Skip to main content

Hijacking the Host Proteasome for the Temporal Degradation of Bacterial Effectors

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1197))

Abstract

To establish infection, intracellular pathogens need to modulate host cellular processes. Modulation of host processes is achieved by the action of various “effector proteins” which are delivered from the bacteria to the host cell cytosol. In order to orchestrate host cell reprogramming, the function of effectors inside host cells is regulated both temporally and spatially. In eukaryotes one of the most prominent processes used to degrade proteins is the ubiquitin-proteasome system. Recently it has emerged that the intracellular pathogen Legionella pneumophila is able to achieve temporal regulation of an effector using the ubiquitin-proteasome system. After establishing its replicative niche, the L. pneumophila effector SidH is degraded by the host proteasome. Most remarkably another effector protein LubX is able to mimic the function of an eukaryotic E3 ubiquitin ligase and polyubiquitinates SidH, targeting it for degradation. In this paper we describe a method to detect the polyubiquitin-modified forms of SidH in vitro and in vivo. Analyzing the temporal profile of polyubiquitination and degradation of bacterial effectors aids towards our understanding of how bacteria hijack host systems.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  CAS  PubMed  Google Scholar 

  2. Hershko A, Heller H, Elias S, Ciechanover A (1983) Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem 258(13):8206–8214

    CAS  PubMed  Google Scholar 

  3. Ardley HC, Robinson PA (2005) E3 ubiquitin ligases. Essays Biochem 41:15–30

    Article  CAS  PubMed  Google Scholar 

  4. Haglund K, Dikic I (2005) Ubiquitylation and cell signaling. EMBO J 24(19):3353–3359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Thrower JS, Hoffman L, Rechsteiner M, Pickart CM (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J 19(1):94–102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Hilbi H, Haas A (2012) Secretive bacterial pathogens and the secretory pathway. Traffic 13(9):1187–1197

    Article  CAS  PubMed  Google Scholar 

  7. van der Heijden J, Finlay BB (2012) Type III effector-mediated processes in Salmonella infection. Future Microbiol 7(6):685–703

    Article  PubMed  Google Scholar 

  8. Xu L, Luo ZQ (2012) Cell biology of infection by Legionella pneumophila. Microbes Infect 15(2):157–167

    Article  PubMed Central  PubMed  Google Scholar 

  9. Chen LM, Hobbie S, Galan JE (1996) Requirement of CDC42 for Salmonella-induced cytoskeletal and nuclear responses. Science 274(5295):2115–2118

    Article  CAS  PubMed  Google Scholar 

  10. Fu Y, Galan JE (1998) The Salmonella typhimurium tyrosine phosphatase SptP is translocated into host cells and disrupts the actin cytoskeleton. Mol Microbiol 27(2):359–368

    Article  CAS  PubMed  Google Scholar 

  11. Fu Y, Galan JE (1999) A salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401(6750):293–297

    Article  CAS  PubMed  Google Scholar 

  12. Kubori T, Galan JE (2003) Temporal regulation of salmonella virulence effector function by proteasome-dependent protein degradation. Cell 115(3):333–342

    Article  CAS  PubMed  Google Scholar 

  13. Zhu W, Banga S, Tan Y, Zheng C, Stephenson R, Gately J, Luo ZQ (2011) Comprehensive identification of protein substrates of the Dot/Icm type IV transporter of Legionella pneumophila. PLoS One 6(3):e17638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Al-Khodor S, Price CT, Habyarimana F, Kalia A, Abu Kwaik Y (2008) A Dot/Icm-translocated ankyrin protein of Legionella pneumophila is required for intracellular proliferation within human macrophages and protozoa. Mol Microbiol 70(4):908–923

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Ensminger AW, Isberg RR (2010) E3 ubiquitin ligase activity and targeting of BAT3 by multiple Legionella pneumophila translocated substrates. Infect Immun 78(9):3905–3919

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Lomma M, Dervins-Ravault D, Rolando M, Nora T, Newton HJ, Sansom FM, Sahr T, Gomez-Valero L, Jules M, Hartland EL, Buchrieser C (2010) The Legionella pneumophila F-box protein Lpp 2082 (AnkB) modulates ubiquitination of the host protein parvin B and promotes intracellular replication. Cell Microbiol 12(9):1272–1291

    Article  CAS  PubMed  Google Scholar 

  17. Price CT, Al-Khodor S, Al-Quadan T, Abu Kwaik Y (2010) Indispensable role for the eukaryotic-like ankyrin domains of the ankyrin B effector of Legionella pneumophila within macrophages and amoebae. Infect Immun 78(5):2079–2088

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Price CT, Al-Quadan T, Santic M, Jones SC, Abu Kwaik Y (2010) Exploitation of conserved eukaryotic host cell farnesylation machinery by an F-box effector of Legionella pneumophila. J Exp Med 207(8):1713–1726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kubori T, Hyakutake A, Nagai H (2008) Legionella translocates an E3 ubiquitin ligase that has multiple U-boxes with distinct functions. Mol Microbiol 67(6):1307–1319

    Article  CAS  PubMed  Google Scholar 

  20. Aravind L, Koonin EV (2000) The U box is a modified RING finger - a common domain in ubiquitination. Curr Biol 10(4):R132–R134

    Article  CAS  PubMed  Google Scholar 

  21. Hatakeyama S, Yada M, Matsumoto M, Ishida N, Nakayama KI (2001) U box proteins as a new family of ubiquitin-protein ligases. J Biol Chem 276(35):33111–33120

    Article  CAS  PubMed  Google Scholar 

  22. Patterson C (2002) A new gun in town: the U box is a ubiquitin ligase domain. Sci STKE 2002(116):PE4

    PubMed  Google Scholar 

  23. Kubori T, Shinzawa N, Kanuka H, Nagai H (2010) Legionella metaeffector exploits host proteasome to temporally regulate cognate effector. PLoS Pathog 6(12):e1001216

    Article  PubMed Central  PubMed  Google Scholar 

  24. Nagai H, Kubori T (2013) Purification and characterization of legionella u-box-type e3 ubiquitin ligase. Methods Mol Biol 954:347–354

    Article  CAS  PubMed  Google Scholar 

  25. Nagai H, Kagan JC, Zhu J, Kahn RA, Roy CR (2002) A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295:679–682

    Article  CAS  PubMed  Google Scholar 

  26. Joiner KA, Fuhrman SA, Miettinen HM, Kasper LH, Mellman I (1990) Toxoplasma gondii: fusion competence of parasitophorous vacuoles in Fc receptor-transfected fibroblasts. Science 249(4969):641–646

    Article  CAS  PubMed  Google Scholar 

  27. Kagan JC, Roy CR (2002) Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites. Nat Cell Biol 4:945–954

    Article  CAS  PubMed  Google Scholar 

  28. Feeley JC, Gibson RJ, Gorman GW, Langford NC, Rasheed JK, Mackel DC, Blaine WB (1979) Charcoal-yeast extract agar: primary isolation medium for Legionella pneumophila. J Clin Microbiol 10:437–441

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Research in the Nagai laboratory was supported by Grants-in-Aid for Scientific Research (23117002, 23390105, 24659198) and Targeted Proteins Research Program from Ministry of Education, Culture, Sports, Science and Technology, Japan. Andree Hubber is supported by a postdoctoral fellowship for foreign researchers awarded by the Japanese Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Nagai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kubori, T., Hubber, A.M., Nagai, H. (2014). Hijacking the Host Proteasome for the Temporal Degradation of Bacterial Effectors. In: Vergunst, A., O'Callaghan, D. (eds) Host-Bacteria Interactions. Methods in Molecular Biology, vol 1197. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1261-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1261-2_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1260-5

  • Online ISBN: 978-1-4939-1261-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics