Skip to main content

Basic Colorimetric Proliferation Assays: MTT, WST, and Resazurin

  • Protocol
  • First Online:
Cell Viability Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1601))

Abstract

This chapter describes selected assays for the evaluation of cellular viability and proliferation of cell cultures. The underlying principle of these assays is the measurement of a biochemical marker to evaluate the cell’s metabolic activity. The formation of the omnipresent reducing agents NADH and NADPH is used as a marker for metabolic activity in the following assays. Using NADH and NADPH as electron sources, specific dyes are biochemically reduced which results in a color change that can be determined with basic photometrical methods. The assays selected for this chapter include MTT, WST, and resazurin. They are applicable for adherent or suspended cell lines, easy to perform, and comparably economical. Detailed protocols and notes for easier handling and avoiding pitfalls are enclosed to each assay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sylvester PW (2011) Optimization of the tetrazolium dye (MTT) colorimetric assay for cellular growth and viability. In: Drug design and discovery. Methods and protocols, p 157–168

    Google Scholar 

  2. Berridge MV, Herst PM, Tan AS (2005) Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. In: El-Gewely MR (ed) Biotechnology annual review, vol 11. Elsevier, p 127–152

    Google Scholar 

  3. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63. doi:10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  4. Riss TL, Moravec RA, Niles AL et al (2013) Cell viability assays. In: Sittampalam GS, Coussens NP, Nelson H et al (eds) Assay guidance manual. Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda, MD

    Google Scholar 

  5. Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89(2):271–277

    Article  CAS  PubMed  Google Scholar 

  6. Tada H, Shiho O, Kuroshima K et al (1986) An improved colorimetric assay for interleukin 2. J Immunol Methods 93(2):157–165

    Article  CAS  PubMed  Google Scholar 

  7. Carmichael J, DeGraff WG, Gazdar AF et al (1987) Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 47(4):936–942

    CAS  PubMed  Google Scholar 

  8. Hansen MB, Nielsen SE, Berg K (1989) Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods 119(2):203–210

    Article  CAS  PubMed  Google Scholar 

  9. Barltrop JA, Owen TC, Cory AH et al (1991) 5-(3-carboxymethoxyphenyl)-2-(4,5-dimethylthiazolyl)-3-(4-sulfophenyl)tetrazolium, inner salt (MTS) and related analogs of 3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide (MTT) reducing to purple water-soluble formazans As cell-viability indicators. Bioorg Med Chem Lett 1(11):611–614. doi:10.1016/S0960-894X(01)81162-8

    Article  CAS  Google Scholar 

  10. Cory AH, Owen TC, Barltrop JA et al (1991) Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun 3(7):207–212

    CAS  PubMed  Google Scholar 

  11. Paull KD, Shoemaker RH, Boyd MR et al (1988) The synthesis of XTT: a new tetrazolium reagent that is bioreducible to a water-soluble formazan. J Heterocycl Chem 25(3):911–914. doi:10.1002/jhet.5570250340

    Article  CAS  Google Scholar 

  12. Scudiero DA, Shoemaker RH, Paull KD et al (1988) Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res 48(17):4827–4833

    CAS  PubMed  Google Scholar 

  13. Ishiyama M, Tominaga H, Shiga M et al (1996) A combined assay of cell vability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol Pharm Bull 19(11):1518–1520. doi:10.1248/bpb.19.1518

    Article  CAS  PubMed  Google Scholar 

  14. Ishiyama M, Shiga M, Sasamoto K et al (1993) A new sulfonated tetrazolium salt that produces a highly water-soluble formazan dye. Chem Pharm Bull 41(6):1118–1122. doi:10.1248/cpb.41.1118

    Article  CAS  Google Scholar 

  15. Tominaga H, Ishiyama M, Ohseto F et al (1999) A water-soluble tetrazolium salt useful for colorimetric cell viability assay. Anal Commun 36(2):47–50. doi:10.1039/A809656B

    Article  CAS  Google Scholar 

  16. Weyermann J, Lochmann D, Zimmer A (2005) A practical note on the use of cytotoxicity assays. Int J Pharm 288(2):369–376. doi:10.1016/j.ijpharm.2004.09.018

    Article  CAS  PubMed  Google Scholar 

  17. Weselsky P (1871) Ueber die Azoverbindungen des Resorcins. Ber Dtsch Chem Ges 4(2):613–619. doi:10.1002/cber.18710040230

    Article  Google Scholar 

  18. Palmer LS, Weaver M et al (1930) Milchuntersuchung. Zeitschrift für analytische Chemie 82(6):268–271. doi:10.1007/BF01362069

    Article  Google Scholar 

  19. Rampersad SN (2012) Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors 12(9):12347–12360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. O'Brien J, Wilson I, Orton T et al (2000) Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267(17):5421–5426. doi:10.1046/j.1432-1327.2000.01606.x

    Article  PubMed  Google Scholar 

  21. Riss TL, Moravec RA (2004) Use of multiple assay endpoints to investigate the effects of incubation time, dose of toxin, and plating density in cell-based cytotoxicity assays. Assay and Drug Dev Technol 2(1):51–62

    Article  CAS  Google Scholar 

  22. Chen T (2009) A practical guide to assay development and high-throughput screening in drug discovery. In: Critical reviews in combinatorial chemistry. CRC Press, Boca Raton, FL

    Google Scholar 

  23. Hamid R, Rotshteyn Y, Rabadi L et al (2004) Comparison of Alamar Blue and MTT assays for high through-put screening. Toxicol In Vitro 18(5):703–710

    Article  CAS  PubMed  Google Scholar 

  24. Fries R d, Mitsuhashi M (1995) Quantification of mitogen induced human lymphocyte proliferation: Comparison of alamarBlue assay to 3H-thymidine incorporation assay. J Clin Lab Anal 9(2):89–95. doi:10.1002/jcla.1860090203

    Article  PubMed  Google Scholar 

  25. Gonzalez RJ, Tarloff JB (2001) Evaluation of hepatic subcellular fractions for Alamar blue and MTT reductase activity. Toxicol In Vitro 15(3):257–259. doi:10.1016/S0887-2333(01)00014-5

    Article  CAS  PubMed  Google Scholar 

  26. McMillian MK, Li L, Parker JB et al (2002) An improved resazurin-based cytotoxicity assay for hepatic cells. Cell Biol Toxicol 18(3):157–173. doi:10.1023/A:1015559603643

    Article  CAS  PubMed  Google Scholar 

  27. Candeias L, MacFarlane DS, McWhinnie SW et al (1998) The catalysed NADH reduction of resazurin to resorufin. J Chem Soc Perkin Trans 2(11):2333–2334

    Article  Google Scholar 

  28. Celis JE (2006) Cell biology: a laboratory handbook. Elsevier, Ansterdam

    Google Scholar 

  29. Wu G (2010) Assay development: fundamentals and practices. Wiley, New York

    Book  Google Scholar 

  30. Węsierska-Gądek J, Gueorguieva M, Ranftler C et al (2005) A new multiplex assay allowing simultaneous detection of the inhibition of cell proliferation and induction of cell death. J Cell Biochem 96(1):1–7. doi:10.1002/jcb.20531

    Article  PubMed  Google Scholar 

  31. Twigg RS (1945) Oxidation-reduction aspects of resazurin. Nature 155(3935):401–402. doi:10.1038/155401a0

    Article  CAS  Google Scholar 

  32. Sieuwerts AM, Klijn JGM, Peters HA et al (1995) The MTT tetrazolium salt assay scrutinized: how to use this assay reliably to measure metabolie activity of cell cultures in vitro for the assessment of growth characteristics, IC50-values and cell survival. Clin Chem Lab Med 33(11):813–824

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Präbst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Präbst, K., Engelhardt, H., Ringgeler, S., Hübner, H. (2017). Basic Colorimetric Proliferation Assays: MTT, WST, and Resazurin. In: Gilbert, D., Friedrich, O. (eds) Cell Viability Assays. Methods in Molecular Biology, vol 1601. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6960-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6960-9_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6959-3

  • Online ISBN: 978-1-4939-6960-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics