Skip to main content

Combining Pulsed SILAC Labeling and Click-Chemistry for Quantitative Secretome Analysis

  • Protocol
  • First Online:
Exocytosis and Endocytosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1174))

Abstract

Secreted proteins, such as cytokines, chemokines, and hormones, exhibit central functions in intercellular communication, which is crucial to maintain homeostasis in every multicellular organism. A common approach to identify secreted proteins is by proteomic analysis of culture media after conditioning with a cell type of interest. This is preferably done in serum-free conditions to enable the detection of low-abundance secretory factors that would otherwise be masked by serum proteins. However, serum starvation introduces the risk of bringing cells in a stressed or perturbed state. A superior approach employs the enrichment of newly synthesized and secreted proteins from serum-containing growth medium. This is achieved by the combination of two metabolic labels: stable isotope-labeled amino acids for reliable quantification, and azidohomoalanine (AHA), an azide-bearing analogue of methionine, for the enrichment of newly synthesized and secreted proteins. This approach has been used to compare secretomes of multiple cell lines or to analyze proteins that are secreted upon a specific stimulation. Here we describe in detail the enrichment and quantification of newly synthesized and secreted proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dowling P, Clynes M (2011) Conditioned media from cell lines: a complementary model to clinical specimens for the discovery of disease-specific biomarkers. Proteomics 11:794–804

    Article  CAS  PubMed  Google Scholar 

  2. Mustafa SA, Hoheisel JD, Alhamdani MS (2011) Secretome profiling with antibody microarrays. Mol Biosyst 7:1795–1801

    Article  CAS  PubMed  Google Scholar 

  3. Raimondo F, Morosi L, Chinello C, Magni F, Pitto M (2011) Advances in membranous vesicle and exosome proteomics improving biological understanding and biomarker discovery. Proteomics 11:709–720

    Article  CAS  PubMed  Google Scholar 

  4. Pirkmajer S, Chibalin AV (2011) Serum starvation: caveat emptor. Am J Physiol Cell Physiol 301:C272–C279

    Article  CAS  PubMed  Google Scholar 

  5. Hasan NM, Adams GE, Joiner MC (1999) Effect of serum starvation on expression and phosphorylation of PKC-alpha and p53 in V79 cells: implications for cell death. Int J Cancer 80:400–405

    Article  CAS  PubMed  Google Scholar 

  6. Levin VA, Panchabhai SC, Shen L, Kornblau SM, Qiu Y, Baggerly KA (2010) Different changes in protein and phosphoprotein levels result from serum starvation of high-grade glioma and adenocarcinoma cell lines. J Proteome Res 9:179–191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Cooper S (2003) Reappraisal of serum starvation, the restriction point, G0, and G1 phase arrest points. FASEB J 17:333–340

    Article  CAS  PubMed  Google Scholar 

  8. Zwickl H, Traxler E, Staettner S, Parzefall W, Grasl-Kraupp B, Karner J, Schulte-Hermann R, Gerner C (2005) A novel technique to specifically analyze the secretome of cells and tissues. Electrophoresis 26:2779–2785

    Article  CAS  PubMed  Google Scholar 

  9. Henningsen J, Pedersen BK, Kratchmarova I (2011) Quantitative analysis of the secretion of the MCP family of chemokines by muscle cells. Mol Biosyst 7:311–321

    Article  CAS  PubMed  Google Scholar 

  10. Kristensen LP, Chen L, Nielsen MO, Qanie DW, Kratchmarova I, Kassem M, Andersen JS (2012) Temporal profiling and pulsed SILAC labeling identify novel secreted proteins during ex vivo osteoblast differentiation of human stromal stem cells. Mol Cell Proteomics 11:989–1007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Colzani M, Waridel P, Laurent J, Faes E, Ruegg C, Quadroni M (2009) Metabolic labeling and protein linearization technology allow the study of proteins secreted by cultured cells in serum-containing media. J Proteome Res 8:4779–4788

    Article  CAS  PubMed  Google Scholar 

  12. Kuhn PH, Koroniak K, Hogl S et al (2012) Secretome protein enrichment identifies physiological BACE1 protease substrates in neurons. EMBO J 31:3157–3168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Eichelbaum K, Winter M, Diaz MB, Herzig S, Krijgsveld J (2012) Selective enrichment of newly synthesized proteins for quantitative secretome analysis. Nat Biotechnol 30:984–990

    Article  CAS  PubMed  Google Scholar 

  14. Meiring HD, van der Heeft E, ten Hove GJ, de Jong A (2002) Nanoscale LC-MS(n): technical design and applications to peptide and protein analysis. J Separat Sci 25:557–568

    Article  CAS  Google Scholar 

  15. Kiick KL, Saxon E, Tirrell DA, Bertozzi CR (2002) Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proc Natl Acad Sci U S A 99:19–24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Villen J, Gygi SP (2008) The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat Protoc 3:1630–1638

    Article  PubMed Central  PubMed  Google Scholar 

  17. Wisniewski JR, Zougman A, Mann M (2009) Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. J Proteome Res 8:5674–5678

    Article  CAS  PubMed  Google Scholar 

  18. Motoyama A, Yates JR 3rd (2008) Multidimensional LC separation in shotgun proteomics. Anal Chem 80:7187–7193

    Article  CAS  PubMed  Google Scholar 

  19. Qian WJ, Jacobs JM, Liu T, Camp DG 2nd, Smith RD (2006) Advances and challenges in liquid chromatography-mass spectrometry-based proteomics profiling for clinical applications. Mol Cell Proteomics 5:1727–1744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  CAS  PubMed  Google Scholar 

  21. Mortensen P, Gouw JW, Olsen JV et al (2010) MSQuant, an open source platform for mass spectrometry-based quantitative proteomics. J Proteome Res 9:393–403

    Article  CAS  PubMed  Google Scholar 

  22. Park SK, Venable JD, Xu T, Yates JR 3rd (2008) A quantitative analysis software tool for mass spectrometry-based proteomics. Nat Methods 5:319–322

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Gentleman RC, Carey VJ, Bates DM et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

    Article  PubMed Central  PubMed  Google Scholar 

  24. Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3, Article 3

    Google Scholar 

  25. Jain E, Bairoch A, Duvaud S, Phan I, Redaschi N, Suzek BE, Martin MJ, McGarvey P, Gasteiger E (2009) Infrastructure for the life sciences: design and implementation of the UniProt website. BMC Bioinformat 10:136

    Article  Google Scholar 

  26. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  PubMed  Google Scholar 

  27. Rappsilber J, Ishihama Y, Mann M (2003) Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 75:663–670

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Itahisa Hernandez, Sophia Föhr, and Jenny Hansson for careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeroen Krijgsveld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Eichelbaum, K., Krijgsveld, J. (2014). Combining Pulsed SILAC Labeling and Click-Chemistry for Quantitative Secretome Analysis. In: Ivanov, A. (eds) Exocytosis and Endocytosis. Methods in Molecular Biology, vol 1174. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0944-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0944-5_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0943-8

  • Online ISBN: 978-1-4939-0944-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics