Skip to main content

Investigating Host–Pathogen Behavior and Their Interaction Using Genome-Scale Metabolic Network Models

  • Protocol
  • First Online:
Book cover Immunoinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1184))

Abstract

Genome Scale Metabolic Modeling methods represent one way to compute whole cell function starting from the genome sequence of an organism and contribute towards understanding and predicting the genotype–phenotype relationship. About 80 models spanning all the kingdoms of life from archaea to eukaryotes have been built till date and used to interrogate cell phenotype under varying conditions. These models have been used to not only understand the flux distribution in evolutionary conserved pathways like glycolysis and the Krebs cycle but also in applications ranging from value added product formation in Escherichia coli to predicting inborn errors of Homo sapiens metabolism. This chapter describes a protocol that delineates the process of genome scale metabolic modeling for analysing host–pathogen behavior and interaction using flux balance analysis (FBA). The steps discussed in the process include (1) reconstruction of a metabolic network from the genome sequence, (2) its representation in a precise mathematical framework, (3) its translation to a model, and (4) the analysis using linear algebra and optimization. The methods for biological interpretations of computed cell phenotypes in the context of individual host and pathogen models and their integration are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Noble D (2008) Genes and causation. Philos Trans R Soc A 366:3001–3015

    Article  CAS  Google Scholar 

  2. Fang K, Zhao H, Sun C, Lam CMC et al (2011) Exploring the metabolic network of the epidemic pathogen Burkholderia cenocepacia J2315 via genome-scale reconstruction. BMC Syst Biol 5:83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Price ND, Reed JL, Palsson BØ (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2(11):886–897

    Article  CAS  PubMed  Google Scholar 

  4. Jeffrey DO, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28(3): 245–248

    Article  Google Scholar 

  5. Edwards J, Palsson BØ (2000) Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions. BMC Bioinformatics 1:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kauffman KJ, Prakash P, Edwards JS (2003) Advances in flux balance analysis. Curr Opin Biotechnol 14:491–496

    Article  CAS  PubMed  Google Scholar 

  7. Mazumdar V, Snitkin ES, Amar S et al (2009) Metabolic network model of a human oral pathogen. J Bacteriol 191(1):74–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Famili I, Forster J, Nielsen J et al (2003) Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc Natl Acad Sci U S A 100:13134–13139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ibarra RU, Edwards JS, Palsson BØ (2002) Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420:186–189

    Article  CAS  PubMed  Google Scholar 

  10. Segre D, Vitkup D, Church GM (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci U S A 99:15112–15117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Becker SA, Feist AM, Mo ML et al (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2(3):727–738

    Article  CAS  PubMed  Google Scholar 

  12. Schellenberger J, Que R, Fleming RM et al (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6:1290–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thiele I, Jamshidi N, Fleming RM, Palsson BØ (2009) Genome-scale reconstruction of Escherichia coli's transcriptional and translational machinery: a knowledge base, its mathematical formulation, and its functional characterization. PLoS Comput Biol 5(3):e1000312

    Article  PubMed  PubMed Central  Google Scholar 

  14. Papin JA, Palsson BO (2004) The JAK-STAT signaling network in the human B-cell: an extreme signaling pathway analysis. Biophys J 87:37–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schellenberger J, Park J, Conrad T et al (2010) BiGG: a biochemical genetic and genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics 11:213

    Article  PubMed  PubMed Central  Google Scholar 

  16. Thiele I, Palsson BØ (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5:93–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kanehisa M, Goto S, Hattori M et al (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 1 (34(Database Issue)):D354–D357

    Article  Google Scholar 

  18. Karp PD et al (2002) The EcoCyc database. Nucleic Acids Res 30:56–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Devoid S, Overbeek R, DeJongh M et al (2013) Automated genome annotation and metabolic model reconstruction in the SEED and Model SEED. Methods Mol Biol 985: 17–45

    Article  CAS  PubMed  Google Scholar 

  20. Poolman MG (2006) ScrumPy: metabolic modelling with Python. Syst Biol 153(5): 375–378

    Article  CAS  Google Scholar 

  21. Barthelmes J, Ebeling C, Chang A et al (2007) BRENDA, AMENDA and FRENDA: the enzyme information system in 2007. Nucleic Acids Res 35:D511–D514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fleming RMT, Thiele I, Nasheuer HP (2009) Quantitative assignment of reaction directionality in constraint-based models of metabolism: application to Escherichia coli. Biophys Chem 145:47–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kümmel A, Panke S, Heinemann M (2006) Systematic assignment of thermodynamic constraints in metabolic network models. BMC Bioinformatics 7:1–12

    Article  Google Scholar 

  24. Gardy JL et al (2005) PSORTb v. 2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics (Oxford) 21:617–623

    Article  CAS  Google Scholar 

  25. Lu Z et al (2004) Predicting subcellular localization of proteins using machine-learned classifiers. Bioinformatics (Oxford) 20:547–556

    Article  CAS  Google Scholar 

  26. Emanuelsson O, Brunak S, von Heijne G et al (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971

    Article  CAS  PubMed  Google Scholar 

  27. Gevorgyan A, Poolman MG, Fell DA (2008) Detection of stoichiometric inconsistencies in biomolecular models. Bioinformatics 24(19): 2245–2251

    Article  CAS  PubMed  Google Scholar 

  28. Zengler K, Palsson BØ (2012) A road map for the development of community systems (CoSy) biology. Nat Rev Microbiol 10(5):366–372

    CAS  PubMed  Google Scholar 

  29. Thiele I, Swainston N, Fleming RM et al (2013) A community-driven global reconstruction of human metabolism. Nat Biotechnol 31(5):419–425

    Article  CAS  PubMed  Google Scholar 

  30. Raghunathan A, Shin S, Daefler S (2010) Systems approach to investigating host–pathogen interactions in infections with the biothreat agent Francisella. Constraints-based model of Francisella tularensis (2010). BMC Syst Biol 4:118

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schilling CH, Covert MW, Famili I et al (2002) Genome scale metabolic model of Helicobacter pylori 26695. J Bacteriol 184(16): 4582–4593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tian J, Bryk R, Itoh M et al (2005) Variant tricarboxylic acid cycle in Mycobacterium tuberculosis: identification of alpha-ketoglutarate decarboxylase. Proc Natl Acad Sci U S A 102(30): 10670–10675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Feist AM, Palsson BØ (2010) The biomass objective function. Curr Opin Microbiol 13(3): 344–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liao Y, Huang T, Chen F et al (2011) An experimentally validated genome-scale metabolic reconstruction of Klebsiella pneumoniae MGH 78578, iYL1228. J Bacteriol 193(7): 1710–1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Charusanti P, Chauhan S, McAteer K et al (2011) An experimentally-supported genome-scale metabolic network reconstruction for Yersinia pestis CO92. BMC Syst Biol 5:163

    Article  PubMed  PubMed Central  Google Scholar 

  36. Abbas CA, Card GL (1980) The relationships between growth temperature, fatty acid composition and the physical state and fluidity of membrane lipids in Yersinia enterocolitica. Biochim Biophys Acta 602:469–476

    Article  CAS  PubMed  Google Scholar 

  37. Feist AM, Herrgård MJ, Thiele I et al (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7(2): 129–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Reed JL, Famili I, Thiele I et al (2006) Towards multidimensional genome annotation. Nat Rev Genet 7(6):130–141

    Article  CAS  PubMed  Google Scholar 

  39. Varma A, Palsson BØ (1994) Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 60(10):3724–3731

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Edwards JS, Palsson BØ (2000) The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci U S A 97(10): 5528–5533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jamshidi N, Palsson BØ (2007) Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. BMC Syst Biol 1:26

    Article  PubMed  PubMed Central  Google Scholar 

  42. Schilling CH, Palsson BØ (2000) Assessment of the metabolic capabilities of Haemophilus influenzae Rd through a genome-scale pathway analysis. J Theor Biol 203:249–283

    Article  CAS  PubMed  Google Scholar 

  43. Thiele I, Vo TD, Price ND et al (2005) Expanded metabolic reconstruction of Helicobacter pylori (iT341 GSM/GPR): an in silico genome scale characterization of single and double deletion mutants. J Bacteriol 187(16): 5818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rocha I, Maia P, Evangelista P et al (2010) OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst Biol 4:45

    Article  PubMed  PubMed Central  Google Scholar 

  45. Klamt S, Saez-Rodriguez J, Gilles E (2007) Structural and functional analysis of cellular networks with Cell NetAnalyzer. BMC Syst Biol 1:2

    Article  PubMed  PubMed Central  Google Scholar 

  46. Olivier B, Rohwer J, Hofmeyr J (2005) Modelling cellular systems with PySCeS. Bioinformatics 21:560–561

    Article  CAS  PubMed  Google Scholar 

  47. Schwarz R, Liang C, Kaleta C et al (2007) Integrated network reconstruction, visualization and analysis using YANAsquare. BMC Bioinformatics 8:313

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kono N, Arakawa K, Tomita M (2006) MEGU: pathway mapping web-service based on KEGG and SVG. In Silico Biol 6:621–625

    CAS  PubMed  Google Scholar 

  49. Cvijovic M, Olivares-Hernández R, Agren R et al (2010) BioMet toolbox: genome-wide analysis of metabolism. Nucleic Acids Res 38: W144–W149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Boele J, Olivier BG, Teusink B (2012) FAME, the flux analysis and modeling environment. BMC Syst Biol 30:6–8

    Google Scholar 

  52. Blazier AS, Papin JA (2012) Integration of expression data in genome-scale metabolic network reconstructions. Front Physiol 3:299

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bordbar A, Lewis NE, Schellenberger J et al (2010) Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions. Mol Syst Biol 6:422

    Article  PubMed  PubMed Central  Google Scholar 

  54. Shlomi T, Cabili MN, Herrgard MJ et al (2008) Network-based prediction of human tissue-specific metabolism. Nat Biotechnol 26: 1003–1010

    Article  CAS  PubMed  Google Scholar 

  55. Becker SA, Palsson BØ (2005) Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation. BMC Microbiol 5:8

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kumar SV, Dasika MS, Maranas CD (2007) Optimization based automated curation of metabolic reconstructions. BMC Bioinformatics 8:212

    Article  Google Scholar 

  57. Suthers PF, Dasika MS, Kumar VS et al (2009) A genome-scale metabolic reconstruction of Mycoplasma genitalium, iPS189. PLoS Comput Biol 5(2):e1000285

    Article  PubMed  PubMed Central  Google Scholar 

  58. Navid A, Almaas E (2009) Genome-scale reconstruction of the metabolic network in Yersinia pestis, strain 91001. Mol BioSyst 5: 368–375

    Article  CAS  PubMed  Google Scholar 

  59. Raghunathan A, Reed J, Shin S et al (2009) Constraint-based analysis of metabolic capacity of Salmonella typhimurium during host–pathogen interaction. BMC Syst Biol 3:38

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fields PI, Swanson RV, Haidaris CG et al (1986) Mutants of Salmonella typhimurium that cannot survive within the macro-phage are avirulent. Proc Natl Acad Sci U S A 83: 5189–5193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Germa ́n P, Hsiao T, Olszewski KL et al (2010) Reconstruction and flux-balance analysis of the Plasmodium falciparum metabolic network. Mol Syst Biol 6:408

    Google Scholar 

  62. Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5(4):264–276

    Article  CAS  PubMed  Google Scholar 

  63. Kim PJ, Lee DY, Kim TY et al (2007) Metabolite essentiality elucidates robustness of Escherichia coli metabolism. Proc Natl Acad Sci U S A 104:13638–13642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dobson PD, Patel Y, Kell DB (2009) ‘Metabolite-likeness’ as a criterion in the design and selection of pharmaceutical drug libraries. Drug Discov Today 14:31–40

    Article  CAS  PubMed  Google Scholar 

  65. Kim HU, Kim TY, Lee SY (2010) Genome-scale metabolic network analysis and drug targeting of multi-drug resistant pathogen Acinetobacter baumannii AYE. Mol Biosyst 6:339–348

    Article  CAS  PubMed  Google Scholar 

  66. Romero P, Wagg J, Green ML et al (2005) Computational prediction of human metabolic pathways from the complete human genome. Genome Biol 6:R2

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hao T, Ma H, Zhao X et al (2010) Compartmentalization of the Edinburgh Human Metabolic Network. BMC Bioinformatics 11:393

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ma H, Sorokin A, Mazein A et al (2007) The Edinburgh human metabolic network reconstruction and its functional analysis. Mol Syst Biol 3:135

    Article  PubMed  PubMed Central  Google Scholar 

  69. Duarte NC, Becker SA, Jamshidi N et al (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci U S A 104:1777–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Raghunathan A, Price ND, Galperin MY et al (2004) In silico metabolic model and protein expression of haemophilus influenzae strain Rd KW20 in rich medium. OMICS 8(1): 25–41

    Article  CAS  PubMed  Google Scholar 

  71. Schmidt BJ, Ebrahim A, Metz TO et al (2013) GIMME: condition-specific models of cellular metabolism developed from metabolomics and expression data. Bioinformatics 29(22): 2900–2908

    Article  CAS  PubMed  Google Scholar 

  72. Kazeros A, Harvey BG, Carolan BJ et al (2008) Overexpression of apoptotic cell removal receptor MERTK in alveolar macrophages of cigarette smokers. Am J Respir Cell Mol Biol 39:747–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Becker SA, Palsson BØ (2008) Context-specific metabolic networks are consistent with experiments. PLoS Comput Biol 4:e1000082

    Article  PubMed  PubMed Central  Google Scholar 

  74. Thuong NT, Dunstan SJ, Chau TT et al (2008) Identification of tuberculosis susceptibility genes with human macrophage gene expression profiles. PLoS Pathog 4(12):e1000229

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anu Raghunathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sadhukhan, P.P., Raghunathan, A. (2014). Investigating Host–Pathogen Behavior and Their Interaction Using Genome-Scale Metabolic Network Models. In: De, R., Tomar, N. (eds) Immunoinformatics. Methods in Molecular Biology, vol 1184. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1115-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1115-8_29

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1114-1

  • Online ISBN: 978-1-4939-1115-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics