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Abstract We present a novel time domain functional near infrared spectroscopy sys-
tem using a supercontinuum laser allowing us to measure the coefficient of absorption 
and scattering of up to 16 multiplexed wavelengths in the near infrared region. This is 
a four detector system that generates up to 3 mW of light for each wavelength with a 
narrow 2–3 nm FWHM bandwidth between 650 and 890 nm; each measurement of 16 
wavelengths per channel can be performed up to a rate of 1 Hz. We can therefore 
quantify absolute haemoglobin changes in tissue and are currently investigating which 
and how many wavelengths are needed to resolve additional chromophores in tissue, 
such as water and the oxidation state of cytochrome-c-oxidase.

Keywords NIRS • TRS • Cytochrome-c-oxidase • Supercontinuum laser • 
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1  Introduction

Near infrared spectroscopy (NIRS) is commonly used for non-invasive measure-
ments of the concentration changes of oxyhaemoglobin (HbO2) and deoxyhaemo-
globin (HHb) in tissue. Typically, continuous wave (CW) systems are used where a 
reflected/transmitted change in light attenuation through tissue is measured. If the 
scattering of light in the tissue is assumed constant and the differential path length 
factor estimated, the modified Beer–Lambert law can be used to calculate changes 
in chromophore concentrations [1]. CW systems have the benefit of requiring 
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relatively simple and inexpensive components, and can be made into easy to use 
compact devices.

Time-resolved spectroscopy operates by pulsing short picosecond pulses of 
light into the tissue through optical fibres. Fast single photon detectors and highly 
accurate timing electronics are then used to measure the time-of-flight (TOF) of 
each photon escaping the tissue surface. By repeating this TOF measurement many 
times a histogram called a temporal point spread function (TPSF) can be generated. 
We can obtain much more detailed information about the tissue from the TPSF than 
is possible using a CW technique, including mean path length and the absolute 
absorption and scattering coefficients [2].

Advances in technology have reduced the cost and size of the timing electron-
ics needed for TOF measurements, making the technique reasonably accessible. 
Time- resolved systems are therefore becoming increasingly popular for tissue 
diagnostics.

In addition to haemoglobin, cytochrome-c-oxidase (CCO) the terminal electron 
accepter of the respiratory chain is a strong absorber of near infrared light [3]. The 
absorption spectrum of CCO depends on whether the enzyme is in its oxidised or 
reduced state; NIRS utilises this to measure the changes in its oxidation state 
(oxCCO). Although there is a clear optical signature in the difference between the 
reduced and oxidised forms of CCO, the measurement of oxCCO is considerably 
more difficult than haemoglobin as the concentration in tissue is of an order of mag-
nitude less [4]. Therefore, in order to decouple the haemoglobin and oxCCO 
changes accurately it is necessary to enhance the spectroscopic resolution of the 
NIRS system and measure independently absorption and scattering in many wave-
lengths [5]. CW broadband [6] and recently hybrid broadband and frequency 
domain systems have been used to measure oxCCO [7]. Zhu and colleagues using 
computational techniques and data from a CW broadband system during severe 
hypoxic-ischaemia in piglets have found that not only is the number of wavelengths 
important but there is significant improvement in the estimation of chromophores if 
specific combinations of wavelengths are used [8].

In order to address these issues we have designed and built a near infrared time domain 
multiwavelength spectrometer using a supercontinuum laser source. This enables us to 
measure the coefficient of absorption (μa) and the reduced coefficient of scattering 
(μs′) for 16 wavelengths between 650 and 890 nm. Here we describe the hardware 
of the system, discuss the theory of operation and present some preliminary results 
from the use of the system to monitor haemodynamic changes in the muscle during 
an arm cuff occlusion experiment.

2  Instrumentation and Methods

A custom designed supercontinuum laser (SC-480-6, Fianium, UK) with a repetition 
rate of 60 MHz producing white light over a range of 400–2,100 nm is used. The 
light is passed via optical fibre into a dual acoustic optic tunable filter (AOTF) system. 
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As seen in Fig. 24.1, the light is collimated in free space and split by a polarising 
beam splitter. These beams are then passed through two AOTFs mounted at right 
angles to each other. As the devices only filter light in one plane this is the most 
efficient way of maximising the output power. The filters consist of piezo- electric 
transducers bonded to a birefringent quartz crystal that create a standing wave at a 
driven frequency. This modulates the refractive index of the crystal creating a 
phase grating, splitting the light from the laser into its different diffraction orders. 
A desired frequency can thus be directed and focused into an optical fibre. Custom 
AOTFs are used in the system to give narrow band filtered light of 2–3 nm FWHM 
in the region of 600–1,100 nm, these can provide an output power of 3 mW per 
wavelength.

For spectroscopy of tissue, each wavelength is multiplexed so that the TPSFs are 
averaged over the total desired measurement duration. The AOTF fast switches 
between 16 wavelengths at 160 Hz allowing time domain measurements with any 
combination of wavelengths between 650 and 890 nm. Two source fibres are used 
simultaneously when the detectors are placed on either hemisphere of the adult 
head. The light is passed into a 70 μm high NA single fibre which is attached to the 
patient via a custom designed 3D printed optode holder (Fig. 24.2d).

The light is collected by four glass fibre bundles (Loptek) with a diameter of 
3 mm and is passed through custom made variable optical attenuators (VOAs) with 
a range of 0–3.7 OD to four Hamamatsu H7442-50P photomultiplier tube (PMT) 
modules. As the PMTs have a high gain the VOAs protect against over exposure 
during the experiment increasing the dynamic range. The signal from the PMTs is 
passed through a four way router (HRT-41) and the arrival time of each photon is 
measured with a Becker and Hickl SPC-130-EM time correlated single photon 
counting card.

The TSPF obtained in time resolved measurements contains information not 
only from the tissue but also the instrument itself. Therefore, a correction has to be 
made before the true optical properties of the tissue can be obtained. An instrument 

Fig. 24.1 Schematic of time resolved multiwavelength near infrared spectrometer. The light is 
tuned using acousto-optic tunable filters (AOTF) and detected with four photomultiplier tubes 
(PMTs) each protected by variable optical attenuators (VOAs)
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response function (IRF, Fig. 24.2a) is recorded before each measurement using neutral 
density filters (Fig. 24.2c) in order to characterise the factors which contribute 
towards the broadening of the IRF (laser pulse, optical fibres, photon detectors, and 
timing electronics).

In order to quantify the optical properties of the tissue, the solution to the diffusion 
equation for a semi-infinite homogenous medium was convolved with the IRF 
(Fig. 24.2b) [9]. The convolved model is fitted to the measured TPSF using a non- 
linear curve fitting function and the absorption coefficient, μa and reduced scattering 
coefficient, μs′ obtained. The Beer–Lambert law was then used to calculate chromo-
phore concentrations [10]. To test the hardware and theory of operation we per-
formed an arterial cuff-occlusion on the upper arm in one volunteer to induce flow 
and oxygenation changes in the forearm flexor muscles. The probe was placed on 
the forearm and measurements were done in reflection mode with source and detec-
tor fibres 3 cm apart. After 100 s of baseline measurements we inflated the cuff at 
200 mmHg for 300 s, following cuff deflation we continue monitoring the muscle 
recovery for 5 min.

Data were collected every second for eight common wavelengths used in near 
infrared spectroscopy [690 750 761 790 801 834 850 870]. The average count rate 
over the experiment was kept at over 106/s to provide a good enough SNR for each 
wavelength. The diffusion equation model was then fitted to each TPSF to resolve 
absorption and scattering.

Fig. 24.2 (a) Raw TPSF (scaled) and IRF, (b) theoretical model convolved with the IRF, the real 
TPSF and fitted curve using the lsqcurvefit function returning μa and μs′ as 0.0224 and 1.0655 mm−1. 
(c) Method of measuring IRF. (d) 3D printed optode holder
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3  Results

Time series data for the changes in scattering and absorption for all eight wavelengths 
are shown in Fig. 24.3b, c, respectively. The standard deviation of the scattering and 
absorption during baseline was 0.0002 mm−1. During the occlusion there were large 
changes in the absorption in some wavelengths, in particular there was a significant 
rise in absorption of 690 nm (sensitive to HHb) and significant decreases in 870 nm 
(sensitive to HbO2). The scattering also demonstrated some hetereogeneous large 
changes and we are currently investigating whether these might be due to crosstalk 
or other factors. Finally, the absorption data were fitted for HbO2 and HHb, the 
baseline total haemoglobin was 84.8 ± 0.3 μM l−1 and the absolute tissue saturation 
was 51.8 ± 0.5 %, comparable to previous studies in muscle [11]. Figure 24.3d 
shows the absolute concentration of oxyhaemoglobin and deoxyhaemoglobin during 
the study.

4  Conclusion

We have developed a four-channel NIR time-resolved spectrometer using a super-
continuum laser source and tunable narrow band filter system capable of measuring 
the TPSFs of 16 wavelengths between 650 and 890 nm every second in order to 

Fig. 24.3 (a) Example TPSFs for single measurement. (b) Reduced coefficient of scattering for eight 
wavelengths over course of cuff occlusion. (c) Coefficient of absorption for eight wavelengths over 
course of cuff occlusion. (d) Concentration changes for HbO2 and HHb, cuff inflation time of 4 s
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quantify the scattering and absorption independently for tissue. This offers us the 
ability to extract changes in haemoglobin and other chromophores in tissue such as 
CCO. We have presented preliminary results of the operation of the system for one 
channel and eight wavelengths during an arm cuff occlusion test. We are currently 
using the system to investigate wavelength selection optimisation for resolving HbO2, 
HHb and oxCCO and will be carrying out a series of functional activation studies.
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