Skip to main content

Single Nanoparticle Tracking: A Method for Investigating the Surface Dynamics of Glutamate Receptors

  • Protocol
  • First Online:
  • 1089 Accesses

Part of the book series: Neuromethods ((NM,volume 130))

Abstract

The spatiotemporal organization of neurotransmitter receptors within synapses is a critical determinant of synaptic transmission and adaptation, and thus of information processing and storage in the brain. Long considered as immobile at the plasma membrane, glutamate ionotropic receptors—the principal mediators of fast excitatory neurotransmission—are instead highly dynamic. Indeed, the recent development of single molecule imaging techniques has revealed that their number, composition, and distribution at the neuronal surface are constantly regulated through a combination of exo-/endocytosis processes and lateral diffusion in and out of synaptic sites within the membrane plane, allowing a fine control of the intensity of synaptic transmissions. Among these techniques, quantum dot-based single nanoparticle tracking methods provide unique means to explore the surface behavior of individual receptors either in vitro or ex vivo. Here, we describe the experimental procedures to perform single nanoparticle tracking in primary dissociated neuronal cultures, organotypic hippocampal preparations, and acute brain slices. We also provide insights on how these methods can be used to investigate the dynamics of glutamate receptors at the plasma membrane, and to explore their interactions with surface partners.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62(3):405–496. doi:10.1124/pr.109.002451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bear MF, Malenka RC (1994) Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol 4(3):389–399

    Article  CAS  PubMed  Google Scholar 

  4. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39. doi:10.1038/361031a0

    Article  CAS  PubMed  Google Scholar 

  5. Scannevin RH, Huganir RL (2000) Postsynaptic organization and regulation of excitatory synapses. Nat Rev Neurosci 1(2):133–141. doi:10.1038/35039075

    Article  CAS  PubMed  Google Scholar 

  6. Bredt DS, Nicoll RA (2003) AMPA receptor trafficking at excitatory synapses. Neuron 40(2):361–379

    Article  CAS  PubMed  Google Scholar 

  7. Carroll RC, Beattie EC, von Zastrow M, Malenka RC (2001) Role of AMPA receptor endocytosis in synaptic plasticity. Nat Rev Neurosci 2(5):315–324. doi:10.1038/35072500

    Article  CAS  PubMed  Google Scholar 

  8. Collingridge GL, Isaac JT, Wang YT (2004) Receptor trafficking and synaptic plasticity. Nat Rev Neurosci 5(12):952–962. doi:10.1038/nrn1556

    Article  CAS  PubMed  Google Scholar 

  9. Song I, Huganir RL (2002) Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci 25(11):578–588

    Article  CAS  PubMed  Google Scholar 

  10. Borgdorff AJ, Choquet D (2002) Regulation of AMPA receptor lateral movements. Nature 417(6889):649–653. doi:10.1038/nature00780

    Article  CAS  PubMed  Google Scholar 

  11. Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A (2003) Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302(5644):442–445. doi:10.1126/science.1088525

    Article  CAS  PubMed  Google Scholar 

  12. Tardin C, Cognet L, Bats C, Lounis B, Choquet D (2003) Direct imaging of lateral movements of AMPA receptors inside synapses. EMBO J 22(18):4656–4665. doi:10.1093/emboj/cdg463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Choquet D, Triller A (2013) The dynamic synapse. Neuron 80(3):691–703. doi:10.1016/j.neuron.2013.10.013

    Article  CAS  PubMed  Google Scholar 

  14. Dupuis JP, Ladepeche L, Seth H, Bard L, Varela J, Mikasova L, Bouchet D, Rogemond V, Honnorat J, Hanse E, Groc L (2014) Surface dynamics of GluN2B-NMDA receptors controls plasticity of maturing glutamate synapses. EMBO J 33(8):842–861. doi:10.1002/embj.201386356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ehlers MD, Heine M, Groc L, Lee MC, Choquet D (2007) Diffusional trapping of GluR1 AMPA receptors by input-specific synaptic activity. Neuron 54(3):447–460. doi:10.1016/j.neuron.2007.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Heine M, Groc L, Frischknecht R, Beique JC, Lounis B, Rumbaugh G, Huganir RL, Cognet L, Choquet D (2008) Surface mobility of postsynaptic AMPARs tunes synaptic transmission. Science 320(5873):201–205. doi:10.1126/science.1152089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645. doi:10.1126/science.1127344

    Article  CAS  PubMed  Google Scholar 

  18. Hell SW (2007) Far-field optical nanoscopy. Science 316(5828):1153–1158. doi:10.1126/science.1137395

    Article  CAS  PubMed  Google Scholar 

  19. Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11):4258–4272. doi:10.1529/biophysj.106.091116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang B, Babcock H, Zhuang X (2010) Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143(7):1047–1058. doi:10.1016/j.cell.2010.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maglione M, Sigrist SJ (2013) Seeing the forest tree by tree: super-resolution light microscopy meets the neurosciences. Nat Neurosci 16(7):790–797. doi:10.1038/nn.3403

    Article  CAS  PubMed  Google Scholar 

  22. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795. doi:10.1038/nmeth929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sahl SJ, Moerner WE (2013) Super-resolution fluorescence imaging with single molecules. Curr Opin Struct Biol 23(5):778–787. doi:10.1016/j.sbi.2013.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nagerl UV, Willig KI, Hein B, Hell SW, Bonhoeffer T (2008) Live-cell imaging of dendritic spines by STED microscopy. Proc Natl Acad Sci U S A 105(48):18982–18987. doi:10.1073/pnas.0810028105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tonnesen J, Katona G, Rozsa B, Nagerl UV (2014) Spine neck plasticity regulates compartmentalization of synapses. Nat Neurosci 17(5):678–685. doi:10.1038/nn.3682

    Article  CAS  PubMed  Google Scholar 

  26. Kittel RJ, Wichmann C, Rasse TM, Fouquet W, Schmidt M, Schmid A, Wagh DA, Pawlu C, Kellner RR, Willig KI, Hell SW, Buchner E, Heckmann M, Sigrist SJ (2006) Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312(5776):1051–1054. doi:10.1126/science.1126308

    Article  CAS  PubMed  Google Scholar 

  27. MacGillavry HD, Song Y, Raghavachari S, Blanpied TA (2013) Nanoscale scaffolding domains within the postsynaptic density concentrate synaptic AMPA receptors. Neuron 78(4):615–622. doi:10.1016/j.neuron.2013.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nair D, Hosy E, Petersen JD, Constals A, Giannone G, Choquet D, Sibarita JB (2013) Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated by PSD95. J Neurosci 33(32):13204–13224. doi:10.1523/JNEUROSCI.2381-12.2013

    Article  CAS  PubMed  Google Scholar 

  29. Godin AG, Lounis B, Cognet L (2014) Super-resolution microscopy approaches for live cell imaging. Biophys J 107(8):1777–1784. doi:10.1016/j.bpj.2014.08.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Groc L, Lafourcade M, Heine M, Renner M, Racine V, Sibarita JB, Lounis B, Choquet D, Cognet L (2007) Surface trafficking of neurotransmitter receptor: comparison between single-molecule/quantum dot strategies. J Neurosci 27(46):12433–12437. doi:10.1523/JNEUROSCI.3349-07.2007

    Article  CAS  PubMed  Google Scholar 

  31. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544. doi:10.1126/science.1104274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Biermann B, Sokoll S, Klueva J, Missler M, Wiegert JS, Sibarita JB, Heine M (2014) Imaging of molecular surface dynamics in brain slices using single-particle tracking. Nat Commun 5:3024. doi:10.1038/ncomms4024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Varela JA, Dupuis JP, Etchepare L, Espana A, Cognet L, Groc L (2016) Targeting neurotransmitter receptors with nanoparticles in vivo allows single-molecule tracking in acute brain slices. Nat Commun 7:10947. doi:10.1038/ncomms10947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Varela JA, Ferreira JS, Dupuis JP, Durand P, Bouchet D, Groc L (2016) Single nanoparticle tracking of [Formula: see text]-methyl-d-aspartate receptors in cultured and intact brain tissue. Neurophotonics 3(4):041808. doi:10.1117/1.NPh.3.4.041808

    Article  PubMed  PubMed Central  Google Scholar 

  35. Haas K, Sin WC, Javaherian A, Li Z, Cline HT (2001) Single-cell electroporation for gene transfer in vivo. Neuron 29(3):583–591

    Article  CAS  PubMed  Google Scholar 

  36. Ito H, Morishita R, Iwamoto I, Nagata K (2014) Establishment of an in vivo electroporation method into postnatal newborn neurons in the dentate gyrus. Hippocampus 24(12):1449–1457. doi:10.1002/hipo.22325

    Article  PubMed  Google Scholar 

  37. Ladepeche L, Dupuis JP, Groc L (2014) Surface trafficking of NMDA receptors: gathering from a partner to another. Semin Cell Dev Biol 27:3–13. doi:10.1016/j.semcdb.2013.10.005

    Article  CAS  PubMed  Google Scholar 

  38. Ladepeche L, Dupuis JP, Bouchet D, Doudnikoff E, Yang L, Campagne Y, Bezard E, Hosy E, Groc L (2013) Single-molecule imaging of the functional crosstalk between surface NMDA and dopamine D1 receptors. Proc Natl Acad Sci U S A 110(44):18005–18010. doi:10.1073/pnas.1310145110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee FJ, Xue S, Pei L, Vukusic B, Chery N, Wang Y, Wang YT, Niznik HB, Yu XM, Liu F (2002) Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell 111(2):219–230

    Article  CAS  PubMed  Google Scholar 

  40. Dalva MB, Takasu MA, Lin MZ, Shamah SM, Hu L, Gale NW, Greenberg ME (2000) EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 103(6):945–956

    Article  CAS  PubMed  Google Scholar 

  41. Li S, Li Z, Pei L, Le AD, Liu F (2012) The alpha7nACh-NMDA receptor complex is involved in cue-induced reinstatement of nicotine seeking. J Exp Med 209(12):2141–2147. doi:10.1084/jem.20121270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nolt MJ, Lin Y, Hruska M, Murphy J, Sheffler-Colins SI, Kayser MS, Passer J, Bennett MV, Zukin RS, Dalva MB (2011) EphB controls NMDA receptor function and synaptic targeting in a subunit-specific manner. J Neurosci 31(14):5353–5364. doi:10.1523/JNEUROSCI.0282-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Perroy J, Raynaud F, Homburger V, Rousset MC, Telley L, Bockaert J, Fagni L (2008) Direct interaction enables cross-talk between ionotropic and group I metabotropic glutamate receptors. J Biol Chem 283(11):6799–6805. doi:10.1074/jbc.M705661200

    Article  CAS  PubMed  Google Scholar 

  44. Kawashima N, Nakayama K, Itoh K, Itoh T, Ishikawa M, Biju V (2010) Reversible dimerization of EGFR revealed by single-molecule fluorescence imaging using quantum dots. Chemistry 16(4):1186–1192. doi:10.1002/chem.200902963

    Article  CAS  PubMed  Google Scholar 

  45. Low-Nam ST, Lidke KA, Cutler PJ, Roovers RC, van Bergen en Henegouwen PM, Wilson BS, Lidke DS (2011) ErbB1 dimerization is promoted by domain co-confinement and stabilized by ligand binding. Nat Struct Mol Biol 18(11):1244–1249. doi:10.1038/nsmb.2135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Steinkamp MP, Low-Nam ST, Yang S, Lidke KA, Lidke DS, Wilson BS (2014) erbB3 is an active tyrosine kinase capable of homo- and heterointeractions. Mol Cell Biol 34(6):965–977. doi:10.1128/MCB.01605-13

    Article  PubMed  PubMed Central  Google Scholar 

  47. Vu TQ, Lam WY, Hatch EW, Lidke DS (2015) Quantum dots for quantitative imaging: from single molecules to tissue. Cell Tissue Res 360(1):71–86. doi:10.1007/s00441-014-2087-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cutler PJ, Malik MD, Liu S, Byars JM, Lidke DS, Lidke KA (2013) Multi-color quantum dot tracking using a high-speed hyperspectral line-scanning microscope. PLoS One 8(5):e64320. doi:10.1371/journal.pone.0064320

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Centre National de la Recherche Scientifique, the Human Frontier Science Program, the Agence Nationale de la Recherche, the Fondation pour la Recherche Médicale and the Conseil Régional d’Aquitaine. We thank the cell culture facility of the institute, the animal facility of the University of Bordeaux, the Bordeaux Imaging Center for technical support and lab members for constructive discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Groc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Dupuis, J., Maingret, F., Groc, L. (2018). Single Nanoparticle Tracking: A Method for Investigating the Surface Dynamics of Glutamate Receptors. In: Parrot, S., Denoroy, L. (eds) Biochemical Approaches for Glutamatergic Neurotransmission. Neuromethods, vol 130. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7228-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7228-9_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7227-2

  • Online ISBN: 978-1-4939-7228-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics