Skip to main content

Competitive Argonaute-Based RNA Immunoprecipitation for Investigation of Transcriptomic Response to Anti-miR

  • Protocol
  • First Online:
Drug Target miRNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1517))

Abstract

Identification and validation of microRNA (miRNA) target genes is essential for gaining a better understanding of the many different functions miRNAs have in healthy and diseased cells. From a practical standpoint, validated target genes are also useful for monitoring pharmacological activity of developmental therapeutics that modulate miRNAs, such as anti-miRNA oligonucleotides (anti-miR). Here, we describe a method that uses changes in Argonaute 2-RNA immunoprecipitation in response to competition by anti-miR, titrated ex vivo, as physical evidence for target validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jackson A, Linsley PS (2010) The therapeutic potential of microRNA modulation. Discov Med 9(47):311–318

    PubMed  Google Scholar 

  2. Stenvang J, Petri A, Lindow M, Obad S, Kauppinen S (2012) Inhibition of microRNA function by antimiR oligonucleotides. Silence 3(1):1. doi:10.1186/1758-907X-3-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433(7027):769–773. doi:10.1038/nature03315, nature03315 [pii]

    Article  CAS  PubMed  Google Scholar 

  4. Androsavich JR, Chau BN, Bhat B, Linsley PS, Walter NG (2012) Disease-linked microRNA-21 exhibits drastically reduced mRNA binding and silencing activity in healthy mouse liver. RNA 18(8):1510–1526. doi:10.1261/rna.033308.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bethune J, Artus-Revel CG, Filipowicz W (2012) Kinetic analysis reveals successive steps leading to miRNA-mediated silencing in mammalian cells. EMBO Rep 13(8):716–723. doi:10.1038/embor.2012.82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  7. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27(1):91–105. doi:10.1016/j.molcel.2007.06.017, S1097-2765(07)00407-8 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang W-X, Wilfred B, Hu Y, Stromberg A, Nelson P (2010) Anti-Argonaute RIP-Chip shows that miRNA transfections alter global patterns of mRNA recruitment to microribonucleoprotein complexes. RNA (New York, NY) 16(2):394–404. doi:10.1261/rna.1905910

    Article  CAS  Google Scholar 

  9. Beitzinger M, Meister G (2011) Experimental identification of MicroRNA targets by immunoprecipitation of argonaute protein complexes. Methods Mol Biol 732:153–167. doi:10.1007/978-1-61779-083-6_12

    Article  CAS  PubMed  Google Scholar 

  10. Karginov FV, Conaco C, Xuan Z, Schmidt BH, Parker JS, Mandel G, Hannon GJ (2007) A biochemical approach to identifying microRNA targets. Proc Natl Acad Sci U S A 104(49): 19291–19296. doi:10.1073/pnas.0709971104, 0709971104 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hafner M, Lianoglou S, Tuschl T, Betel D (2012) Genome-wide identification of miRNA targets by PAR-CLIP. Methods 58(2):94–105. doi:10.1016/j.ymeth.2012.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460(7254):479–486. doi:10.1038/nature08170

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Androsavich JR, Chau BN (2014) Non-inhibited miRNAs shape the cellular response to anti-miR. Nucleic Acids Res 42(11):6945–6955. doi:10.1093/nar/gku344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ivanovska I, Cleary MA (2008) Combinatorial microRNAs: working together to make a difference. Cell Cycle 7(20):3137–3142

    Article  CAS  PubMed  Google Scholar 

  15. LifeTechnologies (2014) Real-time PCR handbook, 3rd edn. LifeTechnologies, Carlsbad, CA

    Google Scholar 

Download references

Acknowledgement

This work was supported by Regulus Therapeutics Inc., which employed the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Androsavich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Androsavich, J.R. (2017). Competitive Argonaute-Based RNA Immunoprecipitation for Investigation of Transcriptomic Response to Anti-miR. In: Schmidt, M. (eds) Drug Target miRNA. Methods in Molecular Biology, vol 1517. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6563-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6563-2_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6561-8

  • Online ISBN: 978-1-4939-6563-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics