Chapter 9
Control Strategies

9.1 Introduction

Measures for prevention and control of infectious diseases include vaccination,
treatment, quarantine, isolation, and prophylaxis.

Prophylaxis is the series of measures taken to prevent a specific infectious
disease. These measures can be as simple as hand-washing with soap and water,
or wearing protective gear, or taking a medication to prevent a disease. Treatment
is the use of an agent, procedure, or regimen, such as a drug, or bed rest in an attempt
to cure or mitigate a disease. Nowadays, for most infectious diseases, medications
exist that can cure or lessen the impact of the diseases, while improving the life of
the patients. Diseases for which medications can offer a cure include malaria and
tuberculosis. Diseases for which medications offer relief but not a cure include HIV
and genital herpes.

Vaccination is the process through which killed (inactivated) or weakened
microorganisms are placed into the body. Our immune system recognizes vaccine
agents as foreign. That triggers an immune response, and antibodies against them
are developed. As aresult, if the same types of microorganisms enter the body again,
they will be destroyed much faster by the antibodies. Thus, an individual that is im-
munized is protected against the disease. If a large majority of people are vaccinated,
it is much more difficult for an outbreak of disease to occur, let alone spread. This
effect is called herd immunity.

Vaccination is one of the greatest achievements of public health. Vaccination has
led to the complete eradication of smallpox worldwide, and a near eradication of
polio. Table 9.1 gives the reduction of disease load in the United States as a result
of widespread vaccination campaigns.

Vaccines do not guarantee complete protection from a disease. There remains the
possibility that a vaccinated person may get the disease. Even if the host develops
antibodies, some pathogens can mutate (the common cold and influenza viruses are
highly efficient at this), and in any case, the immune system might still not be able
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Table 9.1 Achievements of vaccination in the United States®

Disease Baseline years Cases/year Cases in 1998 % Decrease
Smallpox 1900-1904 48,164 0 100
Diphtheria 1920-1922 175,885 1 100
Pertussis 1922-1925 147,271 6,279 95.7
Tetanus 1922-1926 1,314 34 974
Poliomyelitis 1951-1954 16,316 0 100
Measles 1958-1962 503,282 89 100
Mumps 1968 152,209 606 99.6
Rubella 1966-1968 47,745 345 99.3
Hib 1985 20,000 54+71 99.7

2Source: CDC, Morbidity and Mortality Weekly Report (MMWR) 48(12), 1999. Achievements
of Public Health, 1900—1999: Impact of Vaccines Universally Recommended for Children—US,
1990-1998

to defeat the infection. The degree to which vaccinated individuals are protected
against the disease is called efficacy of the vaccine.

Quarantine and isolation are two measures by which exposed or infectious
individuals are removed from the population to prevent further spread of the infec-
tion. Quarantine is applied to seemingly healthy but potentially infected individuals,
while isolation is applied to already infectious individuals. Isolation has been used
and is being used to control many dangerous diseases. Quarantine is applied less
often. It is one of the first response methods that can be used in an extreme emer-
gency. Quarantine was implemented during the SARS epidemic of 2002-2003.

The reproduction number, computed for mathematical models involving con-
trol strategies, depends on the control strategies, and it is often called a controlled
reproduction number.

9.2 Modeling Vaccination: Single-Strain Diseases

There are two points in which vaccination models can differ from one another. The
first is that some models assume that vaccination is equivalent to going through
the disease and treats vaccinated individuals as recovered individuals. Thus an SIR
model can include vaccinated individuals without an additional class. Other models
assume that vaccinated individuals have to be separated into a vaccinated class V.
The second point of distinction is that some classes of models assume that individ-
uals enter the system at a point of their life when they either get vaccinated or skip
vaccination and enter the system as susceptibles. This is more or less accurate for
school children. Other models allow for continuous vaccination of individuals while
in the system.
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9.2.1 A Model with Vaccination at Recruitment

Assume that we have a perfect vaccine, whereby everybody who is vaccinated is
completely protected. Suppose we vaccinate at recruitment into the system a fraction
p of individuals. So if uN is the recruitment term, a fraction puN goes directly into
the recovered class, and a proportion guN, where g = 1 — p, enters the susceptible
class. Thus the SIR model with vaccination becomes
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The equation of the total population size here is N'(¢) = 0, and the total popula-
tion size is constant, N = So + Ip + Ro. The disease-free equilibrium, obtained from
setting the derivatives equal to zero and I = 0, is given by &y = (¢N,0, pN). Thus, if
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is the reproduction number in the absence of vaccination (p = 0), then g% is the
reproduction number of the disease in the presence of vaccination. Consequently,
vaccination has reduced the original reproduction number by the fraction q.
Question: What fraction, p, of the population must be vaccinated so that the
reproduction number of the disease is reduced below 1?
To answer this question, we need g%y < 1. Replacing ¢ with 1 — p and solving
the inequality for p, we obtain that p > p, where

5 L
Consequently, if a fraction p of the population is successfully vaccinated, then the
disease will not spread in the population. In effect, the whole population will be
protected. This is a manifestation of the herd immunity.

9.2.2 A Model with Continuous Vaccination

Most diseases for which vaccination is successful have a recovered (immune) stage.
After all, vaccination works with the immune system more or less as the disease
does, so if the disease does not provide immunity, how could vaccination? How-
ever, there are diseases for which it is justified to consider vaccination in addition
to an SIS model, that is, a model where recovery brings the individual back to
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the susceptible class. One such disease is tuberculosis, which imparts very short-
lived immunity. Another situation occurs with bacterial infections with Neisseria
meningitidis and Streptococcus pneumoniae. Both these bacteria can exist in the
host without causing disease, a scenario, called carriage. Both carriers and infected
(sick) people can transmit the microorganism, so from the point of view of dis-
ease transmission, they can be considered indistinguishable and modeled with one
class. Carriage and disease impart immunity against the disease but probably not
so much against carriage. Thus individuals who become completely pathogen-free
can be counted as susceptible (at least for carriage). In both cases, there are vac-
cines, at least against some variants of the microorganisms, and an SIS model with
vaccination may be appropriate.

9.2.2.1 An SIS Model with Vaccination

Let V(¢) denote the number of vaccinated individuals, and  the per capita vacci-
nation rate. Vaccination is applied only to healthy individuals, so only susceptible
individuals get vaccinated. In this model, we also take into account the fact that vac-
cines are rarely perfect, and some of the vaccinated individuals can become infected
and infectious even though they have been vaccinated. That happens at a reduced
transmission rate 36, where 0 < § < 1 is the reduction coefficient. If § = 0, then
vaccinated individuals cannot get infected, and the vaccine is perfect. This implies
that the vaccine efficacy is € = 1. If § = 1, then vaccinated individuals get infected
just like susceptible individuals, and the vaccine plays no protective role. In that
case, the vaccine efficacy is € = 0.
We list the parameters and the variables in the Table 9.2.

Table 9.2 List of parameters, variables, and their meanings

Notation Meaning

Birth/recruitment rate into the population

Per capita natural death rate

Per capita transmission rate

Per capita recovery rate

Proportion of individuals who recover to the vaccinated class
Proportion of individuals who recover to the susceptible class
Per capita vaccination rate

Vaccine efficacy

Number of susceptible individuals

Number of infected individuals

Number of vaccinated individuals
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The model takes the form

ds S
Asz—%f—w+wﬁ+x%

d
i pst "Bovr

Ll B 9.2
% N +p5w (u+y), 9.2)
E:y/S—T—i-(l—x)yI—uV.

The flowchat of the model is given in Fig.9.1.
The disease-free equilibrium is given by

%:< Ao AV )
p+y T pu(uty)

Since the equation of the total population is N'() = A — uN, the equilibrium total
population size is N = % Thus the proportions of susceptible and vaccinated in the
disease-free population are given by

O H WO = ‘I’.
p+y’ Bty

9.2.2.2 The Reproduction Number and the Critical Vaccination Proportion

To compute the reproduction number, we compute the Jacobian at the disease-free
equilibrium:

XY

Vv 58

M (1-X)Y

Fig. 9.1 Flowchart of the model with continuous vaccination with imperfect vaccine
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—(u+w) —Bs"+ xv 0
I (&) = 0 Bs®+BSV0 — (u+7) 0
v —B&V+(1-x)y —u

The Jacobian has two negative eigenvalues, —u and —(u + ). The third eigen-
value is given by Bs° 4+ B8v° — (1 + 7). Thus we define the reproduction number in
the presence of vaccination as

B(u+dy)
L+ (u+y)

The reproduction number of the disease in the absence of vaccination is obtained by
letting w = 0, and is given by
B

p+y

Z(y) =

Ho =

In interpreting the reproduction number, we notice that BAS,I gives the number
of secondary infections of susceptible individuals per unit of time. The number of
secondary infections of susceptible individuals per unit of time for one infectious

individual will be ﬁ 5. The proportion of susceptibles in a disease-free population

o S 0 _
sy =s"=q +W Smce m is the time spent as an infectious individual, the first

term in Z(y), given by (quW’ gives the number of secondary infections of

susceptible individuals that one infected individual can produce in a disease-free

Bs

population. Similarly, % gives the number of secondary infections of vaccinated

individuals per unit of time. The number of secondary infections of vaccinated in-
B5

dividuals per unit of time for one infectious individual will be . The proportion
v _ 0 v 1
of vaccinated individuals in a disease-free population is i = v = oy Since T

is the time spent as an infectious individual, the second term in Z(y), given by

Ms%, gives the number of secondary infections of vaccinated individuals that
one infected individual can produce in a disease-free population.

One can see that the reproduction number in the presence of vaccination is a
decreasing function of the vaccination rate y. Thus, the higher the vaccination rate,

the smaller the reproduction number. Furthermore,

lim Z(y) = 6%

Yoo

Thus, if the vaccine efficacy € is not high enough (that is, 0 is not small enough),
then even if we vaccinate everybody, we may not be able to eradicate the disease.
In other words, we cannot bring Z () below 1, since the vaccinated individuals can
become infected.

Question: What is the critical proportion of individuals that should be vaccinated
if the vaccine is continuously applied and imperfect?

A critical vaccination proportion p, for the eradication of a disease with imper-
fect vaccination exists only if 0% < 1, that is, if the vaccine efficacy satisfies
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If 6% < 1, then there exists a critical vaccination level y* such that Z(y*) = 1.
This critical vaccination level for eradication of the disease is given by

. (Zo—1u

o 1-6%y

The proportion vaccinated in the population is given by /(i + w). We conclude
that

The critical proportion of the population that needs to be vaccinated with
vaccine with efficacy € is given by

s L
ps—e %)

In words, the critical proportion of the population that needs to be vac-
cinated with imperfect vaccine is the critical population that needs to be
vaccinated with perfect vaccine divided by the vaccine efficacy.

‘We note that the formula above is an extension of the critical vaccination propor-
tion to imperfect vaccines. If the vaccine is perfect, that is, if € = 1, then we obtain
the customary formula for the critical vaccination proportion for perfect vaccines.

Table 9.3 gives the estimates of % before the introduction of vaccination. Most
data on the reproduction number before vaccination are from England, Wales, and
the USA [10]. The table gives the critical vaccination fraction with perfect vaccines,
vaccine efficacies of the most common vaccines used in the USA, and the critical
vaccination fractions with imperfect vaccines. It can be seen from the table that the
current vaccines are incapable of eliminating pertussis, and may be useful in elimi-
nating polio and diphtheria if a sufficient proportion of the population is vaccinated.
In fact, polio has been eliminated in the developed countries for which the repro-
duction number before vaccination and vaccine efficacies are most accurate.

9.2.2.3 Backward Bifurcation in the Imperfect Vaccination Model

The critical threshold above gives only the proportion that has to be vaccinated so
that the reproduction number in the presence of vaccination is below one. However,
imperfect vaccines have the disadvantage that they lead to backward bifurcation, and
endemic equilibria exist and are stable even when the reproduction number in the
presence of vaccination is below one. The main reason for the backward bifurcation
is the fact that imperfect vaccination creates two classes of susceptible individuals
with different susceptibilities—the naive susceptible and the vaccinated susceptible.
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Table 9.3 Diseases and their eradication vaccination levels

Disease K24 P.% Vaccine efficacy?® Pe,%
Smallpox 3-5 67-80 0.75° 89-100
Measles 12-13 92 0.75-0.95 97-100
Mumps 4-7 75-86 0.75-0.95 79-100
Rubella 6-7 83-86 0.75-0.95 87-100
Chickenpox 9-10 89-90 0.8-0.95 94-100
Pertussis 13-17 92-94 0.8-0.9 -
Poliomyelitis 6 83 0.9-0.99 84-92
Diphtheria 4-6 75-83 0.87-0.96 78-95

Shttp://www.whale.to/vaccines/efficacy.html
Vaccine efficacy never measured in clinical trials

To obtain a necessary and sufficient condition for backward bifurcation, we com-
pute the endemic equilibria. First, we consider the equations for the proportions
(s=35.i=Hv=0x):

0=p—Bsi—(u+y)s+ v,
0=Bsi+Povi—(u+7y)i, 94
0=wys—Bévi+(1—yx)yi—uv.

Expressing s from the first equation and v from the third equation yields
NS LY (1=
Bi+u+y’ BSi+u
and substituting them in the second equation, we obtain a quadratic equation in i:
Blu+xvi)(Boi+u+38y)+BS(1—x)vi(Bi+p+v)
=u+y)(Béi+u)(Bi+u+y). (9.5)

If we think of 3 as a function of i, that is, (i), and we differentiate implicitly the
above equation, we obtain for 8’ at the critical value i = 0 the following expression:

B'(0)
_ B+ (utv)+u(u+y) —xy(u+8y) —Bou—6(1—x)v(u+vy)}
p(p+oy)

)

The bifurcation at the critical value i = 0 (Z(y) = 1) is backward if and only if
B'(0) < 0, that is, if and only if the parameters satisfy the following condition:

(U+7)(u+y)ou
p+oy

S(u+y)(u+y)+u(u+y) < xy(u+ovy)+
+0(1—x)v(u+ ).

To plot the dependence of i on Z(y), we rewrite the equation for i as a quadratic
equation in i, Ai> + Bi +C = 0, where after dividing by 3 in (9.5), the coefficients are
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Fig. 9.2 The graph shows that the equilibrium value of i exhibits backward bifurcation as a func-
tion of the vaccine-dependent reproduction number. The parameters are taken as follows: u = 0.01,
y=3x=16=01y=1

A=pBéu,
B=u(p+y)+o(u+y)(n+y)—Bud—(u+oy)xy—=6(1—x)v(u+y),
C=pu(u+y)(1-Z(y)).
(9.6)
We express these coefficients as functions of Z(y) and eliminate 3

A=2Z(y)néu,
B=p(u+7y)+6(u+y)(u+vw)—Z(w)nud — (u+8y)xy—6(1—x)r(u+v),
C=pu+y)(1-Z%(y)), 0

%. We illustrate the backward bifurcation in Fig. 9.2.

Imperfect vaccines lead to backward bifurcation. It is not hard to see that in the
model above, backward bifurcation does not occur if the vaccine is perfect, 6 = 0.
Also, if there is no vaccination y = 0, then backward bifurcation does not occur.
In this case, it can be seen that if %y < 1, the disease-free equilibrium is globally
stable.

The presence of backward bifurcation means that in practice, if we vaccinate
with imperfect vaccine, we may need to reduce the vaccine reproduction number
not below one but below a much smaller value under which there are no endemic
equilibria. Thus, it may appear that vaccinating with imperfect vaccine makes the
task of controlling the disease harder rather than easier. However, it must be noted
that at the same time, vaccination increases the parameter space of the remaining
parameters where the vaccine-dependent reproduction number is below one, and

where N =
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the disease-free equilibrium is locally stable. To illustrate this idea, assume that u,
v, and & are given and fixed. Then in the absence of vaccination, the region in
the (¥, B)-plane where the disease-free equilibrium is stable is given by u+7y > 8,
since there, %y < 1. In the presence of vaccination, the region of local stability of
the disease-free equilibrium is given by

ATy

u+6w(“+7)>ﬁ’

which is a larger region, since the fraction (1t + y)/(u + 0y) is greater than one.

9.3 Vaccination and Genetic Diversity of Microorganisms

When a pathogen is represented by several variants, they may not all be included in
the vaccine. The strains that are included in the vaccine are called vaccine strains.
The number of strains included in the vaccine is called vaccine valency. For instance,
the flu vaccine is trivalent, that is, it contains three strains.

The immunity that a vaccine creates is specific to those strains that are included
in the vaccine. The vaccine may provide partial immunity, or no immunity at all,
to strains that are not included in the vaccine. That makes impossible the eradica-
tion of diseases whose causative agents mutate and that are represented by multiple
variants.

Biologists report an increase of genetic diversity after the introduction of vacci-
nation [142]. In terms of modeling, this says that vaccination should cause coexis-
tence of pathogen variants, in other words, vaccination is a coexistence mechanism.
To see this, we consider the model above with two strains. We assume that one of the
strains is a vaccine strain with respect to which the vaccine is perfect. With respect
to the other strain, the vaccine offers only partial protection. The model with two
strains and vaccination becomes

as BiSI  BSJ

dl  BiSI  BiévVI
- N N RCRRZE
9.8)
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where I(7) is the number infected with the first strain, and J(¢) is the number infected
with the second strain. The parameter ¢ is the per capita recovery rate from the sec-
ond strain. Recovered individuals from the second strain go to the susceptible class,
because only susceptible individuals can become infected with the second strain.
The second strain is assumed to be the vaccine strain. The reproduction number of
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the first strain is as before:

_ Bi(u+dy)
BV = Lty

The reproduction number of the second strain is

Bou
(L+o)(pu+y)
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Fig. 9.3 The left figure illustrates that the number infected with strain one, (), and the number
infected with strain two, J(¢), may tend toward a coexistence equilibrium when y = 0.5. The right
figure illustrates that if y = 0, strain two eliminates strain one. The remaining parameters used
for these figures are §; =6, B, =4.5, y=08, a =05, u =0.1, y =1.0, § =0.04, A =5.
The corresponding reproduction numbers are given by % (y) = 1.333 and %, (y) = 1.25. The
reproduction numbers in the absence of vaccination are %) = 6.66667 and %, = 7.5

Proving the existence of a unique coexistence equilibrium is possible but not trivial.
So to see the coexistence, we do a simulation. Figure 9.3 illustrates the coexistence.

Question: What causes the coexistence? We can answer this question by exam-
ining the parts for the model that cause the coexistence. In particular, we examine
the equations for the coexistence equilibrium:

0=p—Pisi—Posj— (L+y)s+xvit+aj,
0 = Pisi+ Pidvi—(u+7)i,
O:ﬁzs]_(u+a)]7
0=wys—Bidvi+(1—yx)yi—uv,

(9.9)
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where as before, s, i, j, v denote the proportions. If § = 0, then from the second and
third equations, we have

u+y [ kto
B’ B

Clearly these two expressions for s are equal in very special cases, but not in gen-
eral. So coexistence does not occur. Thus a necessary condition for coexistence is
the imperfection of the vaccine. If there is no vaccination, thatis, y =0and y =1
(no recovery to the vaccinated class), then v = 0, and s must satisfy the same two
expressions. So coexistence does not occur. Thus vaccination, and particularly vac-
cine imperfections, are the cause of coexistence.

When a disease is caused by a pathogen of multiple variants, not all of them are
included in a vaccine (for various reasons). Vaccination is carried out under several
scenarios:

S =

1. Vaccination is carried against the dominant subtype. For instance, Haemophilus
influenzae is represented by six serotypes: a, b, c, d, e, f, but before vaccination
was instituted, serotype b caused most disease. Vaccination is now carried out
against serotype b.

2. Vaccination is carried out against several strains that account for most cases. For
instance, Streptococcus pneumoniae is represented by more than 90 serotypes,
but only 23 of the most common ones are included in the polysaccharide vaccine.

3. When possible, vaccination is carried out against all subtypes (possibly one by
one). For instance, poliomyelitis (caused by poliovirus, PV) is represented by
three serotypes. Vaccination against each one is necessary, but polio has been
nearly eradicated.

When vaccination is carried out against only one or more but not all of the
pathogen variants, what is observed is decline in the number of disease cases caused
by those variants included in the vaccine. At the same time, disease cases caused by
other pathogen variants not included in the vaccine rise. This phenomenon is called
strain (serotype) replacement (Table 9.4). The main mechanism by which serotype
replacement occurs is that the vaccine has differential effectiveness: it is very effec-
tive with respect to some strains, and very little effective, or not effective at all, with
respect to other strains. Thus vaccinated individuals are removed from the suscep-
tible pool of the vaccine strains but effectively added to the susceptible pool of the
nonvaccine strains, since the vaccine strains can no longer infect them.

That differential effectiveness of the vaccine leads to strain replacement can
be seen from model (9.8). We illustrate this in Fig.9.4. We note that the over-
all prevalence before vaccination is greater than the prevalence after vaccination.
Thus replacement cannot completely “erase” what is being gained from vaccina-
tion. However, strain replacement is undesirable, because it still takes from what
could have been gained.

Since differential effectiveness of the vaccine leads to replacement, vaccine
developers have tried to make vaccines less differentially effective. One way to
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Table 9.4 Reported increases in nonvaccine strains after vaccination [109]

Disease Vaccine Increase in Region
H. influenzae Hib Nontype b Alaska
Hib Type £ m. states, US
conj. Hib Type a Brazil
conj. Hib Noncapsulated UK
S. pneumoniae PCV-7 NVT Finland
PCV-7 NVT (carriage) US
PCV-7 Serogroups 15 and 33 ~ US PMPSG, US
PCV-7 NVT (AOM) Pittsburgh
PPV-23 12F*, 7F, 22F, 7C Alaska
N. meningitidis ~ A-C vaccine Serogroup B Austria
A-C vaccine Serogroup B Europe
A-C vaccine Serogroup B Cuba
20+
40F J(t
(1) I
15k
30
»of 10f
10f 5
\ 101 . . J(t). t
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Fig. 9.4 The left figure illustrates that the number infected with strain one /(¢) tends to zero and the
number infected with strain two J(¢) tends toward an endemic equilibrium when y = 0. The right
figure illustrates that if y = 0.7, then strain one eliminates strain two. The remaining parameters
used for these figures are 8; =6, B, =4.5,y=08,a=0.5, 4 =0.1, x =1.0, 6 =0.04, A =5.
The corresponding reproduction numbers are given by % () = 1.06667 and %> (y) = 0.9375.
The reproduction numbers in the absence of vaccination are % = 6.66667 and %> = 7.5

do that is to include (if possible) more strains in the vaccine. That has been the
case with pneumococcal polysaccharide vaccine, which originally contained very
few serotypes of Streptococcus pneumoniae but now contains 23. That is still many
fewer than the 90 serotypes that exist. A new approach is to target surface proteins
that are common in all 90 serotypes.

Question: Suppose we can produce a vaccine that is perfect with respect to all
strains. Will we eliminate strain replacement?

The answer is expected to be affirmative if differential effectiveness is the
mechanism behind strain replacement. Although such perfect vaccines do not yet
exist, we can address this question with mathematical models. Consider the model
of superinfection. We add vaccination with a perfect vaccine to this model. Thus,
the model becomes
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ds SI SJ
AR B I
% M&N,z%N (U+v)S+nl+pd,
— =B +Bido— —(u+n),

dt N N 9.10)

dJ SJ 1J
%—ﬁzﬁfﬁﬁﬁf(qu)@)J,
— =wS—uV.

=S,

where N = S+ 1+J+V is the total population. Notice that vaccinated individuals
cannot become infected with any of the strains. It turns out, however, that strain
replacement still occurs. We illustrate this in Fig. 9.5. What is causing it? If the vac-
cine is not “differentially effective,” how does it differentiate between the strains?
In what follows, we address these questions.

Ity
Jv
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. _ . . . . n t
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Fig. 9.5 The left figure illustrates that the number infected with strain one, /(¢), tends to a nonzero
equilibrium, and the number infected with strain two, J(¢), tends to zero when y = 0. The right
figure illustrates that if y = 1.75, then strain two eliminates strain one. The remaining parameters
used for these figures are ; =12, f, =15,y =0.5,9,=0.5, 4 =0.1,6 =0.03, A =5

The reproduction numbers of the two strains are given by

S o i=1,2.
U+7) (U +y)

Note that they are both decreasing functions of the vaccination rate y. In addition,
they do not depend on superinfection, and particularly on the coefficient of reduction
or enhancement 8, since superinfection does not lead to infection of susceptible
individuals.

The corresponding invasion reproduction numbers, however, are not independent
of the superinfection process, since they measure the number of secondary infec-
tions one strain-i infected individual will produce in a population in which strain j
is at equilibrium. To compute the invasion numbers, we first compute the two domi-
nance equilibria. The dominance equilibrium of strain one is given by &1 = (s,i,0,v)
with

1 1 v 1
& = 7a1_770,77 )
: (% #(v) u%)
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where %; = %#;(0). The dominance equilibrium of strain two is given by & =
(5,0, j,v) with

1 1 vyl )
&=(—,0,1— ).
? (%’2 T (y) u I8

The invasion reproduction number of strain one is obtained from differentiating the
right-hand side of the equation for I with respect to I (to get the respective diagonal
entry in the Jacobian). We get B1s+ 16/ — (1 + 71). We substitute s and j from &.
Therefore, the invasion reproduction number of the first strain is given by

N X, ( 1 )
By = 4 8% (11— ——— ).
' % ! (v)

An important observation here is that as the vaccination rate Y increases, 74

decreases. Thus, vaccination decreases the invasion capabilities of the first strain.
To obtain the invasion reproduction number of strain two, we differentiate the

right-hand side of the equation for J with respect to J (to get the respective diagonal

1.3f
1.2f

LIf

0.9F

0.8F

Fig. 9.6 The graph shows the invasion reproduction numbers %, and %, as functions of V.
Clearly, %) is a decreasing function ofy. In contrast, %, is an increasing function ofy. The pa-
rameters are taken as follows: f; =12, B, =15, u =0.1, 4 = 0.5, b =0.5, 6§ = 0.03

entry in the Jacobian). We get s — B10i — (1 + »). We substitute s and i from &7.
Therefore, the invasion reproduction number of the second strain is given by

. (H+71) %
(H+ 1)+ (1 +1)218 (1 70)

In contrast, the invasion reproduction number of the second strain is an increas-
ing function of the vaccination rate. Hence, vaccination increases the invasion
capabilities of the second strain. The reason for this effect is that when the two
strains coexist, increasing the vaccination rate decreases the number of those in-
fected with strain 1. That, in turn, reduces the superinfections, which take away from
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the infections with the second strain. This produces an overall effect of increase in
infections with the second strain.

We illustrate the trend with increasing y in the two invasion reproduction num-
bers in Fig.9.6. Figure 9.6 also shows that there is a vaccination level y} such
that for y < 7, the following conditions are satisfied: R < 1 and Z) > 1 (while
Z1(y) > 1 and Z>(y) > 1). In this case, strain one, which can invade the equi-
librium of strain two, dominates, since strain two cannot invade the equilibrium of
strain one. Then there is a vaccination level w3 such that for y| < v < y;, the
following conditions are satisfied: 92’2 > 1 and 92’1 > 1. In this case, both strains
can invade each other’s equilibrium, and therefore, they coexist. For vaccination
levels y > /3, the following conditions are satisfied: @2 > 1 and (%?1 < 1. In this
case, strain two, which can invade the equilibrium of strain one, dominates, since
strain one cannot invade the equilibrium of strain two. Thus, replacement of strain
one, which dominated without vaccination, has occurred. The replacing strain is
strain two.

9.4 Modeling Quarantine and Isolation

Quarantine and isolation are typically modeled by introducing separate classes into
the model. Isolation is more often employed as a control strategy in epidemic models
than quarantine. Isolated infected individuals move to a separate class Q. A simple
extension of the SIR model with isolation will take the form

ds SI

a A PyTgHS

dI St (L+0o+nr)

— =P == )L,

dt N-Q 9.11)

% =ol—(u+r)o,
Ik

E =rl+rQ—UuR.

We note here that in standard incidence, the total active population is N — Q.
Epidemic models with isolation have been considered with respect to different
diseases. Isolation has been found to destabilize the dynamics and lead to oscilla-
tions [61, 73] (see Chap. 7). As a result, isolation has been suggested as a potential
intrinsic mechanism responsible for the recurrent outbreaks of childhood diseases
[61].
The controlled reproduction number of model (9.11) is given by

__ B
p+o+nr

(4
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.|....l....l....l....l....lO.

Fig. 9.7 The figure shows the controlled reproduction number as a decreasing, concave up, func-
tion of o for several values of 3. The smaller the 3, the steeper the decline in %,

The reproduction number is a decreasing function of the isolation rate ¢. The critical
isolation rate that gives %y = 1 is given by 6* = 8 — u — rp. The reproduction
number as a function of o is plotted in Fig.9.7.

The disease prevalence at equilibrium is given by

AR (R —1)
B(%Ze—1)+u(1+p) %’

,,_<r2+r16>
woop(utn))

The prevalence is also a decreasing function of o, at least when %, > 1. However,
Fig. 9.8 suggests that the nonzero endemic equilibrium exists even if %, < 1. It can
be shown that this equilibrium is unstable and that for Z, < 1 the disease-free equi-
librium is globally stable.

To design a model with quarantine and isolation, we need to express in terms
of equations the events that happen in reality. Susceptible individuals S come into
a contact with infectious / and exposed E individuals and move to the exposed
class E. At the same time, the contacts of infectious individuals are traced. Some of
the traced individuals happen to be susceptible, and others happen to be exposed.
Traced susceptible individuals move to the quarantine class Q; at a rate p. Traced
exposed individuals move to the quarantine class at a rate p. Quarantined individuals
either show no symptoms and after the end of the quarantine return to the susceptible
class, or they become sick and move to the isolated class Q»:

=

where
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Fig. 9.8 The figure shows the prevalence as a decreasing, concave up function of ¢ and an increas-
ing function of 3. The smaller the 3, the steeper the decline in prevalence

%;ZA_ﬁg%é%Q—pS—uS+mQh

;Q?l %‘?7PE7(#+Y)E,
dcTt:pstpE—(querﬂz)Ql» (9.12)
T =YE—(uto+n)l,

j§2<ﬂ+1hQ1(u+rﬂQ%

di: =rl+rQ>—UR.

Quarantined and isolated individuals do not participate in the total active popu-
lation, so the total active population in the denominator of the standard incidence is
given by N — Q1 — O = N — Q, where Q = Q) + Q5. Infectious and isolated indi-
viduals recover and move to the recovered class R. The meaning and the values of
the parameters are given in Table 9.5.

The controlled reproduction number is given by

By n aB
(y+p+u)(n+to+u) y+p+u

In interpreting the controlled reproduction number, we notice that the first term is
the number of secondary infections generated by the infectious individuals, and the

c
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Table 9.5 Parameter meanings and parameter values [120]

Parameter Parameter meaning Value

A Recruitment rate 240 people/day
B Transmission rate 0.25 per day

p Quarantine rate 1/10 per day

u Natural death rate 1/(70*365) per day
Y Rate of developing symptoms 1/6 per day

o Isolation rate 1/5 per day

m Rate of return to susceptible class 1/10 per day
mn Rate of progression to infectiousness 1/6.5 per day
] Recovery rate for isolated individuals 1/20 per day

&) Recovery rate for infectious individuals 1/25 per day

q Reduction of infectivity of exposed individuals 0.8 (variable)

second term is the number of secondary infections generated by exposed individu-
als; y/(y+ p + u) is the proportion of exposed individuals who move to the infec-
tious class.

We plot the region %, > 1 for two values of ¢ = 0.5 and ¢ = 0.8 in Fig.9.9.
The region for g = 0.8 is larger and asymmetric. We plot the point with coordinates
given in Table 9.5 in red. That point belongs to the region %, > 1; hence for the
quarantine and isolation rates in Table 9.5, the disease will not be eradicated. We
would like to compute the values of quarantine and isolation rates that will represent
the smallest change from the values in Table 9.5 but will lead to eradication of the
disease. For that reason, we compute the point on the curve %, = 1 that is closest to
the red point. To do that, let the black point have coordinates (x,y). The square of
the distance between the two points is given by

(x—0.1)>+ (y—0.2)2,

where (0.1,0.2) are the coordinates of the red point. Furthermore, we replace p with
x and ¢ with y in Z,.. From the equation Z, = 1, we express o (or y) as a function
of p (or x): y = f(x). Substituting y in the distance formula, we obtain the square of
the distance as a function of x:

(x—0.1)2 + (f(x) —0.2)%.

To minimize that function, we differentiate with respect to x and set the derivative
to zero. This leads to the equation

(x—0.1)+ (f(x) —0.2) f'(x) = 0.

In the case ¢ = 0.5, the black point has coordinates (0.12214,0.214265); in the
case of ¢ = 0.8, the black point has coordinates (0.180881,0.242281). From these
coordinates, we need to see how we need to change the quarantine and isolation
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Fig. 9.9 Both figures illustrate the region %, > 1, the epidemic situation with a red point, and the
closest point on the curve %, = 1 in black. The left figure does so for ¢ = 0.5, while the right figure
gives the same scenario for ¢ = 0.8

rates to achieve elimination. The optimal new periods for quarantine and isolation
are given by 1/c¢, where ¢ is a coordinate of a black point. These optimal periods
that will lead to elimination are listed in Table 9.6.

Table 9.6 Optimal periods for quarantine and isolation

Strategy q=0.5 q=0.8
1/p 8.19 days 5.53 days
1/o 4.67 days 4.13 days

This table suggests that in the case ¢ = 0.8, the contact tracing and quarantin-
ing should improve dramatically from 10 days to 5.5 days, while isolation should
improve from 5 days to 4 days, in order for the disease to be eliminated.

9.5 Optimal Control Strategies

In previous sections, we considered control strategies to be constant in time, but
in reality, control strategies are variable in time. The mathematical theory used to
derive optimal control strategies that vary in time is called optimal control theory.
In this section, we introduce the basic principles and illustrate them with examples.
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9.5.1 Basic Theory of Optimal Control

Optimal control is applied to differential equation models in normal form. Here we
will be concerned with ordinary differential equation models. We consider a system
of ODEs

X' (1) =£(x(1)), 9.13)

where the given initial condition is xg € R", and f: R" — R". The unknown vector
isx:[0,00) — R™.

Now we generalize the setup and suppose that the right-hand side depends on a
parameter u : [0,00) — A, where A C R™, that is allowed to depend on time u(z).
Thus the system above becomes

X' () = f(x(1), u(7)),
x(0) = xo, 9.14)
x(T) free.

The variable u(z) is called control, and in the presence of the control, the solution
x(7) depends on the control. The trajectory that corresponds to the control u(z) is
called a corresponding response of the system.

To make this presentation more specific, we recast some of the models for
vaccination and isolation from this chapter in the framework of control. For instance,
in model (9.2), the “control” is the vaccination, given by the vaccination rate y.
Hence, the right-hand side of (9.2) depends on the dependent variables and the con-
trol parameter Y. Now we let ¥ vary with time, and we replace it with u(r). We
obtain the following problem with control:

ds SI

Boa P wut)s s

dl SI ovVI

E:LN +LN —(u+71, ©.15)
av povi

Here the control is given by u : [0,00) = R .
We introduce the set of admissible controls

o ={u(t) € L'(0,T)u(r) € A}.

As posed, problem (9.14) does not have a solution, since the control may be arbi-
trary. We need to find the best control in some sense. For disease-control models,
we need to find the control in such a way that we minimize the prevalence and/or
minimize the cost of controlling the disease. To make this more specific, we define
a payoff functional:
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@lu] = /0 " e(x(),u(e))dr, 9.16)

where x(#) solves (9.14) for the specified control u(¢). The function g: R" xA — R
is given. The terminal time 7 is given as well. The function g is called the running
payoff. We need to solve the following optimal control problem: find a control u*(z)
that minimizes the payoff functional, that is,

€' [u*] = minGu].
N4
If such a control u*(¢) exists, it is called an optimal control. The optimal control
together with the corresponding solution gives the optimal control pair (x*,u*).
The first question that must be addressed is whether an optimal control pair

(x*(¢),u*(z)) exists. The question of existence is settled by the following theorem
[143]:

Theorem 9.1 (Filippov—Cesari Existence Theorem). For all (t,x) € R""!, define
the set
N(1,x) = {(g(x,u) + &,f(x,u)) : £ <O,u€A}.
Suppose that
1. N(t,x) is convex for every (t,X).
2. A is compact.

3. There exists a constant K > 0 such that ||x(t)|| < K for all t € (0,T) and all
admissible pairs (x,u).

Then there exists an optimal pair (x*(t),u*(r)), where u*(t) € </.

If a solution exists, it can be found with Pontryagin’s minimum principle [143].
First, one introduces a time-varying Lagrange multiplier vector A (), whose ele-
ments are called the adjoint variables of the system. Next, the Hamiltonian H is
defined for all ¢ € [0,T] by

H(x(t),u(t), A(1)) = g(x(t),u(r)) + 3, Ai(e) fi(x(2), u(t)). (9.17)

The Pontryagin minimum principle is as follows.

Theorem 9.2 (Pontryagin’s Minimum Principle). For the optimality of control
u*(¢) and corresponding trajectory x*(t) with t € [0,T)], it is necessary that there
exist a nonzero adjoint vector function 1*(t) that is a solution to the adjoint system

IH (x(t),u(1), A (1))
dx (9.18)

A =—

so that
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Thus, the necessary conditions for optimizing the Hamiltonian are [117]:

oH -
o 0= g,+ Z; Ai(®)(fi)u =0, optimality equation,
dH (x(t),u(z),A(t
A@)=— (x(r),u(r), A (t)) = A(t) = —gy — Z?L )(fi)x;» adjoint equation,
8xl~
A(T) =0, transversality condition.
(9.19)
‘We note that for minimization, we must also have
J’°H i
W Z 0 at u".

The following theorem gives sufficient conditions for the existence and unique-
ness of the optimal pair [143]:

Theorem 9.3 (Mangasarian Theorem). Suppose

1. A is convex.

2. The partial derivative dg/du; and 0 fi/du; all exist and are continuous.

3. The pair (x*(t),u*(t)) satisfies all conditions of the Pontryagin minimum
principle.

4. H(t,x,u) is concave down in (x,u) for allt € [0,T].

Then the pair (x*(t),u*(t)) solves the problem. If H(t,x,u) is strictly concave down
n (x,u), then the solution is unique.

There are several excellent books that introduce optimal control theory applied
to biological systems [13, 94]. We illustrate the application of the existence theo-
rem and Pontryagin’s minimum principle to finding the optimal control in the next
subsection.

9.5.2 Examples

In this subsection we consider two examples of application of optimal control to
epidemic models. The first example is an SIS model with treatment.

9.5.2.1 SIS Model with Treatment

The model assumes constant total population size N. In this case, the susceptible
individuals can be represented as S = N — I, and the 2 x 2 system can be reduced to
a single equation:

I'(t)=BN—DI—(u+y)I—u)l,

1(0) = Iy, (9.20)
I(T) free,
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where f3 is the transmission rate, u is the natural death rate, and 7 is the natural
recovery rate without treatment. The term u(¢)/ models the additional recovery rate
due to treatment. The set of admissible controls is

o = {u(t) € L'(0,7)|0 < u(t) < Umax }»

where Upax < oo is a positive constant. We are applying optimal control theory to
determine the “best” treatment regime that will minimize the prevalence and the
cost of applying the treatment. In particular, we seek a control u* that minimizes the
payoff functional

T
Clu'|= ;Iélpf}/o (wiI(z) —ﬁ—uz(t))dt7 (9.21)

where w1 is a constant cost of minimizing prevalence, and u” requires us to minimize
the treatment, and also the cost of applying it. We assume that the cost of treatment
is nonlinear and takes a quadratic form.

We first prove the existence of an optimal control pair. We use the Filippov—
Cesari theorem.

Proposition 9.1. The optimal control problem (9.20)—(9.21) has a solution.

Proof. Let N(t,x) be defined as in Theorem 9.1. Let y,y, € N(¢,x). To show that
N(t,x) is convex for each (7,x), we will show that the line connecting y; and y, lies
entirely in N(¢,x). Hence, we have to show that

ay;+ (1 —a)y, € N(t,x) forevery a € [0,1].

The fact that y; € N(¢,x) implies that there exist &1, < 0 and control vectors
u;(¢),uz(t) € A such that

vi={g(x,u;) + &, f(x,u;)} for i=1,2.
Then, we have
a(g(xur) +&1)+ (1 —a)(g(xu) + &)

)
= a(wil(t) +ui () + (1 — o) (il (1) +u3(1)) + @& + (1 - )&
=wil(t) 4 o 4 (1 — o) + ol + (1 — a)&s. (9.22)

Letting u3 = \/ ow? + (1 — ot)u3, we notice that u3 € A. Furthermore, letting &3 =

&) + (1 — a)&,, we notice that & < 0. Thus, the first component of the convex
combination belongs to N(#,x). Next, we check the second component:

o(f () + (1 - o) f(x,w2)

=a(B(N-DI—(u+PI—u())+ (1 —a)(B(N = DI — (L +)] —ua(t)])
=B(N—D)I— (u+9)I— (qus (t) + (1 — ot)un)I. (9.23)
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Letting usg = o (t) + (1 — a)uy, we notice that us € A. We conclude that the convex
combination ay; + (1 — )y, is in N(¢,x). Clearly, A is compact. Next, we show that
the solution of (9.20) is bounded. Indeed,

I'(t)<B(N-II.

We have that I(¢) < sup, I, where I is the solution of the equation /' (t) = B(N —I)I.
Thus, sup, I(¢) < max{lp,N}. If Iy < N, then max,{/(¢)} < N. This concludes the
proof. O

To apply Pontryagin’s minimum principle, we define the Hamiltonian:

H(I(t),u(t), A1) = wil (1) +u? (6) + A () (BN = 1(0))1(1) — (R +7)1 (1) —u(t)I(1)).

Posing the necessary conditions from Pontryagin’s principle, we have first that u*
must be a critical point of the Hamiltonian, that is, we must have dH /du = 0. This
leads to the following condition on the optimal control: 2u — A(¢)I(¢) = 0. Hence,

we have (e
0= 2010

Next, we check that the critical point is indeed a minimum: 92H /du® =2 > 0. The
adjoint system is given by

i’((;)) - an —A@)BIN—1(t)) = BI(t) — (u+7y) —u(t)), 9.24)

Since u* must belong to .27, we must have

u* (1) = min {Umax,max {o, M } } . (9.25)

To find the optimal control and the prevalence that corresponds to it, we must solve
the system

I'(1) = BN —=DI = (u+1)I—u (1),

1(0) = Io,
l/(t) =—wi _k(l)(ﬁ(N—I(t)) —ﬂ[(;) — (“+V) —M*(l‘)), (9.26)
A(T) =0,

where u* is given by (9.25). System (9.26) cannot be solved by hand, and numerical
methods must be used. Both Mathematica and Matlab can be used. Mathematica’s
NDSolve can take in boundary conditions, and system (9.26) can be directly input
into it. The optimal control and the respective solution are plotted in Fig. 9.10.
Matlab requires use of numerical methods to solve the system of differential
equations. The forward-backward sweep method [94] is often employed in this
case. It combines the forward application of a fourth-order Runge—Kutta method
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Fig. 9.10 The left figure shows the optimal control u*(¢). The right figure shows the controlled
prevalence I*(¢) and the original prevalence /()

for the original system with the backward application of a fourth-order Runge—Kutta
method for the adjoint system. The Matlab code for system (9.26) is included in the
appendix.

9.5.2.2 Two-Strain Model with Vaccination

The second model is the model with two strains and vaccination given in Eq. (9.10).
The control u(z) replaces the vaccination rate y. The model with control becomes

ds SI SJ
S R i
fﬁ Bi N ﬁzN (u+u®)S+nl+nJ,

SI 1J
Zﬂlgj-i-ﬁl(s%— (u+n)l,
Zﬁzﬁ —ﬂl5ﬁ —(u+n),
=u(t)S—uv.

(9.27)

SN

The set of admissible controls is
o ={u(t) € L'(0,7)|0 < u(t) < Upax }-

We are applying optimal control theory to determine the “best” vaccination regime
that will minimize the the prevalence and the cost of applying the vaccination. In
particular, we seek a control u* that minimizes the payoff functional

T
Clu'l= mipr; (Wil (1) +wad (1) +w3uS(r) +u? (1) )dt,
uc 0
where w1, wy are constant costs of minimizing prevalence, and the term «S intends to
minimize the number of vaccines used with constant weight ws3. Finally, u” requires
us to minimize the vaccination rate, and also the cost of vaccination. We assume that
the cost of vaccination is nonlinear and takes a quadratic form.
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To apply Pontryagin’s minimum principle, we define the Hamiltonian:

SI SJ
H = wil +waJ +wsuS+u? + Ag (A—ﬁlN—BzN—(ll+u(t))S+Y11+}’2J)
SI 1J
= —— I
+A (BlN +hié5 —(u+n) >

SJ 1J
+A; <[32N *ﬁ15ﬁ —(u+ 7/2)]) + Ay (uS—puv).
(9.28)
Again, applying the necessary conditions from Pontryagin’s principle, we have
first that u* must be a critical point of the Hamiltonian, that is, we must have

dH /du = 0. This leads to the following condition on the optimal control: 2u —
As(2)S(t) + Ay (¢)S(t) +w3S(r) = 0. This leads to the following expression for the

control:
W (1) = (As(2) _)LV(zt) —w3)S(t) _

Next, we check that critical point is indeed a minimum: 9>H/du®> =2 > 0. The
adjoint system is given by

, ISt . J S
Ag(t) = —w3u—Ag <ﬂ1N+ﬂ1NZ *ﬁzﬁ JFﬂZﬁ - (ﬂ+“)>
1 SI 1J
A (ﬁlN _ﬁlNz_ﬁlSNz>
J SJ 1J
A (BZN —I}Zﬁ +l315N2) —Avu
S SI SJ
l;(t) = —Wi —ls <ﬁ1N+ﬁ1]\’2+B2N,2+VI>
S SI J 1J
A (ﬁlN _ﬁlﬁ +ﬁ13ﬁ—ﬁ15ﬁ —(/J‘H’l)>
1J J 1J
AJ (ﬁzNz *ﬁl5ﬁ +B15]\72)
SI S SJ
Aj(t) = —wa —As (ﬁlNz ~ Py By +7’2>
SI 1 1J
M <_B1N2+ﬂl6N —ﬂ15N2>
S SJ 1 1J
—As (ﬁzN_ﬁz ﬁ15N+ﬂ15Nz_(/i+VZ)>

o
2 () = iy
MT)=0; M(T)=0; A(T)=0; Ay(T)=0.

(9.29)
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From the equation for Ay and its boundary condition, we see that Ay = 0. Hence,
the optimal control is characterized by the following formula:

As(t) —w3)S(z

u'(t) = min{Umammax{O, —< s(t) 2W3) () }} .

The optimal control and the solution with and without control are plotted in

Fig.9.11. We note that in the case w3 # 0, the control is zero for some of the control
interval.
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Fig. 9.11 The left figure shows the optimal control u*(r). The right figure shows the controlled

prevalence [*(z) and J*(r) and the original prevalences I(¢) and J(¢) in dashed. Parameters are
Br=12:B2 =151 =0.5;72 = 0.5; 4 = 0.1;8 = 0.03;A = 500;wl = ;w2 = 1;w3 = 0.01

Appendix

In this appendix we include the Matlab code that executes the forward—backward
sweep for system (9.26) [94].

function ocmodell
This function computes the optimal control
and the corresponding solution using forward-backward
sweep
clc;
clear all;

oW o =
o\

o°

test = -1;
10
1nm a4 = 0.001; %$set tolerance
2 N = 100; $number of subdivisions
3 h = 1/N; $step
4 t = 0:h:1; % t-variable mesh
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48
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u = zeros(l,length(t)); $initialization

x = zeros(1l,length(t));

lam = zeros(1l,length(t));

x(1) = 10; %¥initial value assigned to x(0)

beta = 0.05; $parameters

mu = 0.01;

gamma = 0.5;

P = 100;

wl = 1;

while (test<0) % while the tolerance is reached, repeat
oldu = u;
oldx = x;

oldlam = lam;

for i=1:N $loop that solve the forward
differential equation
k1l = betax (P-x(1i))#*x(i) -(mu + gamma)s*x (i) -

u(i)*x (1) ;
k2 = betax (P-x(i)-0.5%xkl*h)*(x(i)+0.5xklxh) -
(mu+gamma) * (x (1) +0.5+xklxh) . ..

243

-0.5%x(u(i)+u(i+1))*(x(1i)+0.5%xkl«h);

k3 = betax (P-x(1)-0.5+xk2xh) % (x(1)+0.5xk2«h) -
(mu+gamma) * (x (1) +0.5+xk2+h) . ..

-0.5% (u(i)+u(i+1))*(x(1)+0.5xk2xh) ;

k4 = betax (P-x(1i)-k3%h)x(x(i)+k3xh) -
(mu+gamma) * (x (1) +k3*h) . ..
-u(i+1l) % (x (i) +k3«h) ;

x(i+1) = x(i) + (h/6)* (k1+2+k2+2xk3+k4) ;
end
for i=1:N %¥loop that solves the backward

differential equation of the adjoint system
j =N+ 2 -i;

k1l =
-wl-lam(j) + (betax (P-x(j)) -betaxx(j) - (mu+gamma)
- u(j));

k2 = ...
-wl-(lam(j)-0.5xklxh)x (betax (P-x(j)+0.5xklxh)
- (mu+gamma) -0.5%(u(j)+u(j-1)));

k3 = ...
-wl-(lam(j)-0.5+k2+h) * (beta* (P-x(j)+0.5+xk2xh)
- (mu+gamma) -0.5%(u(j)+u(j-1)));

k4 = -wl -(lam(j)-k3xh)* (betax (P-x(j)+k3xh)
- (mu+gamma) - u(j-1));

lam(j-1) = lam(j) - (h/6)*(kl+2%xk2+2xk3+k4) ;
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56 end

57

58 ul = min (100, max (0, lam.*x/2)) ;

59 u = 0.5%x(ul + oldu);

60

61 templ = axsum(abs(u)) - sum(abs(oldu - u));
62 temp2 = axsum(abs(x)) - sum(abs(oldx - x));
63 temp3 = axsum(abs(lam)) - sum(abs(oldlam -lam)) ;
64

65 test = min(templ,min(temp2, temp3)) ;

66

67 end

68

o figure (1) $plotting

70 plot(t,u)

73 figure(2)
74 plot(t,x)

76 end

Problems

9.1. Consider the model with perfect vaccination

ds

1

2 = BST=(u+71, (9.30)
av

— =yS—uvV+47l.

7 yS—uv+vy

(a) Compute the reproduction number and investigate the stability of the disease-
free equilibrium.

(b) Compute the endemic equilibrium. Does backward bifurcation occur?

(c) Determine the stability of the endemic equilibrium.

(d) Compute the fraction of the population p. that needs to be vaccinated to eradi-
cate the disease.

9.2. Consider the model with perfect vaccination

gtg:(l—p)n—ﬁSl—u&

1

= BSI—(u+ 7)1, 9.31)
av

— =prn—uV+1vl,

dt
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where 7 is the recruitment rate.

(a) Compute the reproduction number and investigate the stability of the disease-
free equilibrium.

(b) Compute the endemic equilibrium.

(c) Determine the stability of the endemic equilibrium.

(d) Compute the fraction of the population p, that needs to be vaccinated to eradi-
cate the disease.

9.3. Consider the model with perfect vaccination

p)m— BSI— S,

j, — BSI+8BVI— (u+ ), 9.32)
dV

o =prn—06BVI—uvV+yl,

where 7 is the recruitment rate.

(a) Compute the reproduction number and investigate the stability of the disease-
free equilibrium.

(b) Compute the endemic equilibrium.

(c) Compute the fraction of the population p, that needs to be vaccinated to eradi-
cate the disease.

9.4. Consider the model with imperfect vaccination

ds
? =A—BSI—(u+y)S,

{
o = BSI+oBVI—(u+nl, (9.33)
dv

— = — VI—uv I.
” yS—of UV +v

(a) Compute the reproduction number and investigate the stability of the disease-
free equilibrium.

(b) Compute the equation for the endemic equilibria. Derive the condition for back-
ward bifurcation to occur.

(c) Simulate the model and show that even if Zy(y) < 1, the solution may converge
to an endemic equilibrium.

(d) Consider the model

S_ A= B(1—nH(t— 1)) +NH(t — 12))SI — (1 + y)S,
_ﬁ (1—-mH(t—11)+NH(t —12))SI
+oB(1-nH(t—7)+nH(t —1))VI— (L+7),

av
o= yS—ofB(l—-nH(@t—71)+nH(t —1))VI— UV +7I,

fiz

(9.34)
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where H(t — 7) is the Heaviside function. The added term (1 —nH(t — 1) +
NH(t — 12)) models temporary control measures such as movement restriction,
which are adopted at time 7; and lifted at time 7,. Show that with the parameters
from part (c), after the lifting of the control measures, the solution may converge
to the disease-free equilibrium.

9.5. Vaccine Strain in the Case of Mutation
Consider the following model with mutation:

S’_A—M—@— S
BiSI N N ’
I'= IT —(u+oy+m)l, (9.35)
SJ
J = BZT—(;L—s-aZ)H-mI.

Assume %, < 1. A vaccine is being designed, but it may include only one of the
strains. In that case, the vaccine will be perfect with respect to the vaccine strain
and not effective at all with respect to the other. Which of the strains should be the
vaccine strain so that the vaccine eliminates both strains?

9.6. Asymptomatic Spread of Avian Influenza
Consider the following model of avian influenza with vaccination and asymptomatic

stage:

O = A B+ gA) (- y)S,

1

o = BSU+qA) — (u+ V)L,
a4, (9.36)
o= WS —nV(I+gA)—uv +7A,

I

dt

=nV({I+qA)—(L+7)A,

where A are the asymptomatic individuals infected with avian influenza after imper-
fect vaccination, and V are the vaccinated individuals.

(a) Compute the disease-free equilibrium and the reproduction number % (). De-
termine the stability of the disease-free equilibrium based on the reproduction
number.

(b) Is the reproduction number an increasing, decreasing, or nonmonotone function
of . What is the epidemiological significance of your observation?

9.7. Backward Bifurcation with Perfect Vaccination
Consider the following model of vaccination in a disease with vertical transmission:
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ds S+1
m_41—mn+wﬁ+an(L—B{)—ﬁy—u&

1 1

G =nt=mir (1= 50 ) e psi- e+ ©0.37)
dt K

v

ar =prn—uv,

where the vaccine is applied at the entry point to the population, and a fraction p
is being vaccinated; r; and r, are the reproduction rates of susceptible and infected
individuals respectively, 7 is the fraction of the progeny of infected individuals that
are susceptible.

(a) Compute the disease-free equilibrium and the reproduction number %y (p). De-
termine the stability of the disease-free equilibrium based on the reproduction
number.

(b) Derive an equation for the endemic equilibrium. Show that backward bifurcation
may occur, even though the vaccine is perfect.

9.8. Saturating Treatment Rates and Vaccination
Consider a model of two strains with saturated per capita treatment rate:

SI SJ
y_A—&——%T—(+wm
]/_M_ ]_LIZ
N A+I+J’ (9.38)
J/_@_ _sz
N B+I1+J’
V' =wyS—uv

(a) Compute the disease-free equilibrium and the reproduction numbers of the two
strains.

(b) Show that there is a unique dominance equilibrium corresponding to each strain.
Investigate the stability of the dominance equilibria and define the two invasion
numbers.

(c) How does the vaccination rate y affect the invasion numbers?

9.9. Saturating Incidence
Consider a model of two strains with saturated incidence and perfect vaccination:

G_a_ BSL_ psi

- - - S
1+aN 1+4+aN (B+w)S,

BiSI
I'= - I
IE?N (H+ou)l, (9.39)
;. P2ST -
- 1+612N (l’l+a2)‘]7
Vi=wyS—uv

(a) Compute the disease-free equilibrium and the reproduction numbers of the two
strains.
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(b) Compute the two dominance equilibria. Investigate their stability and define the
two invasion numbers.
(c) How does vaccination rate y affect the invasion numbers?

9.10. Cross-Immunity
Consider a model of two strains with cross-immunity and vaccination:

S +J L+
§'=A— P (1§ U p, (2 S
S +J
I{=Blu—(u+a1+61)h,
Q=06 —(u+mn)0i,
Ri(L+J,
R/1=06111+71Q1—62ﬁ2M—HR1,
R,(I; +J
K=o 2<% D (i
S(L+J (9.40)
Iﬁ (& —(U+ o+ &)h,
5212_(N+/}/2)Q25
+J)I
R2 06212+72Q2—51ﬁ1g—uR27
R (L + J;
JéZGzﬂz%—(u‘Faz)JL
W' =i+ oy — uW,
=yS—us.

(a) Compute the disease-free equilibrium and the reproduction numbers of the two
strains.

(b) Compute the two dominance equilibria.

(c) Use the next-generation approach to compute the two invasion numbers.

(d) Are the invasion numbers increasing, decreasing, or nonmonotone functions of
v? What are the epidemiological consequences of this observation?

9.11. Optimal Control
Create an optimal control analogue of model (9.8).

(a) Prove that the optimal control problem has a solution.
(b) Derive the equations for application of Pontryagin’s minimum principle.
(c) Write a Matlab code to find the optimal control solution and the optimal control.

9.12. Optimal Control
Create an optimal control analogue of model (9.11).

(a) Prove that the optimal control problem has a solution.
(b) Derive the equations for application of Pontryagin’s minimum principle.
(c) Write a Matlab code to find the optimal control solution and the optimal control.
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