Skip to main content

Atypical Inflammasomes

  • Protocol
  • First Online:
NLR Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1417))

Abstract

Pattern recognition receptors, including members of the NLR and PYHIN families, are essential for recognition of both pathogen- and host-derived danger signals. A number of molecules in these families are capable of forming multiprotein complexes termed inflammasomes that result in the activation of caspase-1. In addition to NLRP1, NLRP3, NLRC4, and AIM2, which form well-described inflammasome complexes, IFI16, NLRP6, NLRP7, NLRP12, and NLRC5 have also been proposed to form inflammasomes under specific conditions. The structure and function of these atypical inflammasomes will be highlighted here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–832. doi:10.1016/j.cell.2010.01.040

    Article  CAS  PubMed  Google Scholar 

  2. Schattgen SA, Fitzgerald KA (2011) The PYHIN protein family as mediators of host defenses. Immunol Rev 243(1):109–118. doi:10.1111/j.1600-065X.2011.01053.x

    Article  CAS  PubMed  Google Scholar 

  3. Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES (2009) AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458(7237):509–513. doi:10.1038/nature07710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fernandes-Alnemri T, Yu JW, Juliana C, Solorzano L, Kang S, Wu J, Datta P, McCormick M, Huang L, McDermott E, Eisenlohr L, Landel CP, Alnemri ES (2010) The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat Immunol 11(5):385–393. doi:10.1038/ni.1859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jones JW, Kayagaki N, Broz P, Henry T, Newton K, O’Rourke K, Chan S, Dong J, Qu Y, Roose-Girma M, Dixit VM, Monack DM (2010) Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. Proc Natl Acad Sci U S A 107(21):9771–9776. doi:10.1073/pnas.1003738107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rathinam VA, Jiang Z, Waggoner SN, Sharma S, Cole LE, Waggoner L, Vanaja SK, Monks BG, Ganesan S, Latz E, Hornung V, Vogel SN, Szomolanyi-Tsuda E, Fitzgerald KA (2010) The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol 11(5):395–402. doi:10.1038/ni.1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ludlow LE, Johnstone RW, Clarke CJ (2005) The HIN-200 family: more than interferon-inducible genes? Exp Cell Res 308(1):1–17. doi:10.1016/j.yexcr.2005.03.032

    Article  CAS  PubMed  Google Scholar 

  8. Dawson MJ, Elwood NJ, Johnstone RW, Trapani JA (1998) The IFN-inducible nucleoprotein IFI 16 is expressed in cells of the monocyte lineage, but is rapidly and markedly down-regulated in other myeloid precursor populations. J Leukoc Biol 64(4):546–554

    CAS  PubMed  Google Scholar 

  9. Gariglio M, Azzimonti B, Pagano M, Palestro G, De Andrea M, Valente G, Voglino G, Navino L, Landolfo S (2002) Immunohistochemical expression analysis of the human interferon-inducible gene IFI16, a member of the HIN200 family, not restricted to hematopoietic cells. J Interferon Cytokine Res 22(7):815–821. doi:10.1089/107999002320271413

    Article  CAS  PubMed  Google Scholar 

  10. Wei W, Clarke CJ, Somers GR, Cresswell KS, Loveland KA, Trapani JA, Johnstone RW (2003) Expression of IFI 16 in epithelial cells and lymphoid tissues. Histochem Cell Biol 119(1):45–54. doi:10.1007/s00418-002-0485-0

    CAS  PubMed  Google Scholar 

  11. Kerur N, Veettil MV, Sharma-Walia N, Bottero V, Sadagopan S, Otageri P, Chandran B (2011) IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection. Cell Host Microbe 9(5):363–375. doi:10.1016/j.chom.2011.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB, Sharma S, Sirois CM, Jin T, Latz E, Xiao TS, Fitzgerald KA, Paludan SR, Bowie AG (2010) IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol 11(11):997–1004. doi:10.1038/ni.1932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ishikawa H, Ma Z, Barber GN (2009) STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461(7265):788–792. doi:10.1038/nature08476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stetson DB, Medzhitov R (2006) Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24(1):93–103. doi:10.1016/j.immuni.2005.12.003

    Article  CAS  PubMed  Google Scholar 

  15. Ting JP, Davis BK (2005) CATERPILLER: a novel gene family important in immunity, cell death, and diseases. Annu Rev Immunol 23:387–414. doi:10.1146/annurev.immunol.23.021704.115616

    Article  CAS  PubMed  Google Scholar 

  16. Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265. doi:10.1146/annurev.immunol.021908.132715

    Article  CAS  PubMed  Google Scholar 

  17. Ye Z, Ting JP (2008) NLR, the nucleotide-binding domain leucine-rich repeat containing gene family. Curr Opin Immunol 20(1):3–9. doi:10.1016/j.coi.2008.01.003

    Article  CAS  PubMed  Google Scholar 

  18. Grenier JM, Wang L, Manji GA, Huang WJ, Al-Garawi A, Kelly R, Carlson A, Merriam S, Lora JM, Briskin M, DiStefano PS, Bertin J (2002) Functional screening of five PYPAF family members identifies PYPAF5 as a novel regulator of NF-kappaB and caspase-1. FEBS Lett 530(1–3):73–78

    Article  CAS  PubMed  Google Scholar 

  19. Normand S, Delanoye-Crespin A, Bressenot A, Huot L, Grandjean T, Peyrin-Biroulet L, Lemoine Y, Hot D, Chamaillard M (2011) Nod-like receptor pyrin domain-containing protein 6 (NLRP6) controls epithelial self-renewal and colorectal carcinogenesis upon injury. Proc Natl Acad Sci U S A 108(23):9601–9606. doi:10.1073/pnas.1100981108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Anand PK, Malireddi RK, Lukens JR, Vogel P, Bertin J, Lamkanfi M, Kanneganti TD (2012) NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens. Nature 488(7411):389–393. doi:10.1038/nature11250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen GY, Liu M, Wang F, Bertin J, Nunez G (2011) A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J Immunol 186(12):7187–7194. doi:10.4049/jimmunol.1100412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, Booth CJ, Peaper DR, Bertin J, Eisenbarth SC, Gordon JI, Flavell RA (2011) NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145(5):745–757. doi:10.1016/j.cell.2011.04.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wlodarska M, Thaiss CA, Nowarski R, Henao-Mejia J, Zhang JP, Brown EM, Frankel G, Levy M, Katz MN, Philbrick WM, Elinav E, Finlay BB, Flavell RA (2014) NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 156(5):1045–1059. doi:10.1016/j.cell.2014.01.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Khare S, Dorfleutner A, Bryan NB, Yun C, Radian AD, de Almeida L, Rojanasakul Y, Stehlik C (2012) An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity 36(3):464–476. doi:10.1016/j.immuni.2012.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kinoshita T, Wang Y, Hasegawa M, Imamura R, Suda T (2005) PYPAF3, a PYRIN-containing APAF-1-like protein, is a feedback regulator of caspase-1-dependent interleukin-1beta secretion. J Biol Chem 280(23):21720–21725. doi:10.1074/jbc.M410057200

    Article  CAS  PubMed  Google Scholar 

  26. Murdoch S, Djuric U, Mazhar B, Seoud M, Khan R, Kuick R, Bagga R, Kircheisen R, Ao A, Ratti B, Hanash S, Rouleau GA, Slim R (2006) Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet 38(3):300–302. doi:10.1038/ng1740

    Article  CAS  PubMed  Google Scholar 

  27. Tschopp J, Martinon F, Burns K (2003) NALPs: a novel protein family involved in inflammation. Nat Rev Mol Cell Biol 4(2):95–104. doi:10.1038/nrm1019

    Article  CAS  PubMed  Google Scholar 

  28. Messaed C, Akoury E, Djuric U, Zeng J, Saleh M, Gilbert L, Seoud M, Qureshi S, Slim R (2011) NLRP7, a nucleotide oligomerization domain-like receptor protein, is required for normal cytokine secretion and co-localizes with Golgi and the microtubule-organizing center. J Biol Chem 286(50):43313–43323. doi:10.1074/jbc.M111.306191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Okada K, Hirota E, Mizutani Y, Fujioka T, Shuin T, Miki T, Nakamura Y, Katagiri T (2004) Oncogenic role of NALP7 in testicular seminomas. Cancer Sci 95(12):949–954

    Article  CAS  PubMed  Google Scholar 

  30. Wang CM, Dixon PH, Decordova S, Hodges MD, Sebire NJ, Ozalp S, Fallahian M, Sensi A, Ashrafi F, Repiska V, Zhao J, Xiang Y, Savage PM, Seckl MJ, Fisher RA (2009) Identification of 13 novel NLRP7 mutations in 20 families with recurrent hydatidiform mole; missense mutations cluster in the leucine-rich region. J Med Genet 46(8):569–575. doi:10.1136/jmg.2008.064196

    Article  CAS  PubMed  Google Scholar 

  31. Grimes DA (1984) Epidemiology of gestational trophoblastic disease. Am J Obstet Gynecol 150(3):309–318

    Article  CAS  PubMed  Google Scholar 

  32. Savage P, Williams J, Wong SL, Short D, Casalboni S, Catalano K, Seckl M (2010) The demographics of molar pregnancies in England and Wales from 2000–2009. J Reprod Med 55(7–8):341–345

    PubMed  Google Scholar 

  33. Berkowitz RS, Goldstein DP (2009) Clinical practice. Molar pregnancy. N Engl J Med 360(16):1639–1645. doi:10.1056/NEJMcp0900696

    Article  CAS  PubMed  Google Scholar 

  34. Kou YC, Shao L, Peng HH, Rosetta R, del Gaudio D, Wagner AF, Al-Hussaini TK, Van den Veyver IB (2008) A recurrent intragenic genomic duplication, other novel mutations in NLRP7 and imprinting defects in recurrent biparental hydatidiform moles. Mol Hum Reprod 14(1):33–40. doi:10.1093/molehr/gam079

    Article  CAS  PubMed  Google Scholar 

  35. Qian J, Deveault C, Bagga R, Xie X, Slim R (2007) Women heterozygous for NALP7/NLRP7 mutations are at risk for reproductive wastage: report of two novel mutations. Hum Mutat 28(7):741. doi:10.1002/humu.9498

    Article  PubMed  Google Scholar 

  36. Van Gorp H, Kuchmiy A, Van Hauwermeiren F, Lamkanfi M (2014) NOD-like receptors interfacing the immune and reproductive systems. FEBS J 281(20):4568–4582. doi:10.1111/febs.13014

    Article  PubMed  Google Scholar 

  37. Pinheiro AS, Eibl C, Ekman-Vural Z, Schwarzenbacher R, Peti W (2011) The NLRP12 pyrin domain: structure, dynamics, and functional insights. J Mol Biol 413(4):790–803. doi:10.1016/j.jmb.2011.09.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang L, Manji GA, Grenier JM, Al-Garawi A, Merriam S, Lora JM, Geddes BJ, Briskin M, DiStefano PS, Bertin J (2002) PYPAF7, a novel PYRIN-containing Apaf1-like protein that regulates activation of NF-kappa B and caspase-1-dependent cytokine processing. J Biol Chem 277(33):29874–29880. doi:10.1074/jbc.M203915200

    Article  CAS  PubMed  Google Scholar 

  39. Williams KL, Lich JD, Duncan JA, Reed W, Rallabhandi P, Moore C, Kurtz S, Coffield VM, Accavitti-Loper MA, Su L, Vogel SN, Braunstein M, Ting JP (2005) The CATERPILLER protein monarch-1 is an antagonist of toll-like receptor-, tumor necrosis factor alpha-, and Mycobacterium tuberculosis-induced pro-inflammatory signals. J Biol Chem 280(48):39914–39924. doi:10.1074/jbc.M502820200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lich JD, Williams KL, Moore CB, Arthur JC, Davis BK, Taxman DJ, Ting JP (2007) Monarch-1 suppresses non-canonical NF-kappaB activation and p52-dependent chemokine expression in monocytes. J Immunol 178(3):1256–1260

    Article  CAS  PubMed  Google Scholar 

  41. Allen IC, Wilson JE, Schneider M, Lich JD, Roberts RA, Arthur JC, Woodford RM, Davis BK, Uronis JM, Herfarth HH, Jobin C, Rogers AB, Ting JP (2012) NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-kappaB signaling. Immunity 36(5):742–754. doi:10.1016/j.immuni.2012.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zaki MH, Vogel P, Malireddi RK, Body-Malapel M, Anand PK, Bertin J, Green DR, Lamkanfi M, Kanneganti TD (2011) The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell 20(5):649–660. doi:10.1016/j.ccr.2011.10.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vladimer GI, Weng D, Paquette SW, Vanaja SK, Rathinam VA, Aune MH, Conlon JE, Burbage JJ, Proulx MK, Liu Q, Reed G, Mecsas JC, Iwakura Y, Bertin J, Goguen JD, Fitzgerald KA, Lien E (2012) The NLRP12 inflammasome recognizes Yersinia pestis. Immunity 37(1):96–107. doi:10.1016/j.immuni.2012.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Allen IC, McElvania-Tekippe E, Wilson JE, Lich JD, Arthur JC, Sullivan JT, Braunstein M, Ting JP (2013) Characterization of NLRP12 during the in vivo host immune response to Klebsiella pneumoniae and Mycobacterium tuberculosis. PLoS One 8(4), e60842. doi:10.1371/journal.pone.0060842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zaki MH, Man SM, Vogel P, Lamkanfi M, Kanneganti TD (2014) Salmonella exploits NLRP12-dependent innate immune signaling to suppress host defenses during infection. Proc Natl Acad Sci U S A 111(1):385–390. doi:10.1073/pnas.1317643111

    Article  CAS  PubMed  Google Scholar 

  46. Girardin SE, Boneca IG, Carneiro LA, Antignac A, Jehanno M, Viala J, Tedin K, Taha MK, Labigne A, Zahringer U, Coyle AJ, DiStefano PS, Bertin J, Sansonetti PJ, Philpott DJ (2003) Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300(5625):1584–1587. doi:10.1126/science.1084677

    Article  CAS  PubMed  Google Scholar 

  47. Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, Philpott DJ, Sansonetti PJ (2003) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278(11):8869–8872. doi:10.1074/jbc.C200651200

    Article  CAS  PubMed  Google Scholar 

  48. Strober W, Murray PJ, Kitani A, Watanabe T (2006) Signalling pathways and molecular interactions of NOD1 and NOD2. Nat Rev Immunol 6(1):9–20. doi:10.1038/nri1747

    Article  CAS  PubMed  Google Scholar 

  49. Miao EA, Mao DP, Yudkovsky N, Bonneau R, Lorang CG, Warren SE, Leaf IA, Aderem A (2010) Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci U S A 107(7):3076–3080. doi:10.1073/pnas.0913087107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sutterwala FS, Mijares LA, Li L, Ogura Y, Kazmierczak BI, Flavell RA (2007) Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J Exp Med 204(13):3235–3245. doi:10.1084/jem.20071239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, Liu L, Shao F (2011) The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477(7366):596–600. doi:10.1038/nature10510

    Article  CAS  PubMed  Google Scholar 

  52. Yao Y, Qian Y (2013) Expression regulation and function of NLRC5. Protein Cell 4(3):168–175. doi:10.1007/s13238-012-2109-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Martin BK, Chin KC, Olsen JC, Skinner CA, Dey A, Ozato K, Ting JP (1997) Induction of MHC class I expression by the MHC class II transactivator CIITA. Immunity 6(5):591–600

    Article  CAS  PubMed  Google Scholar 

  54. Steimle V, Siegrist CA, Mottet A, Lisowska-Grospierre B, Mach B (1994) Regulation of MHC class II expression by interferon-gamma mediated by the transactivator gene CIITA. Science 265(5168):106–109

    Article  CAS  PubMed  Google Scholar 

  55. Kobayashi KS, van den Elsen PJ (2012) NLRC5: a key regulator of MHC class I-dependent immune responses. Nat Rev Immunol 12(12):813–820. doi:10.1038/nri3339

    Article  CAS  PubMed  Google Scholar 

  56. Davis BK, Roberts RA, Huang MT, Willingham SB, Conti BJ, Brickey WJ, Barker BR, Kwan M, Taxman DJ, Accavitti-Loper MA, Duncan JA, Ting JP (2011) Cutting edge: NLRC5-dependent activation of the inflammasome. J Immunol 186(3):1333–1337. doi:10.4049/jimmunol.1003111

    Article  CAS  PubMed  Google Scholar 

  57. Biswas A, Meissner TB, Kawai T, Kobayashi KS (2012) Cutting edge: impaired MHC class I expression in mice deficient for Nlrc5/class I transactivator. J Immunol 189(2):516–520. doi:10.4049/jimmunol.1200064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Meissner TB, Li A, Biswas A, Lee KH, Liu YJ, Bayir E, Iliopoulos D, van den Elsen PJ, Kobayashi KS (2010) NLR family member NLRC5 is a transcriptional regulator of MHC class I genes. Proc Natl Acad Sci U S A 107(31):13794–13799. doi:10.1073/pnas.1008684107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Meissner TB, Li A, Kobayashi KS (2012) NLRC5: a newly discovered MHC class I transactivator (CITA). Microbes Infect 14(6):477–484. doi:10.1016/j.micinf.2011.12.007

    Article  CAS  PubMed  Google Scholar 

  60. Meissner TB, Li A, Liu YJ, Gagnon E, Kobayashi KS (2012) The nucleotide-binding domain of NLRC5 is critical for nuclear import and transactivation activity. Biochem Biophys Res Commun 418(4):786–791. doi:10.1016/j.bbrc.2012.01.104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Benko S, Magalhaes JG, Philpott DJ, Girardin SE (2010) NLRC5 limits the activation of inflammatory pathways. J Immunol 185(3):1681–1691. doi:10.4049/jimmunol.0903900

    Article  CAS  PubMed  Google Scholar 

  62. Cui J, Zhu L, Xia X, Wang HY, Legras X, Hong J, Ji J, Shen P, Zheng S, Chen ZJ, Wang RF (2010) NLRC5 negatively regulates the NF-kappaB and type I interferon signaling pathways. Cell 141(3):483–496. doi:10.1016/j.cell.2010.03.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tong Y, Cui J, Li Q, Zou J, Wang HY, Wang RF (2012) Enhanced TLR-induced NF-kappaB signaling and type I interferon responses in NLRC5 deficient mice. Cell Res 22(5):822–835. doi:10.1038/cr.2012.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Neerincx A, Lautz K, Menning M, Kremmer E, Zigrino P, Hosel M, Buning H, Schwarzenbacher R, Kufer TA (2010) A role for the human nucleotide-binding domain, leucine-rich repeat-containing family member NLRC5 in antiviral responses. J Biol Chem 285(34):26223–26232. doi:10.1074/jbc.M110.109736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ranjan P, Singh N, Kumar A, Neerincx A, Kremmer E, Cao W, Davis WG, Katz JM, Gangappa S, Lin R, Kufer TA, Sambhara S (2015) NLRC5 interacts with RIG-I to induce a robust antiviral response against influenza virus infection. Eur J Immunol 45:758–772. doi:10.1002/eji.201344412

    Article  CAS  PubMed  Google Scholar 

  66. Kumar H, Pandey S, Zou J, Kumagai Y, Takahashi K, Akira S, Kawai T (2011) NLRC5 deficiency does not influence cytokine induction by virus and bacteria infections. J Immunol 186(2):994–1000. doi:10.4049/jimmunol.1002094

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

NIH grants R01 AI087630 (F.S.S.) and T32 AI007485 (A.M.J.) supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fayyaz S. Sutterwala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Janowski, A.M., Sutterwala, F.S. (2016). Atypical Inflammasomes. In: Di Virgilio, F., Pelegrín, P. (eds) NLR Proteins. Methods in Molecular Biology, vol 1417. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3566-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3566-6_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3564-2

  • Online ISBN: 978-1-4939-3566-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics