioritization of protein

posttranslational modifications. Cell
150:413-425

Qi L, Liu Z, Wang J et al (2014) Systematic
analysis of the phosphoproteome and kinase-
substrate networks in the mouse testis. Mol
Cell Proteomics 13:3626-3638

Casado P, Rodriguez-Prados J-C, Cosulich
SC et al (2013) Kinase-substrate enrichment
analysis provides insights into the heterogene-
ity of signaling pathway activation in leukemia
cells. Sci Signal 6:rs6

Yang P, Zheng X, Jayaswal V et al (2015)
Knowledge-based analysis for detecting key
signaling events from time-series Phospho-
proteomics data. PLoS Comput Biol 11:
¢1004403

Mischnik M, Sacco F, Cox J et al (2015)
IKAP: a heuristic framework for inference of
kinase activities from Phosphoproteomics
data. Bioinformatics 32(3):424—431
Hornbeck PV, Zhang B, Murray B et al
(2015) PhosphoSitePlus, 2014: mutations,
PTMs and recalibrations. Nucleic Acids Res
43:D512-D520

Dinkel H, Chica C, Via A et al (2011) Phos-
pho.ELM: a database of phosphorylation
sites—update 2011. Nucleic Acids Res 39:
D261-D267

Horn H, Schoof EM, Kim J et al (2014)
KinomeXplorer: an integrated platform for

kinome biology studies. Nat Methods
11:603-604



23.

24.

25.

26.

27

28.

29.

30.

31.

32.

33.

34.

35.

36.

Phosphoproteomics-Based Profiling of Kinase Activities

Song C, Ye M, Liu Z et al (2012) Systematic
analysis of protein phosphorylation networks
from phosphoproteomic data. Mol Cell Pro-
teomics 11:1070-1083

Riley NM, Coon JJ (2016) Phosphoproteo-
mics in the age of rapid and deep proteome
profiling. Anal Chem 88:74-94

Nilsson CL (2012) Advances in quantitative
phosphoproteomics. Anal Chem 84:735-746
Hennrich ML, Gavin A-C (2015) Quantita-
tive mass spectrometry of posttranslational
modifications: keys to confidence. Sci Signal
8:re5

. Giansanti P, Aye TT, van den Toorn H et al

(2015) An augmented multiple-protease-
based human phosphopeptide atlas. Cell Rep
11:1834-1843

Ruprecht B, Roesli C, Lemeer S et al (2016)
MALDI-TOF and nESI Orbitrap MS/MS
identify orthogonal parts of the phosphopro-
teome. Proteomics 16(10):1447-1456

Zhou H, Ye M, Dong J et al (2013) Robust
phosphoproteome enrichment using mono-
disperse microsphere-based immobilized tita-
nium (IV) ion affinity chromatography. Nat
Protoc 8:461-480

Rush J, Moritz A, Lee KA et al (2005) Immu-
noaffinity profiling of tyrosine phosphoryla-
tion in cancer cells. Nat Biotechnol
23:94-101

Ruprecht B, Koch H, Medard G et al (2015)
Comprehensive and reproducible phospho-
peptide enrichment using iron immobilized
metal  ion affinity ~ chromatography
(Fe-IMAC) columns. Mol Cell Proteomics
14:205-215

Domon B, Acbersold R (2006) Mass spec-
trometry and protein analysis. Science
(New York, NY) 312:212-217

Nesvizhskii AI (2007) Protein identification
by tandem mass spectrometry and sequence
database searching. Methods Mol Biol (Clif-
ton, NJ) 367:87-119

Liu H, Sadygov RG, Yates JR (2004) A model
for random sampling and estimation of rela-

tive protein abundance in shotgun proteo-
mics. Anal Chem 76:4193-4201

Cutillas PR, Vanhaesebroeck B (2007) Quan-
titative profile of five murine core proteomes

using label-free functional proteomics. Mol
Cell Proteomics 6:1560-1573

Cutillas PR, Geering B, Waterfield MD et al
(2005) Quantification of gel-separated pro-
teins and their phosphorylation sites by
LC-MS using unlabeled internal standards:
analysis of phosphoprotein dynamics in a B

37.

38.

39.

40.

4]1.

42.

43.

44.

45.

46.

47.

129

cell lymphoma cell line. Mol Cell Proteomics
4:1038-1051

Bateman NW, Goulding SP, Shulman NJ et al
(2014) Maximizing peptide identification
events in proteomic workflows using data-
dependent acquisition (DDA). Mol Cell Pro-
teomics 13:329-338

Alcolea MP, Casado P, Rodriguez-Prados J-C
et al (2012) Phosphoproteomic analysis of
leukemia cells under basal and drug-treated
conditions identifies markers of kinase path-
way activation and mechanisms of resistance.
Mol Cell Proteomics 11:453—466

Cox J, Hein MY, Luber CA et al (2014)
Accurate proteome-wide label-free quantifica-
tion by delayed normalization and maximal
peptide ratio extraction, termed MaxLFQ.
Mol Cell Proteomics 13:2513-2526

Strittmatter EF, Ferguson PL, Tang K et al
(2003) Proteome analyses using accurate
mass and elution time peptide tags with capil-
lary LC time-of-flight mass spectrometry. J
Am Soc Mass Spectrom 14:980-991

Lange V, Picotti P, Domon B et al (2008)
Selected reaction monitoring for quantitative
proteomics: a tutorial. Mol Syst Biol 4:222

Gillet LC, Navarro P, Tate S et al (2012)
Targeted data extraction of the MS/MS spec-
tra generated by data-independent acquisi-
tion: a new concept for consistent and
accurate proteome analysis. Mol Cell Proteo-
mics 11:0111.016717

Parker BL, Yang G, Humphrey SJ et al (2015)
Targeted phosphoproteomics of insulin sig-
naling using data-independent acquisition
mass spectrometry. Sci Signal 8:rs6

Sidoli S, Fujiwara R, Kulej K et al (2016)
Differential quantification of isobaric phos-
phopeptides using data-independent acquisi-
tion mass spectrometry. Mol BioSyst 12
(8):2385-2388

Keller A, Bader SL, Kusebauch U et al (2016)
Opening a SWATH window on posttransla-
tional modifications: automated pursuit of
modified peptides. Mol Cell Proteomics
15:1151-1163

Ong S-E, Blagoev B, Kratchmarova I et al
(2002) Stable isotope labeling by amino
acids in cell culture, SILAC, as a simple and
accurate approach to expression proteomics.
Mol Cell Proteomics 1:376-386

Zanivan S, Meves A, Behrendt K et al (2013)
In vivo SILAC-based proteomics reveals
phosphoproteome changes during mouse
skin carcinogenesis. Cell Rep 3:552-566



130

48

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Jakob Wirbel et al.

. Shenoy A, Geiger T (2015) Super-SILAC:
current trends and future perspectives. Expert
Rev Proteomics 12:13-19

Thompson A, Schifer J, Kuhn Ket al (2003)
Tandem mass tags: a novel quantification
strategy for comparative analysis of complex
protein mixtures by MS/MS. Anal Chem
75:1895-1904

Ross PL, Huang YN, Marchese JN et al
(2004) Multiplexed protein quantitation in
Saccharomyces  cerevisiae using amine-
reactive isobaric tagging reagents. Mol Cell
Proteomics 3:1154-1169

Li Z, Adams RM, Chourey K et al (2012)
Systematic comparison of label-free, meta-
bolic labeling, and isobaric chemical labeling
for quantitative proteomics on LTQ Orbitrap
Velos. ] Proteome Res 11:1582-1590

Chelius D, Bondarenko PV (2002) Quantita-
tive profiling of proteins in complex mixtures
using liquid chromatography and mass spec-
trometry. ] Proteome Res 1:317-323
Neilson KA, Ali NA, Muralidharan S et al
(2011) Less label, more free: approaches in
label-free quantitative mass spectrometry.
Proteomics 11:535-553

Perkins DN, Pappin DJ, Creasy DM et al
(1999) Probability-based protein identifica-
tion by searching sequence databases using
mass spectrometry data. Electrophoresis
20:3551-3567

Clauser KR, Baker P, Burlingame AL (1999)
Role of accurate mass measurement (+/—10
ppm) in protein identification strategies
employing MS or MS/MS and database
searching. Anal Chem 71:2871-2882

MacCoss MJ, Wu CC, Yates JR (2002)
Probability-based validation of protein identi-
fications using a modified SEQUEST algo-
rithm. Anal Chem 74:5593-5599

Cox J, Neuhauser N, Michalski A et al (2011)
Andromeda: a peptide search engine
integrated into the MaxQuant environment.
J Proteome Res 10:1794-1805

Beausoleil SA, Villén J, Gerber SA et al (2006)
A probability-based approach for high-
throughput protein phosphorylation analysis
and site localization. Nat Biotechnol
24:1285-1292

Savitski MM, Lemeer S, Boesche M et al
(2011) Confident phosphorylation site locali-
zation using the Mascot Delta Score. Mol Cell
Proteomics 10:M110.003830

Chalkley RJ, Clauser KR (2012) Modification
site localization scoring: strategies and perfor-
mance. Mol Cell Proteomics 11:3-14

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

Baker PR, Trinidad JC, Chalkley RJ (2011)
Modification  site  localization  scoring
integrated into a search engine. Mol Cell Pro-
teomics 10:M111.008078

Lemeer S, Heck AJR (2009) The phospho-
proteomics data explosion. Curr Opin Chem
Biol 13:414-420

Sharma K, D’Souza RC]J, Tyanova S et al
(2014) Ultradeep human phosphoproteome
reveals a distinct regulatory nature of Tyr and
Ser/Thr-based signaling. Cell Rep
8:1583-1594

Olsen JV, Blagoev B, Gnad F et al (20006)
Global, in vivo, and site-specific phosphoryla-
tion dynamics in signaling networks. Cell
127:635-648

Olsen JV, Vermeulen M, Santamaria A et al
(2010) Quantitative  phosphoproteomics
reveals widespread full phosphorylation site
occupancy during mitosis. Sci Signal 3:ra3

Landry CR, Levy ED, Michnick SW (2009)
Weak functional constraints on phosphopro-
teomes. Trends Genet 25:193-197

Beltrao P, Trinidad JC, Fiedler D et al (2009)
Evolution of phosphoregulation: comparison
of phosphorylation patterns across yeast spe-
cies. PLoS Biol 7:¢1000134

Beltrao P, Bork P, Krogan NJ et al (2013)
Evolution and functional cross-talk of protein
post-translational modifications. Mol Syst
Biol 9:714

Newman RH, Zhang J, Zhu H (2014)
Toward a systems-level view of dynamic phos-
phorylation networks. Front Genet 5:263

Glickman JF (2012) Assay development for
protein kinase enzymes. Eli Lilly & Company
and the National Center for Advancing Trans-
lational Sciences, Bethesda, MD. http://
www.ncbi.nlm.nih.gov/books/NBK91991 /

Perfetto L, Briganti L, Calderone A et al
(2016) SIGNOR: a database of causal rela-
tionships between biological entities. Nucleic
Acids Res 44:D548-D554

Gnad F, Gunawardena J, Mann M (2011)
PHOSIDA 2011: the posttranslational modi-
fication database. Nucleic Acids Res 39:
D253-D260

Hu J, Rho H-S, Newman RH et al (2014)
PhosphoNetworks: a database for human
phosphorylation networks. Bioinformatics
(Oxford, England) 30:141-142

Sadowski I, Breitkreutz B-J, Stark C et al
(2013) The PhosphoGRID Saccharomyces
cerevisiae protein phosphorylation site data-
base: version 2.0 update. Database 2013:
bat026


http://www.ncbi.nlm.nih.gov/books/NBK91991/
http://www.ncbi.nlm.nih.gov/books/NBK91991/

75.

76.

77.

78.

79.

80.

81

82.

83.

84.

85.

86.

87.

88.

Phosphoproteomics-Based Profiling of Kinase Activities

Duan G, Li X, Kéhn M (2015) The human
DEPhOsphorylation database DEPOD: a
2015 wupdate. Nucleic Acids Res 43:
D531-D535

Zhang H, Zha X, Tan Y et al (2002) Phospho-
protein analysis using antibodies broadly reac-
tive against phosphorylated motifs. J Biol
Chem 277:39379-39387

Obenauer JC, Cantley LC, Yaffe MB (2003)
Scansite 2.0: proteome-wide prediction of cell
signaling interactions using short sequence
motifs. Nucleic Acids Res 31:3635-3641

C. Chen and B.E. Turk (2010) Analysis of
serine-threonine  kinase  specificity  using
arrayed positional scanning peptide libraries.,
Curr Protoc Mol Biol Chapter 18:Unit 18.14
Sidhu SS, Koide S (2007) Phage display for
engineering and analyzing protein interaction
interfaces. Curr Opin Struct Biol 17:481-487
Miller ML, Jensen LJ, Diella F et al (2008)
Linear motif atlas for phosphorylation-
dependent signaling. Sci Signal 1:ra2

. Hjerrild M, Stensballe A, Rasmussen TE et al

(2004) Identification of phosphorylation sites
in protein kinase A substrates using artificial
neural networks and mass spectrometry. J
Proteome Res 3:426—433

Linding R, Jensen LJ, Pasculescu A et al
(2008) NetworKIN: a resource for exploring
cellular phosphorylation networks. Nucleic
Acids Res 36:D695-D699

Szklarczyk D, Franceschini A, Wyder S et al
(2015) STRING v10: protein-protein inter-
action networks, integrated over the tree of
life. Nucleic Acids Res 43:D447-D452

Wagih O, Sugiyama N, Ishihama Y et al
(2016) Uncovering phosphorylation-based

specificities through functional interaction
networks. Mol Cell Proteomics 15:236-245
Linding R, Jensen LJ, Ostheimer GJ et al
(2007) Systematic discovery of in vivo phos-
phorylation networks. Cell 129:1415-1426
Subramanian A, Tamayo P, Mootha VK et al
(2005) Gene set enrichment analysis: a
knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl
Acad Sci U S A 102:15545-15550

Schacht T, Oswald M, Eils R et al (2014)
Estimating the activity of transcription factors
by the effect on their target genes. Bioinfor-
matics (Oxford, England) 30:1401-i407
Drake JM, Graham NA, Stoyanova T et al
(2012) Oncogene-specific activation of tyro-
sine kinase networks during prostate cancer
progression.  Proc  Natl Acad  Sci
109:1643-1648

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99

100.

101.

102.

103.

131

Chen EY, Tan CM, Kou Y et al (2013)
Enrichr:  interactive and  collaborative
HTMLS5 gene list enrichment analysis tool.
BMC Bioinformatics 14:128

Kuleshov MV, Jones MR, Rouillard AD et al
(2016) Enrichr: a comprehensive gene set
enrichment analysis web server 2016 update.
Nucleic Acids Res 44(W1):W90-W97

Lachmann A, Ma’ayan A (2009) KEA: kinase
enrichment analysis. Bioinformatics (Oxford,
England) 25:684-686

Keshava Prasad TS, Goel R, Kandasamy K et al
(2009) Human Protein Reference Database—
2009 update. Nucleic Acids Res 37:
D767-D772

Huttlin EL, Jedrychowski MP, Elias JE et al
(2010) A tissue-specific atlas of mouse protein
phosphorylation and  expression.  Cell
143:1174-1189

de Graaf EL, Giansanti P, Altelaar AEM et al
(2014) Single-step enrichment by Ti4+-
IMAC and label-free quantitation enables
in-depth monitoring of phosphorylation
dynamics with high reproducibility and tem-
poral resolution. Mol Cell Proteomics
13:2426-2434

Wilm M, Mann M (1996) Analytical proper-
ties of the nanoelectrospray ion source. Anal
Chem 68:1-8

Wilkes EH, Tertve C, Gribben JG etal (2015)
Empirical inference of circuitry and plasticity
in a kinase signaling network. Proc Natl Acad
Sci US A112:7719-7724

Tirei D, Korcsmaros T, Saez-Rodriguez J
(2016) OmniPath: guidelines and gateway
for literature-curated signaling pathway
resources. Nat Methods 13:966-967

Benjamini Y, Hochberg Y (2000) On the
adaptive control of the false discovery rate in

multiple testing with independent statistics. J
Educ Behav Stat 25:60-83

. Mckinney W (2010) Data structures for sta-

tistical computing in python. Proceedings of
the 9th python in science conference

Van Der Walt S, Colbert SC, Varoquaux G
(2011) The NumPy Array: A Structure for
Efficient Numerical Computation, Comput
Sci Eng 13:22-30. https://doi.org/10.
1109/MCSE.2011.37

Kim S-Y, Volsky DJ (2005) PAGE: parametric
analysis of gene set enrichment. BMC Bioin-
formatics 6:144

Jones E, Oliphant TE, Peterson P (2007)
Python for scientific computing. Comput Sci
Eng 9:10-20

Imamura H, Sugiyama N, Wakabayashi M
et al (2014) Large-scale identification of


https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37

132 Jakob Wirbel et al.
phosphorylation sites for profiling protein resource for post-translational modification
kinase  selectivity. ]  Proteome  Res of proteins. Nucleic Acids Res 44:
13:3410-3419 D435-D446
104. Newman RH, Hu J, Rho H-S et al (2013) 112. Wagih O, Reimand ], Bader GD (2015)
Construction of human activity-based phos- MIMP: predicting the impact of mutations
phorylation networks. Mol Syst Biol 9:655 on kinase-substrate phosphorylation. Nat
105. Creixell P, Palmeri A, Miller CJ et al (2015) Methods 12:531-533
Unmasking determinants of specificity in the 113. Raza S, McDerment N, Lacaze PA et al
human kinome. Cell 163:187-201 (2010) Construction of a large scale
106. Tertve CDA, Wilkes EH, Casado P et al integrated map of macrophage pathogen rec-
(2015) Large-scale models of signal propaga- ognition and effector systems. BMC Syst Biol
tion in human cells derived from discovery 4:63
phosphoproteomic  data. Nat Commun 114. Tiirei D, Papp D, Fazekas D et al (2013)
6:8033 NRF2-ome: an integrated web resource to
107. Creixell P, Schoof EM, Simpson CD et al discover protein interaction and regulatory
(2015) Kinome-wide decoding of network- networks of NRF2. Oxidative Med Cell
attacking mutations rewiring cancer signaling. Longev 2013:737591
Cell 163:202-217 115. Paz A, Brownstein Z, Ber Y et al (2011)
108. Hernandez-Armenta C, Ochoa D, Goncalves SPIKE: a database of highly curated human
E et al (2016) Benchmarking substrate-based signaling pathways. Nucleic Acids Res 39:
kinase activity inference using phosphopro- D793-D799
teomic data. Bioinformatics 33 116. Fazekas D, Koltai M, Tiirei D et al (2013)
(12):1845-1851 SignaLink 2 - a signaling pathway resource
109. Tiirei D, Foldvari-Nagy L, Fazekas D et al with  multi-layered  regulatory networks.
(2015) Autophagy Regulatory Network - a BMC Syst Biol 7:7
systems-level bioinformatics resource for 117. Chun JN, Lim JM, Kang Y et al (2014) A
studying the mechanism and regulation of network perspective on unraveling the role
autophagy. Autophagy 11:155-165 of TRP channels in biology and disease. Pflu-
110. Ma’ayan A, Jenkins SL, Neves S et al (2005) gers Arch 466:173-182
Formation of regulatory patterns during sig- 118. Cokelaer T, Pultz D, Harder LM et al (2013)
nal propagation in a Mammalian cellular net- BioServices: a common Python package to
work.  Science  (New  York, NY) access biological Web Services programmati-
309:1078-1083 cally. Bioinformatics 29:3241-3242
111. Huang K-Y, Su M-G, Kao H-J et al (2016)

dbPTM 2016: 10-year anniversary of a

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses /by,/4.0/), which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons
license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.


http://creativecommons.org/licenses/by/4.0/

	Chapter 6: Phosphoproteomics-Based Profiling of Kinase Activities in Cancer Cells
	1 Introduction
	2 Phosphoproteomics Data Acquisition
	2.1 Phosphopeptide Enrichment
	2.2 Data Acquisition
	2.3 Quantitative Phosphoproteomics
	2.4 Phosphosite Assignment
	2.5 Pitfalls in the Analysis of MS-Based Phosphoproteomics Data

	3 Computational Methods for Inference of Kinase Activity
	3.1 Resources for Kinase-Substrate Relationships
	3.2 GSEA
	3.3 KAA
	3.4 CLUE
	3.5 KSEA
	3.6 IKAP

	4 Protocol for KSEA
	4.1 Quick Start
	4.2 Loading the Data
	4.3 Loading the Kinase-Substrate Relationships
	4.4 KSEA
	4.4.1 KSEA Using the ``Mean´´ Method
	4.4.2 KSEA Using the Alternative `Mean´ Method
	4.4.3 KSEA Using the ``Delta Count´´ Method


	5 Closing Remarks
	6 Notes
	References


