Skip to main content

Application of STED Microscopy to Cell Biology Questions

  • Protocol
  • First Online:
Advanced Fluorescence Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1251))

Abstract

The increasing interest in “seeing” the molecular environment in biological systems has led to the recent quest for breaking the diffraction barrier in far-field fluorescence microscopy. The first nanoscopy method successfully applied to conventional biological probes was stimulated emission depletion microscopy (STED). It is based on a physical principle that instantly delivers diffraction-unlimited images, with no need for further computational processing: the excitation laser beam is overlaid with a doughnut-shaped depleting beam that switches off previously excited fluorophores, thereby resulting in what is effectively a smaller imaging volume. In this chapter we give an overview of several applications of STED microscopy to biological questions. We explain technical aspects of sample preparation and image acquisition that will help in obtaining good diffraction-unlimited pictures. We also present embedding techniques adapted for ultrathin sectioning, which allow optimal 3D resolutions in virtually all biological preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbe E (1873) Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung. Arch für Mikroskopische Anat 9:413–418

    Article  Google Scholar 

  2. Hell SW, Dyba M, Jakobs S (2004) Concepts for nanoscale resolution in fluorescence microscopy. Curr Opin Neurobiol 14:599–609

    Article  CAS  PubMed  Google Scholar 

  3. Klar TA, Jakobs S, Dyba M et al (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 97:8206–8210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Nägerl UV, Willig KI, Hein B et al (2008) Live-cell imaging of dendritic spines by STED microscopy. Proc Natl Acad Sci U S A 105:18982–18987

    Article  PubMed Central  PubMed  Google Scholar 

  5. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782

    Article  CAS  PubMed  Google Scholar 

  6. Dyba M, Jakobs S, Hell SW (2003) Immunofluorescence stimulated emission depletion microscopy. Nat Biotechnol 21:1303–1304

    Article  CAS  PubMed  Google Scholar 

  7. Willig KI, Rizzoli SO, Westphal V et al (2006) STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440:935–939

    Article  CAS  PubMed  Google Scholar 

  8. Kittel RJ, Wichmann C, Rasse TM et al (2006) Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312:1051–1054

    Article  CAS  PubMed  Google Scholar 

  9. Westphal V, Rizzoli SO, Lauterbach MA et al (2008) Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320:246–249

    Article  CAS  PubMed  Google Scholar 

  10. Willig KI, Kellner RR, Medda R et al (2006) Nanoscale resolution in GFP-based microscopy. Nat Methods 3:721–723

    Article  CAS  PubMed  Google Scholar 

  11. Rankin BR, Moneron G, Wurm CA et al (2011) Nanoscopy in a living multicellular organism expressing GFP. Biophys J 100:L63–L65

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Urban NT, Willig KI, Hell SW et al (2011) STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophys J 101:1277–1284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Tønnesen J, Nadrigny F, Willig KI et al (2011) Two-color STED microscopy of living synapses using a single laser-beam pair. Biophys J 101:2545–2552

    Article  PubMed Central  PubMed  Google Scholar 

  14. Berning S, Willig KI, Steffens H et al (2012) Nanoscopy in a living mouse brain. Science 335:551

    Article  CAS  PubMed  Google Scholar 

  15. Keller J, Schönle A, Hell SW (2007) Efficient fluorescence inhibition patterns for RESOLFT microscopy. Opt Express 15:3361–3371

    Article  PubMed  Google Scholar 

  16. Wildanger D, Medda R, Kastrup L et al (2009) A compact STED microscope providing 3D nanoscale resolution. J Microsc 236:35–43

    Article  CAS  PubMed  Google Scholar 

  17. Donnert G, Keller J, Wurm CA et al (2007) Two-color far-field fluorescence nanoscopy. Biophys J 92:L67–L69

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Blom H, Rönnlund D, Scott L et al (2012) Nearest neighbor analysis of dopamine D1 receptors and Na(+)-K(+)-ATPases in dendritic spines dissected by STED microscopy. Microsc Res Tech 75:220–228

    Article  CAS  PubMed  Google Scholar 

  19. Meyer L, Wildanger D, Medda R et al (2008) Dual-color STED microscopy at 30-nm focal-plane resolution. Small 4:1095–1100

    Article  CAS  PubMed  Google Scholar 

  20. Schmidt R, Wurm CA, Jakobs S et al (2008) Spherical nanosized focal spot unravels the interior of cells. Nat Methods 5:539–544

    Article  CAS  PubMed  Google Scholar 

  21. Bückers J, Wildanger D, Vicidomini G et al (2011) Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses. Opt Express 19:3130–3143

    Article  PubMed  Google Scholar 

  22. Schmidt R, Wurm CA, Punge A et al (2009) Mitochondrial cristae revealed with focused light. Nano Lett 9:2508–2510

    Article  CAS  PubMed  Google Scholar 

  23. Moneron G, Hell SW (2009) Two-photon excitation STED microscopy. Opt Express 17:14567–14573

    Article  CAS  PubMed  Google Scholar 

  24. Ding JB, Takasaki KT, Sabatini BL (2009) Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy. Neuron 63:429–437

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Watanabe S, Punge A, Hollopeter G et al (2011) Protein localization in electron micrographs using fluorescence nanoscopy. Nat Methods 8:80–84

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Eggeling C, Ringemann C, Medda R et al (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:1159–1162

    Article  CAS  PubMed  Google Scholar 

  27. Leutenegger M, Eggeling C, Hell SW (2010) Analytical description of STED microscopy performance. Opt Express 18:26417–26429

    Article  CAS  PubMed  Google Scholar 

  28. Galiani S, Harke B, Vicidomini G et al (2012) Strategies to maximize the performance of a STED microscope. Opt Express 20:7362–7374

    Article  PubMed  Google Scholar 

  29. Donnert G, Keller J, Medda R et al (2006) Macromolecular-scale resolution in biological fluorescence microscopy. Proc Natl Acad Sci U S A 103:11440–11445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Rankin BR, Hell SW (2009) STED microscopy with a MHz pulsed stimulated-Raman-scattering source. Opt Express 17:15679–15684

    Article  CAS  PubMed  Google Scholar 

  31. Wildanger D, Rittweger E, Kastrup L et al (2008) STED microscopy with a supercontinuum laser source. Opt Express 16:9614–9621

    Article  PubMed  Google Scholar 

  32. Willig KI, Harke B, Medda R et al (2007) STED microscopy with continuous wave beams. Nat Methods 4:915–918

    Article  CAS  PubMed  Google Scholar 

  33. Vicidomini G, Moneron G, Han KY et al (2011) Sharper low-power STED nanoscopy by time gating. Nat Methods 8:571–573

    Article  CAS  PubMed  Google Scholar 

  34. Moneron G, Medda R, Hein B et al (2010) Fast STED microscopy with continuous wave fiber lasers. Opt Express 18:1302–1309

    Article  CAS  PubMed  Google Scholar 

  35. Müller T, Schumann C, Kraegeloh A (2012) STED microscopy and its applications: new insights into cellular processes on the nanoscale. Chemphyschem 13(8):1986–2000. doi:10.1002/cphc.201100986

    Article  PubMed  Google Scholar 

  36. Hein B, Willig KI, Hell SW (2008) Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell. Proc Natl Acad Sci U S A 105:14271–14276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Morozova KS, Piatkevich KD, Gould TJ et al (2010) Far-red fluorescent protein excitable with red lasers for flow cytometry and superresolution STED nanoscopy. Biophys J 99:L13–L15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Willig KI, Stiel AC, Brakemann T et al (2011) Dual-label STED nanoscopy of living cells using photochromism. Nano Lett 11:3970–3973

    Article  CAS  PubMed  Google Scholar 

  39. Hein B, Willig KI, Wurm CA et al (2010) Stimulated emission depletion nanoscopy of living cells using SNAP-tag fusion proteins. Biophys J 98:158–163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Fitzpatrick JA, Yan Q, Sieber JJ et al (2009) STED nanoscopy in living cells using Fluorogen Activating Proteins. Bioconjug Chem 20:1843–1847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Staudt T, Lang MC, Medda R et al (2007) 2,2′-thiodiethanol: a new water soluble mounting medium for high resolution optical microscopy. Microsc Res Tech 70:1–9

    Article  CAS  PubMed  Google Scholar 

  42. Punge A, Rizzoli SO, Jahn R et al (2008) 3D reconstruction of high-resolution STED microscope images. Microsc Res Tech 71:644–650

    Article  PubMed  Google Scholar 

  43. McKinney SA, Murphy CS, Hazelwood KL et al (2009) A bright and photostable photoconvertible fluorescent protein. Nat Methods 6:131–133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Ries J, Kaplan C, Platonova E et al (2012) A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat Methods 9(6):582–584

    Article  CAS  PubMed  Google Scholar 

  45. Opazo F, Levy M, Byrom M et al (2012) Aptamers as potential tools for super-resolution microscopy. Nat Methods 9:938–939

    Article  CAS  PubMed  Google Scholar 

  46. Hoopmann P, Punge A, Barysch SV et al (2010) Endosomal sorting of readily releasable synaptic vesicles. Proc Natl Acad Sci U S A 107:19055–19060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Neumann D, Bückers J, Kastrup L et al (2010) Two-color STED microscopy reveals different degrees of colocalization between hexokinase-I and the three human VDAC isoforms. PMC Biophys 3:4

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Nicolai T. Urban for advice and for reading the manuscript, Felipe Opazo for providing images used in Fig. 4, and Christina Schäfer and Katharina Kröhnert for technical assistance. S.O.R. acknowledges the support of a Starting Grant from the European Research Council, Program FP7 (NANOMAP). N.H.R. acknowledges the support of the Deutsche Forschungsgemeinschaft (SFB 889).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia H. Revelo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Revelo, N.H., Rizzoli, S.O. (2015). Application of STED Microscopy to Cell Biology Questions. In: Verveer, P. (eds) Advanced Fluorescence Microscopy. Methods in Molecular Biology, vol 1251. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2080-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2080-8_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2079-2

  • Online ISBN: 978-1-4939-2080-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics