Skip to main content

Label-Free Biosensor Assays in GPCR Screening

  • Protocol
  • First Online:
G Protein-Coupled Receptor Screening Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1272))

Abstract

About one third of currently marketed drugs target G protein-coupled receptors (GPCRs), which form the largest group of transmembrane proteins in the human proteome. GPCRs are ubiquitously expressed throughout the human body and play a pivotal role in a vast number of physiological and pathophysiological processes. Because of their intriguing complexity, their relevance, and yet unexploited potential in the treatment of diseases, GPCRs are studied intensively by both academic and industrial research labs.

Classical biochemical and molecular biology techniques, including traditional second messenger assays, took biomedical research to the next level and represent the fascinating power of in vitro pharmacology. While extremely efficient in capturing one clearly defined cellular readout, those methods do not authentically portray the events taking place in living cells as a whole; hence the process of drug discovery runs the risk to lose sight of a wider context already in early stages. Label-free cell-based assays hold the promise to overcome these shortcomings by considering cellular processes holistically. If combined with diligent assay adjustments, dynamic mass redistribution (DMR) technology is an excellent tool to investigate GPCR signaling. In this article we aim to provide guidance for scientists seeking for information on how to set up and optimize DMR assays with the objective to establish a knowledge base on deciphering integrated cellular readouts. For this reason we focus on a basic DMR protocol for the investigation of the long-chain fatty acid FFA1 receptor as a model family A GPCR and complement it with information that allow a sophisticated approach to more specialized scientific questions with the use of this comparatively novel method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang SS, Magnusson R, Bagby JS et al (1990) Guided-mode resonances in planar dielectric-layer diffraction gratings. J Opt Soc Am A 7:1470. doi:10.1364/JOSAA.7.001470

    Article  Google Scholar 

  2. Soria S, Katchalski T, Teitelbaum E et al (2004) Enhanced two-photon fluorescence excitation by resonant grating waveguide structures. Opt Lett 29:1989–1991

    Article  CAS  Google Scholar 

  3. Fang Y, Ferrie AM, Fontaine NH et al (2006) Resonant waveguide grating biosensor for living cell sensing. Biophys J 91:1925–1940. doi:10.1529/biophysj.105.077818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jiang J, Ganesh T, Du Y et al (2010) Neuroprotection by selective allosteric potentiators of the EP2 prostaglandin receptor. Proc Natl Acad Sci U S A 107:2307–2312. doi:10.1073/pnas.0909310107

    Article  PubMed  PubMed Central  Google Scholar 

  5. Verrier F, An S, Ferrie AM et al (2011) GPCRs regulate the assembly of a multienzyme complex for purine biosynthesis. Nat Chem Biol 7:909–915. doi:10.1038/nchembio.690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schröder R, Janssen N, Schmidt J et al (2010) Deconvolution of complex G protein–coupled receptor signaling in live cells using dynamic mass redistribution measurements. Nat Biotechnol 28:943–949. doi:10.1038/nbt.1671

    Article  CAS  PubMed  Google Scholar 

  7. Seasholtz TM, Majumdar M, Brown JH (1999) Rho as a mediator of G protein-coupled receptor signaling. Mol Pharmacol 55:949–956

    Article  CAS  Google Scholar 

  8. Touhara K, Inglese J, Pitcher JA et al (1994) Binding of G protein beta gamma-subunits to pleckstrin homology domains. J Biol Chem 269:10217–10220

    CAS  PubMed  Google Scholar 

  9. Lee PH, Gao A, van Staden C et al (2008) Evaluation of dynamic mass redistribution technology for pharmacological studies of recombinant and endogenously expressed g protein-coupled receptors. Assay Drug Dev Technol 6:83–94. doi:10.1089/adt.2007.126

    Article  CAS  PubMed  Google Scholar 

  10. Butcher EC (2005) Can cell systems biology rescue drug discovery? Nat Rev Drug Discov 4:461–467. doi:10.1038/nrd1754

    Article  CAS  PubMed  Google Scholar 

  11. van der Greef J, McBurney RN (2005) Innovation: rescuing drug discovery: in vivo systems pathology and systems pharmacology. Nat Rev Drug Discov 4:961–967. doi:10.1038/nrd1904

    Article  CAS  PubMed  Google Scholar 

  12. Kenakin T (2002) Recombinant roulette versus the apparent virtues of ‘natural’ cell receptor systems: receptor genotypes versus phenotypes. Trends Pharmacol Sci 23:403–404

    Article  CAS  Google Scholar 

  13. Siehler S (2007) G 12/13-dependent signaling of G-protein-coupled receptors: disease context and impact on drug discovery. Expert Opin Drug Discov 2:1591–1604. doi:10.1517/17460441.2.12.1591

    Article  CAS  PubMed  Google Scholar 

  14. Goldbard S (2006) Bringing primary cells to mainstream drug development and drug testing. Curr Opin Drug Discov Devel 9(1):110–116

    CAS  PubMed  Google Scholar 

  15. Dodgson K, Gedge L, Murray D et al (2009) A 100K well screen for a muscarinic receptor using the Epic® label-free system – a reflection on the benefits of the label-free approach to screening seven-transmembrane receptors. J Recept Signal Transduct Res 29:163–172. doi:10.1080/10799890903079844

    Article  CAS  PubMed  Google Scholar 

  16. Violin JD, Lefkowitz RJ (2007) Beta-arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol Sci 28:416–422. doi:10.1016/j.tips.2007.06.006

    Article  CAS  PubMed  Google Scholar 

  17. Irannejad R, Tomshine JC, Tomshine JR et al (2013) Conformational biosensors reveal GPCR signalling from endosomes. Nature 495:534–538. doi:10.1038/nature12000

    Article  CAS  PubMed  Google Scholar 

  18. Briscoe CP, Tadayyon M, Andrews JL et al (2003) The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem 278:11303–11311. doi:10.1074/jbc.M211495200

    Article  CAS  PubMed  Google Scholar 

  19. Itoh Y, Kawamata Y, Harada M et al (2003) Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 422:173–176. doi:10.1038/nature01478

    Article  CAS  PubMed  Google Scholar 

  20. Schmidt J, Liebscher K, Merten N et al (2011) Conjugated linoleic acids mediate insulin release through islet G protein-coupled receptor FFA1/GPR40. J Biol Chem 286:11890–11894. doi:10.1074/jbc.C110.200477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Christiansen E, Urban C, Merten N et al (2008) Discovery of potent and selective agonists for the free fatty acid receptor 1 (FFA 1 /GPR40), a potential target for the treatment of type II diabetes. J Med Chem 51:7061–7064. doi:10.1021/jm8010178

    Article  CAS  PubMed  Google Scholar 

  22. Takasaki K, Shoun H, Yamaguchi M et al (2004) Fungal ammonia fermentation, a novel metabolic mechanism that couples the dissimilatory and assimilatory pathways of both nitrate and ethanol. Role of acetyl CoA synthetase in anaerobic ATP synthesis. J Biol Chem 279:12414–12420. doi:10.1074/jbc.M313761200

    Article  PubMed  Google Scholar 

  23. Hennen S, Wang H, Peters L et al (2013) Decoding signaling and function of the orphan G protein-coupled receptor GPR17 with a small-molecule agonist. Sci Signal 6:ra93. doi:10.1126/scisignal.2004350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nesterov A, Hong M, Hertel C et al (2010) Screening a plant extract library for inhibitors of cholecystokinin receptor CCK1 pathways. J Biomol Screen 15:518–527. doi:10.1177/1087057110369702

    Article  CAS  PubMed  Google Scholar 

  25. Deng H, Wang C, Su M et al (2012) Probing biochemical mechanisms of action of muscarinic M3 receptor antagonists with label-free whole cell assays. Anal Chem 84:8232–8239. doi:10.1021/ac301495n

    Article  CAS  PubMed  Google Scholar 

  26. Humphries PS, Benbow JW, Bonin PD et al (2009) Synthesis and SAR of 1,2,3,4-tetrahydroisoquinolin-1-ones as novel G-protein-coupled receptor 40 (GPR40) antagonists. Bioorg Med Chem Lett 19:2400–2403. doi:10.1016/j.bmcl.2009.03.082

    Article  CAS  PubMed  Google Scholar 

  27. Christiansen E, Due-Hansen ME, Urban C et al (2013) Discovery of a potent and selective free fatty acid receptor 1 agonist with low lipophilicity and high oral bioavailability. J Med Chem 56:982–992. doi:10.1021/jm301470a

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Grundmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Grundmann, M., Kostenis, E. (2015). Label-Free Biosensor Assays in GPCR Screening. In: Prazeres, D.M.F., Martins, S.A.M. (eds) G Protein-Coupled Receptor Screening Assays. Methods in Molecular Biology, vol 1272. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-2336-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2336-6_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-2335-9

  • Online ISBN: 978-1-4939-2336-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics