Skip to main content

Compartmentalized Microfluidic Platforms as Tool of Choice to Study the Interaction Between Neurons and Osteoblasts

  • Protocol
  • First Online:
Book cover Microfluidic and Compartmentalized Platforms for Neurobiological Research

Part of the book series: Neuromethods ((NM,volume 103))

Abstract

Microfluidic platforms have greatly evolved in the last few years. This technology is nowadays transversely spread all over the most abroad fields of research. Compartmentalized microfluidic devices, initially applied in the neuroscience field for the simplest biochemical tests, is presently used at the most complex assays such as cocultures for developmental and regeneration studies. Excitingly, these devices have emerged as a potential tool to study, not only the interaction within central nervous system cells but also the innervation of peripheral tissues. This latest issue have led us to select the compartmentalized microfluidic devices to conduct the studies of peripheral neuro-osteogenic interactions. In this chapter we describe and standardize the major proceedings to ensure the success of the coculture model for neurons and osteoblasts and further recommend the qualitative and quantitative analysis for two- or three-dimensional cocultures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taylor AM, Blurton-Jones M, Rhee SW et al (2005) A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Methods 2(8):599–605. doi:10.1038/nmeth777

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Park JW, Kim HJ, Byun JH et al (2009) Novel microfluidic platform for culturing neurons: culturing and biochemical analysis of neuronal components. Biotechnol J 4(11):1573–1577. doi:10.1002/biot.200900159

    Article  CAS  PubMed  Google Scholar 

  3. Neto E, Alves CJ, Sousa DM et al (2014) Sensory neurons and osteoblasts: close partners in a microfluidic platform. Integr Biol 6(6):586–595. doi:10.1039/c4ib00035h

    Article  CAS  Google Scholar 

  4. Park J, Koito H, Li J et al (2012) Multi-compartment neuron-glia co-culture platform for localized CNS axon-glia interaction study. Lab Chip 12(18):3296–3304. doi:10.1039/c2lc40303j

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Li L, Ren L, Liu W et al (2012) Spatiotemporally controlled and multifactor involved assay of neuronal compartment regeneration after chemical injury in an integrated microfluidics. Anal Chem 84(15):6444–6453. doi:10.1021/ac3013708

    Article  CAS  PubMed  Google Scholar 

  6. Southam KA, King AE, Blizzard CA et al (2013) Microfluidic primary culture model of the lower motor neuron-neuromuscular junction circuit. J Neurosci Methods 218(2):164–169. doi:10.1016/j.jneumeth.2013.06.002

    Article  PubMed  Google Scholar 

  7. Meyvantsson I, Beebe DJ (2008) Cell culture models in microfluidic systems. Annu Rev Anal Chem (Palo Alto Calif) 1:423–449. doi:10.1146/annurev.anchem.1.031207.113042

    Article  CAS  Google Scholar 

  8. Taylor AM, Jeon NL (2011) Microfluidic and compartmentalized platforms for neurobiological research. Crit Rev Biomed Eng 39(3):185–200, doi: 23fdcada05bfe64b,173b778115c55a66 [pii]

    Article  PubMed  Google Scholar 

  9. Trkov S, Eng G, Di Liddo R et al (2010) Micropatterned three-dimensional hydrogel system to study human endothelial-mesenchymal stem cell interactions. J Tissue Eng Regen Med 4(3):205–215. doi:10.1002/term.231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Gao Y, Majumdar D, Jovanovic B et al (2011) A versatile valve-enabled microfluidic cell co-culture platform and demonstration of its applications to neurobiology and cancer biology. Biomed Microdevices 13(3):539–548. doi:10.1007/s10544-011-9523-9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Wang DY, Wu SC, Lin SP et al (2011) Evaluation of transdifferentiation from mesenchymal stem cells to neuron-like cells using microfluidic patterned co-culture system. Biomed Microdevices 13(3):517–526. doi:10.1007/s10544-011-9520-z

    Article  CAS  PubMed  Google Scholar 

  12. Liu WW, Goodhouse J, Jeon NL et al (2008) A microfluidic chamber for analysis of neuron-to-cell spread and axonal transport of an alpha-herpesvirus. PloS One 3(6):e2382. doi:10.1371/journal.pone.0002382

    Article  PubMed Central  PubMed  Google Scholar 

  13. Park JW, Vahidi B, Taylor AM et al (2006) Microfluidic culture platform for neuroscience research. Nat Protoc 1(4):2128–2136. doi:10.1038/nprot.2006.316

    Article  CAS  PubMed  Google Scholar 

  14. Takeuchi A, Shimba K, Mori M et al (2012) Sympathetic neurons modulate the beat rate of pluripotent cell-derived cardiomyocytes in vitro. Integr Biol 4(12):1532–1539. doi:10.1039/c2ib20060k

    Article  CAS  Google Scholar 

  15. Taylor AM, Berchtold NC, Perreau VM et al (2009) Axonal mRNA in uninjured and regenerating cortical mammalian axons. J Neurosci 29(15):4697–4707. doi:10.1523/JNEUROSCI. 6130-08.2009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Yang Y, Gozen O, Watkins A et al (2009) Presynaptic regulation of astroglial excitatory neurotransmitter transporter GLT1. Neuron 61(6):880–894. doi:10.1016/j.neuron.2009.02.010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Evangelista MB, Hsiong SX, Fernandes R et al (2007) Upregulation of bone cell differentiation through immobilization within a synthetic extracellular matrix. Biomaterials 28(25):3644–3655. doi:10.1016/j.biomaterials.2007.04.028

    Article  CAS  PubMed  Google Scholar 

  18. Bidarra SJ, Barrias CC, Barbosa MA et al (2010) Immobilization of human mesenchymal stem cells within RGD-grafted alginate microspheres and assessment of their angiogenic potential. Biomacromolecules 11(8):1956–1964. doi:10.1021/bm100264a

    Article  CAS  PubMed  Google Scholar 

  19. Maia FR, Lourenco AH, Granja PL et al (2014) Effect of cell density on mesenchymal stem cells aggregation in RGD-alginate 3D matrices under osteoinductive conditions. Macromol Biosci. doi:10.1002/mabi.201300567

    PubMed  Google Scholar 

  20. Thomasson SA, Thomasson JR (2011) A comparison of CPD (critical point drying) and HMDS (hexamethyldisilazane) in the preparation of Corallorhiza spp. rhizomes and associated mycorrhizae for SEM (scanning electron microscopy). Trans Kans Acad Sci 114(1 & 2):129–134. doi:10.1660/062.114.0113

    Article  Google Scholar 

Download references

Acknowledgments

This work was financed by FEDER funds through the Programa Operacional Factores de Competitividade—COMPETE and by Portuguese funds through FCT—Fundação para a Ciência e a Tecnologia in the framework of the projects PEst-C/SAU/LA0002/2013 and PTDC/BIM-MED/1047/2012. EN is recipient of PhD fellowship SFRH/BD/81152/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meriem Lamghari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Neto, E., Paramos-de-Carvalho, D., Lourenço, A.H., Aguiar, P., Lamghari, M. (2015). Compartmentalized Microfluidic Platforms as Tool of Choice to Study the Interaction Between Neurons and Osteoblasts. In: Biffi, E. (eds) Microfluidic and Compartmentalized Platforms for Neurobiological Research. Neuromethods, vol 103. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2510-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2510-0_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2509-4

  • Online ISBN: 978-1-4939-2510-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics