Skip to main content

Design and Analysis of CCN Gene Activity Using CCN Knockout Mice Containing LacZ Reporters

  • Protocol
  • First Online:
CCN Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1489))

Abstract

Two developments have greatly facilitated the construction of CCN mutant mouse strains. The first is the availability of modified embryonic stem (ES) cells and mice developed through several large-scale government-sponsored research programs. The second is the advent of CRISPR/Cas9 technology. In this chapter, we describe the available mouse strains generated by gene targeting techniques and the CCN targeting vectors and genetically modified ES cells that are available for the generation of CCN mutant mice. Many of these mutant mouse lines and ES cells carry a β-galactosidase reporter that can be used to track CCN expression, facilitating phenotypic analysis and revealing new sites of CCN action. Therefore, we also describe a method for β-galactosidase staining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hurvitz JR, Suwairi WM, Van Hul W et al (1999) Mutations in the CCN gene family member WISP3 cause progressive pseudorheumatoid dysplasia. Nat Genet 23:94–98

    Article  CAS  PubMed  Google Scholar 

  2. Kutz WE, Gong Y, Warman ML (2005) WISP3, the gene responsible for the human skeletal disease progressive pseudorheumatoid dysplasia, is not essential for skeletal function in mice. Mol Cell Biol 25:414–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Friedel RH, Wurst W, Wefers B, Kühn R (2011) Generating conditional knockout mice. Methods Mol Biol 693:205–231

    Article  CAS  PubMed  Google Scholar 

  4. Deng C (2007) In celebration of Dr. Mario R. Capecchi’s Nobel Prize. Int J Biol Sci 3:417–419

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mo FE, Muntean AG, Chen CC, Stolz DB, Watkins SC, Lau LF (2002) CYR61 (CCN1) is essential for placental development and vascular integrity. Mol Cell Biol 22:8709–8720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ivkovic S, Yoon BS, Popoff SN, Safadi FF, Libuda DE, Stephenson RC, Daluiski A, Lyons KM (2003) Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 130:2779–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hall-Glenn F, De Young RA, Huang BL et al (2012) CCN2/connective tissue growth factor is essential for pericyte adhesion and endothelial basement membrane formation during angiogenesis. PLoS One 7, e30562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mo FE, Lau LF (2006) The matricellular protein CCN1 is essential for cardiac development. Circ Res 99:961–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nguyen TQ, Roestenberg P, van Nieuwenhoven FA et al (2008) CTGF inhibits BMP-7 signaling in diabetic nephropathy. J Am Soc Nephrol 19:2098–2107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Falke LL, Dendooven A, Leeuwis JW et al (2012) Hemizygous deletion of CTGF/CCN2 does not suffice to prevent fibrosis of the severely injured kidney. Matrix Biol 31:421–431

    Article  CAS  PubMed  Google Scholar 

  11. Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K (1994) Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265:103–106

    Article  CAS  PubMed  Google Scholar 

  12. Rajewsky K, Gu H, Kühn R, Betz UA, Müller W, Roes J, Schwenk F (1996) Conditional gene targeting. J Clin Invest 98:600–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Metzger D, Clifford J, Chiba H, Chambon P (1995) Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc Natl Acad Sci U S A 92:6991–6995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci U S A 93:10887–10890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang H, Wang H, Jaenisch R (2014) Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat Protoc 9:1956–1968

    Article  CAS  PubMed  Google Scholar 

  16. Kim KH, Chen CC, Monzon RI, Lau LF (2013) Matricellular protein CCN1 promotes regression of liver fibrosis through induction of cellular senescence in hepatic myofibroblasts. Mol Cell Biol 33:2078–2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu S, Thompson K, Leask A (2014) CCN2 expression by fibroblasts is not required for cutaneous tissue repair. Wound Repair Regen 22:119–124

    Article  PubMed  Google Scholar 

  18. Liu S, Shi-wen X, Abraham DJ, Leask A (2011) CCN2 is required for bleomycin-induced skin fibrosis in mice. Arthritis Rheum 63:239–246

    Article  CAS  PubMed  Google Scholar 

  19. Canalis E, Zanotti S, Beamer WG, Economides AN, Smerdel-Ramoya A (2010) Connective tissue growth factor is required for skeletal development and postnatal skeletal homeostasis in male mice. Endocrinology 151:3490–3501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mangiavini L, Merceron C, Araldi E et al (2015) Fibrosis and hypoxia-inducible factor-1α-dependent tumors of the soft tissue on loss of Von Hippel-Lindau in mesenchymal progenitors. Am J Pathol 185:3090–3101

    Article  CAS  PubMed  Google Scholar 

  21. Burn SF (2012) Detection of β-galactosidase activity: X-gal staining. Methods Mol Biol 886:241–250

    Article  CAS  PubMed  Google Scholar 

  22. Perbal B (2007) CCN3-mutant mice are distinct from CCN3-null mice. J Cell Commun Signal 1:229–230

    Article  CAS  PubMed  Google Scholar 

  23. Heath E, Tahri D, Andermarcher E, Schofield P, Fleming S, Boulter CA (2008) Abnormal skeletal and cardiac development, cardiomyopathy, muscle atrophy and cataracts in mice with a targeted disruption of the Nov (Ccn3) gene. BMC Dev Biol 8:18

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shimoyama T, Hiraoka S, Takemoto M et al (2010) CCN3 inhibits neointimal hyperplasia through modulation of smooth muscle cell growth and migration. Arterioscler Thromb Vasc Biol 30:675–682

    Article  CAS  PubMed  Google Scholar 

  25. Takahashi M, Hakamata Y, Takeuchi K, Kobayashi E (2003) Effects of different fixatives on beta-galactosidase activity. J Histochem Cytochem 51:553–554

    Article  CAS  PubMed  Google Scholar 

  26. Odgren PR, MacKay CA, Mason-Savas A, Yang M, Mailhot G, Birnbaum MJ (2006) False-positive beta-galactosidase staining in osteoclasts by endogenous enzyme: studies in neonatal and month-old wild-type mice. Connect Tissue Res 47:229–234

    Article  PubMed  Google Scholar 

  27. Kopp HG, Hooper AT, Shmelkov SV, Rafii S (2007) Beta-galactosidase staining on bone marrow. The osteoclast pitfall. Histol Histopathol 22:971–976

    CAS  PubMed  Google Scholar 

  28. Osterwalder M, Galli A, Rosen B, Skarnes WC, Zeller R, Lopez-Rios J (2010) Dual RMCE for efficient re-engineering of mouse mutant alleles. Nat Methods 7:893–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen CC, Young JL, Monzon RI, Chen N, Todorović V, Lau LF (2007) Cytotoxicity of TNFalpha is regulated by integrin-mediated matrix signaling. EMBO J 26:1257–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jun JI, Kim KH, Lau LF (2015) The matricellular protein CCN1 mediates neutrophil efferocytosis in cutaneous wound healing. Nat Commun 6:7386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Doherty HE, Kim HS, Hiller S, Sulik KK, Maeda N (2010) A mouse strain where basal connective tissue growth factor gene expression can be switched from low to high. PLoS One 5, e12909

    Article  PubMed  PubMed Central  Google Scholar 

  32. Crawford LA, Guney MA, Oh YA et al (2009) Connective tissue growth factor (CTGF) inactivation leads to defects in islet cell lineage allocation and beta-cell proliferation during embryogenesis. Mol Endocrinol 23:324–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Maeda A, Ono M, Holmbeck K et al (2015) WNT1-induced secreted protein-1 (WISP1), a novel regulator of bone turnover and Wnt signaling. J Biol Chem 290:14004–14018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21:70–71

    Article  CAS  PubMed  Google Scholar 

  35. Mao X, Fujiwara Y, Chapdelaine A, Yang H, Orkin SH (2001) Activation of EGFP expression by Cre-mediated excision in a new ROSA26 reporter mouse strain. Blood 97:324–326

    Article  CAS  PubMed  Google Scholar 

  36. Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM, Costantini F (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Safran M, Kim WY, Kung AL, Horner JW, DePinho RA, Kaelin WG (2003) Mouse reporter strain for noninvasive bioluminescent imaging of cells that have undergone Cre-mediated recombination. Mol Imaging 2:297–302

    Article  CAS  PubMed  Google Scholar 

  38. Luche H, Weber O, Nageswara Rao T, Blum C, Fehling HJ (2007) Faithful activation of an extra-bright red fluorescent protein in “knock-in” Cre-reporter mice ideally suited for lineage tracing studies. Eur J Immunol 37:43–53

    Article  CAS  PubMed  Google Scholar 

  39. Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L (2007) A global double-fluorescent Cre reporter mouse. Genesis 45:593–605

    Article  CAS  PubMed  Google Scholar 

  40. Snippert HJ, van der Flier LG, Sato T et al (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143:134–144

    Article  CAS  PubMed  Google Scholar 

  41. Chen YT, Tsai MS, Yang TL et al (2012) R26R-GR: a Cre-activable dual fluorescent protein reporter mouse. PLoS One 7, e46171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Prigge JR, Wiley JA, Talago EA, Young EM, Johns LL, Kundert JA, Sonsteng KM, Halford WP, Capecchi MR, Schmidt EE (2013) Nuclear double-fluorescent reporter for in vivo and ex vivo analyses of biological transitions in mouse nuclei. Mamm Genome PMID:24022199

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen M. Lyons Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jiang, J., Hu, Z., Lyons, K.M. (2017). Design and Analysis of CCN Gene Activity Using CCN Knockout Mice Containing LacZ Reporters. In: Takigawa, M. (eds) CCN Proteins. Methods in Molecular Biology, vol 1489. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6430-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6430-7_28

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6428-4

  • Online ISBN: 978-1-4939-6430-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics