Skip to main content

Introduction to Modern Methods in Light Microscopy

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1563))

Abstract

For centuries, light microscopy has been a key method in biological research, from the early work of Robert Hooke describing biological organisms as cells, to the latest in live-cell and single-molecule systems. Here, we introduce some of the key concepts related to the development and implementation of modern microscopy techniques. We briefly discuss the basics of optics in the microscope, super-resolution imaging, quantitative image analysis, live-cell imaging, and provide an outlook on active research areas pertaining to light microscopy.

This is a preview of subscription content, log in via an institution.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Stelzer (1998) Contrast, resolution, pixelation, dynamic range and signal-to-noise ratio: fundamental limits to resolution in fluorescence light microscopy. J Microsc 189 (1):15-24. doi:10.1046/j.1365-2818.1998.00290.x

  2. Zernike F (1955) How I discovered phase contrast. Science 121(3141):345–349

    Article  CAS  PubMed  Google Scholar 

  3. Barer R, Ross KA (1952) Refractometry of living cells. J Physiol 118(2):38P–39P

    CAS  PubMed  Google Scholar 

  4. Inoue S (1953) Polarization optical studies of the mitotic spindle. I. The demonstration of spindle fibers in living cells. Chromosoma 5(5):487–500

    Article  CAS  PubMed  Google Scholar 

  5. Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42(1):39–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263(5148):802–805

    Article  CAS  PubMed  Google Scholar 

  7. Inoué S, Spring K (1997) Video microscopy, 2nd edn. Plenum Press, New York

    Book  Google Scholar 

  8. Inoue S, Spring K (1997) Video microscopy: the fundamentals. Plenum Press, New York

    Book  Google Scholar 

  9. Axelrod D (1989) Total internal reflection fluorescence microscopy. Methods Cell Biol 30:245–270

    Article  CAS  PubMed  Google Scholar 

  10. Schrader M, Bahlmann K, Giese G, Hell SW (1998) 4Pi-confocal imaging in fixed biological specimens. Biophys J 75(4):1659–1668. doi:10.1016/S0006-3495(98)77608-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gustafsson MG, Agard DA, Sedat JW (1999) I5M: 3D widefield light microscopy with better than 100 nm axial resolution. J Microsc 195(Pt 1):10–16

    Article  CAS  PubMed  Google Scholar 

  12. Bewersdorf J, Schmidt R, Hell SW (2006) Comparison of I5M and 4Pi-microscopy. J Microsc 222(Pt 2):105–117. doi:10.1111/j.1365-2818.2006.01578.x

    Article  CAS  PubMed  Google Scholar 

  13. Egner A, Jakobs S, Hell SW (2002) Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast. Proc Natl Acad Sci U S A 99(6):3370–3375. doi:10.1073/pnas.052545099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gustafsson MG (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198(Pt 2):82–87

    Article  CAS  PubMed  Google Scholar 

  15. Gustafsson MG, Shao L, Carlton PM, Wang CJ, Golubovskaya IN, Cande WZ, Agard DA, Sedat JW (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 94(12):4957–4970. doi:10.1529/biophysj.107.120345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schermelleh L, Carlton PM, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso MC, Agard DA, Gustafsson MG, Leonhardt H, Sedat JW (2008) Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320(5881):1332–1336. doi:10.1126/science.1156947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lesterlin C, Ball G, Schermelleh L, Sherratt DJ (2014) RecA bundles mediate homology pairing between distant sisters during DNA break repair. Nature 506(7487):249–253. doi:10.1038/nature12868

    Article  CAS  PubMed  Google Scholar 

  18. Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190(2):165–175. doi:10.1083/jcb.201002018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Heintzmann R, Ficz G (2006) Breaking the resolution limit in light microscopy. Brief Funct Genomic Proteomic 5(4):289–301. doi:10.1093/bfgp/ell036

    Article  PubMed  Google Scholar 

  20. Eggeling C, Willig KI, Sahl SJ, Hell SW (2015) Lens-based fluorescence nanoscopy. Q Rev Biophys 48(2):178–243. doi:10.1017/S0033583514000146

    Article  CAS  PubMed  Google Scholar 

  21. Nienhaus K, Nienhaus GU (2016) Where Do We Stand with Super-Resolution Optical Microscopy? J Mol Biol 428(2 Pt A):308–322. doi:10.1016/j.jmb.2015.12.020

    Article  CAS  PubMed  Google Scholar 

  22. Betzig E (1995) Proposed method for molecular optical imaging. Opt Lett 20(3):237–239

    Article  CAS  PubMed  Google Scholar 

  23. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645. doi:10.1126/science.1127344

    Article  CAS  PubMed  Google Scholar 

  24. Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11):4258–4272. doi:10.1529/biophysj.106.091116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795. doi:10.1038/nmeth929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kanchanawong P, Shtengel G, Pasapera AM, Ramko EB, Davidson MW, Hess HF, Waterman CM (2010) Nanoscale architecture of integrin-based cell adhesions. Nature 468(7323):580–584. doi:10.1038/nature09621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Betzig E (2015) Single molecules, cells, and super-resolution optics (Nobel Lecture). Angew Chem Int Ed Engl 54(28):8034–8053. doi:10.1002/anie.201501003

    Article  CAS  PubMed  Google Scholar 

  28. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782

    Article  CAS  PubMed  Google Scholar 

  29. Hofmann M, Eggeling C, Jakobs S, Hell SW (2005) Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc Natl Acad Sci U S A 102(49):17565–17569. doi:10.1073/pnas.0506010102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gustafsson MG (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci U S A 102(37):13081–13086. doi:10.1073/pnas.0406877102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Berning S, Willig KI, Steffens H, Dibaj P, Hell SW (2012) Nanoscopy in a living mouse brain. Science 335(6068):551. doi:10.1126/science.1215369

    Article  CAS  PubMed  Google Scholar 

  32. Chmyrov A, Keller J, Grotjohann T, Ratz M, d'Este E, Jakobs S, Eggeling C, Hell SW (2013) Nanoscopy with more than 100,000 ‘doughnuts’. Nat Methods 10(8):737–740. doi:10.1038/nmeth.2556

    Article  CAS  PubMed  Google Scholar 

  33. Li D, Shao L, Chen BC, Zhang X, Zhang M, Moses B, Milkie DE, Beach JR, Hammer JA 3rd, Pasham M, Kirchhausen T, Baird MA, Davidson MW, Xu P, Betzig E (2015) ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349(6251):aab3500. doi:10.1126/science.aab3500

    Article  PubMed  PubMed Central  Google Scholar 

  34. Maddox PS, Portier N, Desai A, Oegema K (2006) Molecular analysis of mitotic chromosome condensation using a quantitative time-resolved fluorescence microscopy assay. Proc Natl Acad Sci U S A 103(41):15097–15102. doi:10.1073/pnas.0606993103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lacroix B, Bourdages KG, Dorn JF, Ihara S, Sherwood DR, Maddox PS, Maddox AS (2014) In situ imaging in C. elegans reveals developmental regulation of microtubule dynamics. Dev Cell 29(2):203–216. doi:10.1016/j.devcel.2014.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bothma JP, Garcia HG, Ng S, Perry MW, Gregor T, Levine M (2015) Enhancer additivity and non-additivity are determined by enhancer strength in the Drosophila embryo. Elife:4. doi:10.7554/eLife.07956

  37. Goshima G, Wollman R, Goodwin SS, Zhang N, Scholey JM, Vale RD, Stuurman N (2007) Genes required for mitotic spindle assembly in Drosophila S2 cells. Science 316(5823):417–421. doi:10.1126/science.1141314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wachsmuth M, Conrad C, Bulkescher J, Koch B, Mahen R, Isokane M, Pepperkok R, Ellenberg J (2015) High-throughput fluorescence correlation spectroscopy enables analysis of proteome dynamics in living cells. Nat Biotechnol 33(4):384–389. doi:10.1038/nbt.3146

    Article  CAS  PubMed  Google Scholar 

  39. Danuser G (2011) Computer vision in cell biology. Cell 147(5):973–978. doi:10.1016/j.cell.2011.11.001

    Article  CAS  PubMed  Google Scholar 

  40. Landecker H (2009) Seeing things: from microcinematography to live cell imaging. Nat Methods 6(10):707–709

    Article  CAS  PubMed  Google Scholar 

  41. Ries J (1909) Kinematographie der Befruchtung und Zellteilung. Arch für mikroskopische Anat 74(1):1–31

    Article  Google Scholar 

  42. Aufderheide KJJC (2012) Immobilization of living specimens for microscopic observation. Curr Microsc Contrib Adv Sci Technol 2:833–839

    Google Scholar 

  43. Rabut G, Ellenberg J (2004) Automatic real-time three-dimensional cell tracking by fluorescence microscopy. J Microsc 216(Pt 2):131–137. doi:10.1111/j.0022-2720.2004.01404.x

    Article  CAS  PubMed  Google Scholar 

  44. Magidson V, Khodjakov A (2013) Circumventing photodamage in live-cell microscopy. Methods Cell Biol 114:545–560. doi:10.1016/B978-0-12-407761-4.00023-3

    Article  PubMed  Google Scholar 

  45. Weber M, Huisken J (2011) Light sheet microscopy for real-time developmental biology. Curr Opin Genet Dev 21(5):566–572. doi:10.1016/j.gde.2011.09.009

    Article  CAS  PubMed  Google Scholar 

  46. Martin-Fernandez ML, Tynan CJ, Webb SE (2013) A ‘pocket guide’ to total internal reflection fluorescence. J Microsc 252(1):16–22. doi:10.1111/jmi.12070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. De Los SC, Chang CW, Mycek MA, Cardullo RA (2015) FRAP, FLIM, and FRET: Detection and analysis of cellular dynamics on a molecular scale using fluorescence microscopy. Mol Reprod Dev 82(7-8):587–604. doi:10.1002/mrd.22501

    Article  Google Scholar 

  48. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2(12):932–940. doi:10.1038/nmeth818

    Article  CAS  PubMed  Google Scholar 

  49. Weigert R, Porat-Shliom N, Amornphimoltham P (2013) Imaging cell biology in live animals: ready for prime time. J Cell Biol 201(7):969–979. doi:10.1083/jcb.201212130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang H, Guo P (2014) Single molecule photobleaching (SMPB) technology for counting of RNA, DNA, protein and other molecules in nanoparticles and biological complexes by TIRF instrumentation. Methods 67(2):169–176. doi:10.1016/j.ymeth.2014.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fernandez-Suarez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 9(12):929–943. doi:10.1038/nrm2531

    Article  CAS  PubMed  Google Scholar 

  52. Butkevich AN, Mitronova GY, Sidenstein SC, Klocke JL, Kamin D, Meineke DN, D'Este E, Kraemer PT, Danzl JG, Belov VN, Hell SW (2016) Fluorescent rhodamines and fluorogenic carbopyronines for super-resolution STED microscopy in living cells. Angew Chem Int Ed Engl 55(10):3290–3294. doi:10.1002/anie.201511018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bajar BT, Wang ES, Lam AJ, Kim BB, Jacobs CL, Howe ES, Davidson MW, Lin MZ, Chu J (2016) Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting. Sci Rep 6:20889. doi:10.1038/srep20889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Miyawaki A, Niino Y (2015) Molecular spies for bioimaging—fluorescent protein-based probes. Mol Cell 58(4):632–643. doi:10.1016/j.molcel.2015.03.002

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul S. Maddox .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Ryan, J., Gerhold, A.R., Boudreau, V., Smith, L., Maddox, P.S. (2017). Introduction to Modern Methods in Light Microscopy. In: Markaki, Y., Harz, H. (eds) Light Microscopy. Methods in Molecular Biology, vol 1563. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6810-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6810-7_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6808-4

  • Online ISBN: 978-1-4939-6810-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics