Skip to main content

Proteomic Analysis of Mesenchymal Stem Cells

  • Protocol
  • First Online:
Mesenchymal Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1416))

Abstract

Mesenchymal stem or stromal cells (MSCs) are of great interest in biomedical sciences and disease treatment because of their multipotency and wide range of applications for tissue repair and suppression of the immune system. Proteomic analysis of these unique cells has contributed to the identification of important pathways utilized by MSCs to differentiate into distinct tissues as well as important proteins responsible for their special function in vivo and in vitro. However, comparison of proteomic studies in MSCs still suffers from the heterogeneity of MSC preparations. In addition, as proteomics technology advances, several studies can be revisited in order to increase the depth of analysis and, therefore, elucidate more refined mechanisms involved in MSC functionalities. Here, we present detailed protocols to obtain MSCs, as well as protocols to perform in-depth profiling and quantification of alterations in MSC proteomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    Article  CAS  PubMed  Google Scholar 

  2. Bianco P (2014) Stem cells and bone: a historical perspective. Bone 70:2–9

    Article  PubMed  Google Scholar 

  3. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147

    Article  CAS  PubMed  Google Scholar 

  4. Jiang Y, Jahagirdar BN, Reinhardt RL et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  CAS  PubMed  Google Scholar 

  5. da Silva Meirelles L, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213

    Article  PubMed  Google Scholar 

  6. Lavoie JR, Rosu-Myles M (2013) Uncovering the secretes of mesenchymal stem cells. Biochimie 95:2212–2221

    Article  CAS  PubMed  Google Scholar 

  7. Makridakis M, Roubelakis MG, Vlahou A (2013) Stem cells: insights into the secretome. Biochim Biophys Acta 1834:2380–2384

    Article  CAS  PubMed  Google Scholar 

  8. Faça VM (2012) Human mesenchymal stromal cell proteomics: contribution for identification of new markers and targets for medicine intervention. Expert Rev Proteomics 9: 217–230

    Article  PubMed  Google Scholar 

  9. Granéli C, Thorfve A, Ruetschi U et al (2014) Novel markers of osteogenic and adipogenic differentiation of human bone marrow stromal cells identified using a quantitative proteomics approach. Stem Cell Res 12:153–165

    Article  PubMed  Google Scholar 

  10. Ishihara T, Kakiya K, Takahashi K et al (2014) Discovery of novel differentiation markers in the early stage of chondrogenesis by glycoform-focused reverse proteomics and genomics. Biochim Biophys Acta 1840:645–655

    Article  CAS  PubMed  Google Scholar 

  11. Miranda HC, Herai RH, Thomé CH et al (2012) A quantitative proteomic and transcriptomic comparison of human mesenchymal stem cells from bone marrow and umbilical cord vein. Proteomics 12:2607–2617

    Article  CAS  PubMed  Google Scholar 

  12. Rocha B, Calamia V, Casas V et al (2014) Secretome analysis of human mesenchymal stem cells undergoing chondrogenic differentiation. J Proteome Res 13:1045–1054

    Article  CAS  PubMed  Google Scholar 

  13. Choi YH, Kurtz A, Stamm C (2011) Mesenchymal stem cells for cardiac cell therapy. Hum Gene Ther 22:3–17

    Article  CAS  PubMed  Google Scholar 

  14. Cox J, Mann M (2011) Quantitative, high-resolution proteomics for data-driven systems biology. Annu Rev Biochem 80:273–299

    Article  CAS  PubMed  Google Scholar 

  15. Bensimon A, Heck AJ, Aebersold R (2012) Mass spectrometry-based proteomics and network biology. Annu Rev Biochem 81: 379–405

    Article  CAS  PubMed  Google Scholar 

  16. Kim JM, Kim J, Kim YH et al (2013) Comparative secretome analysis of human bone marrow-derived mesenchymal stem cells during osteogenesis. J Cell Physiol 228:216–224

    Article  CAS  PubMed  Google Scholar 

  17. Faca V, Pitteri SJ, Newcomb L et al (2007) Contribution of protein fractionation to depth of analysis of the serum and plasma proteomes. J Proteome Res 6:3558–3565

    Article  CAS  PubMed  Google Scholar 

  18. Faça VM, Ventura AP, Fitzgibbon MP et al (2008) Proteomic analysis of ovarian cancer cells reveals dynamic processes of protein secretion and shedding of extra-cellular domains. PLoS One 3:e2425

    Article  PubMed  PubMed Central  Google Scholar 

  19. Emanuelsson O, Brunak S, von Heijne G et al (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971

    Article  CAS  PubMed  Google Scholar 

  20. Petersen TN, Brunak S, von Heijne G et al (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  PubMed  Google Scholar 

  21. Faca V, Coram M, Phanstiel D et al (2006) Quantitative analysis of acrylamide labeled serum proteins by LC-MS/MS. J Proteome Res 5:2009–2018

    Article  CAS  PubMed  Google Scholar 

  22. Rauch A, Bellew M, Eng J et al (2006) Computational Proteomics Analysis System (CPAS): an extensible, open-source analytic system for evaluating and publishing proteomic data and high throughput biological experiments. J Proteome Res 5:112–121

    Article  CAS  PubMed  Google Scholar 

  23. Keller A, Nesvizhskii AI, Kolker E et al (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74:5383–5392

    Article  CAS  PubMed  Google Scholar 

  24. Nesvizhskii AI, Keller A, Kolker E et al (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75: 4646–4658

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the São Paulo State Research Foundation, Brazil, grant 2011/09740-1; CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), Brazil, Investigator Fellowship grant 301570/2011-6, Center for Integrative Systems Biology, University of São Paulo, grant 12.1.17598.1.3, and Center for Cell-Based Therapy (CTC-CEPID), grant 2013/08135-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitor Marcel Faça .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Faça, V.M., Orellana, M.D., Greene, L.J., Covas, D.T. (2016). Proteomic Analysis of Mesenchymal Stem Cells. In: Gnecchi, M. (eds) Mesenchymal Stem Cells. Methods in Molecular Biology, vol 1416. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3584-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3584-0_31

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3582-6

  • Online ISBN: 978-1-4939-3584-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics