Skip to main content

An Overview and History of Glyco-Engineering in Insect Expression Systems

  • Protocol
Glyco-Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1321))

Abstract

Insect systems, including the baculovirus-insect cell and Drosophila S2 cell systems are widely used as recombinant protein production platforms. Historically, however, no insect-based system has been able to produce glycoproteins with human-type glycans, which often influence the clinical efficacy of therapeutic glycoproteins and the overall structures and functions of other recombinant glycoprotein products. In addition, some insect cell systems produce N-glycans with immunogenic epitopes. Over the past 20 years, these problems have been addressed by efforts to glyco-engineer insect-based expression systems. These efforts have focused on introducing the capacity to produce complex-type, terminally sialylated N-glycans and eliminating the capacity to produce immunogenic N-glycans. Various glyco-engineering approaches have included genetically engineering insect cells, baculoviral vectors, and/or insects with heterologous genes encoding the enzymes required to produce various glycosyltransferases, sugars, nucleotide sugars, and nucleotide sugar transporters, as well as an enzyme that can deplete GDP-fucose. In this chapter, we present an overview and history of glyco-engineering in insect expression systems as a prelude to subsequent chapters, which will highlight various methods used for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Smith GE, Summers MD, Fraser MJ (1983) Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol 3:2156–2165

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Pennock GD, Shoemaker C, Miller LK (1984) Strong and regulated expression of Escherichia coli beta-galactosidase in insect cells with a baculovirus vector. Mol Cell Biol 4:399–406

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Rio DC, Rubin GM (1985) Transformation of cultured Drosophila melanogaster cells with a dominant selectable marker. Mol Cell Biol 5:1833–1838

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Johansen H, van der Straten A, Sweet R et al (1989) Regulated expression at high copy number allows production of a growth-inhibitory oncogene product in Drosophila Schneider cells. Gene Dev 3:882–889

    Article  CAS  PubMed  Google Scholar 

  5. Jarvis DL (1997) Baculovirus expression vectors. In: Miller LK (ed) The baculoviruses. Plenum, New York, pp 389–431

    Chapter  Google Scholar 

  6. Jarvis DL (2009) Baculovirus-insect cell expression systems. Methods Enzymol 463:191–222

    CAS  PubMed  Google Scholar 

  7. Maeda S (1989) Expression of foreign genes in insects using baculovirus vectors. Annu Rev Entomol 34:351–372

    Article  CAS  PubMed  Google Scholar 

  8. Usami A, Suzuki T, Nagaya H et al (2010) Silkworm as a host of baculovirus expression. Curr Pharm Biotechnol 11:246–250

    Article  CAS  PubMed  Google Scholar 

  9. Choudary PV, Kamita SG, Maeda S (1995) Expression of foreign genes in Bombyx mori larvae using baculovirus vectors. Methods Mol Biol 39:243–264

    CAS  PubMed  Google Scholar 

  10. Kato T, Kajikawa M, Maenaka K et al (2010) Silkworm expression system as a platform technology in life science. Appl Microbiol Biotechnol 85:459–470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Lynn DE (2007) Available lepidopteran insect cell lines. Methods Mol Biol 388:117–138

    CAS  PubMed  Google Scholar 

  12. Jarvis DL (1993) Continuous foreign gene expression in stably-transformed insect cells. In: Goosen MFA, Daugulis A, Faulkner P (eds) Insect cell culture engineering. Marcel Dekker Inc, New York, pp 193–217

    Google Scholar 

  13. Schetz JA, Shankar EP (2004) Protein expression in the Drosophila Schneider 2 cell system. Curr Protoc Neurosci. Chapter 4, Unit 4, 16

    Google Scholar 

  14. Douris V, Swevers L, Labropoulou V et al (2006) Stably transformed insect cell lines: tools for expression of secreted and membrane-anchored proteins and high-throughput screening platforms for drug and insecticide discovery. Adv Virus Res 68:113–156

    CAS  PubMed  Google Scholar 

  15. Cherbas L, Cherbas P (2007) Transformation of Drosophila cell lines: an alternative approach to exogenous protein expression. Methods Mol Biol 388:317–340

    CAS  PubMed  Google Scholar 

  16. Pfeifer TA (1998) Expression of heterologous proteins in stable insect cell culture. Curr Opin Biotechnol 9:518–521

    Article  CAS  PubMed  Google Scholar 

  17. Katoh T, Tiemeyer M (2013) The N’s and O’s of Drosophila glycoprotein glycobiology. Glycoconj J 30:57–66

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. ten Hagen KG, Zhang L, Tian E et al (2009) Glycobiology on the fly: developmental and mechanistic insights from Drosophila. Glycobiology 19:102–111

    Article  PubMed Central  PubMed  Google Scholar 

  19. Marz L, Altmann F, Staudacher E et al (1995) Protein glycosylation in insects. In: Montreuil J, Vliegenthart JFG, Schachter H (eds) Glycoproteins, vol 29a. Elsevier, Amsterdam, pp 543–563

    Chapter  Google Scholar 

  20. Altmann F, Staudacher E, Wilson IB et al (1999) Insect cells as hosts for the expression of recombinant glycoproteins. Glycoconj J 16:109–123

    Article  CAS  PubMed  Google Scholar 

  21. Marchal I, Jarvis DL, Cacan R et al (2001) Glycoproteins from insect cells: sialylated or not? Biol Chem 382:151–159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Tomiya N, Narang S, Lee YC et al (2004) Comparing N-glycan processing in mammalian cell lines to native and engineered lepidopteran insect cell lines. Glycoconj J 21:343–360

    Article  CAS  PubMed  Google Scholar 

  23. Harrison RL, Jarvis DL (2006) Protein N-glycosylation in the baculovirus-insect cell expression system and engineering of insect cells to produce “mammalianized” recombinant glycoproteins. Adv Virus Res 68:159–191

    CAS  PubMed  Google Scholar 

  24. Kim K, Lawrence SM, Park J et al (2002) Expression of a functional Drosophila melanogaster N-acetylneuraminic acid (Neu5Ac) phosphate synthase gene: evidence for endogenous sialic acid biosynthetic ability in insects. Glycobiology 12:73–83

    Article  CAS  PubMed  Google Scholar 

  25. Koles K, Irvine KD, Panin VM (2004) Functional characterization of a Drosophila sialyltransferase. J Biol Chem 279:4346–4357

    Article  CAS  PubMed  Google Scholar 

  26. Viswanathan K, Tomiya N, Singh S et al (2006) Expression of a functional Drosophila melanogaster CMP-sialic acid synthetase: differential localization of the Drosophila and human enzymes. J Biol Chem 281:15929–15940

    Article  CAS  PubMed  Google Scholar 

  27. Aoki K, Perlman M, Lim JM et al (2007) Dynamic developmental elaboration of N-linked glycan complexity in the Drosophila melanogaster embryo. J Biol Chem 282:9127–9142

    Article  CAS  PubMed  Google Scholar 

  28. Koles K, Lim JM, Aoki K et al (2007) Identification of N-glycosylated proteins from the central nervous system of Drosophila melanogaster. Glycobiology 17:1388–1403

    Article  CAS  PubMed  Google Scholar 

  29. Repnikova E, Koles K, Nakamura M et al (2010) Sialyltransferase regulates nervous system function in Drosophila. J Neurosci 30:6466–6476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Altmann F, Schwihla H, Staudacher E et al (1995) Insect cells contain an unusual, membrane-bound ß-N-acetylglucosaminidase probably involved in the processing of protein N-glycans. J Biol Chem 270:17344–17349

    Article  CAS  PubMed  Google Scholar 

  31. Leonard R, Rendic D, Rabouille C et al (2006) The Drosophila fused lobes gene encodes an N-acetylglucosaminidase involved in N-glycan processing. J Biol Chem 281:4867–4875

    Article  CAS  PubMed  Google Scholar 

  32. Geisler C, Aumiller JJ, Jarvis DL (2008) A fused lobes gene encodes the processing ß-N-acetylglucosaminidase in Sf9 cells. J Biol Chem 283:11330–11339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Geisler C, Jarvis DL (2010) Identification of genes encoding N-glycan processing ß-N-acetylglucosaminidases in Trichoplusia ni and Bombyx mori: implications for glyco-engineering of baculovirus expression systems. Biotechnol Prog 26:34–44

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Kulakosky PC, Hughes PR, Wood HA (1998) N-linked glycosylation of a baculovirus-expressed recombinant glycoprotein in insect larvae and tissue culture cells. Glycobiology 8:741–745

    Article  CAS  PubMed  Google Scholar 

  35. Park EY, Ishikiriyama M, Nishina T et al (2009) Human IgG1 expression in silkworm larval hemolymph using BmNPV bacmids and its N-linked glycan structure. J Biotechnol 139:108–114

    Article  CAS  PubMed  Google Scholar 

  36. Sasaki K, Kajikawa M, Kuroki K et al (2009) Silkworm expression and sugar profiling of human immune cell surface receptor, KIR2DL1. Biochem Biophys Res Commun 387:575–580

    Article  CAS  PubMed  Google Scholar 

  37. Lin SC, Jan JT, Dionne B et al (2013) Different immunity elicited by recombinant H5N1 hemagglutinin proteins containing pauci-mannose, high-mannose, or complex type N-glycans. PLoS One 8:e66719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Watanabe S, Kokuho T, Takahashi H et al (2001) Sialylation of N-glycans on the recombinant proteins expressed by a baculovirus-insect cell system under ß-N-acetylglucosaminidase inhibition. J Biol Chem 277:5090–5093

    Article  PubMed  Google Scholar 

  39. Kim YK, Kim KR, Kang DG et al (2009) Suppression of ß-N-acetylglucosaminidase in the N-glycosylation pathway for complex glycoprotein formation in Drosophila S2 cells. Glycobiology 19:301–308

    Article  CAS  PubMed  Google Scholar 

  40. Kim YK, Kim KR, Kang DG et al (2011) Expression of ß-1,4-galactosyltransferase and suppression of ß-N-acetylglucosaminidase to aid synthesis of complex N-glycans in insect Drosophila S2 cells. J Biotech 153:145–152

    Article  CAS  Google Scholar 

  41. Chang KH, Yang JM, Chun HO et al (2005) Enhanced activity of recombinant ß-secretase from Drosophila melanogaster S2 cells transformed with cDNAs encoding human ß1,4-galactosyltransferase and Galß1,4-GlcNAc α2,6-sialyltransferase. J Biotechnol 116:359–367

    Article  PubMed  Google Scholar 

  42. Hu JB, Zhang P, Wang MX et al (2012) A transgenic Bm cell line of piggyBac transposon-derived targeting expression of humanized glycoproteins through N-glycosylation. Mol Biol Rep 39:8405–8413

    Article  CAS  PubMed  Google Scholar 

  43. Kidd IM, Emery VC (1993) The use of baculoviruses as expression vectors. Appl Biochem Biotechnol 42:137–159

    Article  CAS  PubMed  Google Scholar 

  44. Roy P (1996) Genetically engineered particulate virus-like structures and their use as vaccine delivery systems. Intervirology 39:62–71

    CAS  PubMed  Google Scholar 

  45. Fitzgerald DJ, Berger P, Schaffitzel C et al (2006) Protein complex expression by using multigene baculoviral vectors. Nat Methods 3:1021–1032

    Article  CAS  PubMed  Google Scholar 

  46. Harrison RL, Jarvis DL (2007) Transforming lepidopteran insect cells for continuous recombinant protein expression. Methods Mol Biol 388:299–316

    CAS  PubMed  Google Scholar 

  47. Harrison RL, Jarvis DL (2007) Transforming lepidopteran insect cells for improved protein processing. Methods Mol Biol 388:341–356

    CAS  PubMed  Google Scholar 

  48. Toth AM, Kuo CW, Khoo KH et al (2014) A new insect cell glyco-engineering approach provides baculovirus-inducible glycogene expression and increases human-type glycosylation efficiency. J Biotechnol 182–183:19–29

    Article  PubMed  Google Scholar 

  49. Hollister JR, Shaper JH, Jarvis DL (1998) Stable expression of mammalian ß1,4-galactosyltransferase extends the N-glycosylation pathway in insect cells. Glycobiology 8:473–480

    Article  CAS  PubMed  Google Scholar 

  50. Breitbach K, Jarvis DL (2001) Improved glycosylation of a foreign protein by Tn-5B1-4 cells engineered to express mammalian glycosyltransferases. Biotechnol Bioeng 74:230–239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Jarvis DL, Fleming JA, Kovacs GR et al (1990) Use of early baculovirus promoters for continuous expression and efficient processing of foreign gene products in stably transformed lepidopteran cells. Nat Biotechnol 8:950–955

    Article  CAS  Google Scholar 

  52. Culp JS, Johansen H, Hellmig B et al (1991) Regulated expression allows high level production and secretion of HIV-1 gp120 envelope glycoprotein in Drosophila Schneider cells. Nat Biotechnol 9:173–177

    Article  CAS  Google Scholar 

  53. Dorer DR, Henikoff S (1997) Transgene repeat arrays interact with distant heterochromatin and cause silencing in cis and trans. Genetics 147:1181–1190

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Pfeifer TA, Hegedus DD, Grigliatti TA et al (1997) Baculovirus immediate-early promoter-mediated expression of the Zeocin resistance gene for use as a dominant selectable marker in dipteran and lepidopteran insect cell lines. Gene 188:183–190

    Article  CAS  PubMed  Google Scholar 

  55. Farrell PJ, Lu M, Prevost J, Brown C et al (1998) High-level expression of secreted glycoproteins in transformed lepidopteran insect cells using a novel expression vector. Biotechnol Bioeng 60:656–663

    Article  CAS  PubMed  Google Scholar 

  56. Aumiller JJ, Mabashi-Asazuma H, Hillar A et al (2012) A new glyco-engineered insect cell line with an inducibly mammalianized protein N-glycosylation pathway. Glycobiology 22:417–428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Mabashi-Asazuma H, Kuo CW, Khoo KH et al (2014) A novel baculovirus vector for the production of nonfucosylated recombinant glycoproteins in insect cells. Glycobiology 24:325–340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Wagner R, Liedtke S, Kretzschmar E et al (1996) Elongation of the N-glycans of fowl plague virus hemagglutinin expressed in Spodoptera frugiperda (Sf9) cells by coexpression of human ß1,2-N-acetylglucosaminyltransferase I. Glycobiology 6:165–175

    Google Scholar 

  59. Jarvis DL, Finn EE (1996) Modifying the insect cell N-glycosylation pathway with immediate early baculovirus expression vectors. Nat Biotechnol 14:1288–1292

    Article  CAS  PubMed  Google Scholar 

  60. Wolff MW, Murhammer DW, Jarvis DL et al (1999) Electrophoretic analysis of glycoprotein glycans produced by lepidopteran insect cells infected with an immediate early recombinant baculovirus encoding mammalian ß1,4-galactosyltransferase. Glycoconj J 16:753–756

    Article  CAS  PubMed  Google Scholar 

  61. Ailor E, Takahashi N, Tsukamoto Y et al (2000) N-glycan patterns of human transferrin produced in Trichoplusia ni insect cells: effects of mammalian galactosyltransferase. Glycobiology 10:837–847

    Article  CAS  PubMed  Google Scholar 

  62. Palmberger D, Wilson IB, Berger I et al (2012) SweetBac: a new approach for the production of mammalianised glycoproteins in insect cells. PLoS One 7:e34226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Tomiya N, Howe D, Aumiller JJ et al (2003) Complex-type biantennary N-glycans of recombinant human transferrin from Trichoplusia ni insect cells expressing mammalian ß1,4-galactosyltransferase and ß1, 2-N-acetylglucosaminyltransferase II. Glycobiology 13:23–34

    Google Scholar 

  64. Seo NS, Hollister JR, Jarvis DL (2001) Mammalian glycosyltransferase expression allows sialoglycoprotein production by baculovirus-infected insect cells. Protein Expr Purif 22:234–241

    Article  CAS  PubMed  Google Scholar 

  65. Hooker AD, Green NH, Baines AJ et al (1999) Constraints on the transport and glycosylation of recombinant IFN-γ in Chinese hamster ovary and insect cells. Biotechnol Bioeng 63:559–572

    Article  CAS  PubMed  Google Scholar 

  66. Tomiya N, Ailor E, Lawrence SM et al (2001) Determination of nucleotides and sugar nucleotides involved in protein glycosylation by high-performance anion-exchange chromatography: sugar nucleotide contents in cultured insect cells and mammalian cells. Anal Biochem 293:129–137

    Article  CAS  PubMed  Google Scholar 

  67. Hollister JR, Conradt HO, Jarvis DL (2003) Evidence for a sialic acid salvaging pathway in lepidopteran insect cell lines. Glycobiology 13:487–495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Jarvis DL, Howe D, Aumiller JJ (2001) Novel baculovirus expression vectors that provide sialylation of recombinant glycoproteins in lepidopteran insect cells. J Virol 75:6223–6227

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Chang GD, Chen CJ, Lin CY et al (2003) Improvement of glycosylation in insect cells with mammalian glycosyltransferases. J Biotechnol 102:61–71

    Article  CAS  Google Scholar 

  70. Hill DR, Aumiller JJ, Shi X et al (2006) Isolation and analysis of a baculovirus vector that supports recombinant glycoprotein sialylation by SfSWT-1 cells cultured in serum-free medium. Biotechnol Bioeng 95:37–47

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Hollister JR, Grabenhorst E, Nimtz M et al (2002) Engineering the protein N-glycosylation pathway in insect cells for production of biantennary, complex N-glycans. Biochemistry 41:15093–15104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. von Horsten HH, Ogorek C, Blanchard V et al (2010) Production of non-fucosylated antibodies by co-expression of heterologous GDP-6-deoxy-D-lyxo-4-hexulose reductase. Glycobiology 20:1607–1618

    Article  Google Scholar 

  73. Shields RL, Lai J, Keck R et al (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcγ RIII and antibody-dependent cellular toxicity. J Biol Chem 277:26733–26740

    Article  CAS  PubMed  Google Scholar 

  74. Palmberger D, Ashjaei K, Strell S et al (2014) Minimizing fucosylation in insect cell-derived glycoproteins reduces binding to IgE antibodies from the sera of patients with allergy. Biotechnol J 9:1206–1214. doi:10.1002/biot.201300061

    Article  CAS  PubMed  Google Scholar 

  75. Blissard GW, Rohrmann GF (1989) Location, sequence, transcriptional mapping, and temporal expression of the gp64 envelope glycoprotein gene of the Orgyia pseudotsugata multicapsid nuclear polyhedrosis virus. Virology 170:537–555

    Article  CAS  PubMed  Google Scholar 

  76. Jarvis DL, Garcia A Jr (1994) Biosynthesis and processing of the Autographa californica nuclear polyhedrosis virus gp64 protein. Virology 205:300–313

    Article  CAS  PubMed  Google Scholar 

  77. Hollister J, Jarvis DL (2001) Engineering lepidopteran insect cells for sialoglycoprotein production by genetic transformation with mammalian ß1,4-galactosyltransferase and α2,6-sialyltransferase genes. Glycobiology 11:1–9

    Article  CAS  PubMed  Google Scholar 

  78. Yun EY, Goo TW, Kim SW et al (2005) Galactosylation and sialylation of mammalian glycoproteins produced by baculovirus-mediated gene expression in insect cells. Biotechnol Lett 27:1035–1039

    Article  CAS  PubMed  Google Scholar 

  79. Geisler C, Jarvis DL (2012) Innovative use of a bacterial enzyme involved in sialic acid degradation to initiate sialic acid biosynthesis in glyco-engineered insect cells. Metab Eng 14:642–652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Shi X, Harrison RL, Hollister JR et al (2007) Construction and characterization of new piggyBac vectors for constitutive or inducible expression of heterologous gene pairs and the identification of a previously unrecognized activator sequence in piggyBac. BMC Biotechnol 7:5

    Article  PubMed Central  PubMed  Google Scholar 

  81. Altmann F, Kornfeld G, Dalik T et al (1993) Processing of asparagine-linked oligosaccharides in insect cells. N-acetylglucosaminyltransferase I and II activities in cultured lepidopteran cells. Glycobiology 3:619–625

    Article  CAS  PubMed  Google Scholar 

  82. Okada T, Ihara H, Ito R et al (2010) N-glycosylation engineering of lepidopteran insect cells by the introduction of the ß1,4-N-acetylglucosaminyltransferase III gene. Glycobiology 20:1147–1159

    Google Scholar 

  83. Aumiller JJ, Hollister JR, Jarvis DL (2003) A transgenic lepidopteran insect cell line engineered to produce CMP-sialic acid and sialoglycoproteins. Glycobiology 13:497–507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Munster AK, Eckhardt M, Potvin B et al (1998) Mammalian cytidine 5′-monophosphate N-acetylneuraminic acid synthetase: a nuclear protein with evolutionarily conserved structural motifs. Proc Natl Acad Sci U S A 95:9140–9145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Koles K, Repnikova E, Pavlova G et al (2009) Sialylation in protostomes: a perspective from Drosophila genetics and biochemistry. Glycoconj J 26:313–324

    Article  CAS  PubMed  Google Scholar 

  86. Mabashi-Asazuma H, Shi X, Geisler C et al (2013) Impact of a human CMP-sialic acid transporter on recombinant glycoprotein sialylation in glyco-engineered insect cells. Glycobiology 23:199–210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Lin CH, Jarvis DL (2013) Utility of temporally distinct baculovirus promoters for constitutive and baculovirus-inducible transgene expression in transformed insect cells. J Biotechnol 165:11–17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Kim NY, Baek JY, Choi HS et al (2012) Short-hairpin RNA-mediated gene expression interference in Trichoplusia ni cells. J Microbiol Biotechnol 22:190–198

    Article  CAS  PubMed  Google Scholar 

  89. Tamura T, Thibert C, Royer C et al (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol 18:81–84

    Article  CAS  PubMed  Google Scholar 

  90. Tomita M (2011) Transgenic silkworms that weave recombinant proteins into silk cocoons. Biotechnol Lett 3:645–654

    Article  Google Scholar 

  91. Fraser MJ Jr (2012) Insect transgenesis: current applications and future prospects. Annu Rev Entomol 57:267–289

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research on insect protein glycosylation pathways, the baculovirus-insect cell system, and insect expression system engineering in the authors’ labs at the University of Wyoming and GlycoBac is currently supported by National Institute of General Medical Sciences grants R44GM093411, R43GM102982, R43GM109504, and National Institute of Allergy and Infectious Diseases grant R43AI112118. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of General Medical Sciences, the National Institute of Allergy and Infectious Disease, or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Geisler, C., Mabashi-Asazuma, H., Jarvis, D.L. (2015). An Overview and History of Glyco-Engineering in Insect Expression Systems. In: Castilho, A. (eds) Glyco-Engineering. Methods in Molecular Biology, vol 1321. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2760-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2760-9_10

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2759-3

  • Online ISBN: 978-1-4939-2760-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics