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    Chapter 7   

 Molecular Approaches to Recognize Relevant 
and Emerging Infectious Diseases in Animals 
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and     Sándor     Belák   

    Abstract 

   Since the introduction of the fi rst molecular tests, there has been a continuous effort to develop new and 
improved assays for rapid and effi cient detection of infectious agents. This has been motivated by a need 
for improved sensitivity as well as results that can be easily communicated. The experiences and knowledge 
gained at the  World Organisation for Animal Health  ( OIE )  Collaborating Centre for Biotechnology-based 
Diagnosis of Infectious Diseases in Veterinary Medicine, Uppsala, Sweden , will here be used to provide an 
overview of the different molecular approaches that can be used to diagnose and identify relevant and 
emerging infectious diseases in animals.  
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1      Introduction 

 The increased occurrence and emergence of devastating infec-
tious diseases, in both domestic and wildlife animal populations, 
are causing very serious socioeconomic losses at both global and 
regional levels. This increase has been attributed to several con-
tributing factors, the most prominent being the accelerated 
movements of humans and animals due to increased globaliza-
tion and international trade, the climatic changes, and the larger 
and larger populations kept together in animal husbandry and 
breeding. Some of these diseases, termed  transboundary animal 
diseases  (TADs), such as foot-and-mouth disease and classical 
swine fever, have a high capacity to spread very rapidly over coun-
tries and borders, having a devastating impact on animal produc-
tivity and trade, as well as causing other losses in the animal 
husbandries and in wildlife. Other diseases, such as anthrax, 
bovine tuberculosis, and rabies, have more  endemic  character, 



110

establishing themselves in limited areas and showing slower 
 tendency of spread. Considering their importance, many of these 
infectious diseases are listed by the World Organisation for Animal 
Health (OIE) as notifi able animal diseases, collectively referred 
to as OIE-listed diseases. The OIE is also determining and updat-
ing the  international animal disease status  on a regular basis. The 
current OIE-listed diseases and the latest disease status reports 
are available at the OIE website (  www.oie.int    ). 

  Zoonoses ,  veterinary ,  and human public health.  Of special impor-
tance among the animal infectious diseases are the ones that have 
the capacity to cross the species barriers and establish infections in 
a wider range of hosts including humans, causing  zoonotic infec-
tions . It has been estimated that approximately 75 % of the new and 
emerging human infectious diseases over the past 10–20 years have 
been caused by pathogens originating from animals or from prod-
ucts of animal origin [ 1 ,  2 ]. Many of these diseases have the poten-
tial to spread through various means, over long distances, and to 
become global problems. 

  Accurate and rapid diagnosis.  Considering the extremely high 
direct and indirect losses and other consequences caused by the 
TADs and the other infectious diseases, it is very important to 
develop and apply a wide range of diagnostic methods. These 
should preferably allow rapid detection and identifi cation of the 
infectious agent(s), with high specifi city and sensitivity, while still 
being affordable and readily available. When outbreaks do occur, 
rapid and accurate diagnosis is needed to screen susceptible popu-
lations and monitor the spread of the infectious pathogens, there-
fore helping with epidemiological investigation and implementation 
of necessary control measures, such as vaccination, stamping out, 
and quarantine restrictions, in order to prevent further spread. 

  Collection of clinical samples and sample preparation . Identifi cation 
of the relevant groups of animals, showing clinical signs or at stages 
of infection when the presence of infectious agents is likely to be 
suffi ciently high, and correct sampling are the fi rst two crucial steps 
in the diagnostic process. The next steps of great importance are the 
sample preparation procedures, such as cleanup and target enrich-
ment, which are performed in order to reduce possible contami-
nants and retain concentrated materials from the target agents, 
most commonly nucleic acid and/or proteins, for further analysis. 
If any of these steps are not properly considered and carried out, all 
diagnostic methods, even the most powerful and sensitive, will be 
unable to detect and identify the infectious agents, and this is lead-
ing to false diagnosis, which could have very serious consequences. 

  The OIE Collaborating Centre (OIE CC) for Biotechnology- Based 
Diagnosis of Infectious Diseases in Veterinary Medicine.  Since the 
authors’ institutes in Uppsala, Sweden, are well-recognized centers 
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of excellence in molecular diagnostics, the OIE has granted them 
the mandate to work together as its only collaborating center 
focused on biotechnology-based diagnostics (  www.sva.se/en/
About-SVA/OIE-Collaborating-Centre    ). In this chapter, the 
experiences and knowledge gained at the OIE CC will be used to 
provide an overview of the molecular approaches capable of recog-
nizing relevant and emerging infectious diseases in animals. 

  Detection and identifi cation of the infectious agents . The diagnostic 
laboratories can apply two basic ways for a proper diagnosis: (a) 
 direct detection and identifi cation  and (b)  indirect detection and 
identifi cation  methods.  Direct detection and identifi cation  means 
that the infectious agents and/or their components, such as nucleic 
acids or proteins, are detected in the collected samples. Commonly 
used  classical diagnostic methods  for direct detection include iden-
tifi cation of microorganisms by culture techniques and immuno-
fl uorescence, and the most widely applied  molecular diagnostic 
methods  are the various assays of nucleic acid hybridization, e.g., 
polymerase chain reaction (PCR) and isothermal amplifi cation 
methods, such as the loop-mediated isothermal amplifi cation 
(LAMP), among others. When running  indirect diagnosis and 
identifi cation , the immune responses of the host are investigated, 
looking for antibodies against various infectious agents, which 
indicate the occurrence of the infections in the hosts. In this chap-
ter we focus on  direct diagnosis , with special regard to  molecular 
diagnostic methods , as well as some considerations regarding the 
interpretation, understanding, and communication of the diagnos-
tic results.  

2    PCR-Based Approaches 

 Molecular approaches become increasingly important in infectious 
disease diagnostics and, with the exception of isolation by cultur-
ing, may supersede all other direct detection methods. The main 
reasons are that a unique signature of every microorganism is 
encoded in its genome, which in principle enables perfect specifi c-
ity, and that various enzymatic mechanisms can be utilized to 
manipulate and amplify the genetic material, yielding an exquisite 
sensitivity of the molecular DNA-based assays. While bacteria have 
their genome encoded in the form of DNA, some viral genomes 
are composed of RNA, and an initial reverse transcription step is 
therefore required before further manipulations and amplifi cation 
can be carried out. Enzymes typically utilized are polymerases, 
reverse transcriptases, ligases, glycosylases, and nucleases. Of these, 
the polymerases require a pair of sequence-specifi c primers, which 
enables selective target amplifi cation. 
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  PCR employs thermostable polymerases to enable amplifi cation by 
continuous thermocycling and is currently the most commonly 
used method for amplifi cation of genetic material [ 3 ]. The highly 
charged phosphodiester backbone of DNA makes the PCR prod-
uct amenable to high-resolution visualization on agarose gel elec-
trophoresis utilizing DNA-binding fl uorescent dyes such as 
ethidium bromide. Electrophoresis both provides a means for 
detection by band visualization and enables at least a tentative veri-
fi cation of specifi city by estimation of the amplicon length. 

 Shortly after the introduction of PCR, attempts were made to 
enhance sensitivity of detection of target nucleic acid sequences by 
running a second PCR assay targeting the internal region of the 
amplicon resulting from the fi rst reaction, so-called nested PCR 
[ 4 ,  5 ]. The greater sensitivity has been attributed to both a dilution 
effect of any inhibitory compounds present in the sample, since 
only a minor fraction of the fi rst reaction volume is used in the 
second reaction, and the fact that the primer-driven reaction is run 
twice, using four specifi c primers, rather than two. An intermediate 
situation is obtained if one of the primers from the fi rst reaction is 
retained in the second, which yields a semi-nested PCR format. 

 The drawback of using PCR, and in particular the nested PCR 
formats, is that conserved regions must exist on the genome, and 
this might be a serious problem for highly variable RNA viruses. 
Although more recently the convenient and less laborious real- 
time PCR methods have been developed ( see  below) and are mostly 
used today in clinical practice, nested PCR assays are still used due 
to their high sensitivity and robustness.  

  Gel-based PCR is a heterogeneous, relatively laborious, detection 
method. Furthermore, it only refl ects the end point of the PCR 
and, for this reason, doesn’t allow the determination of the initial 
quantity of the detected material, e.g., determination of the viral 
load. Since it lacks specifi c markers for the targeted amplicon, 
unspecifi c amplifi cation yielding similar product sizes may lead to 
false positive detection. Nested PCR has the further disadvantage 
of being prone to cross-contaminations since reaction tubes with 
potentially very high quantities of target DNA are opened between 
the two reactions. Many of these drawbacks were solved by the 
advent of real-time PCR [ 6 ]. With this technique, the PCR prod-
uct is monitored in the course of the reaction using DNA-binding 
moieties that alter their fl uorescence upon binding to the amplifi ed 
DNA. This allows a closed tube, homogeneous assay format, which 
reduces the risk for cross-contamination and also removes the 
laborious gel electrophoresis step. In addition, the cycle number 
where the fl uorescence reaches a defi ned threshold level will 
depend on the initial quantity of target DNA or RNA (before 
reverse transcription). 

2.1  PCR Assays

2.2  Real-Time 
PCR Assays
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 Three main approaches have been taken to monitor fl uorescence 
alteration in real time due to the buildup of the PCR  product, 
which can be ordered according to the level of specifi city the methods 
provide. The simplest method is to add a fl uorescent dye to the 
PCR mixture with the property that the fl uorescence intensity 
changes upon DNA binding. Typical dyes are asymmetric cyanine 
dyes, such as SYBR green or tiazole orange, that exhibit a fl uores-
cence increase when bound to DNA [ 7 ,  8 ]. These types of real-
time PCR have no better specifi city than gel-based PCR, rather the 
opposite, since no information is provided about the product 
length. New possibilities are given by tethering the dye to one of 
the PCR primers that are constructed so that incorporation of the 
primer into the amplicon leads to an alteration of dye fl uorescence. 
Several chemistries have been devised to this end, for example, 
scorpion primers [ 9 ], LUX primers [ 10 ], and Plexor primers [ 11 ]. 
Although in principle not providing a better specifi city in regard to 
spurious amplifi cation than the pure dye approach, fl uorescent 
primers enable multiplexing by co-adding several primer pairs, 
each with a distinct fl uorophore. The third approach includes addi-
tion of a third fl uorescently labeled oligonucleotide, located 
between the primers, called a probe. The probe can also be labeled 
with a quencher (dual-labeled probe) but not always, e.g., not for 
the LightUp probes [ 7 ] or in the PriProET approach [ 12 ,  13 ]. 
Prominent examples of methods based on dual-labeled probes 
include TaqMan [ 14 ] and molecular beacons [ 15 ]. 

 The signal that can be obtained from a probe-based real-time 
PCR experiment is often limited by the competing reannealing of 
the double-stranded PCR amplicon. Asymmetric PCR can be used 
to overcome this problem since it allows preferential amplifi cation 
of one strand in a double-stranded DNA template. This is achieved 
by manipulating primer properties, most critically concentration, 
as well as other factors infl uencing primer melting temperature, 
such as length and nucleotide sequence. In the LATE-PCR method 
[ 16 ], asymmetric PCR has been combined with molecular beacons 
for readout to achieve a detection format that allows quantifi cation 
from the end-point fl uorescence. This format is suitable for simpler 
portable PCR instruments designed for detection in the fi eld and 
has recently been commercialized by various companies. 

 The application of real-time PCR techniques and other meth-
ods in molecular diagnostics in veterinary medicine have recently 
been extensively reviewed [ 17 ,  18 ] and will be further discussed 
later in this section. To conclude this subsection, it is suitable to 
mention a recently developed method for the rapid molecular 
pathotyping of avian infl uenza [ 19 ] and Newcastle disease [ 20 ] 
viruses that combines several of the themes discussed here. This 
technique employs a three level semi-nested PCR format that utilize 
Plexor [ 11 ] fl uorogenic primers as a detection mechanism. 
Furthermore, the assay format allows a highly multiplex interrogation 
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of the sample by using primers in two vastly different concentration 
regimes. Instead of, as hitherto has been the case, requiring nucle-
otide sequencing over the hemagglutinin and fusion protein genes 
of avian infl uenza and Newcastle disease viruses, a much faster 
diagnosis can be obtained by a simple PCR-based method. This 
method could even be implemented on fi eld PCR instruments for 
rapid on-site diagnosis and thereby providing means for faster con-
tainment of disease outbreaks.   

3    Isothermal Amplifi cation 

 Isothermal amplifi cation of nucleic acids is an alternative method to 
PCR. The reaction is performed at a constant temperature in simple 
devices, such as water baths or heating blocks, which eliminates the 
need for high-end equipment and system maintenance. It can be 
used to test for infections in regions where resources are limited and 
logistic chains are impossible, but a rapid answer is needed. 
Isothermal amplifi cation normally takes about an hour or less to 
complete, providing a fast specimen-to-result diagnosis at the point 
of care (POC). To make the best use of isothermal amplifi cation, a 
system should ideally integrate the upstream sample preparation 
and the downstream detection steps and be operated by personnel 
without extensive training. Several platforms utilizing isothermal 
technology are commercially available or close to market [ 21 ]. 

 Recently, the fi eld of isothermal amplifi cation technologies has 
advanced dramatically, resulting in several different amplifi cation 
systems. These have been summarized by Niemz et al. [ 21 ] and 
include transcription-mediated amplifi cation (TMA) [ 22 ], helicase- 
dependent amplifi cation system [ 23 ], loop-mediated isothermal 
amplifi cation (LAMP) [ 24 ], and rolling-circle amplifi cation [ 25 ]. 
Of those methods, LAMP has gained the greatest interest because 
of its high specifi city, effi ciency, and rapidity. By addition of a 
reverse transcriptase in the reaction, RNA targets can also be ampli-
fi ed and detected by LAMP, which is referred to as RT-LAMP. The 
LAMP utilizes four primers that bind to six distinct regions of the 
target DNA to specifi cally amplify a short region and is catalyzed 
by  Bst  DNA polymerase with strand-displacement activity [ 24 ]. 
Addition of loop primers may accelerate the reaction [ 26 ]. As of 8 
February 2014, PubMed listed 990 publications with the search 
term “loop- mediated isothermal amplifi cation.” LAMP technol-
ogy has been applied for the detection of viral pathogens such as 
classical swine fever virus [ 27 ] and foot-and-mouth disease virus 
(FMDV) [ 28 ], bacteria such as  Clostridium diffi cile  [ 29 ], and par-
asites such as malaria [ 30 ]. Commercial developments have pro-
gressed: a total of eight LAMP kits are approved in Japan for the 
detection of SARS coronavirus,  Mycobacterium tuberculosis  (TB), 
 Mycoplasma pneumoniae ,  Legionella  species, infl uenza A virus, H1 
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pdm 2009 infl uenza virus, H5 infl uenza virus, and human 
 papilloma virus, as reviewed by Mori et al. [ 31 ]. Future develop-
ment would need to consider simplifi cation of sample preparations, 
reaction mix in a dried down formation and integration of all three 
steps in a compact, disposable, and inexpensive system.  

4    Detection by Hybridization-Based Approaches 

 Identifi cation and classifi cation of bacteria and viruses using DNA 
hybridization-based approaches rely on the use of oligonucleotide 
probes that selectively bind to target sequences based on the degree 
of complementarity. This was early utilized in fl uorescence in situ 
hybridization (FISH), which became a valuable tool for localiza-
tion of infectious agents in clinical samples without cultivation 
[ 32 ]. However, to overcome limitations in multiplex capacity, sen-
sitivity, and signal intensity, there has been an ongoing develop-
ment of the initial approach. This has resulted in high-throughput 
methods such as DNA arrays but also interesting new hybridiza-
tion-based methodologies combined with signal amplifi cation, 
such as padlock probe (PLP) [ 33 ] and proximity ligation assay 
(PLA) [ 34 ]. PLP belongs to the methodologies of genomic parti-
tioning where one specifi c region of the genome is massively repli-
cated, and thereby detectable, even though it normally is masked 
by the presence of other genomes or in too low amount to be 
detected. PLA relies on the primary detection of antigens followed 
by oligonucleotide amplifi cation and subsequent detection by fl uo-
rescent probes or by RT-PCR. 

  With the development of DNA macro- and microarray technolo-
gies, it became possible to detect and characterize a wide variety 
of bacteria and viruses through simultaneous hybridization against 
large numbers of DNA probes immobilized on a solid support 
[ 35 ,  36 ]. 

 The probes represent known sequences that may serve as 
markers for identifi cation and/or genotyping of bacterial strains, 
resistance genes, viruses, etc. These are commonly arranged in an 
ordered array of spots (or features), and hybridization with a 
labeled target, i.e., the sample to be investigated, will therefore 
result in a hybridization profi le in which individual probe results 
also can be assessed. As the names imply, the main difference 
between macro- and microarrays is the number and size of spots 
on the support. Macroarrays typically have larger and fewer spots 
and have proven particularly effective for detecting smaller subsets 
of genes, such as genes involved in antibiotic resistance [ 37 ]. 
Microarrays can contain thousands, and even up to many  hundred 
thousands , of spots with different oligonucleotide probes and have 

4.1  DNA Array 
Technologies
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successfully been used for detection and genotyping of bacterial 
and viral pathogens [ 38 ,  39 ]. The main advantages of microarray 
technology are high throughput, parallelism, miniaturization, and 
speed. However, microarrays are still considered to be an expensive 
technology and usually require large amounts of nucleic acid tar-
gets. Furthermore, unless it has been completely automated, the 
data analysis procedure might be time-consuming, and the results 
can be diffi cult to translate into information that is clearly commu-
nicable and decision supportive.  

  Genomic partitioning refers to the methodologies used for capture 
and enrichment of target regions. Within these methodologies, 
PLP has been used repeatedly for genotyping, localization, and 
array-based diagnostics. The earliest version of PLP consisted of 
two oligonucleotide probes of 20 nt connected by a linker region 
of 40 nt [ 33 ]. As the probes hybridize towards the target, the 
 construct is ligated into a circular detector that can be replicated 
isothermally by Phi29 polymerase [ 40 ]. The detection can then be 
performed through incorporation of fl uorophore tagged nucleo-
tides. The PLP concept was further expanded with the introduc-
tion of the molecular inversion probe (MIP) technology. Where 
PLP leaves no gap after hybridization to the target region, MIP 
aims at leaving a single nucleotide gap. This gap is then fi lled in by 
addition of a single type of nucleotide into the assay. This approach 
enables substitutions on nucleotide level to be detected using just 
four reactions easily set up in a normal lab environment. It also 
provides a possibility of highly multiplexed designs of assays 
[ 41 ,  42 ]. Building on the same principle as PLP and MIP, the con-
nector inversion probe (CIPer) technology extends the gap up to 
a few hundred nucleotides. Using DNA polymerase to fi ll the gap 
generates a product that can be sequenced, revealing the content 
of the target region [ 43 ]. Applications of PLP methodology and its 
derivatives for infectious diseases in animals include detection of all 
hemagglutinin and neuraminidase subtypes of AIV [ 44 ], as well 
as multiplex detection of FMDV, swine vesicular disease virus 
(SVDV), and vesicular stomatitis virus (VSV) [ 45 ]. In addition, by 
designing different probes for the genomic and replicative form of 
the virus, it is possible to not only detect a virus but also localize it 
in relation to the host cells and perform semiquantitative analysis 
of the amount of replicative viruses, as demonstrated with porcine 
circovirus type 2 [ 46 ].  

  Although PLA is designed for detection of protein interactions and 
localization using antibodies for target recognition, hybridization 
events are required to generate a detectable signal [ 34 ]. Two sets 
of antibodies are designed: one targets the protein/s of interest 
and the other target the fi rst set. The antibodies in the second set 
carry short oligonucleotide strands that can hybridize with special 

4.2  Genomic 
Partitioning

4.3  Proximity 
Ligation Assay
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connector oligonucleotides and thereby enable the formation of 
circular DNA constructs. These are amplifi ed and detected by PCR 
and fl uorescent probes. The methodology combines dual antibody 
specifi city with the signal amplifi cation power of DNA amplifi ca-
tion to produce a versatile and sensitive method for detection of 
very low amounts of targets. It also enables in situ localization 
studies of protein targets within cells [ 47 ]. Furthermore, PLA 
requires little to no sample preparation, making it ideally suitable 
for screening of massive amounts of samples, and can be used with 
a solid support to capture antigens for detection, similar to ELISA. 
The use of a solid support may also facilitate the removal of con-
taminants from the sample, thereby enabling PCR-based detection 
without the problem of inhibition. By combining the solid-sup-
port approach with RT-PCR detection, great sensitivity was dem-
onstrated in a study of avian infl uenza virus [ 48 ]. Other applications 
of PLA technology include detection of several viruses, among 
them FMDV, with detection levels close to those of RT-PCR and 
100-fold more sensitive than ELISA [ 49 ], as well as localization of 
infl uenza virus proteins within cells [ 50 ].   

5    Further Trends, New Tools in Molecular Diagnostics 

 In the development of new molecular diagnostic methods, there has 
been a continuous effort to enable effi cient and rapid detection of 
infectious agents from ever-smaller volumes of complex fl uids with-
out the need for a skilled operator. As a result, microfl uidic analysis 
systems and nanotechnology-based detection devices have gained 
increased popularity, as previously reviewed [ 51 ,  52 ]. These systems 
and devices have been employed to construct a  wide range of 
 integrated tools , capable of semiautomated complex diagnostic 
 procedures, which also allow rapid, portable fi eld-based testing [ 53 ]. 

  Several sequential laboratory procedures are usually required to 
detect infectious agents in clinical samples, such as concentration, 
lysis, extraction, purifi cation, amplifi cation, and product detection. 
Recent progress in microfl uidic technology has allowed multiple 
procedures to be incorporated in sequence for one-step sensing or 
in parallel for high-throughput screening [ 54 ,  55 ]. These inte-
grated systems with use in molecular diagnostics are more com-
monly known as biochip or lab-on-a-chip (LOC) devices. Since 
they usually consist of fl uid channels and sensing chambers with 
dimensions of a few to hundreds of microns, very small amounts of 
sample can be analyzed, requiring only low consumption of 
reagents. The use of materials that can be easily functionalized, 
such as glass and plastic, allows the inner surfaces to be coated with 
different capture and sensing agents, e.g., antibodies and nucleic 
acids. Although this makes microfl uidic analysis systems versatile 

5.1  Microfl uidic 
Analysis Systems
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tools for pathogen detection, the main application involves systems 
based on the recognition of target nucleic acids. 

 As discussed above, the detection of target nucleic acid from a 
pathogenic microorganism or virus can be achieved either by direct 
probing or by fi rst introducing an amplifi cation step.  Amplifi cation- 
based detection  usually gives higher sensitivity and has successfully 
been implemented on microfl uidic chips using both PCR and 
alternative amplifi cation methods, such as nucleic acid sequence- 
based amplifi cation (NASBA) [ 56 ]. However, regardless of ampli-
fi cation method, it is fi rst necessary to concentrate and lyse the 
sample material to extract and purify the nucleic acid. As described 
in the review by Heo et al. [ 57 ], a variety of alternative solutions 
have been developed to perform these sequential steps on a micro-
fl uidic chip. Popular strategies for sample concentration include 
magnetic beads [ 58 ] and dielectrophoresis [ 59 ]. The lysis of 
enriched samples can then be achieved by various methods, such as 
thermal energy, optothermal energy, mechanical force, and chemi-
cals [ 60 ]. For the purifi cation of extracted nucleic acid, packed 
silica beads, microfabricated structures, and magnetic beads have 
all proved to be useful solutions [ 61 ]. After amplifi cation, the 
detection of products is most commonly performed with fl uores-
cence or electrochemical methods, which easily can be miniatur-
ized. A classifi cation into three categories was suggested for 
microfl uidic chips that use amplifi cation-based detection by 
Mairhofer et al. [ 52 ]. These categories included microfl uidic chips 
with (1) a stationary chamber as nano-/picoliter reservoir for con-
ventional thermocycling, (2) a continuous fl ow where the sample 
is moved between individual temperature zones at different loca-
tions for cycling, and (3) a droplet-based system where each ampli-
con is individually amplifi ed within a water-in-oil droplet. Examples 
of fully implemented amplifi cation-based systems include devices 
for detection of different viruses, such as dengue virus and entero-
viruses [ 62 ], as well as various bacteria, most notably  Bacillus 
anthracis  [ 63 ,  64 ].  

  Nanotechnology has extended the limits of molecular diagnostics 
to the nanoscale (one-billionth of a meter), allowing diagnostic 
assays to take advantage of the unique electrical, magnetic, lumi-
nescent, and catalytic properties of nanomaterials. This has con-
tributed to the development of innovative assays that provide 
rapid detection of infectious agents with improved sensitivity and 
limit of detection (LOD) [ 65 ]. Because of the small scale, nano-
technology can also be used to create high-density arrays of sen-
sors for high-throughput detection without increased sample 
requirements. Moreover, the use of sensitive nanoscale sensors 
has the potential to eliminate the need for sample preparation 
and target amplifi cation, making it possible to construct assays 
for direct detection in opaque media, like blood and milk [ 51 ]. 

5.2  Nanotechnology- 
Based Detection
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There has also been a special focus to develop affordable 
nanotechnology- based devices that provide fast and reliable 
results in simple and user-friendly formats for use even in rural 
areas of developing nations [ 66 ]. 

 Most sensor systems for diagnostic use are comprised of two 
components, one receptor for target recognition by specifi c bind-
ing and one transducer that convert receptor readings into a signal 
that can be measured, such as an electronic or optical signal [ 67 ]. 
Nanoscale sensors are usually comprised of biological recognition 
elements coupled to different nanomaterials for signal transduc-
tion and detection. These nanomaterials include noble metal 
nanoparticles, nanobarcodes, quantum dots, and magnetic 
nanoparticles [ 68 – 71 ]. Nanowires and nanotubes can also be 
coated with biological recognition elements to be used as nanosen-
sors, and binding events are measured as a change in their electrical 
conductance [ 72 ]. Another example is silicon-based cantilever sen-
sors functionalized with biomolecules such as DNA for target rec-
ognition. These sensors are often combined into high-density 
arrays for high-throughput screening [ 73 ]. Applications of 
nanoscale sensors for detection of infectious agents include multi-
plex detection of both viruses and bacteria [ 74 ,  75 ].   

6    Summary and Final Remarks 

 As detailed above, numerous molecular methods have been devel-
oped for the detection and characterization of infectious agents in 
the fi eld of veterinary and human medicine. Among them, PCR 
has been the most commonly used technology. When considering 
the development of new technologies, a general trend can be 
observed towards robust and affordable automatic systems that 
also integrate sample preparation steps for rapid and highly sensi-
tive multiplex detection of an easily enlarged panel of pathogens, 
both bacterial and viral. Although few, if any, of the novel systems 
have successfully incorporated all of these properties, they still rep-
resent important technological advancements towards more sensi-
tive and effi cient detection. Even so, only a limited number have so 
far been developed into commercial diagnostic kits, and only a few 
molecular tests are offered by veterinary diagnostic laboratories. 
The full potential and impact of molecular diagnosis is therefore 
yet to be realized. A possible explanation may be that most new 
published assays are only analytical validated and not properly eval-
uated in accordance with the appropriate criteria for fi eld valida-
tion. New molecular tests might also not comply with current 
accreditation standards. 

 For the interpretation and understanding of the diagnostic 
results, it is very important to put the molecular diagnostic meth-
ods in the context of the complex scenario of infectious diseases, 
i.e., to follow not only the technical rules and procedures of the 
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molecular methods but also simultaneously acquire suffi cient 
medical understanding in order to gain a more complete picture. 
A “PCR positive result” by itself, without analyzing the complex 
scenario, can be unreliable, even misleading, and may cause serious 
problems for the veterinary and human medical health authorities 
during implementation of eradication programs. To avoid such 
problems and to provide a reliable diagnosis, it is important to 
obtain a complete medical understanding of the disease scenario. 
Reliable diagnoses can be reached, of course, even on the basis of 
single PCR assays, if they are raising the right questions and the 
results are professionally communicated. On the other hand, there 
are many cases of infectious diseases where the diagnosis is more 
reliable if a range of various methods, both direct and indirect 
approaches, are applied simultaneously. It should therefore be 
emphasized that in certain cases, the simultaneous application of 
novel molecular diagnostic methods and classical approaches, such 
as isolation by culturing, is required for a fully reliable diagnosis. 

 Another important, but often neglected, aspect is the commu-
nication of diagnostic results. The successful control and eradica-
tion of infectious diseases is strongly accelerated and enhanced if 
the diagnostic laboratories are able to communicate the results rap-
idly and properly towards the practitioners and the health authori-
ties. It is very important to pay suffi cient attention even to this 
task, because a rapid and clear two-way communication between 
the laboratories and the practitioners, as well as the decision- 
making authorities, is essential in order to assure the success of the 
control and eradication programs. 

 The authors’ institutes that constitute the OIE CC have been 
early developers and adopters of new diagnostic technologies and 
approaches, from the fi rst PCR-based assays until today’s plethora 
of various molecular methods, closely following and participating 
in the ongoing effort to develop improved tests. More recently, 
this has resulted in the adaptation and evaluation of PLP and PLA 
for detection of veterinary important pathogens, as well as a new 
PCR-based multiplex platform for molecular pathotyping of 
viruses, among other contributions. The OIE CC has had an 
important role in the development of novel molecular diagnostic 
methods, in international standardization and validation, as well as 
in international dissemination of results, outreach, and training. 
These activities are done with the support of the OIE, our home 
institutes SVA and SLU, and in collaboration with large interna-
tional and national consortia of various EU projects, such as LAB-
ON- SITE, ASFRISK, CSFV_goDIVA, AniBioThreat, RAPIDIA-
FIELD, and Epi-SEQ. National grant agencies are also supporting 
this work, such as the Formas BioBridges Strong Research 
Environment project No. 2011-1692, which is supporting the 
diagnostic developments for the improved diagnosis of a wide 
range of poultry pathogens, many of which have zoonotic features, 
in the spirit of the One World, One Health concept.     
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