Skip to main content

Mining the Electronic Health Record for Disease Knowledge

  • Protocol
  • First Online:
Book cover Biomedical Literature Mining

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1159))

Abstract

The growing amount and availability of electronic health record (EHR) data present enhanced opportunities for discovering new knowledge about diseases. In the past decade, there has been an increasing number of data and text mining studies focused on the identification of disease associations (e.g., disease–disease, disease–drug, and disease–gene) in structured and unstructured EHR data. This chapter presents a knowledge discovery framework for mining the EHR for disease knowledge and describes each step for data selection, preprocessing, transformation, data mining, and interpretation/validation. Topics including natural language processing, standards, and data privacy and security are also discussed in the context of this framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Institute of Medicine (U.S.), Committee on Improving the Patient Record (eds), Dick RS, Steen EB, Detmer DE (1997) The computer-based patient record: an essential technology for health care. Revised edition. National Academy Press, Washington, DC

    Google Scholar 

  2. Stewart WF, Shah NR, Selna MJ, Paulus RA, Walker JM (2007) Bridging the inferential gap: the electronic health record and clinical evidence. Health Aff (Millwood) 26: w181–w191

    Article  Google Scholar 

  3. Kohane IS (2011) Using electronic health records to drive discovery in disease genomics. Nat Rev Genet 12:417–428

    Article  PubMed  CAS  Google Scholar 

  4. Coorevits P, Sundgren M, Klein GO, Bahr A, Claerhout B, Daniel C et al (2013) Electronic health records: new opportunities for clinical research. J Intern Med 274(6):547–560

    Article  PubMed  CAS  Google Scholar 

  5. Kukafka R, Ancker JS, Chan C, Chelico J, Khan S, Mortoti S et al (2007) Redesigning electronic health record systems to support public health. J Biomed Inform 40:398–409

    Article  PubMed  Google Scholar 

  6. Denny JC (2012) Chapter 13: Mining electronic health records in the genomics era. PLoS Comput Biol 8:e1002823

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Bath P (2004) Data mining in health and medical information. Annu Rev Inform Sci Technol 38:331–369

    Article  Google Scholar 

  8. van Bemmel JH, van Mulligen EM, Mons B, van Wijk M, Kors JA, van der Lei J (2006) Databases for knowledge discovery. Examples from biomedicine and health care. Int J Med Inform 75:257–267

    Article  PubMed  Google Scholar 

  9. Iavindrasana J, Cohen G, Depeursinge A, Muller H, Meyer R, Geissbuhler A (2009) Clinical data mining: a review. Yearb Med Inform:121–133

    Google Scholar 

  10. Murdoch TB, Detsky AS (2013) The inevitable application of big data to health care. JAMA 309:1351–1352

    Article  PubMed  CAS  Google Scholar 

  11. Roque FS, Jensen PB, Schmock H, Dalgaard M, Andreatta M, Hansen T et al (2011) Using electronic patient records to discover disease correlations and stratify patient cohorts. PLoS Comput Biol 7:e1002141

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Holmes AB, Hawson A, Liu F, Friedman C, Khiabanian H, Rabadan R (2011) Discovering disease associations by integrating electronic clinical data and medical literature. PLoS One 6:e21132

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Hanauer DA, Rhodes DR, Chinnaiyan AM (2009) Exploring clinical associations using ‘-omics’ based enrichment analyses. PLoS One 4:e5203

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Wilson AM, Thabane L, Holbrook A (2004) Application of data mining techniques in pharmacovigilance. Br J Clin Pharmacol 57:127–134

    Article  PubMed Central  PubMed  Google Scholar 

  15. Wang X, Hripcsak G, Markatou M, Friedman C (2009) Active computerized pharmacovigilance using natural language processing, statistics, and electronic health records: a feasibility study. J Am Med Inform Assoc 16:328–337

    Article  PubMed Central  PubMed  Google Scholar 

  16. Harpaz R, Perez H, Chase HS, Rabadan R, Hripcsak G, Friedman C (2011) Biclustering of adverse drug events in the FDA’s spontaneous reporting system. Clin Pharmacol Ther 89:243–250

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Wilke RA, Xu H, Denny JC, Roden DM, Krauss RM, McCarty CA et al (2011) The emerging role of electronic medical records in pharmacogenomics. Clin Pharmacol Ther 89:379–386

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Fayyad U, Piatetsky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery in databases. AI Mag 17:37–54

    Google Scholar 

  19. Fayyad U, Piatetsky-Shapiro G, Smyth P (1996) The KDD process for extracting useful knowledge from volumes of data. Commun ACM 39:27–34

    Article  Google Scholar 

  20. Hearst M (1999) Untangling text data mining. Proceedings of the 37th annual meeting of the Association for Computational Linguistics on computational linguistics, pp 3–10

    Google Scholar 

  21. Zweigenbaum P, Demner-Fushman D, Yu H, Cohen KB (2007) Frontiers of biomedical text mining: current progress. Brief Bioinform 8:358–375

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Institute of Medicine (2003) Key capabilities of an electronic health record system. National Academies Press, Washington, DC

    Google Scholar 

  23. National Institutes of Health National Center for Research Resources and MITRE Corporation (2006) Electronic health records overview. http://www.himss.org/files/HIMSSorg/content/files/Code%20180%20MITRE%20Key%20Components%20of%20an%20EHR.pdf

  24. ASTM Standard E1384 (2013) Standard guide for content and structure of the Electronic Health Record (EHR). ASTM International, West Conshohocken, PA

    Google Scholar 

  25. Carter J (2008) Electronic health records for clinicians and administrators: infrastructure and supporting technologies. In: Carter J (ed) Electronic health records, 2nd edn. American College of Physicians, Philadelphia, PA

    Google Scholar 

  26. MacKenzie SL, Wyatt MC, Schuff R, Tenenbaum JD, Anderson N (2012) Practices and perspectives on building integrated data repositories: results from a 2010 CTSA survey. J Am Med Inform Assoc 19:e119–e124

    Article  PubMed Central  PubMed  Google Scholar 

  27. http://mimic.physionet.org/

  28. Scott DJ, Lee J, Silva I, Park S, Moody GB, Celi LA et al (2013) Accessing the public MIMIC-II intensive care relational database for clinical research. BMC Med Inform Dec Mak 13:9

    Article  Google Scholar 

  29. https://i2b2.org/NLP/DataSets/

  30. Uzuner O, Luo Y, Szolovits P (2007) Evaluating the state-of-the-art in automatic de-identification. J Am Med Inform Assoc 14:550–563

    Article  PubMed Central  PubMed  Google Scholar 

  31. Uzuner O, Goldstein I, Luo Y, Kohane I (2008) Identifying patient smoking status from medical discharge records. J Am Med Inform Assoc 15:14–24

    Article  PubMed Central  PubMed  Google Scholar 

  32. Uzuner O, Solti I, Cadag E (2010) Extracting medication information from clinical text. J Am Med Inform Assoc 17:514–518

    Article  PubMed Central  PubMed  Google Scholar 

  33. Ohno-Machado L, Bafna V, Boxwala AA, Chapman BE, Chapman WW, Chaudhuri K et al (2012) iDASH: integrating data for analysis, anonymization, and sharing. J Am Med Inform Assoc 19:196–201

    Article  PubMed Central  PubMed  Google Scholar 

  34. http://idash.ucsd.edu/data-repository-0

  35. Ackoff R (1989) From data to wisdom. J Appl Syst Anal 16:3–9

    Google Scholar 

  36. Cao H, Markatou M, Melton GB, Chiang MF, Hripcsak G (2005) Mining a clinical data warehouse to discover disease-finding associations using co-occurrence statistics. AMIA Annu Symp Proc:106–110

    Google Scholar 

  37. Cao H, Hripcsak G, Markatou M (2007) A statistical methodology for analyzing co-occurrence data from a large sample. J Biomed Inform 40:343–352

    Article  PubMed Central  PubMed  Google Scholar 

  38. Chen ES, Hripcsak G, Xu H, Markatou M, Friedman C (2008) Automated acquisition of disease drug knowledge from biomedical and clinical documents: an initial study. J Am Med Inform Assoc 15:87–98

    Article  PubMed Central  PubMed  Google Scholar 

  39. Chen ES, Stetson PD, Lussier YA, Markatou M, Hripcsak G, Friedman C (2007) Detection of practice pattern trends through Natural Language Processing of clinical narratives and biomedical literature. AMIA Annu Symp Proc:120–124

    Google Scholar 

  40. Wang X, Hripcsak G, Friedman C (2009) Characterizing environmental and phenotypic associations using information theory and electronic health records. BMC Bioinforma 10(Suppl 9):S13

    Article  Google Scholar 

  41. Wang X, Chase H, Markatou M, Hripcsak G, Friedman C (2010) Selecting information in electronic health records for knowledge acquisition. J Biomed Inform 43:595–601

    Article  PubMed Central  PubMed  Google Scholar 

  42. Wright A, Chen ES, Maloney FL (2010) An automated technique for identifying associations between medications, laboratory results and problems. J Biomed Inform 43: 891–901

    Article  PubMed  Google Scholar 

  43. Wright A, Pang J, Feblowitz JC, Maloney FL, Wilcox AR, Ramelson HZ et al (2011) A method and knowledge base for automated inference of patient problems from structured data in an electronic medical record. J Am Med Inform Assoc 18:859–867

    Article  PubMed Central  PubMed  Google Scholar 

  44. Doddi S, Marathe A, Ravi SS, Torney DC (2001) Discovery of association rules in medical data. Med Inform Internet Med 26: 25–33

    Article  PubMed  CAS  Google Scholar 

  45. Denny JC, Ritchie MD, Basford MA, Pulley JM, Bastarache L, Brown-Gentry K et al (2010) PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics 26:1205–1210

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Mullins IM, Siadaty MS, Lyman J, Scully K, Garrett CT, Miller WG et al (2006) Data mining and clinical data repositories: insights from a 667,000 patient data set. Comput Biol Med 36:1351–1377

    Article  PubMed  Google Scholar 

  47. Concaro S, Sacchi L, Cerra C, Fratino P, Bellazzi R (2011) Mining health care administrative data with temporal association rules on hybrid events. Methods Inf Med 50: 166–179

    Article  PubMed  CAS  Google Scholar 

  48. Newton KM, Peissig PL, Kho AN, Bielinski SJ, Berg RL, Choudhary V et al (2013) Validation of electronic medical record-based phenotyping algorithms: results and lessons learned from the eMERGE network. J Am Med Inform Assoc 20:e147–e154

    Article  PubMed  Google Scholar 

  49. Richesson RL, Hammond WE, Nahm M, Wixted D, Simon GE, Robinson JG et al (2013) Electronic health records based phenotyping in next-generation clinical trials: a perspective from the NIH Health Care Systems Collaboratory. J Am Med Inform Assoc 20(e2):e226–e231

    Article  PubMed  Google Scholar 

  50. http://www.phekb.org/

  51. Gottesman O, Kuivaniemi H, Tromp G, Faucett WA, Li R, Manolio TA et al (2013) The Electronic Medical Records and Genomics (eMERGE) Network: past, present, and future. Genet Med 15(10):761–771

    Article  PubMed Central  PubMed  Google Scholar 

  52. http://www.mtsamples.com/site/pages/sample.asp?type=97-Consult%20-%20History%20and%20Phy.&sample=2063-Gen%20Med%20Consult%20-%2049

  53. Weiskopf NG, Weng C (2013) Methods and dimensions of electronic health record data quality assessment: enabling reuse for clinical research. J Am Med Inform Assoc 20: 144–151

    Article  PubMed Central  PubMed  Google Scholar 

  54. Rahm E, Do H (2000) Data cleaning: problems and current approaches. IEEE Data Eng Bull 23:3–13

    Google Scholar 

  55. http://www.w3.org/TR/NOTE-datetime

  56. Bodenreider O (2004) The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Res 32:D267–D270

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Post AR, Harrison JH Jr (2008) Temporal data mining. Clin Lab Med 28:83–100, vii

    Article  PubMed  Google Scholar 

  58. Carter C, Hamilton H (1995) A fast, on-line generalization algorithm for knowledge discovery. Appl Math Lett 8:5–11

    Article  Google Scholar 

  59. http://knowledgemap.mc.vanderbilt.edu/research/content/phewas

  60. http://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp

  61. Liu H, Motoda H (1998) Feature extraction, construction and selection: a data mining perspective. Kluwer, Boston

    Book  Google Scholar 

  62. Dunham MH (2003) Data mining introductory and advanced topics. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  63. Sarkar IN (2013) Methods in biomedical informatics: a pragmatic approach, 1st edn. Academic, New York

    Google Scholar 

  64. Zupan B, Demsar J (2008) Open-source tools for data mining. Clin Lab Med 28:37–54, vi

    Article  PubMed  Google Scholar 

  65. http://www.kdnuggets.com/software/index.html

  66. Tan P-N, Steinbach M, Kumar V (2006) Introduction to data mining, 1st edn. Pearson Addison Wesley, Boston

    Google Scholar 

  67. Agrawal R, Srikant R (1994) Fast algorithms for mining association rules in large databases. Proceedings of the 20th International conference on very large data bases, pp 487–499

    Google Scholar 

  68. Hipp J, Guntzer U, Nakhaeizadeh G (2000) Algorithms for association rule mining—a general survey and comparison. ACM SIGKDD Explor Newslett 2:58–64

    Article  Google Scholar 

  69. Tan P, Kumar V, Srivastava J (2002) Selecting the right interestingness measure for association patterns. Proceedings of the 8th ACM SIGKDD International conference on knowledge discovery and data mining, pp 32–41

    Google Scholar 

  70. Ohsaki M, Abe H, Tsumoto S, Yokoi H, Yamaguchi T (2007) Evaluation of rule interestingness measures in medical knowledge discovery in databases. Artif Intell Med 41: 177–196

    Article  PubMed  Google Scholar 

  71. Hidalgo CA, Blumm N, Barabasi AL, Christakis NA (2009) A dynamic network approach for the study of human phenotypes. PLoS Comput Biol 5:e1000353

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Harpaz R, Chase HS, Friedman C (2010) Mining multi-item drug adverse effect associations in spontaneous reporting systems. BMC Bioinforma 11(Suppl 9):S7

    Article  Google Scholar 

  73. Liu B, Hsu W, Ma Y (1999) Mining association rules with multiple minimum supports. KDD ‘99 Proceedings of the 5th ACM SIGKDD International conference on knowledge discovery and data mining, pp 337–341

    Google Scholar 

  74. http://www.graphviz.org/

  75. http://www.cytoscape.org/

  76. http://www.cs.waikato.ac.nz/ml/weka/

  77. http://orange.biolab.si/

  78. http://informatics.mc.vanderbilt.edu/archives/starchart

  79. http://cerner.com/

  80. http://www.epic.com/

  81. http://medsphere.com/vista-to-openvista

  82. http://www.hl7.org

  83. Friedman C, Johnson S (2006) Natural language and text processing in biomedicine. In: Shortliffe E, Cimino JJ (eds) Biomedical informatics computer applications in health care and biomedicine, 3rd edn. Springer, New York

    Google Scholar 

  84. Meystre SM, Savova GK, Kipper-Schuler KC, Hurdle JF (2008) Extracting information from textual documents in the electronic health record: a review of recent research. Yearb Med Inform:128–144

    Google Scholar 

  85. Cimino JJ (1996) Review paper: coding systems in health care. Methods Inf Med 35: 273–284

    PubMed  CAS  Google Scholar 

  86. Cimino JJ, Zhu X (2006) The practical impact of ontologies on biomedical informatics. Yearb Med Inform:124–135

    Google Scholar 

  87. Friedman C (2000) A broad-coverage natural language processing system. Proc AMIA Symp:270–274

    Google Scholar 

  88. Friedman C, Hripcsak G, Shagina L, Liu H (1999) Representing information in patient reports using natural language processing and the extensible markup language. J Am Med Inform Assoc 6:76–87

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  89. Friedman C, Shagina L, Lussier Y, Hripcsak G (2004) Automated encoding of clinical documents based on natural language processing. J Am Med Inform Assoc 11:392–402

    Article  PubMed Central  PubMed  Google Scholar 

  90. Aronson AR, Lang FM (2010) An overview of MetaMap: historical perspective and recent advances. J Am Med Inform Assoc 17:229–236

    PubMed Central  PubMed  Google Scholar 

  91. Savova GK, Masanz JJ, Ogren PV, Zheng J, Sohn S, Kipper-Schuler KC et al (2010) Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications. J Am Med Inform Assoc 17:507–513

    Article  PubMed Central  PubMed  Google Scholar 

  92. Zeng QT, Goryachev S, Weiss S, Sordo M, Murphy SN, Lazarus R (2006) Extracting principal diagnosis, co-morbidity and smoking status for asthma research: evaluation of a natural language processing system. BMC Med Inform Dec Mak 6:30

    Article  Google Scholar 

  93. Kohane IS, Churchill SE, Murphy SN (2012) A translational engine at the national scale: informatics for integrating biology and the bedside. J Am Med Inform Assoc 19: 181–185

    Article  PubMed Central  PubMed  Google Scholar 

  94. McMurry AJ, Murphy SN, MacFadden D, Weber G, Simons WW, Orechia J et al (2013) SHRINE: enabling nationally scalable multi-site disease studies. PLoS One 8:e55811

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  95. Roden DM, Pulley JM, Basford MA, Bernard GR, Clayton EW, Balser JR et al (2008) Development of a large-scale de-identified DNA biobank to enable personalized medicine. Clin Pharmacol Ther 84:362–369

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  96. Lowe HJ, Ferris TA, Hernandez PM, Weber SC (2009) STRIDE—an integrated standards-based translational research informatics platform. AMIA Annu Symp Proc 2009:391–395

    PubMed Central  PubMed  Google Scholar 

  97. Chute CG, Beck SA, Fisk TB, Mohr DN (2010) The Enterprise Data Trust at Mayo Clinic: a semantically integrated warehouse of biomedical data. J Am Med Inform Assoc 17:131–135

    Article  PubMed Central  PubMed  Google Scholar 

  98. Cimino JJ, Ayres EJ (2010) The clinical research data repository of the US National Institutes of Health. Stud Health Technol Inform 160:1299–1303

    PubMed Central  PubMed  Google Scholar 

  99. Payne P, Ervin D, Dhaval R, Borlawsky T, Lai A (2011) TRIAD: the Translational Research Informatics and Data Management Grid. Appl Clin Inform 2:331–344

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  100. Wylie JE, Mineau GP (2003) Biomedical databases: protecting privacy and promoting research. Trends Biotechnol 21:113–116

    Article  PubMed  CAS  Google Scholar 

  101. Malin B, Karp D, Scheuermann RH (2010) Technical and policy approaches to balancing patient privacy and data sharing in clinical and translational research. J Investig Med 58: 11–18

    PubMed Central  PubMed  Google Scholar 

  102. Krishna R, Kelleher K, Stahlberg E (2007) Patient confidentiality in the research use of clinical medical databases. Am J Public Health 97:654–658

    Article  PubMed Central  PubMed  Google Scholar 

  103. Berman JJ (2002) Confidentiality issues for medical data miners. Artif Intell Med 26: 25–36

    Article  PubMed  Google Scholar 

  104. http://www.hhs.gov/ocr/privacy/index.html

  105. Gunn PP, Fremont AM, Bottrell M, Shugarman LR, Galegher J, Bikson T (2004) The Health Insurance Portability and Accountability Act Privacy Rule: a practical guide for researchers. Med Care 42:321–327

    Article  PubMed  Google Scholar 

  106. Nosowsky R, Giordano TJ (2006) The Health Insurance Portability and Accountability Act of 1996 (HIPAA) privacy rule: implications for clinical research. Annu Rev Med 57:575–590

    Article  PubMed  CAS  Google Scholar 

  107. Meystre SM, Friedlin FJ, South BR, Shen S, Samore MH (2010) Automatic de-identification of textual documents in the electronic health record: a review of recent research. BMC Med Res Methodol 10:70

    Article  PubMed Central  PubMed  Google Scholar 

  108. Kushida CA, Nichols DA, Jadrnicek R, Miller R, Walsh JK, Griffin K (2012) Strategies for de-identification and anonymization of electronic health record data for use in multicenter research studies. Med Care 50(Suppl): S82–S101

    Article  PubMed  Google Scholar 

  109. El Emam K, Jonker E, Arbuckle L, Malin B (2011) A systematic review of re-identification attacks on health data. PLoS One 6:e28071

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  110. Murphy SN, Gainer V, Mendis M, Churchill S, Kohane I (2011) Strategies for maintaining patient privacy in i2b2. J Am Med Inform Assoc 18(Suppl 1):i103–i108

    Article  PubMed Central  PubMed  Google Scholar 

  111. Hammond WE (2005) The making and adoption of health data standards. Health Aff (Millwood) 24:1205–1213

    Article  Google Scholar 

  112. Chen ES, Melton GB, Sarkar IN (2012) Translating standards into practice: experiences and lessons learned in biomedicine and health care. J Biomed Inform 45:609–612

    Article  PubMed  Google Scholar 

  113. http://www.who.int/classifications/icd/en/

  114. http://www.ama-assn.org/go/cpt

  115. http://loinc.org/

  116. Vreeman DJ, McDonald CJ, Huff SM (2010) LOINC(R)—a universal catalog of individual clinical observations and uniform representation of enumerated collections. Int J Funct Inform Personal Med 3:273–291

    Article  PubMed Central  PubMed  Google Scholar 

  117. http://www.nlm.nih.gov/research/umls/rxnorm/

  118. Nelson SJ, Zeng K, Kilbourne J, Powell T, Moore R (2011) Normalized names for clinical drugs: RxNorm at 6 years. J Am Med Inform Assoc 18:441–448

    Article  PubMed Central  PubMed  Google Scholar 

  119. http://www.ihtsdo.org/snomed-ct/

  120. http://www.nlm.nih.gov/mesh/

  121. http://www.nlm.nih.gov/research/umls/

  122. http://bioportal.bioontology.org/

  123. Noy NF, Shah NH, Whetzel PL, Dai B, Dorf M, Griffith N et al (2009) BioPortal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Res 37:W170–W173

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The example clinical note in Fig. 2d was obtained with permission from MTSamples (http://www.mtsamples.com). This work was supported in part by the National Library of Medicine of the National Institutes of Health under award number R01LM011364. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth S. Chen Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chen, E.S., Sarkar, I.N. (2014). Mining the Electronic Health Record for Disease Knowledge. In: Kumar, V., Tipney, H. (eds) Biomedical Literature Mining. Methods in Molecular Biology, vol 1159. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0709-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0709-0_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0708-3

  • Online ISBN: 978-1-4939-0709-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics