Skip to main content

Branched Chain Amino Acids and Maple Syrup Urine Disease

  • Chapter
  • First Online:
Branched Chain Amino Acids in Clinical Nutrition

Part of the book series: Nutrition and Health ((NH))

Abstract

In 1954 Menkes et al. [1] described a new syndrome affecting four siblings with a progressive infantile cerebral dysfunction, commencing in the first week of life and resulting in death within 3 months of age. The patient’s urine had a distinctive smell resembling burnt sugar or maple syrup. Three years later, Westall et al. coined the term Maple Syrup Urine Disease (MSUD) and found the branched chain amino acids (BCAA), valine, leucine, and isoleucine were markedly elevated in these patients [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Menkes JH, Hurst PL, Craig JM. A new syndrome: progressive familial infantile cerebral dysfunction associated with an unusual urinary substance. Pediatrics. 1954;14:462–7.

    CAS  PubMed  Google Scholar 

  2. Westall RG, Dancis J, Miller S. Maple syrup urine disease. Am J Dis Child. 1957;94:2.

    Google Scholar 

  3. Menkes JH. Maple syrup disease; isolation and identification of organic acids in the urine. Pediatrics. 1959;23:348–53.

    CAS  PubMed  Google Scholar 

  4. Islam MM, Wallin R, Wynn RM, et al. A novel branched-chain amino acid metabolon. Protein-protein interactions in a supramolecular complex. J Biol Chem. 2007;282:11893–903.

    Article  CAS  PubMed  Google Scholar 

  5. Novarino G, El-Fishawy P, Kayserili H, et al. Mutations in BCKD-kinase lead to a potentially treatable form of autism with epilepsy. Science. 2012;338:394–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Chuang DT, Wynn RM, Shih VE. Maple syrup urine disease (branched-chain ketoaciduria). In: Valle D, Beaudet AL, Vogelstein B, Kinzler KW, Antonarakis S, Ballabio A, editors. Online metabolic and molecular bases of inherited disease. New York: McGraw-Hill; 2006.

    Google Scholar 

  7. Chuang JL, Wynn RM, Moss CC, et al. Structural and biochemical basis for novel mutations in homozygous Israeli maple syrup urine disease patients: a proposed mechanism for the thiamin-responsive phenotype. J Biol Chem. 2004;279:17792–800.

    Article  CAS  PubMed  Google Scholar 

  8. Jaafar N, Moleirinho A, Kerkeni E, et al. Molecular characterization of maple syrup urine disease patients from Tunisia. Gene. 2013;517:116–9.

    Article  CAS  PubMed  Google Scholar 

  9. The Human Gene mutation Database. 2012. www.hgmd.cf.ac.uk. Accessed 25 Mar 2013.

  10. Mitsubuchi H, Matsuda I, Nobukuni Y, et al. Gene analysis of Mennonite maple syrup urine disease kindred using primer-specified restriction map modification. J Inherit Metab Dis. 1992;15:181–7.

    Article  CAS  PubMed  Google Scholar 

  11. Love-Gregory LD, Grasela J, Hillman RE, Phillips CL. Evidence of common ancestry for the maple syrup urine disease (MSUD) Y438N allele in non-Mennonite MSUD patients. Mol Genet Metab. 2002;75:79–90.

    Article  CAS  PubMed  Google Scholar 

  12. Quental S, Gusmao A, Rodriguez-Pombo P, et al. Revisiting MSUD in Portuguese Gypsies: evidence for a founder mutation and for a mutational hotspot within the BCKDHA gene. Ann Hum Genet. 2009;73:298–303.

    Article  CAS  PubMed  Google Scholar 

  13. Edelmann L, Wasserstein MP, Kornreich R, Sansaricq C, Snyderman SE, Diaz GA. Maple syrup urine disease: identification and carrier-frequency determination of a novel founder mutation in the Ashkenazi Jewish population. Am J Hum Genet. 2001;69:863–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Chi CS, Tsai CR, Chen LH, et al. Maple syrup urine disease in the Austronesian aboriginal tribe Paiwan of Taiwan: a novel DBT (E2) gene 4.7 kb founder deletion caused by a nonhomologous recombination between LINE-1 and Alu and the carrier-frequency determination. Eur J Hum Genet. 2003;11:931–6.

    Article  CAS  PubMed  Google Scholar 

  15. Silao CL, Padilla CD, Matsuo M. A novel deletion creating a new terminal exon of the dihydrolipoyl transacylase gene is a founder mutation of Filipino maple syrup urine disease. Mol Genet Metab. 2004;81:100–4.

    Article  CAS  PubMed  Google Scholar 

  16. Fisher CW, Fisher CR, Chuang JL, Lau KS, Chuang DT, Cox RP. Occurrence of a 2-bp (AT) deletion allele and a nonsense (G-to-T) mutant allele at the E2 (DBT) locus of six patients with maple syrup urine disease: multiple-exon skipping as a secondary effect of the mutations. Am J Hum Genet. 1993;52:414–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Shaag A, Saada A, Berger I, et al. Molecular basis of lipoamide dehydrogenase deficiency in Ashkenazi Jews. Am J Med Genet. 1999;82:177–82.

    Article  CAS  PubMed  Google Scholar 

  18. Simon E, Flaschker N, Schadewaldt P, Langenbeck U, Wendel U. Variant maple syrup urine disease (MSUD)—the entire spectrum. J Inherit Metab Dis. 2006;29:716–24.

    Article  CAS  PubMed  Google Scholar 

  19. Strauss KA, Puffenberger EG, Morton DH. Maple syrup urine disease. In: Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP, editors. GeneReviews. Seattle, WA; 2006 Jan 30 [updated 2009 Dec 15].

    Google Scholar 

  20. Schulman JD, Lustberg TJ, Kennedy JL, Museles M, Seegmiller JE. A new variant of maple syrup urine disease (branched chain ketoaciduria). Clinical and biochemical evaluation. Am J Med. 1970;49:118–24.

    Article  CAS  PubMed  Google Scholar 

  21. Bhattacharya K, Khalili V, Wiley V, Carpenter K, Wilcken B. Newborn screening may fail to identify intermediate forms of maple syrup urine disease. J Inherit Metab Dis. 2006;29:586.

    Article  CAS  PubMed  Google Scholar 

  22. Morris MD, Lewis BD, Doolan PD, Harper HA. Clinical and biochemical observations on an apparently nonfatal variant of branched-chain ketoaciduria (maple syrup urine disease). Pediatrics. 1961;28:918–23.

    CAS  PubMed  Google Scholar 

  23. Scriver CR, Mackenzie S, Clow CL, Delvin E. Thiamine-responsive maple-syrup-urine disease. Lancet. 1971;1:310–2.

    Article  CAS  PubMed  Google Scholar 

  24. Scriver CR, Clow CL, George H. So-called thiamin-responsive maple syrup urine disease: 15-year follow-up of the original patient. J Pediatr. 1985;107:763–5.

    Article  CAS  PubMed  Google Scholar 

  25. Naylor EW, Guthrie R. Newborn screening for maple syrup urine disease (branched-chain ketoaciduria). Pediatrics. 1978;61:262–6.

    CAS  PubMed  Google Scholar 

  26. Chace DH, Hillman SL, Millington DS, Kahler SG, Roe CR, Naylor EW. Rapid diagnosis of maple syrup urine disease in blood spots from newborns by tandem mass spectrometry. Clin Chem. 1995;41:62–8.

    CAS  PubMed  Google Scholar 

  27. Matern D, Tortorelli S, Oglesbee D, Gavrilov D, Rinaldo P. Reduction of the false-positive rate in newborn screening by implementation of MS/MS-based second-tier tests: the Mayo Clinic experience (2004–2007). J Inherit Metab Dis. 2007;30:585–92.

    Article  CAS  PubMed  Google Scholar 

  28. Simon E, Fingerhut R, Baumkotter J, Konstantopoulou V, Ratschmann R, Wendel U. Maple syrup urine disease: favourable effect of early diagnosis by newborn screening on the neonatal course of the disease. J Inherit Metab Dis. 2006;29:532–7.

    Article  CAS  PubMed  Google Scholar 

  29. Mamer OA. Initial catabolic steps of isoleucine, the R-pathway and the origin of alloisoleucine. J Chromatogr B Biomed Sci Appl. 2001;758:49–55.

    Article  CAS  PubMed  Google Scholar 

  30. Schadewaldt P, Bodner-Leidecker A, Hammen HW, Wendel U. Significance of L-alloisoleucine in plasma for diagnosis of maple syrup urine disease. Clin Chem. 1999;45:1734–40.

    CAS  PubMed  Google Scholar 

  31. Treacy E, Clow CL, Reade TR, Chitayat D, Mamer OA, Scriver CR. Maple syrup urine disease: interrelations between branched-chain amino-, oxo- and hydroxyacids; implications for treatment; associations with CNS dysmyelination. J Inherit Metab Dis. 1992;15:121–35.

    Article  CAS  PubMed  Google Scholar 

  32. Brismar J, Aqeel A, Brismar G, Coates R, Gascon G, Ozand P. Maple syrup urine disease: findings on CT and MR scans of the brain in 10 infants. AJNR Am J Neuroradiol. 1990;11:1219–28.

    CAS  PubMed  Google Scholar 

  33. Riviello Jr JJ, Rezvani I, DiGeorge AM, Foley CM. Cerebral edema causing death in children with maple syrup urine disease. J Pediatr. 1991;119:42–5.

    Article  PubMed  Google Scholar 

  34. Jan W, Zimmerman RA, Wang ZJ, Berry GT, Kaplan PB, Kaye EM. MR diffusion imaging and MR spectroscopy of maple syrup urine disease during acute metabolic decompensation. Neuroradiology. 2003;45:393–9.

    Article  PubMed  Google Scholar 

  35. Amaral AU, Leipnitz G, Fernandes CG, Seminotti B, Schuck PF, Wajner M. Alpha-ketoisocaproic acid and leucine provoke mitochondrial bioenergetic dysfunction in rat brain. Brain Res. 2010;1324:75–84.

    Article  CAS  PubMed  Google Scholar 

  36. Wajner A, Burger C, Dutra-Filho CS, Wajner M, de Souza Wyse AT, Wannmacher CM. Synaptic plasma membrane Na(+), K(+)-ATPase activity is significantly reduced by the alpha-keto acids accumulating in maple syrup urine disease in rat cerebral cortex. Metab Brain Dis. 2007;22:77–88.

    Article  CAS  PubMed  Google Scholar 

  37. Araujo P, Wassermann GF, Tallini K, et al. Reduction of large neutral amino acid levels in plasma and brain of hyperleucinemic rats. Neurochem Int. 2001;38:529–37.

    Article  CAS  PubMed  Google Scholar 

  38. Wajner M, Coelho DM, Barschak AG, et al. Reduction of large neutral amino acid concentrations in plasma and CSF of patients with maple syrup urine disease during crises. J Inherit Metab Dis. 2000;23:505–12.

    Article  CAS  PubMed  Google Scholar 

  39. Tavares RG, Santos CE, Tasca CI, Wajner M, Souza DO, Dutra-Filho CS. Inhibition of glutamate uptake into synaptic vesicles of rat brain by the metabolites accumulating in maple syrup urine disease. J Neurol Sci. 2000;181:44–9.

    Article  CAS  PubMed  Google Scholar 

  40. Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med. 1994;330:613–22.

    Article  CAS  PubMed  Google Scholar 

  41. Coitinho AS, de Mello CF, Lima TT, de Bastiani J, Fighera MR, Wajner M. Pharmacological evidence that alpha-ketoisovaleric acid induces convulsions through GABAergic and glutamatergic mechanisms in rats. Brain Res. 2001;894:68–73.

    Article  CAS  PubMed  Google Scholar 

  42. Funchal C, Latini A, Jacques-Silva MC, et al. Morphological alterations and induction of oxidative stress in glial cells caused by the branched-chain alpha-keto acids accumulating in maple syrup urine disease. Neurochem Int. 2006;49:640–50.

    Article  CAS  PubMed  Google Scholar 

  43. Barschak AG, Sitta A, Deon M, et al. Amino acids levels and lipid peroxidation in maple syrup urine disease patients. Clin Biochem. 2009;42:462–6.

    Article  CAS  PubMed  Google Scholar 

  44. Mescka CP, Wayhs CA, Vanzin CS, et al. Protein and lipid damage in maple syrup urine disease patients: l-carnitine effect. Int J Dev Neurosci. 2013;31:21–4.

    Article  CAS  PubMed  Google Scholar 

  45. Scaini G, Jeremias IC, Morais MO, et al. DNA damage in an animal model of maple syrup urine disease. Mol Genet Metab. 2012;106:169–74.

    Article  CAS  PubMed  Google Scholar 

  46. Mackenzie DY, Woolf LI. Maple syrup urine disease; an inborn error of the metabolism of valine, leucine, and isoleucine associated with gross mental deficiency. Br Med J. 1959;1:90–1.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Morton DH, Strauss KA, Robinson DL, Puffenberger EG, Kelley RI. Diagnosis and treatment of maple syrup disease: a study of 36 patients. Pediatrics. 2002;109:999–1008.

    Article  PubMed  Google Scholar 

  48. Alodaib A, Carpenter K, Wiley V, Sim K, Christodoulou J, Wilcken B. An improved ultra performance liquid chromatography-tandem mass spectrometry method for the determination of alloisoleucine and branched chain amino acids in dried blood samples. Ann Clin Biochem. 2011;48:468–70.

    Article  CAS  PubMed  Google Scholar 

  49. Kaplan P, Mazur A, Field M, et al. Intellectual outcome in children with maple syrup urine disease. J Pediatr. 1991;119:46–50.

    Article  CAS  PubMed  Google Scholar 

  50. McMahon Y, MacDonnell Jr RC. Clearance of branched chain amino acids by peritoneal dialysis in maple syrup urine disease. Adv Perit Dial. 1990;6:31–4.

    CAS  PubMed  Google Scholar 

  51. Puliyanda DP, Harmon WE, Peterschmitt MJ, Irons M, Somers MJ. Utility of hemodialysis in maple syrup urine disease. Pediatr Nephrol. 2002;17:239–42.

    Article  PubMed  Google Scholar 

  52. Falk MC, Knight JF, Roy LP, et al. Continuous venovenous haemofiltration in the acute treatment of inborn errors of metabolism. Pediatr Nephrol. 1994;8:330–3.

    Article  CAS  PubMed  Google Scholar 

  53. Brunetti-Pierri N, Lanpher B, Erez A, et al. Phenylbutyrate therapy for maple syrup urine disease. Hum Mol Genet. 2011;20:631–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Zinnanti WJ, Lazovic J. Interrupting the mechanisms of brain injury in a model of maple syrup urine disease encephalopathy. J Inherit Metab Dis. 2012;35:71–9.

    Article  CAS  PubMed  Google Scholar 

  55. Strauss KA, Mazariegos GV, Sindhi R, et al. Elective liver transplantation for the treatment of classical maple syrup urine disease. Am J Transplant. 2006;6:557–64.

    Article  CAS  PubMed  Google Scholar 

  56. Muelly ER, Moore GJ, Bunce SC, et al. Biochemical correlates of neuropsychiatric illness in maple syrup urine disease. J Clin Invest. 2013;123:1809–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Skvorak KJ, Hager EJ, Arning E, et al. Hepatocyte transplantation (HTx) corrects selected neurometabolic abnormalities in murine intermediate maple syrup urine disease (iMSUD). Biochim Biophys Acta. 2009;1792:1004–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Skvorak KJ, Dorko K, Marongiu F, et al. Placental stem cell correction of murine intermediate maple syrup urine disease. Hepatology. 2013;57:1017–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Simon E, Schwarz M, Wendel U. Social outcome in adults with maple syrup urine disease (MSUD). J Inherit Metab Dis. 2007;30:264.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Carpenter Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Carpenter, K. (2015). Branched Chain Amino Acids and Maple Syrup Urine Disease. In: Rajendram, R., Preedy, V., Patel, V. (eds) Branched Chain Amino Acids in Clinical Nutrition. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1923-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1923-9_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1922-2

  • Online ISBN: 978-1-4939-1923-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics