
A Practical Guide
 ―
Felipe Cardeneti Mendes · Piotr Sarna
Pavel Emelyanov · Cynthia Dunlop

Database
Performance
at Scale

Database Performance
at Scale

A Practical Guide

Felipe Cardeneti Mendes
Piotr Sarna
Pavel Emelyanov
Cynthia Dunlop

Database Performance at Scale: A Practical Guide

ISBN-13 (pbk): 978-1-4842-9710-0		 ISBN-13 (electronic): 978-1-4842-9711-7
https://doi.org/10.1007/978-1-4842-9711-7

Copyright © 2023 by Felipe Cardeneti Mendes, Piotr Sarna, Pavel Emelyanov, Cynthia Dunlop

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on
microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed.

Open Access  This book is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this book are included in the book’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the book’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to
the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as
such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the
authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made.
The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Editorial Project Manager: Shaul Elson
Copy Editor: Kezia Endsley

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite 4600,
New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint, paperback, or audio
rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and licenses are also
available for most titles. For more information, reference our Print and eBook Bulk Sales web page at http://www.apress.
com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers on GitHub
(https://github.com/Apress). For more detailed information, please visit https://www.apress.com/gp/services/source-code.

Paper in this product is recyclable

Felipe Cardeneti Mendes
São Paulo, Brazil

Piotr Sarna
Pruszków, Poland

Pavel Emelyanov
Moscow, Russia

Cynthia Dunlop
Carpinteria, CA, USA

https://doi.org/10.1007/978-1-4842-9711-7

To Cristina and Snow

—Felipe

To Wiktoria

—Piotr

To Svetlana and Mykhailo

—Pavel

To David

—Cynthia

v

Table of Contents

About the Authors��� xiii

About the Technical Reviewers��xv

Acknowledgments��xvii

Introduction���xix

Chapter 1: �A Taste of What You’re Up Against: Two Tales�� 1

Joan Dives Into Drivers and Debugging��� 1

Joan’s Diary of Lessons Learned, Part I��� 3

The Tuning�� 3

Joan’s Diary of Lessons Learned, Part II�� 5

Patrick’s Unlucky Green Fedoras��� 6

Patrick’s Diary of Lessons Learned, Part I�� 7

The First Spike�� 8

Patrick’s Diary of Lessons Learned, Part II��� 8

The First Loss��� 9

Patrick’s Diary of Lessons Learned, Part III�� 9

The Spike Strikes Again��� 10

Patrick’s Diary of Lessons Learned, Part IV�� 11

Backup Strikes Back�� 11

Patrick’s Diary of Lessons Learned, Part V��� 12

Summary��� 13

Chapter 2: �Your Project, Through the Lens of Database Performance��������������������� 15

Workload Mix (Read/Write Ratio)��� 15

Write-Heavy Workloads�� 16

Read-Heavy Workloads��� 17

vi

Mixed Workloads�� 19

Delete-Heavy Workloads�� 20

Competing Workloads (Real-Time vs Batch)�� 21

Item Size�� 23

Item Type�� 24

Dataset Size��� 26

Throughput Expectations��� 27

Latency Expectations��� 29

Concurrency��� 31

Connected Technologies�� 32

Demand Fluctuations��� 33

ACID Transactions�� 34

Consistency Expectations�� 36

Geographic Distribution��� 38

High-Availability Expectations�� 39

Summary��� 40

Chapter 3: �Database Internals: Hardware and Operating System Interactions������� 41

CPU�� 42

Share Nothing Across Cores��� 42

Futures-Promises��� 43

Execution Stages�� 45

Memory�� 47

Allocation�� 47

Cache Control��� 50

I/O�� 51

Traditional Read/Write�� 51

mmap��� 52

Direct I/O (DIO)�� 52

Asynchronous I/O (AIO/DIO)�� 53

Understanding the Tradeoffs�� 54

Choosing the Filesystem and/or Disk��� 57

Table of Contents

vii

Filesystems vs Raw Disks�� 57

How Modern SSDs Work��� 58

Networking�� 61

DPDK��� 62

IRQ Binding��� 62

Summary��� 63

Chapter 4: �Database Internals: Algorithmic Optimizations������������������������������������� 65

Optimizing Collections��� 66

To B- or Not to B-Tree�� 66

Linear Search on Steroids�� 68

Scanning the Tree�� 69

When the Tree Size Matters��� 70

The Secret Life of Separation Keys�� 72

Summary��� 74

Chapter 5: �Database Drivers�� 77

Relationship Between Clients and Servers�� 78

Workload Types�� 79

Throughput vs Goodput�� 81

Timeouts�� 83

Client-Side Timeouts�� 83

Server-Side Timeouts��� 84

Contextual Awareness�� 86

Topology and Metadata�� 86

Current Load��� 87

Request Caching��� 88

Query Locality�� 91

Retries�� 94

Error Categories��� 94

Idempotence��� 95

Retry Policies�� 97

Table of Contents

viii

Paging�� 100

Concurrency��� 101

Modern Hardware��� 102

Modern Software�� 104

What to Look for When Selecting a Driver��� 105

Summary��� 107

Chapter 6: �Getting Data Closer�� 109

Databases as Compute Engines��� 109

User-Defined Functions and Procedures�� 110

User-Defined Aggregates�� 117

WebAssembly for User-Defined Functions��� 124

Edge Computing��� 126

Performance��� 127

Conflict-Free Replicated Data Types��� 127

Summary��� 129

Chapter 7: �Infrastructure and Deployment Models��� 131

Core Hardware Considerations for Speed at Scale�� 132

Identifying the Source of Your Performance Bottlenecks��� 132

Achieving Balance�� 133

Setting Realistic Expectations�� 134

Recommendations for Specific Hardware Components�� 135

Storage��� 135

CPUs (Cores)��� 144

Memory (RAM)�� 145

Network�� 147

Considerations in the Cloud��� 148

Fully Managed Database-as-a-Service�� 150

Serverless Deployment Models��� 151

Containerization and Kubernetes��� 152

Summary��� 155

Table of Contents

ix

Chapter 8: �Topology Considerations�� 157

Replication Strategy��� 157

Rack Configuration��� 158

Multi-Region or Global Replication��� 158

Multi-Availability Zones vs. Multi-Region��� 159

Scaling Up vs Scaling Out�� 160

Workload Isolation��� 162

More on Workload Prioritization for Logical Isolation��� 163

Abstraction Layers��� 167

Load Balancing�� 169

External Caches��� 170

An External Cache Adds Latency�� 170

An External Cache Is an Additional Cost��� 171

External Caching Decreases Availability��� 171

Application Complexity: Your Application Needs to Handle More Cases������������������������������� 172

External Caching Ruins the Database Caching��� 172

External Caching Might Increase Security Risks�� 172

External Caching Ignores the Database Knowledge and Database Resources�������������������� 172

Summary��� 173

Chapter 9: �Benchmarking�� 175

Latency or Throughput: Choose Your Focus��� 176

Less Is More (at First): Taking a Phased Approach��� 180

Benchmarking Do’s and Don’ts�� 182

Know What’s Under the Hood of Your Database (Or Find Someone Who Knows)����������������� 182

Choose an Environment That Takes Advantage of the Database’s Potential������������������������ 183

Use an Environment That Represents Production�� 183

Don’t Overlook Observability�� 184

Use Standardized Benchmarking Tools Whenever Feasible��� 184

Use Representative Data Models, Datasets, and Workloads�� 185

Exercise Your Cache Realistically��� 187

Look at Steady State�� 187

Table of Contents

x

Watch Out for Client-Side Bottlenecks��� 188

Also Watch Out for Networking Issues��� 189

Document Meticulously to Ensure Repeatability�� 189

Reporting Do’s and Don’ts��� 189

Be Careful with Aggregations��� 190

Don’t Assume People Will Believe You�� 191

Take Coordinated Omission Into Account��� 193

Special Considerations for Various Benchmarking Goals�� 194

Preparing for Growth�� 194

Comparing Different Databases��� 195

Comparing the Same Database on Different Infrastructure��� 195

Assessing the Impact of a Data Modeling or Database Configuration Change�������������������� 195

Beyond the Usual Benchmark�� 196

Benchmarking Admin Operations��� 196

Testing Disaster Recovery�� 196

Benchmarking at Extreme Scale�� 197

Summary��� 199

Chapter 10: �Monitoring�� 201

Taking a Proactive Approach�� 201

Tracking Core Database KPIs��� 203

Database Cluster KPIs�� 203

Application KPIs�� 207

Infrastructure/Hardware KPIs��� 209

Creating Effective Custom Alerts��� 210

Walking Through Sample Scenarios�� 211

One Replica Is Lagging in Acknowledging Requests�� 211

Disappointing P99 Read Latencies��� 213

Monitoring Options��� 217

The Database Vendor’s Monitoring Stack��� 217

Build Your Own Dashboards and Alerting (Grafana, Grafana Loki)�� 218

Table of Contents

xi

Third-Party Database Monitoring Tools�� 218

Full Stack Application Performance Monitoring (APM) Tool�� 218

Summary��� 219

Chapter 11: �Administration��� 221

Admin Operations and Performance�� 221

Looking at Admin Operations Through the Lens of Performance��� 222

Backups��� 224

Impacts��� 225

Optimization��� 226

Compaction�� 227

Impacts��� 227

Optimization��� 229

Summary��� 231

�Appendix A: A Brief Look at Fundamental Database Design Decisions����������������� 233

�Index�� 249

Table of Contents

xiii

About the Authors

Felipe Cardeneti Mendes is an IT specialist with years of

experience using distributed systems and open-source

technologies. He has co-authored three Linux books and

is a frequent speaker at public events and conferences

to promote open-source technologies. Felipe works as a

solution architect at ScyllaDB.

Piotr Sarna is a software engineer who is keen on open-

source projects and the Rust and C++ languages. He

previously developed an open-source distributed filesystem

and had a brief adventure with the Linux kernel. He’s also a

long-time contributor and maintainer of ScyllaDB, as well

as libSQL and Turso. Piotr graduated from University of

Warsaw with an MSc in computer science.

Pavel “Xemul” Emelyanov is an ex-Linux kernel hacker

now speeding up row cache, tweaking the IO scheduler,

and helping to pay back a technical debt for component

interdependencies. He is a principal engineer at ScyllaDB.

xiv

Cynthia Dunlop is a technology writer who specializes in

application development. She has co-authored four books

and hundreds of articles on everything from C/C++ memory

error detection to continuous testing and DevOps. Cynthia

holds a bachelor’s degree from UCLA and a master’s degree

from Washington State University.  

About the Authors

xv

About the Technical Reviewers

Botond Dénes has been a principal software engineer at

ScyllaDB since 2017. Botond has mostly worked on making

queries perform better and making sure their concurrency

and resource consumption (especially memory) are kept in

check. In addition, he has worked extensively on disaster

recovery and diagnostics tools.

Ľuboš Koščo is a software engineer at ScyllaDB who works

on upcoming ScyllaDB features, bug fixes, and workflows in

Jenkins, Ansible automation, and migration tools (in Spark).

During his time in AdTech, Ľuboš worked for Sizmek/Rocket

Fuel, overseeing seven datacenters running infrastructure

that delivered real-time bids and impressions for marketing

campaigns. He also worked on cloud monitoring,

virtualization, and datacenter management at Oracle and

Sun Microsystems, and is one of the leaders of the source

code search engine, OpenGrok.

xvi

Raphael S. Carvalho, a.k.a. Raph, is a computer programmer

steeped in hacker culture and kernel programming and a

wannabe musician. In November 2013, Carvalho joined the

Israeli startup Cloudius Systems (now ScyllaDB) and worked

first on the filesystem technology from OSv, a cloud-based

operating system, and later on ScyllaDB, a NoSQL data

store compatible with Apache Cassandra that runs on top of

Seastar. In 2018, Raph became fascinated with the Meltdown

security bug and worked directly with the researchers who

disclosed it. His name is now listed in the official Meltdown paper for his contributions

to showing the applicability of the vulnerability in practice.    

About the Technical Reviewers

xvii

Acknowledgments

The process of creating this book has been a wild ride across many countries, cultures,

and time zones, as well as around many obstacles. There are many people to thank for

their assistance, inspiration, and support along this journey.

To begin, ScyllaDB co-founders Dor Laor and Avi Kivity—for starting the company

that brought us all together, for pushing the boundaries of database performance at scale

in ways that inspired this book, and for trusting us to share the collective sea monster

wisdom in this format. Thank you for this amazing opportunity.

We thank our respective teams, and especially our managers, for supporting this side

project. We hope we kept the core workload disruption to a minimum and did not inflict

any “stop the world” project pauses.

Our technical reviewers—Botond Dénes, Ľuboš Koščo, and Raphael S. Carvalho—

painstakingly reviewed the first draft of every page in this book and offered insightful

suggestions throughout. Thank you for your thoughtful comments and for being so

generous with your time.

Additionally, our unofficial technical reviewer and toughest critic, Kostja Osipov,

provided early and (brutally) honest feedback that led us to substantially alter the book’s

focus for the better.

The Brazilian Ninja team (Guilherme Nogueira, Lucas Martins Guimarães, and

Noelly Medina) rescued us in our darkest hour, allowing us to scale out and get the first

draft across the finish line. Muito Obrigado!

Ben Gaisne is the graphic design mastermind behind the images in this book. Merci

for transforming our scribbles into beautiful diagrams and putting up with about ten

rounds of “just one more round of book images.”

We are also indebted to many for their unintentional contributions on the content

front. Glauber Costa left us with a treasure trove of materials we consulted when

composing chapters, especially Chapter 9 on benchmarking. He also inspired the addition

of Chapter 6 on getting data closer. Additionally, we also looked back to ScyllaDB blogs as

we were writing—specifically, blogs by Avi Kivity (for Chapter 3), Eyal Gutkind (for Chapter

7), Vlad Zolotarov and Moreno Garcia (also for Chapter 7), Dor Laor (for Chapter 8), Eliran

Sinvani (also for Chapter 8), and Ivan Prisyazhynyy (for Chapter 9).

xviii

Last, but certainly not least, we thank Jonathan Gennick for bringing us to Apress. We

thank Shaul Elson and Susan McDermott for guiding us through the publishing process.

It has been a pleasure working with you. And we thank everyone involved in editing and

production; having previously tried this on our own, we know it’s an excruciating task

and we are truly grateful to you for relieving us of this burden!

Acknowledgments

xix

Introduction

Sisyphean challenge. Gordian knot. Rabbit hole. Many metaphors have been used to

describe the daunting challenge of achieving database performance at scale. That isn’t

surprising. Consider just a handful of the many factors that contribute to satisfying

database latency and throughput expectations for a single application:

•	 How well you know your workload access patterns and whether they

are a good fit for your current or target database.

•	 How your database interacts with its underlying hardware, and

whether your infrastructure is correctly sized for the present as well

as the future.

•	 How well your database driver understands your database—and how

well you understand the internal workings of both.

It’s complex. And that’s just the tip of the iceberg.

Then, once you feel like you’re finally in a good spot, something changes. Your

business experiences “catastrophic success,” exposing the limitations of your initial

approach right when you’re entering the spotlight. Maybe market shifts mean that your

team is suddenly expected to reduce latency—and reduce costs at the same time, too.

Or perhaps you venture on to tackle a new application and find that the lessons learned

from the original project don’t translate to the new one.

�Why Read/Write a Book on Database Performance?
The most common approaches to optimizing database performance are conducting

performance tuning and scaling out. They are important—but in many cases, they aren’t

enough to satisfy strict latency expectations at medium to high throughput. To break past

that plateau, other factors need to be addressed.

xx

As with any engineering challenge, there’s no one-size-fits-all solution. But there are

a lot of commonly overlooked considerations and opportunities with the potential to

help teams meet their database performance objectives faster, and with fewer headaches.

As a group of people with experience across a variety of performance-oriented

database projects, we (the authors) have a unique perspective into what works well for

different performance-sensitive use cases—from low-level engineering optimizations,

to infrastructure components, to topology considerations and the KPIs to focus on for

monitoring. Frequently, we engage with teams when they’re facing a performance

challenge so excruciating that they’re considering changing their production database

(which can seem like the application development equivalent of open heart surgery).

And in many cases, we develop a long-term relationship with a team, watching their

projects and objectives evolve over time and helping them maintain or improve

performance across the shifting sands.

Based on our experience with performance-focused database engineering as well as

performance-focused database users, this book represents what we think teams striving

for extreme database performance—low latency, high throughput, or both—should be

thinking about. We have experience working with multi-petabyte distributed systems

requiring millions of interactions per second. We’ve engineered systems supporting

business critical real-time applications with sustained latencies below one millisecond.

Finally, we’re well aware of commonly-experienced “gotchas” that no one has dared to

tell you about, until now.

�What We Mean by Database Performance at Scale
Database performance at scale means different things to different teams. For some, it

might mean achieving extremely low read latencies; for others, it might mean ingesting

very large datasets as quickly as possible. For example:

•	 Messaging: Keeping latency consistently low for thousands to

millions of operations per second, because users expect to interact in

real-time on popular social media platforms, especially when there’s

a big event or major news.

•	 Fraud detection: Analyzing a massive dataset as rapidly as possible

(millions of operations per second), because faster processing helps

stop fraud in its tracks.

Introduction

xxi

•	 AdTech: Providing lightning fast (sub-millisecond P9999 latency)

responses with zero tolerance for latency spikes, because an ad bid

that’s sent even a millisecond past the cutoff is worthless to the ad

company and the clients who rely on it.

We specifically tagged on the “at scale” modifier to emphasize that we’re catering to

teams who are outside of the honeymoon zone, where everything is just blissfully fast

no matter what you do with respect to setup, usage, and management. Different teams

will reach that inflection point for different reasons, and at different thresholds. But one

thing is always the same: It’s better to anticipate and prepare than to wait and scramble

to react.

�Who This Book Is For
This book was written for individuals and teams looking to optimize distributed

database performance for an existing project or to begin a new performance-sensitive

project with a solid and scalable foundation. You are most likely:

•	 Experiencing or anticipating some pain related to database latency

and/or throughput

•	 Working primarily on a use case with terabytes to petabytes of raw

(unreplicated) data, over 10K operations per second, and with P99

latencies measured in milliseconds

•	 At least somewhat familiar with scalable distributed databases such

as Apache Cassandra, ScyllaDB, Amazon DynamoDB, Google Cloud

Bigtable, CockroachDB, and so on

•	 A software architect, database architect, software engineer, VP of

engineering, or technical CTO/founder working with a data-intensive

application

You might also be looking to reduce costs without compromising performance, but

unsure of all the considerations involved in doing so.

We assume that you want to get your database performance challenges resolved,

fast. That’s why we focus on providing very direct and opinionated recommendations

based on what we have seen work (and fail) in real-world situations. There are, of

course, exceptions to every rule and ways to debate the finer points of almost any tip

Introduction

xxii

in excruciating detail. We’ll focus on presenting the battle-tested “best practices” and

anti-patterns here, and encourage additional discussion in whatever public or private

channels you prefer.

�What This Book Is NOT
A few things that this book is not attempting to be:

•	 A reference for infrastructure engineers building databases. We focus

on people working with a database.

•	 A “definitive guide” to distributed databases, NoSQL, or data-

intensive applications. We focus on the top database considerations

most critical to performance.

•	 A guide on how to configure, work with, optimize, or tune any

specific database. We focus on broader strategies you can “port”

across databases.

There are already many outstanding references that cover the topics we’re

deliberately not addressing, so we’re not going to attempt to re-create or replace them.

See Appendix A for a list of recommended resources.

Also, this is not a book about ScyllaDB, even though the authors and technical

reviewers have experience with ScyllaDB. Our goal is to present strategies that are useful

across the broader class of performance-oriented databases. We reference ScyllaDB, as

well as other databases, as appropriate to provide concrete examples.

�A Tour of What We Cover
Given that database performance is a multivariate challenge, we explore it from a

number of different angles and perspectives. Not every angle will be relevant to every

reader—at least not yet. We encourage you to browse around and focus on what seems

most applicable to your current situation.

To start, we explore challenges. Chapter 1 kicks it off with two highly fictionalized

tales that highlight the variety of database performance challenges that can arise and

introduce some of the available strategies for addressing them. Next, we look at the

Introduction

xxiii

database performance challenges and tradeoffs that you’re likely to face depending on

your project’s specific workload characteristics and technical/business requirements.

The next set of chapters provides a window into many often-overlooked engineering

details that could be constraining—or helping—your database performance. First, we

look at ways databases can extract more performance from your CPU, memory, storage,

and networking. Next, we shift the focus from hardware interactions to algorithmic

optimizations—deep diving into the intricacies of a sample performance optimization

from the perspective of the engineer behind it. Following that, we share everything a

performance-obsessed developer really should know about database drivers but never

thought to ask. Driver-level optimizations —both how they’re engineered and how you

work with them—are absolutely critical for performance, so we spend a good amount

of time on topics like the interaction between clients and servers, contextual awareness,

maximizing concurrency while keeping latencies under control, correct usage of

paging, timeout control, retry strategies, and so on. Finally, we look at the performance

possibilities in moving more logic into the database (via user-defined functions and

user-defined aggregates) as well as moving the database servers closer to users.

Then, the final set of chapters shifts into field-tested recommendations for

getting better performance out of your database deployment. It starts by looking at

infrastructure and deployment model considerations that are important to understand,

whether you’re managing your own deployment or opting for a database-as-a-service

(maybe serverless) deployment model. Then, we share our top strategies related to

topology, benchmarking, monitoring, and admin—all through the not-always-rosy lens

of performance.

After all that, we hope you end up with a new appreciation of the countless

considerations that impact database performance at scale, discover some previously

overlooked opportunities to optimize your database performance, and avoid the

common traps and pitfalls that inflict unnecessary pain and distractions on all too many

dev and database teams.

Tip  Check out our GitHub repo for easy access to the sources we reference in
footnotes, plus additional resources on database performance at scale: https://
github.com/Apress/db-performance-at-scale.

Introduction

https://github.com/Apress/db-performance-at-scale
https://github.com/Apress/db-performance-at-scale

xxiv

�Summary
Optimizing database performance at the scale required for today’s data-intensive

applications often requires more than performance tuning and scaling out. This

book shares commonly overlooked considerations, pitfalls, and opportunities that

have helped many teams break through database performance plateaus. It’s neither

a definitive guide to distributed databases nor a beginner’s resource. Rather, it’s a

look at the many different factors that impact performance, and our top field-tested

recommendations for navigating them. Chapter 1 provides two (fun and fanciful) tales

that surface some of the many roadblocks you might face and highlight the range of

strategies for navigating around them.

Introduction

1

CHAPTER 1

A Taste of What You’re
Up Against: Two Tales
What’s more fun than wrestling with database performance? Well, a lot. But that doesn’t

mean you can’t have a little fun here. To give you an idea of the complexities you’ll likely

face if you’re serious about optimizing database performance, this chapter presents two

rather fanciful stories. The technical topics covered here are expanded on throughout

the book. But this is the one and only time you’ll hear of poor Joan and Patrick. Let

their struggles bring you some valuable lessons, solace in your own performance

predicaments… and maybe a few chuckles as well.

�Joan Dives Into Drivers and Debugging
Lured in by impressive buzzwords like “hybrid cloud,” “serverless,” and “edge first,”

Joan readily joined a new company and started catching up with their technology stack.

Her first project recently started a transition from their in-house implementation of

a database system, which turned out to not scale at the same pace as the number of

customers, to one of the industry-standard database management solutions. Their new

pick was a new distributed database, which, as opposed to NoSQL, strives to keep the

original ACID1 guarantees known in the SQL world.

Due to a few new data protection acts that tend to appear annually nowadays, the

company’s board decided that they were going to maintain their own datacenter, instead

of using one of the popular cloud vendors for storing sensitive information.

1 Atomicity, consistency, isolation, and durability

© Felipe Cardeneti Mendes, Piotr Sarna, Pavel Emelyanov, Cynthia Dunlop 2023
F. C. Mendes et al., Database Performance at Scale, https://doi.org/10.1007/978-1-4842-9711-7_1

https://doi.org/10.1007/978-1-4842-9711-7_1

2

On a very high level, the company’s main product consisted of only two layers:

•	 The frontend, the entry point for users, which actually runs in their

own browsers and communicates with the rest of the system to

exchange and persist information.

•	 The everything-else, customarily known as the backend, but actually

includes load balancers, authentication, authorization, multiple

cache layers, databases, backups, and so on.

Joan’s first task was to implement a very simple service for gathering and summing

up various statistics from the database and integrate that service with the whole

ecosystem, so that it fetched data from the database in real-time and allowed the

DevOps teams to inspect the statistics live.

To impress the management and reassure them that hiring Joan was their absolutely

best decision this quarter, Joan decided to deliver a proof-of-concept implementation

on her first day! The company’s unspoken policy was to write software in Rust, so she

grabbed the first driver for their database from a brief crates.io search and sat down to

her self-organized hackathon.

The day went by really smoothly, with Rust’s ergonomic-focused ecosystem

providing a superior developer experience. But then Joan ran her first smoke tests on a

real system. Disbelief turned to disappointment and helplessness when she realized that

every third request (on average) ended up in an error, even though the whole database

cluster reported to be in a healthy, operable state. That meant a debugging session was

in order!

Unfortunately, the driver Joan hastily picked for the foundation of her work, even

though open-source on its own, was just a thin wrapper over precompiled, legacy C

code, with no source to be found. Fueled by a strong desire to solve the mystery and a

healthy dose of fury, Joan spent a few hours inspecting the network communication with

Wireshark,2 and she made an educated guess that the bug must be in the hashing key

implementation.3 In the database used by the company, keys are hashed to later route

requests to appropriate nodes. If a hash value is computed incorrectly, a request may be

forwarded to the wrong node, which can refuse it and return an error instead.

2 Wireshark is a great tool for inspecting network packets and more (www.wireshark.org).
3 Loosely based on a legit hashing quirk in Apache Cassandra (https://github.com/apache/
cassandra/blob/56ea39ec704a94b5d23cbe530548745ab2420cee/src/java/org/apache/
cassandra/utils/MurmurHash.java#L31-L32).

Chapter 1 A Taste of What You’re Up Against: Two Tales

http://www.wireshark.org
https://github.com/apache/cassandra/blob/56ea39ec704a94b5d23cbe530548745ab2420cee/src/java/org/apache/cassandra/utils/MurmurHash.java#L31-L32
https://github.com/apache/cassandra/blob/56ea39ec704a94b5d23cbe530548745ab2420cee/src/java/org/apache/cassandra/utils/MurmurHash.java#L31-L32
https://github.com/apache/cassandra/blob/56ea39ec704a94b5d23cbe530548745ab2420cee/src/java/org/apache/cassandra/utils/MurmurHash.java#L31-L32

3

Unable to verify the claim due to the missing source code, Joan decided on a simpler

path—ditching the originally chosen driver and reimplementing the solution on one of

the officially supported, open-source drivers backed by the database vendor, with a solid

user base and regularly updated release schedule.

�Joan’s Diary of Lessons Learned, Part I
The initial lessons include:

	 1.	 Choose a driver carefully. It’s at the core of your code’s

performance, robustness, and reliability.

	 2.	 Drivers have bugs too, and it’s impossible to avoid them. Still,

there are good practices to follow:

	 a.	 Unless there’s a good reason, choose the officially supported driver (if it

exists).

	 b.	 Open-source drivers have advantages. They’re not only verified by the

community, but they also allow deep inspection of the code, and even

modifying the driver code to get even more insights for debugging.

	 c.	 It’s better to rely on drivers with a well-established release schedule

since they are more likely to receive bug fixes (including for security

vulnerabilities) in a reasonable period of time.

	 3.	 Wireshark is a great open-source tool for interpreting network

packets; give it a try if you want to peek under the hood of your

program.

The introductory task was eventually completed successfully, which made Joan

ready to receive her first real assignment.

�The Tuning
Armed with the experience gained working on the introductory task, Joan started planning

how to approach her new assignment: a misbehaving app. One of the applications

notoriously caused stability issues for the whole system, disrupting other workloads

each time it experienced any problems. The rogue app was already based on an officially

supported driver, so Joan could cross that one off the list of potential root causes.

Chapter 1 A Taste of What You’re Up Against: Two Tales

4

This particular service was responsible for injecting data backed up from the

legacy system into the new database. Because the company was not in a great hurry,

the application was written with low concurrency in mind to have low priority and

not interfere with user workloads. Unfortunately, once every few days something

kept triggering an anomaly. The normally peaceful application seemed to be trying to

perform a denial-of-service attack on its own database, flooding it with requests until the

backend got overloaded enough to cause issues for other parts of the ecosystem.

As Joan watched metrics presented in a Grafana dashboard, clearly suggesting that

the rate of requests generated by this application started spiking around the time of the

anomaly, she wondered how on Earth this workload could behave like that. It was, after

all, explicitly implemented to send new requests only when fewer than 100 of them were

currently in progress.

Since collaboration was heavily advertised as one of the company’s “spirit and

cultural foundations” during the onboarding sessions with an onsite coach, she decided

it was best to discuss the matter with her colleague, Tony.

“Look, Tony, I can’t wrap my head around this,” she explained.

“This service doesn’t send any new requests when 100 of them are

already in flight. And look right here in the logs: 100 requests

in-progress, one returned a timeout error, and…,” she then

stopped, startled at her own epiphany.

“Alright, thanks Tony, you’re a dear—best rubber duck4 ever!,” she

concluded and returned to fixing the code.

The observation that led to discovering the root cause was rather simple: The request

didn’t actually return a timeout error because the database server never sent such a

response. The request was simply qualified as timed out by the driver, and discarded. But

the sole fact that the driver no longer waits for a response for a particular request does

not mean that the database is done processing it! It’s entirely possible that the request

was instead just stalled, taking longer than expected, and the driver gave up waiting for

its response.

With that knowledge, it’s easy to imagine that once 100 requests time out on the

client side, the app might erroneously think that they are not in progress anymore, and

happily submit 100 more requests to the database, increasing the total number of

4 For an overview of the “rubber duck debugging” concept, see https://
rubberduckdebugging.com/.

Chapter 1 A Taste of What You’re Up Against: Two Tales

https://rubberduckdebugging.com/
https://rubberduckdebugging.com/

5

in-flight requests (i.e., concurrency) to 200. Rinse, repeat, and you can achieve extreme

levels of concurrency on your database cluster—even though the application was

supposed to keep it limited to a small number!

�Joan’s Diary of Lessons Learned, Part II
The lessons continue:

	 1.	 Client-side timeouts are convenient for programmers, but they

can interact badly with server-side timeouts. Rule of thumb: Make

the client-side timeouts around twice as long as server-side ones,

unless you have an extremely good reason to do otherwise. Some

drivers may be capable of issuing a warning if they detect that the

client-side timeout is smaller than the server-side one, or even

amend the server-side timeout to match, but in general it’s best to

double-check.

	 2.	 Tasks with seemingly fixed concurrency can actually cause

spikes under certain unexpected conditions. Inspecting logs and

dashboards is helpful in investigating such cases, so make sure

that observability tools are available, both in the database cluster

and for all client applications. Bonus points for distributed tracing,

like OpenTelemetry5 integration.

With the client-side timeouts properly amended, the application choked much less

frequently and to a smaller extent, but it still wasn’t a perfect citizen in the distributed

system. It occasionally picked a victim database node and kept bothering it with too

many requests, while ignoring the fact that seven other nodes were considerably less

loaded and could help handle the workload too. At other times, its concurrency was

reported to be exactly 200 percent larger than expected by the configuration. Whenever

the two anomalies converged in time, the poor node was unable to handle all the

requests it was bombarded with, and it had to give up on a fair portion of them. A long

5 OpenTelemetry “is a collection of tools, APIs, and SDKs. Use it to instrument, generate,
collect, and export telemetry data (metrics, logs, and traces) to help you analyze your software’s
performance and behavior.” For details, see https://opentelemetry.io/.

Chapter 1 A Taste of What You’re Up Against: Two Tales

https://opentelemetry.io/

6

study of the driver’s documentation, which was fortunately available in mdBook6 format

and kept reasonably up-to-date, helped Joan alleviate those pains too.

The first issue was simply a misconfiguration of the non-default load balancing

policy, which tried too hard to pick “the least loaded” database node out of all the

available ones, based on heuristics and statistics occasionally updated by the database

itself. Unfortunately, this policy was also “best effort,” and relied on the fact that statistics

arriving from the database were always legit. But a stressed database node could become

so overloaded that it wasn’t sending updated statistics in time! That led the driver to

falsely believe that this particular server was not actually busy at all. Joan decided that

this setup was a premature optimization that turned out to be a footgun, so she just

restored the original default policy, which worked as expected.

The second issue (temporary doubling of the concurrency) was caused by another

misconfiguration: an overeager speculative retry policy. After waiting for a preconfigured

period of time without getting an acknowledgement from the database, drivers would

speculatively resend a request to maximize its chances to succeed. This mechanism

is very useful to increase requests’ success rate. However, if the original request also

succeeds, it means that the speculative one was sent in vain. In order to balance the

pros and cons, speculative retry should be configured to resend requests only when

it’s very likely that the original one failed. Otherwise, as in Joan’s case, the speculative

retry may act too soon, doubling the number of requests sent (and thus also doubling

concurrency) without improving the success rate.

Whew, nothing gives a simultaneous endorphin rush and dopamine hit like a quality

debugging session that ends in an astounding success (except writing a cheesy story in a

deeply technical book, naturally). Great job, Joan!

The end.

�Patrick’s Unlucky Green Fedoras
After losing his job at a FAANG MAANG (MANGA?) company, Patrick decided to strike

off on his own and founded a niche online store dedicated to trading his absolute favorite

among headwear, green fedoras. Noticing that a certain NoSQL database was recently

trending on the front page of Hacker News, Patrick picked it for his backend stack.

6 mdBook “is a command line tool to create books with Markdown.” For details, see https://
rust-lang.github.io/mdBook/.

Chapter 1 A Taste of What You’re Up Against: Two Tales

https://rust-lang.github.io/mdBook/
https://rust-lang.github.io/mdBook/

7

After some experimentation with the offering’s free tier, Patrick decided to sign a

one-year contract with a major cloud provider to get a significant discount on its NoSQL

database-as-a-service offering. With provisioned throughput capable of serving up to

1,000 customers every second, the technology stack was ready and the store opened its

virtual doors to the customers. To Patrick’s disappointment, fewer than ten customers

visited the site daily. At the same time, the shiny new database cluster kept running,

fueled by a steady influx of money from his credit card and waiting for its potential to be

harnessed.

�Patrick’s Diary of Lessons Learned, Part I
The lessons started right away:

	 1.	 Although some databases advertise themselves as universal, most

of them perform best for certain kinds of workloads. The analysis

before selecting a database for your own needs must include

estimating the characteristics of your own workload:

	 a.	 Is it likely to be a predictable, steady flow of requests (e.g., updates being

fetched from other systems periodically)?

	 b.	 Is the variance high and hard to predict, with the system being idle for

potentially long periods of time, with occasional bumps of activity?

Database-as-a-service offerings often let you pick between

provisioned throughput and on-demand purchasing. Although the

former is more cost-efficient, it incurs a certain cost regardless of how

busy the database actually is. The latter costs more per request, but

you only pay for what you use.

	 2.	 Give yourself time to evaluate your choice and avoid committing

to long-term contracts (even if lured by a discount) before you see

that the setup works for you in a sustainable way.

Chapter 1 A Taste of What You’re Up Against: Two Tales

8

�The First Spike
March 17th seemed like an extremely lucky day. Patrick was pleased to notice lots of

new orders starting from the early morning. But as the number of active customers

skyrocketed around noon, Patrick’s mood started to deteriorate. This was strictly

correlated with the rate of calls he received from angry customers reporting their

inability to proceed with their orders.

After a short brainstorming session with himself and a web search engine, Patrick

realized, to his dismay, that he lacked any observability tools on his precious (and quite

expensive) database cluster. Shortly after frantically setting up Grafana and browsing the

metrics, Patrick saw that although the number of incoming requests kept growing, their

success rate was capped at a certain level, way below today’s expected traffic.

“Provisioned throughput strikes again,” Patrick groaned to himself, while scrolling

through thousands of “throughput exceeded” error messages that started appearing

around 11am.

�Patrick’s Diary of Lessons Learned, Part II
This is what Patrick learned:

	 1.	 If your workload is susceptible to spikes, be prepared for it and

try to architect your cluster to be able to survive a temporarily

elevated load. Database-as-a-service solutions tend to allow

configuring the provisioned throughput in a dynamic way, which

means that the threshold of accepted requests can occasionally

be raised temporarily to a previously configured level. Or,

respectively, they allow it to be temporarily decreased to make the

solution slightly more cost-efficient.

	 2.	 Always expect spikes. Even if your workload is absolutely steady, a

temporary hardware failure or a surprise DDoS attack can cause a

sharp increase in incoming requests.

	 3.	 Observability is key in distributed systems. It allows the developers

to retrospectively investigate a failure. It also provides real-time

alerts when a likely failure scenario is detected, allowing people to

react quickly and either prevent a larger failure from happening, or

at least minimize the negative impact on the cluster.

Chapter 1 A Taste of What You’re Up Against: Two Tales

9

�The First Loss
Patrick didn’t even manage to recover from the trauma of losing most of his potential

income on the only day throughout the year during which green fedoras experienced

any kind of demand, when the letter came. It included an angry rant from a would-be

customer, who successfully proceeded with his order and paid for it (with a receipt from

the payment processing operator as proof), but is now unable to either see any details of

his order—and he’s still waiting for the delivery!

Without further ado, Patrick browsed the database. To his astonishment, he didn’t

find any trace of the order either. For completeness, Patrick also put his wishful thinking

into practice by browsing the backup snapshot directory. It remained empty, as one of

Patrick’s initial executive decisions was to save time and money by not scheduling any

periodic backup procedures.

How did data loss happen to him, of all people? After studying the consistency

model of his database of choice, Patrick realized that there’s consensus to make between

consistency guarantees, performance, and availability. By configuring the queries, one

can either demand linearizability7 at the cost of decreased throughput, or reduce the

consistency guarantees and increase performance accordingly. Higher throughput

capabilities were a no-brainer for Patrick a few days ago, but ultimately customer data

landed on a single server without any replicas distributed in the system. Once this server

failed—which happens to hardware surprisingly often, especially at large scale—the data

was gone.

�Patrick’s Diary of Lessons Learned, Part III
Further lessons include:

	 1.	 Backups are vital in a distributed environment, and there’s no

such thing as setting backup routines “too soon.” Systems fail,

and backups are there to restore as much of the important data as

possible.

7 A very strong consistency guarantee; see the Jepsen page on Linearizability for details
(https://jepsen.io/consistency/models/linearizable).

Chapter 1 A Taste of What You’re Up Against: Two Tales

https://jepsen.io/consistency/models/linearizable

10

	 2.	 Every database system has a certain consistency model, and it’s

crucial to take that into account when designing your project.

There might be compromises to make. In some use cases (think

financial systems), consistency is the key. In other ones, eventual

consistency is acceptable, as long as it keeps the system highly

available and responsive.

�The Spike Strikes Again
Months went by and Patrick’s sleeping schedule was even beginning to show signs of

stabilization. With regular backups, a redesigned consistency model, and a reminder set

in his calendar for March 16th to scale up the cluster to manage elevated traffic, he felt

moderately safe.

If only he knew that a ten-second video of a cat dressed as a leprechaun had just

gone viral in Malaysia… which, taking time zone into account, happened around 2am

Patrick’s time, ruining the aforementioned sleep stabilization efforts.

On the one hand, the observability suite did its job and set off a warning early,

allowing for a rapid response. On the other hand, even though Patrick reacted on time,

databases are seldom able to scale instantaneously, and his system of choice was no

exception in that regard. The spike in concurrency was very high and concentrated,

as thousands of Malaysian teenagers rushed to bulk-buy green hats in pursuit of ever-

changing Internet trends. Patrick was able to observe a real-life instantiation of Little’s

Law, which he vaguely remembered from his days at the university. With a beautifully

concise formula, L = λW, the law can be simplified to the fact that concurrency equals

throughput times latency.

Tip F or those having trouble with remembering the formula, think units.
Concurrency is just a number, latency can be measured in seconds, while
throughput is usually expressed in 1/s. Then, it stands to reason that in order for
units to match, concurrency should be obtained by multiplying latency (seconds) by
throughput (1/s). You’re welcome!

Chapter 1 A Taste of What You’re Up Against: Two Tales

11

Throughput depends on the hardware and naturally has its limits (e.g., you can’t

expect a NVMe drive purchased in 2023 to serve the data for you in terabytes per second,

although we are crossing our fingers for this assumption to be invalidated in near

future!) Once the limit is hit, you can treat it as constant in the formula. It’s then clear

that as concurrency raises, so does latency. For the end-users—Malaysian teenagers in

this scenario—it means that the latency is eventually going to cross the magic barrier

for average human perception of a few seconds. Once that happens, users get too

frustrated and simply give up on trying altogether, assuming that the system is broken

beyond repair. It’s easy to find online articles quoting that “Amazon found that 100ms

of latency costs them 1 percent in sales”; although it sounds overly simplified, it is also

true enough.

�Patrick’s Diary of Lessons Learned, Part IV
The lessons continue…:

	 1.	 Unexpected spikes are inevitable, and scaling out the cluster

might not be swift enough to mitigate the negative effects of

excessive concurrency. Expecting the database to handle it

properly is not without merit, but not every database is capable

of that. If possible, limit the concurrency in your system as early

as possible. For instance, if the database is never touched directly

by customers (which is a very good idea for multiple reasons)

but instead is accessed through a set of microservices under your

control, make sure that the microservices are also aware of the

concurrency limits and adhere to them.

	 2.	 Keep in mind that Little’s Law exists—it’s fundamental knowledge

for anyone interested in distributed systems. Quoting it often also

makes you appear exceptionally smart among peers.

�Backup Strikes Back
After redesigning his project yet again to take expected and unexpected concurrency

fluctuations into account, Patrick happily waited for his fedora business to finally

become ramen profitable.

Chapter 1 A Taste of What You’re Up Against: Two Tales

12

Unfortunately, the next March 17th didn’t go as smoothly as expected either. Patrick

spent most of the day enjoying steady Grafana dashboards, which kept assuring him

that the traffic was under control and capable of handling the load of customers, with a

healthy safe margin. But then the dashboards stopped, kindly mentioning that the disks

became severely overutilized. This seemed completely out of place given the observed

concurrency. While looking for the possible source of this anomaly, Patrick noticed, to

his horror, that the scheduled backup procedure coincided with the annual peak load…

�Patrick’s Diary of Lessons Learned, Part V
Concluding thoughts:

	 1.	 Database systems are hardly ever idle, even without incoming

user requests. Maintenance operations often happen and you

must take them into consideration because they’re an internal

source of concurrency and resource consumption.

	 2.	 Whenever possible, schedule maintenance options for times with

expected low pressure on the system.

	 3.	 If your database management system supports any kind of

quality of service configuration, it’s a good idea to investigate

such capabilities. For instance, it might be possible to set a strong

priority for user requests over regular maintenance operations,

especially during peak hours. Respectively, periods with low user-

induced activity can be utilized to speed up background activities.

In the database world, systems that use a variant of LSM trees for

underlying storage need to perform quite a bit of compactions

(a kind of maintenance operation on data) in order to keep the

read/write performance predictable and steady.

The end.

Chapter 1 A Taste of What You’re Up Against: Two Tales

13

�Summary
Meeting database performance expectations can sometimes seem like a never-ending

pain. As soon as you diagnose and address one problem, another is likely lurking right

behind it. The next chapter helps you anticipate the challenges and opportunities you

are most likely to face given your technical requirements and business expectations.

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 1 A Taste of What You’re Up Against: Two Tales

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

15

CHAPTER 2

Your Project, Through
the Lens of Database
Performance
The specific database performance constraints and optimization opportunities your

team will face vary wildly based on your specific workload, application, and business

expectations. This chapter is designed to get you and your team talking about how much

you can feasibly optimize your performance, spotlight some specific lessons related

to common situations, and also help you set realistic expectations if you’re saddled

with burdens like large payload sizes and strict consistency requirements. The chapter

starts by looking at technical factors, such as the read/write ratio of your workload, item

size/type, and so on. Then, it shifts over to business considerations like consistency

requirements and high availability expectations. Throughout, the chapter talks about

database attributes that have proven to be helpful—or limiting—in different contexts.

Note  Since this chapter covers a broad range of scenarios, not everything will be
applicable to your specific project and workload. Feel free to skim this chapter and
focus on the sections that seem most relevant.

�Workload Mix (Read/Write Ratio)
Whether it’s read-heavy, write-heavy, evenly-mixed, delete-heavy, and so on,

understanding and accommodating your read/write ratio is a critical but commonly

overlooked aspect of database performance. Some databases shine with read-heavy

© Felipe Cardeneti Mendes, Piotr Sarna, Pavel Emelyanov, Cynthia Dunlop 2023
F. C. Mendes et al., Database Performance at Scale, https://doi.org/10.1007/978-1-4842-9711-7_2

https://doi.org/10.1007/978-1-4842-9711-7_2

16

workloads, others are optimized for write-heavy situations, and some are built to

accommodate both. Selecting, or sticking with, one that’s a poor fit for your current and

future situation will be a significant burden that will be difficult to overcome, no matter

how strategically you optimize everything else.

There’s also a significant impact to cost. That might not seem directly related to

performance, but if you can’t afford (or get approval for) the infrastructure that you truly

need to support your workload, this will clearly limit your performance.1

Tip  Not sure what your workload looks like? This is one of many situations where
observability is your friend. If your existing database doesn’t help you profile your
workload, consider if it’s feasible to try your workloads on a compatible database
that enables deeper visibility.

�Write-Heavy Workloads
If you have a write-heavy workload, we strongly recommend a database that stores data

in immutable files (e.g., Cassandra, ScyllaDB, and others that use LSM trees).2 These

databases optimize write speed because: 1) writes are sequential, which is faster in

terms of disk I/O and 2) writes are performed immediately, without first worrying about

reading or updating existing values (like databases that rely on B-trees do). As a result,

you can typically write a lot of data with very low latencies.

However, if you opt for a write-optimized database, be prepared for higher storage

requirements and the potential for slower reads. When you work with immutable

files, you’ll need sufficient storage to keep all the immutable files that build up until

compaction runs.3 You can mitigate the storage needs to some extent by choosing

compaction strategies carefully. Plus, storage is relatively inexpensive these days.

1 With write-heavy workloads, you can easily spend millions per month with Bigtable or
DynamoDB. Read-heavy workloads are typically less costly in these pricing models.
2 If you want a quick introduction to LSM trees and B-trees, see Appendix A. Chapter 4 also
discusses B-trees in more detail.
3 Compaction is a background process that databases with an LSM tree storage backend use to
merge and optimize the shape of the data. Since files are immutable, the process essentially
involves picking up two or more pre-existing files, merging their contents, and producing a sorted
output file.

Chapter 2 Your Project, Through the Lens of Database Performance

17

The potential for read amplification is generally a more significant concern with

write-optimized databases (given all the files to search through, more disk reads are

required per read request).

But read performance doesn’t necessarily need to suffer. You can often minimize this

tradeoff with a write-optimized database that implements its own caching subsystem

(as opposed to those that rely on the operating system’s built-in cache), enabling fast

reads to coexist alongside extremely fast writes. Bypassing the underlying OS with a

performance-focused built-in cache should speed up your reads nicely, to the point

where the latencies are nearly comparable to read-optimized databases.

With a write-heavy workload, it’s also essential to have extremely fast storage, such

as NVMe drives, if your peak throughput is high. Having a database that can theoretically

store values rapidly ultimately won’t help if the disk itself can’t keep pace.

Another consideration: beware that write-heavy workloads can result in

surprisingly high costs as you scale. Writes cost around five times more than reads

under some vendors’ pricing models. Before you invest too much effort in performance

optimizations, and so on, it’s a good idea to price your solution at scale and make sure

it’s a good long-term fit.

�Read-Heavy Workloads
With read-heavy workloads, things change a bit. B-tree databases (such as DynamoDB)

are optimized for reads (that’s the payoff for the extra time required to update values on

the write path). However, the advantage that read-optimized databases offer for reads

is generally not as significant as the advantage that write-optimized databases offer for

writes, especially if the write-optimized database uses internal caching to make up the

difference (as noted in the previous section).

Careful data modeling will pay off in spades for optimizing your reads. So will careful

selection of read consistency (are eventually consistent reads acceptable as opposed to

strongly consistent ones?), locating your database near your application, and performing

a thorough analysis of your query access patterns. Thinking about your access patterns is

especially crucial for success with a read-heavy workload. Consider aspects such as the

following:

•	 What is the nature of the data that the application will be querying

mostly frequently? Does it tolerate potentially stale reads or does it

require immediate consistency?

Chapter 2 Your Project, Through the Lens of Database Performance

18

•	 How frequently is it accessed (e.g., is it frequently-accessed “hot”

data that is likely cached, or is it rarely-accessed “cold” data)?

•	 Does it require aggregations, JOINs, and/or querying flexibility on

fields that are not part of your primary key component?

•	 Speaking of primary keys, what is the level of cardinality?

For example, assume that your use case requires dynamic querying capabilities (such

as type-ahead use cases, report-building solutions, etc.) where you frequently need to query

data from columns other than your primary/hash key component. In this case, you might

find yourself performing full table scans all too frequently, or relying on too many indexes.

Both of these, in one way or another, may eventually undermine your read performance.

On the infrastructure side, selecting servers with high memory footprints is key for

enabling low read latencies if you will mostly serve data that is frequently accessed. On

the other hand, if your reads mostly hit cold data, you will want a nice balance between

your storage speeds and memory. In fact, many distributed databases typically reserve

some memory space specifically for caching indexes; this way, reads that inevitably

require going to disk won’t waste I/O by scanning through irrelevant data.

What if the use case requires reading from both hot and cold data at the same time?

And what if you have different latency requirements for each set of data? Or what if you

want to mix a real-time workload on top of your analytics workload for the very same

dataset? Situations like this are quite common. There’s no one-size-fits-all answer, but

here are a few important tips:

•	 Some databases will allow you to read data without polluting your

cache (e.g., filling it up with data that is unlikely to be requested again).

Using such a mechanism is especially important when you’re running

large scans while simultaneously serving real-time data. If the large

scans were allowed to override the previously cached entries that the

real-time workload required, those reads would have to go through

disk and get repopulated into the cache again. This would effectively

waste precious processing time and result in elevated latencies.

•	 For use cases requiring a distinction between hot/cold data storage

(for cost savings, different latency requirements, or both), then

solutions using tiered storage (a method of prioritizing data storage

based on a range of requirements, such as performance and costs)

are likely a good fit.

Chapter 2 Your Project, Through the Lens of Database Performance

19

•	 Some databases will permit you to prioritize some workloads over

others. If that’s not sufficient, you can go one step further and

completely isolate such workloads logically.4

Note  You might not need all your reads. At ScyllaDB, we’ve come across a
number of cases where teams are performing reads that they don’t really need. For
example, by using a read-before-write approach to avoid race conditions where
multiple clients are trying to update the same value with different updates at the
same time. The details of the solution aren’t relevant here, but it is important to
note that, by rethinking their approach, they were able to shave latencies off their
writes as well as speed up the overall response by eliminating the unnecessary
read. The moral here: Getting new eyes on your existing approaches might surface
a way to unlock unexpected performance optimizations.

�Mixed Workloads
More evenly mixed access patterns are generally even more complex to analyze and

accommodate. In general, the reason that mixed workloads are so complex in nature is

due to the fact that there are two competing workloads from the database perspective.

Databases are essentially made for just two things: reading and writing. The way that

different databases handle a variety of competing workloads is what truly differentiates

one solution from another. As you test and compare databases, experiment with different

read/write ratios so you can adequately prepare yourself for scenarios when your access

patterns may change.

Be sure to consider nuances like whether your reads are from cold data (data not

often accessed) or hot data (data that’s accessed often and likely cached). Analytics use

cases tend to read cold data frequently because they need to process large amounts of

data. In this case, disk speeds are very important for overall performance. Plus, you’ll

want a comfortably large amount of memory so that the database’s cache can hold the

4 The “Competing Workloads” section later in this chapter, as well as the “Workload Isolation”
section in Chapter 8, cover a few options for prioritizing and separating workloads.

Chapter 2 Your Project, Through the Lens of Database Performance

20

data that you need to process. On the other hand, if you frequently access hot data, most

of your data will be served from the cache, in such a way that the disk speeds become

less important (although not negligible).

Tip  Not sure if your reads are from cold or hot data? Take a look at the ratio
of cache misses in your monitoring dashboards. For more on monitoring, see
Chapter 10.

If your ratio of cache misses is higher than hits, this means that reads need to

frequently hit the disks in order to look up your data. This may happen because your

database is underprovisioned in memory space, or simply because the application

access patterns often read infrequently accessed data. It is important to understand the

performance implications here. If you’re frequently reading from cold data, there’s a risk

that I/O will become the bottleneck—for writes as well as reads. In that case, if you need

to improve performance, adding more nodes or switching your storage medium to a

faster solution could be helpful.

As noted earlier, write-optimized databases can improve read latency via internal

caching, so it’s not uncommon for a team with, say, 60 percent reads and 40 percent

writes to opt for a write-optimized database. Another option is to boost the latency

of reads with a write-optimized database: If your database supports it, dedicate extra

“shares” of resources to the reads so that your read workload is prioritized when there is

resource contention.

�Delete-Heavy Workloads
What about delete-heavy workloads, such as using your database as a durable queue

(saving data from a producer until the consumer accesses it, deleting it, then starting the

cycle over and over again)? Here, you generally want to avoid databases that store data

in immutable files and use tombstones to mark rows and columns that are slated for

deletion. The most notable examples are Cassandra and other Cassandra-compatible

databases.

Tombstones consume cache space and disk resources, and the database needs to

search through all these tombstones to reach the live data. For many workloads, this

is not a problem. But for delete-heavy workloads, generating an excessive amount of

Chapter 2 Your Project, Through the Lens of Database Performance

21

tombstones will, over time, significantly degrade your read latencies. There are ways and

mechanisms to mitigate the impact of tombstones.5 However, in general, if you have a

delete-heavy workload, it may be best to use a different database.

It is important to note that occasional deletes are generally fine on Cassandra and

Cassandra-compatible databases. Just be aware of the fact that deletes on append-only

databases result in tombstone writes. As a result, these may incur read amplification,

elevating your read latencies. Tombstones and data eviction in these types of databases

are potentially long and complex subjects that perhaps could have their own dedicated

chapter. However, the high-level recommendation is to exercise caution if you have a

potentially delete-heavy pattern that you might later read from, and be sure to combine

it with a compaction strategy tailored for efficient data eviction.

All that being said, it is interesting to note that some teams have successfully

implemented delete-heavy workloads on top of Cassandra and Cassandra-like

databases. The performance overhead carried by tombstones is generally circumvented

by a combination of data modeling, a careful study of how deletes are performed,

avoiding reads that potentially scan through a large set of deleted data, and careful

tuning over the underlying table’s compaction strategy to ensure that tombstones

get evicted in a timely manner. For example, Tencent Games used the Time Window

Compaction Strategy to aggressively expire tombstones and use it as the foundation for a

time series distributed queue.6

�Competing Workloads (Real-Time vs Batch)
If you’re working with two different types of workloads—one more latency-sensitive

than the other—the ideal solution is to have the database dedicate more resources to

the more latency-sensitive workloads to keep them from faltering due to insufficient

resources. This is commonly the case when you are attempting to balance OLTP

(real-time) workloads, which are user-facing and require low latency responses, with

5 For some specific recommendations, see the DataStax blog, “Cassandra Anti-Patterns:
Queues and Queue-like Datasets” (www.datastax.com/blog/cassandra-anti-patterns-
queues-and-queue-datasets)
6 See the article, “Tencent Games’ Real-Time Event-Driven Analytics System Built with ScyllaDB +
Pulsar” (https://www.scylladb.com/2023/05/15/tencent-games-real-time-event-driven-
analytics-systembuilt-with-scylladb-pulsar/)

Chapter 2 Your Project, Through the Lens of Database Performance

http://www.datastax.com/blog/cassandra-anti-patterns-queues-and-queue-datasets
http://www.datastax.com/blog/cassandra-anti-patterns-queues-and-queue-datasets
https://www.scylladb.com/2023/05/15/tencent-games-real-time-event-driven-analytics-systembuilt-with-scylladb-pulsar/
https://www.scylladb.com/2023/05/15/tencent-games-real-time-event-driven-analytics-systembuilt-with-scylladb-pulsar/

22

OLAP (analytical) workloads, which can be run in batch mode and are more focused

on throughput (see Figure 2-1). Or, you can prioritize analytics. Both are technically

feasible; it just boils down to what’s most important for your use case.

Figure 2-1.  OLTP vs OLAP workloads

For example, assume you have a web server database with analytics. It must support

two workloads:

•	 The main workload consists of queries triggered by a user clicking or

navigating on some areas of the web page. Here, users expect high

responsiveness, which usually translates to requirements for low

latency. You need low timeouts with load shedding as your overload

response, and you would like to have a lot of dedicated resources

available whenever this workload needs them.

•	 A second workload drives analytics being run periodically to collect

some statistics or to aggregate some information that should be

presented to users. This involves a series of computations. It’s a lot

less sensitive to latency than the main workload; it’s more throughput

oriented. You can have fairly large timeouts to accommodate for

always full queues. You would like to throttle requests under load so

the computation is stable and controllable. And finally, you would

like the workload to have very few dedicated resources and use

mostly unused resources to achieve better cluster utilization.

Chapter 2 Your Project, Through the Lens of Database Performance

23

Running on the same cluster, such workloads would be competing for resources.

As system utilization rises, the database must strictly prioritize which activities get

what specific share of resources under contention. There are a few different ways you

can handle this. Physical isolation, logical isolation, and scheduled isolation can all be

acceptable choices under the right circumstances. Chapter 8 covers these options.

�Item Size
The size of the items you are storing in the database (average payload size) will dictate

whether your workload is CPU bound or storage bound. For example, running 100K

OPS with an average payload size of 90KB is much different than achieving the same

throughput with a 1KB payload. Higher payloads require more processing, I/O, and

network traffic than smaller payloads.

Without getting too deep into database internals here, one notable impact is on the

page cache. Assuming a default page cache size of 4KB, the database would have to serve

several pages for the largest payload—that’s much more I/O to issue, process, merge,

and serve back to the application clients. With the 1KB example, you could serve it from

a single-page cache entry, which is less taxing from a compute resource perspective.

Conversely, having a large number of smaller-sized items may introduce CPU overhead

compared to having a smaller number of larger items because the database must process

each arriving item individually.

In general, the larger the payload gets, the more cache activity you will have. Most

write-optimized databases will store your writes in memory before persisting that

information to the disk (in fact, that’s one of the reasons why they are write-optimized).

Larger payloads deplete the available cache space more frequently, and this incurs a

higher flushing activity to persist the information on disk in order to release space for

more incoming writes. Therefore, more disk I/O is needed to persist that information.

If you don’t size this properly, it can become a bottleneck throughout this repetitive

process.

When you’re working with extremely large payloads, it’s important to set realistic

latency and throughput expectations. If you need to serve 200KB payloads, it’s unlikely

that any database will enable you to achieve single-digit millisecond latencies. Even if

the entire dataset is served from cache, there’s a physical barrier between your client

and the database: networking. The network between them will eventually throttle

your transfer speeds, even with an insanely fast client and database. Eventually, this

Chapter 2 Your Project, Through the Lens of Database Performance

24

will impact throughput as well as latency. As your latency increases, your client will

eventually throttle down and you won’t be able to achieve the same throughput that

you could with smaller payload sizes. The requests would be stalled, queuing in the

network.7

Generally speaking, databases should not be used to store large blobs. We’ve seen

people trying to store gigabytes of data within a single-key in a database—and this

isn’t a great idea. If your item size is reaching this scale, consider alternative solutions.

One solution is to use CDNs. Another is to store the largest chunk of your payload size

in cold storage like Amazon S3 buckets, Google Cloud storage, or Azure blob storage.

Then, use the database as a metadata lookup: It can read the data and fetch an identifier

that will help find the data in that cold storage. For example, this is the strategy used by

a game developer converting extremely large (often in the gigabyte range) content to

popular gaming platforms. They store structured objects with blobs that are referenced

by a content hash. The largest payload is stored within a cloud vendor Object Storage

solution, whereas the content hash is stored in a distributed NoSQL database.8

Note that some databases impose hard limits on item size. For example, DynamoDB

currently has a maximum item size of 400KB. This might not suit your needs. On top of

that, if you’re using an in-memory solution such as Redis, larger keys will quickly deplete

your memory. In this case, it might make sense to hash/compress such large objects

prior to storing them.

No matter which database you choose, the smaller your payload, the greater your

chances of introducing memory fragmentation. This might reduce your memory

efficiency, which might in turn elevate costs because the database won’t be able to fully

utilize its available memory.

�Item Type
The item type has a large impact on compression, which in turn impacts your

storage utilization. If you’re frequently storing text, expect to take advantage of a high

compression ratio. But, that’s not the case for random and uncommon blob sequences.

7 There are alternatives to this; for example, RDMA, DPDK and other solutions. However, most
use cases do not require such solutions, so they are not covered in detail here.
8 For details, see the Epic Games talk, “Using ScyllaDB for Distribution of Game Assets in Unreal
Engine” (www.youtube.com/watch?v=aEgP9YhAb08).

Chapter 2 Your Project, Through the Lens of Database Performance

http://www.youtube.com/watch?v=aEgP9YhAb08

25

Here, compression is unlikely to make a measurable reduction in your storage footprint.

If you’re concerned about your use case’s storage utilization, using a compression-

friendly item type can make a big difference.

If your use case dictates a certain item type, consider databases that are optimized

for that type. For example, if you need to frequently process JSON data that you can’t

easily transform, a document database like MongoDB might be a better option than a

Cassandra-compatible database. If you have JSON with some common fields and others

that vary based on user input, it might be complicated—though possible—to model

them in Cassandra. However, you’d incur a penalty from serialization/deserialization

overhead required on the application side.

As a general rule of thumb, choose the data type that’s the minimum needed to store

the type of data you need. For example, you don’t need to store a year as a bigint. If

you define a field as a bigint, most databases allocate relevant memory address spaces

for holding it. If you can get by with a smaller type of int, do it—you’ll save bytes of

memory, which could add up at scale. Even if the database you use doesn’t pre-allocate

memory address spaces according to data types, choosing the correct one is still a nice

way to have an organized data model—and also to avoid future questions around why a

particular data type was chosen as opposed to another.

Many databases support additional item types which suit a variety of use cases.

Collections, for example, allow you to store sets, lists, and maps (key-value pairs) under

a single column in wide column databases. Such data types are often misused, and

lead to severe performance problems. In fact, most of the data modeling problems

we’ve come across involve misuse of collections. Collections are meant to store a small

amount of information (such as phone numbers of an individual or different home/

business addresses). However, collections with hundreds of thousands of entries are

unfortunately not as rare as you might expect. They end up introducing a severe de-

serialization overhead on the database. At best, this translates to higher latencies.

At worst, this makes the data entirely unreadable due to the latency involved when

scanning through the high number of items under such columns.

Some databases also support user created fields, such as User-Defined Types (UDTs)

in Cassandra. UDTs can be a great ally for reducing the de-serialization overhead when

you combine several columns into one. Think about it: Would you rather de-serialize

four Boolean columns individually or a single column with four Boolean values? UDTs

will typically shine on deserializing several values as a single column, which may give

Chapter 2 Your Project, Through the Lens of Database Performance

26

you a nice performance boost.9 Just like collections, however, UDTs should not be

misused—and misusing UDTs can lead to the same severe impacts that are incurred by

collections.

Note U DTs are quite extensively covered in Chapter 6.

�Dataset Size
Knowing your dataset size is important for selecting appropriate infrastructure options.

For example, AWS cloud instances have a broad array of NVMe storage offerings. Having

a good grasp of how much storage you need can help you avoid selecting an instance

that causes performance to suffer (if you end up with insufficient storage) or that’s

wasteful from a cost perspective (if you overprovision).

It’s important to note that your selected storage size should not be equal to your total

dataset size. You also need to factor in replication and growth—plus steer clear of 100

percent storage utilization.

For example, let’s assume you have 3TB of already compressed data. The bare

minimum to support a workload is your current dataset size multiplied by your

anticipated replication. If you have 3TB of data with the common replication factor of

three, that gives you 9TB. If you naively deployed this on three nodes supporting 3TB of

data each, you’d hit near 100 percent disk utilization which, of course, is not optimal.

Instead, if you factor in some free space and minimal room for growth, you’d want

to start with at least six nodes of that size—each storing only 1.5TB of data. This gives

you around 50 percent utilization. On the other hand, if your database cannot support

that much data per node (every database has a limit) or if you do not foresee much

future data growth, you could have six nodes supporting 2TB each, which would store

approximately 1.5TB per replica under a 75 percent utilization. Remember: Factoring

in your growth is critical for avoiding unpleasant surprises in production, from an

operational as well as a budget perspective.

9 For some specific examples of how UDTs impact performance, see the performance benchmark
that ScyllaDB performed with different UDT sizes against individual columns: “If You Care
About Performance, Employ User Defined Types” (https://www.scylladb.com/2017/12/07/
performance-udt/)

Chapter 2 Your Project, Through the Lens of Database Performance

https://www.scylladb.com/2017/12/07/performance-udt/
https://www.scylladb.com/2017/12/07/performance-udt/

27

Note  We very intentionally discussed the dataset size from a compressed data
standpoint. Be aware that some database vendors measure your storage utilization
with respect to uncompressed data. This often leads to confusion. If you’re moving
data from one database solution to another and your data is uncompressed (or
you’re not certain it’s compressed), consider loading a small fraction of your
total dataset beforehand in order to determine its compression ratio. Effective
compression can dramatically reduce your storage footprint.

If you’re working on a very fluid project and can’t define or predict your dataset

size, a serverless database deployment model might be a good option to provide easy

flexibility and scaling. But, be aware that rapid increases in overall dataset size and/or

IOPS (depending on the pricing model) could cause the price to skyrocket exponentially.

Even if you don’t explicitly pay a penalty for storing a large dataset, you might be charged

a premium for the many operations that are likely associated with that large dataset.

Serverless is discussed more in Chapter 7.

�Throughput Expectations
Your expected throughput and latency should be your “north star” from database and

infrastructure selection all the way to monitoring. Let’s start with throughput.

If you’re serious about database performance, it’s essential to know what throughput

you’re trying to achieve—and “high throughput” is not an acceptable answer.

Specifically, try to get all relevant stakeholders’ agreement on your target number of peak

read operations per second and peak write operations per second for each workload.

Let’s unravel that a little. First, be sure to separate read throughput vs write

throughput. A database’s read path is usually quite distinct from its write path. It stresses

different parts of the infrastructure and taps different database internals. And the client/

user experience of reads is often quite different than that of writes. Lumping them

together into a meaningless number won’t help you much with respect to performance

measurement or optimization. The main use for average throughput is in applying

Little’s Law (more on that in the “Concurrency” section a little later in this chapter).

Chapter 2 Your Project, Through the Lens of Database Performance

28

Another caveat: The same database’s past or current throughput with one use case

is no guarantee of future results with another—even if it’s the same database hosted on

identical infrastructure. There are too many different factors at play (item size, access

patterns, concurrency… all the things in this chapter, really). What’s a great fit for one use

case could be quite inappropriate for another.

Also, note the emphasis on peak operations per second. If you build and optimize

with an average in mind, you likely won’t be able to service beyond the upper ranges of

that average. Focus on the peak throughput that you need to sustain to cover your core

needs and business patterns—including surges. Realize that databases can often “boost”

to sustain short bursts of exceptionally high load. However, to be safe, it’s best to plan for

your likely peaks and reserve boosting for atypical situations.

Also, be sure not to confuse concurrency with throughput. Throughput is the speed

at which the database can perform read or write operations; it’s measured in the number

of read or write operations per second. Concurrency is the number of requests that the

client sends to the database at the same time (which, in turn, will eventually translate

to a given number of concurrent requests queuing at the database for execution).

Concurrency is expressed as a hard number, not a rate over a period of time. Not every

request that is born at the same time will be able to be processed by the database at

the same time. Your client could send 150K requests to the database, all at once. The

database might blaze through all these concurrent requests if it’s running at 500K

OPS. Or, it might take a while to process them if the database throughput tops out at

50K OPS.

It is generally possible to increase throughput by increasing your cluster size (and/

or power). But, you also want to pay special attention to concurrency, which will be

discussed in more depth later in this chapter as well as in Chapter 5. For the most part,

high concurrency is essential for achieving impressive performance. But if the clients

end up overwhelming the database with a concurrency that it can’t handle, throughput

will suffer, then latency will rise as a side effect. A friendly reminder that transcends the

database world: No system, distributed or not, supports unlimited concurrency. Period.

Chapter 2 Your Project, Through the Lens of Database Performance

29

Note E ven though scaling a cluster boosts your database processing capacity,
remember that the application access patterns directly contribute to how much
impact that will ultimately make. One situation where scaling a cluster may not
provide the desired throughput increase is during a hot partition10 situation, which
causes traffic to be primarily targeted to a specific set of replicas. In these cases,
throttling the access to such hot keys is fundamental for preserving the system’s
overall performance.

�Latency Expectations
Latency is a more complex challenge than throughput: You can increase throughput

by adding more nodes, but there’s no simple solution for reducing latency. The lower

the latency you need to achieve, the more important it becomes to understand and

explore database tradeoffs and internal database optimizations that can help you shave

milliseconds or microseconds off latencies. Database internals, driver optimizations,

efficient CPU utilization, sufficient RAM, efficient data modeling… everything matters.

As with throughput, aim for all relevant stakeholders’ agreement on the acceptable

latencies. This is usually expressed as latency for a certain percentile of requests. For

performance-sensitive workloads, tracking at the 99th percentile (P99) is common. Some

teams go even higher, such as the P9999, which refers to the 99.99th percentile.

As with throughput, avoid focusing on average (mean) or median (P50) latency

measurements. Average latency is a theoretical measurement that is not directly

correlated to anything systems or users experience in reality. Averages conceal outliers:

Extreme deviations from the norm that may have a large and unexpected impact on

overall system performance, and hence on user experience.

For example, look at the discrepancy between average latencies and P99 latencies in

Figure 2-2 (different colors represent different database nodes). P99 latencies were often

double the average for reads, and even worse for writes.

10 A hot partition is a data access imbalance problem that causes specific partitions to receive
more traffic compared to others, thus introducing higher load on a specific set of replica servers.

Chapter 2 Your Project, Through the Lens of Database Performance

30

11 For a detailed critique, see Gil Tene’s famous “Oh Sh*t” talk (www.youtube.com/watch?
v=lJ8ydIuPFeU) as well as his recent P99 CONF talk on Misery Metrics and Consequences
(https://www.p99conf.io/session/misery-metrics-consequences/).

Figure 2-2.  A sample database monitoring dashboard. Note the difference
between average and P99 latencies

Note that monitoring systems are sometimes configured in ways that omit outliers.

For example, if a monitoring system is calibrated to measure latency on a scale of 0

to 1000ms, it is going to overlook any larger measurements—thus failing to detect the

serious issues of query timeouts and retries.

P99 and above percentiles are not perfect.11 But for latency-sensitive use cases,

they’re the number you’ll want to keep in mind as you are selecting your infrastructure,

benchmarking, monitoring, and so on.

Also, be clear about what exactly is involved in the P99 you are looking to achieve.

Database latency is the time that elapses between when the database receives a request,

processes it, and sends back an appropriate response. Client-side latency is broader:

Here, the measurement starts with the client sending the request and ends with the

client receiving the database’s response. It includes the network time and client-side

Chapter 2 Your Project, Through the Lens of Database Performance

http://www.youtube.com/watch?v=lJ8ydIuPFeU
http://www.youtube.com/watch?v=lJ8ydIuPFeU
https://www.p99conf.io/session/misery-metrics-consequences/

31

processing. There can be quite a discrepancy between database latency and client-

side latency; a ten times higher client-side latency isn’t all that uncommon (although

clearly not desirable). There could be many culprits to blame for a significantly higher

client-side latency than database latency: excessive concurrency, inefficient application

architecture, coding issues, and so on. But that’s beyond the scope of this discussion—

beyond the scope of this book, even.

The key point here is that your team and all the stakeholders need to be on the same

page regarding what you’re measuring. For example, say you’re given a read latency

requirement of 15ms. You work hard to get your database to achieve that and report that

you met the expectation—then you learn that stakeholders actually expect 15ms for the

full client-side latency. Back to the drawing board.

Ultimately, it’s important to track both database latency and client-side latency.

You can optimize the database all you want, but if the application is introducing latency

issues from the client side, a fast database won’t have much impact. Without visibility

into both the database and the client-side latencies, you’re essentially flying half blind.

�Concurrency
What level of concurrency should your database be prepared to handle? Depending

on the desired qualities of service from the database cluster, concurrency must be

judiciously balanced to reach appropriate throughput and latency values. Otherwise,

requests will pile up waiting to be processed—causing latencies to spike, timeouts to

rise, and the overall user experience to degrade.

Little’s Law establishes that:

L=λW

where λ is the average throughput, W is the average latency, and L represents the total

number of requests either being processed or on queue at any given moment when the

cluster reaches steady state. Given that your throughput and latency targets are usually

fixed, you can use Little’s Law to estimate a realistic concurrency.

For example, if you want a system to serve 500,000 requests per second at 2.5ms

average latency, the best concurrency is around 1,250 in-flight requests. As you approach

the saturation limit of the system—around 600,000 requests per second for read

requests—increases in concurrency will keep constant since this is the physical limit of

the database. Every new in-flight request will only cause increased latency.

Chapter 2 Your Project, Through the Lens of Database Performance

32

In fact, if you approximate 600,000 requests per second as the physical capacity of this

database, you can calculate the expected average latency at a particular concurrency

point. For example, at 6,120 in-flight requests, the average latency is expected to be

6120/600,000 = 10ms.

Past the maximum throughput, increasing concurrency will increase latency.

Conversely, reducing concurrency will reduce latency, provided that this reduction does

not result in a decrease in throughput.

In some use cases, it’s fine for queries to pile up on the client side. But many times

it’s not. In those cases, you can scale out your cluster or increase the concurrency on

the application side—at least to the point where the latency doesn’t suffer. It’s a delicate

balancing act.12

�Connected Technologies
A database can’t rise above the slowest-performing link in your distributed data system.

Even if your database is processing reads and writes at blazing speeds, it won’t ultimately

matter much if it interacts with an event-streaming platform that’s not optimized for

performance or involves transformations from a poorly-configured Apache Spark

instance, for example.

This is just one of many reasons that taking a comprehensive and proactive approach

to monitoring (more on this in Chapter 10) is so important. Given the complexity of

databases and distributed data systems, it’s hard to guess what component is to blame

for a problem. Without a window into the state of the broader system, you could naively

waste amazing amounts of time and resources trying to optimize something that won’t

make any difference.

If you’re looking to optimize an existing data system, don’t overlook the performance

gains you can achieve by reviewing and tuning its connected components. Or, if your

monitoring efforts indicate that a certain component is to blame for your client-side

performance problems but you feel you’ve hit your limit with it, explore what’s required

to replace it with a more performant alternative. Use benchmarking to determine the

severity of the impact from a performance perspective.

12 For additional reading on concurrency, the Netflix blog “Performance Under Load” is a great
resource (https://netflixtechblog.medium.com/performance-under-load-3e6fa9a60581).

Chapter 2 Your Project, Through the Lens of Database Performance

https://netflixtechblog.medium.com/performance-under-load-3e6fa9a60581

33

Also, note that some database offerings may have ecosystem limitations. For

example, if you’re considering a serverless deployment model, be aware that some

Change Data Capture (CDC) connectors, drivers, and so on, might not be supported.

�Demand Fluctuations
Databases might experience a variety of different demand fluctuations, ranging from

predictable moderate fluctuations to unpredictable and dramatic spikes. For instance,

the world’s most watched sporting event experiences different fluctuations than a food

delivery service, which experiences different fluctuations than an ambulance-tracking

service—and all require different strategies and infrastructure.

First, let’s look at the predictable fluctuations. With predictability, it’s much easier to

get ahead of the issue. If you’re expected to support periodic big events that are known

in advance (Black Friday, sporting championships, ticket on sales, etc.), you should have

adequate time to scale up your cluster for each anticipated spike. That means you can

tailor your normal topology for the typical day-in, day-out demands without having to

constantly incur the costs and admin burden of having that larger scale topology.

On the other side of the spikiness spectrum, there’s applications with traffic with

dramatic peaks and valleys across the course of each day. For example, consider food

delivery businesses, which face a sudden increase around lunch, followed by a few

hours of minimal traffic, then a second spike at dinner time (and sometimes breakfast

the following morning). Expanding the cluster for each spike—even with “autoscaling”

(more on autoscaling later in this chapter)—is unlikely to deliver the necessary

performance gain fast enough. In these cases, you should provision an infrastructure

that supports the peak traffic.

But not all spikes are predictable. Certain industries—such as emergency services,

news, and social media—are susceptible to sudden massive spikes. In this case, a good

preventative strategy is to control your concurrency on the client side, so it doesn’t

overwhelm your database. However, controlling concurrency might not be an option for

use cases with strict end-to-end latency requirements. You can also scramble to scale

out your clusters as fast as feasible when the spike occurs. This is going to be markedly

simpler if you’re on the cloud than if you’re on-prem. If you can start adding nodes

immediately, increase capacity incrementally—with a close eye on your monitoring

results—and keep going until you’re satisfied with the results, or until the peak has

subsided. Unfortunately, there is a real risk that you won’t be able to sufficiently scale out

Chapter 2 Your Project, Through the Lens of Database Performance

34

before the spike ends. Even if the ramp up begins immediately, you need to account for

the time it takes to get data over to add new nodes, stream data to them, and rebalance

the cluster.

If you’re selecting a new database and anticipate frequent and sharp spikes, be sure

to rigorously test how your top contenders respond under realistic conditions. Also,

consider the costs of maintaining acceptable performance throughout these peaks.

Note  The word “autoscaling” insinuates that your database cluster auto-
magically expands based on the traffic it is receiving. Not so. It’s simply a robot
enabling/disabling capacity that’s pre-provisioned for you based on your target
table settings. Even if you’re not using this capacity, you might be paying for the
convenience of having it set aside and ready to go. Also, it’s important to realize
that it’s not instantaneous. It takes upwards of 2.5 hours to go from 0 rps to 40k.13
This is not ideal for unexpected or extreme spikes.

Autoscaling is best when:

•	 Load changes have high amplitude

•	 The rate of change is in the magnitude of hours

•	 The load peak is narrow relative to the baseline14

�ACID Transactions
Does your use case require you to process a logical unit of work with ACID (atomic,

consistent, isolated, and durable) properties? These transactions, which are historically

the domain of RDBMS, bring a severe performance hit.

13 See The Burning Monk blog, “Understanding the Scaling Behaviour of DynamoDB
OnDemand Tables” (https://theburningmonk.com/2019/03/understanding-the-scaling-
behaviour-of-dynamodb-ondemand-tables/).
14 For more on the best and worst uses of autoscaling, see Avishai Ish Shalom’s blog, “DynamoDB
Autoscaling Dissected: When a Calculator Beats a Robot” (www.scylladb.com/2021/07/08/
dynamodb-autoscaling-dissected-when-a-calculator-beats-a-robot/).

Chapter 2 Your Project, Through the Lens of Database Performance

https://theburningmonk.com/2019/03/understanding-the-scaling-behaviour-of-dynamodb-ondemand-tables/
https://theburningmonk.com/2019/03/understanding-the-scaling-behaviour-of-dynamodb-ondemand-tables/
http://www.scylladb.com/2021/07/08/dynamodb-autoscaling-dissected-when-a-calculator-beats-a-robot/
http://www.scylladb.com/2021/07/08/dynamodb-autoscaling-dissected-when-a-calculator-beats-a-robot/

35

It is true that distributed ACID compliant databases do exist—and that the past few

years have brought some distinct progress in the effort to minimize the performance

impact (e.g., through row-level locks or column-level locking and better conflict

resolution algorithms). However, some level of penalty will still exist.

As a general guidance, if you have an ACID-compliant use case, pay special attention

to your master nodes; these can easily become your bottlenecks since they will often

be your primary query coordinators (more on this in Appendix A). In addition, if at

all possible, try to ensure that the majority of your transactions are isolated to the

minimum amount of resources. For example, a transaction spanning a single row may

involve a specific set of replicas, whereas a transaction involving several keys may span

your cluster as a whole—inevitably increasing your latency. It is therefore important to

understand which types of transactions your target database supports. Some vendors

may support a mix of approaches, while others excel at specific ones. For instance,

MongoDB introduced multi-document transactions on sharded clusters in its version

4.2; prior to that, it supported only multi-document transactions on replica sets.

If it’s critical to support transactions in a more performant manner, sometimes it’s

possible to rethink your data model and reimplement a use case in a way that makes it

suitable for a database that’s not ACID compliant. For example, one team who started

out with Postgres for all their use cases faced skyrocketing business growth. This is a very

common situation with startups that begin small and then suddenly find themselves in a

spot where they are unable to handle a spike in growth in a cost-effective way. They were

able to move their use cases to NoSQL by conducting a careful data-modeling analysis

and rethinking their use cases, access patterns, and the real business need of what truly

required ACID and what did not. This certainly isn’t a quick fix, but in the right situation,

it can pay off nicely.

Another option to consider: Performance-focused NoSQL databases like Cassandra

aim to support isolated conditional updates with capabilities such as lightweight

transactions that allow “atomic compare and set” operations. That is, the database

checks if a condition is true, and if so, it conducts the transaction. If the condition is not

met, the transaction is not completed. They are named “lightweight” since they do not

truly lock the database for the transaction. Instead, they use a consensus protocol to

ensure there is agreement between the nodes to commit the change. This capability was

Chapter 2 Your Project, Through the Lens of Database Performance

36

introduced by Cassandra and it’s supported in several ways across different Cassandra-

compatible databases. If this is something you expect to use, it’s worth exploring the

documentation to understand the differences.15

However, it’s important to note that lightweight transactions have their limits. They

can’t support complex use cases like a retail transaction that updates the inventory

only after a sale is completed with a successful payment. And just like ACID-compliant

databases, lightweight transactions have their own performance implications. As a

result, the choice of whether to use them will greatly depend on the amount of ACID

compliance that your use case requires.

DynamoDB is a prime example of how the need for transactions will require more

compute resources (read: money). As a result, use cases relying heavily on ACID will

fairly often require much more infrastructure power to satisfy heavy usage requirements.

In the DynamoDB documentation, AWS recommends that you ensure the database is

configured for auto-scaling or that it has enough read/write capacity to account for the

additional overhead of transactions.16

�Consistency Expectations
Most NoSQL databases opt for eventual consistency to gain performance. This is in

stark contrast to the RDBMS model, where ACID compliance is achieved in the form

of transactions, and, because everything is in a single node, the effort on locking and

avoiding concurrency clashes is often minimized. When deciding between a database

with strong or eventual consistency, you have to make a hard choice. Do you want to

sacrifice scalability and performance or can you accept the risk of sometimes serving

stale data?

Can your use case tolerate eventual consistency, or is strong consistency truly

required? Your choice really boils down to how much risk your application—and your

business—can tolerate with respect to inconsistency. For example, a retailer who

15 See Kostja Osipov’s blog, “Getting the Most Out of Lightweight Transactions in ScyllaDB”
(www.scylladb.com/2020/07/15/getting-the-most-out-of-lightweight-transactions-in-
scylla/) for an example of how financial transactions can be implemented using Lightweight
Transactions.
16 See “Amazon DynamoDB Transactions: How it Works” (https://docs.aws.amazon.com/
amazondynamodb/latest/developerguide/transaction-apis.html).

Chapter 2 Your Project, Through the Lens of Database Performance

http://www.scylladb.com/2020/07/15/getting-the-most-out-of-lightweight-transactions-in-scylla/
http://www.scylladb.com/2020/07/15/getting-the-most-out-of-lightweight-transactions-in-scylla/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/transaction-apis.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/transaction-apis.html

37

(understandably) requires consistent pricing might want to pay the price for consistent

writes upfront during a weekly catalog update so that they can later serve millions of low-

latency read requests under more relaxed consistency levels. In other cases, it’s more

important to ingest data quickly and pay the price for consistency later (for example,

in the playback tracking use case that’s common in streaming platforms—where the

database needs to record the last viewing position for many users concurrently). Or

maybe both are equally important. For example, consider a social media platform that

offers live chat. Here, you want consistency on both writes and reads, but you likely don’t

need the highest consistency (the impact of an inconsistency here is likely much less

than with a financial report).

In some cases, “tunable consistency” will help you achieve a balance between strong

consistency and performance. This gives you the ability to tune the consistency at the

query level to suit what you’re trying to achieve. You can have some queries relying on a

quorum of replicas, then have other queries that are much more relaxed.

Regardless of your consistency requirements, you need to be aware of the

implications involved when selecting a given consistency level. Databases that offer

tunable consistency may be a blessing or a curse if you don’t know what you are doing.

Consider a NoSQL deployment spanning three different regions, with three nodes

each (nine nodes in total). A QUORUM read would essentially have to traverse two

different regions in order to be acknowledged back to the client. In that sense, if your

Network Round Trip Time (RTT)17 is 50ms, then it will take at least this amount of time

for the query to be considered successful by the database. Similarly, if you were to run

operations with the highest possible consistency (involving all replicas), then the failure

of a single node may bring your entire application down.

Note  NoSQL databases fairly often will provide you with ways to confine your
queries to a specific region to prevent costly network round trips from impacting
your latency. But again, it all boils down to you what your use case requires.

17 RTT is the duration, typically measured in milliseconds, that a network request takes to reach a
destination, plus the time it takes for the packet to be received back at the origin.

Chapter 2 Your Project, Through the Lens of Database Performance

38

�Geographic Distribution
Does your business need to support a regional or global customer base in the near-term

future? Where are your users and your application located? The greater the distance

between your users, your application, and your database, the more they’re going to face

high latencies that stem from the physical time it takes to move data across the network.

Knowing this will influence where you locate your database and how you design your

topology—more on this in Chapters 6 and 8.

The geographic distribution of your cluster might also be a requirement from a

disaster recovery perspective. In that sense, the cluster would typically serve data

primarily from a specific region, but failover to another in the event of a disaster (such as

a full region outage). These kinds of setups are costly, as they will require doubling your

infrastructure spend. However, depending on the nature of your use case, sometimes it’s

required.

Some organizations that invest in a multi-region deployment for the primary

purpose of disaster recovery end up using them to host isolated use cases. As explained

in the “Competing Workloads” section of this chapter, companies often prefer to

physically isolate OLTP from OLAP workloads. Moving some isolated (less critical)

workloads to remote regions prevents these servers from being “idle” most of the time.

Regardless of the magnitude of compelling reasons that may drive you toward a

geographically dispersed deployment, here’s some important high-level advice from a

performance perspective (you’ll learn some more technical tips in Chapter 8):

	 1.	 Consider the increased load that your target region or regions will

receive in the event of a full region outage. For example, assume

that you operate globally across three regions, and all these three

regions serve your end-users. Are the two remaining regions able

to sustain the load for a long period of time?

	 2.	 Recognize that simply having a geographically-dispersed database

does not fully cover you in a disaster recovery situation. You also

need to have your application, web servers, messaging queue

systems, and so on, geographically replicated. If the only thing

that’s geo-replicated is your database, you won’t be in a great

position when your primary application goes down.

Chapter 2 Your Project, Through the Lens of Database Performance

39

	 3.	 Consider the fact that geo-replicated databases typically require

very good network links. Especially when crossing large distances,

the time to replicate your data is crucial to minimize losses in the

event of a disaster. If your workload has a heavy write throughput,

a slow network link may bottleneck the local region nodes. This

may cause a queue to build up and eventually throttle down

your writes.

�High-Availability Expectations
Inevitably, s#*& happens. To prepare for the worst, start by understanding what your use

case and business can tolerate if a node goes down. Can you accept the data loss that

could occur if a node storing unreplicated data goes down? Do you need to continue

buzzing along without a noticeable performance impact even if an entire datacenter or

availability zone goes down? Or is it okay if things slow down a bit from time to time?

This will all impact how you architect your topology and configure things like replication

factor and consistency levels (you’ll learn about this more in Chapter 8).

It’s important to note that replication and consistency both come at a cost to

performance. Get a good feel for your business’s risk tolerance and don’t opt for more

than your business really needs.

When considering your cluster topology, remember that quite a lot is at risk if you

get it wrong (and you don’t want to be caught off-guard in the middle of the night).

For example, the failure of a single node in a three-node cluster could make you

momentarily lose 33 percent of your processing power. Quite often, that’s a significant

blow, with discernable business impact. Similarly, the loss of a node in a six-node

cluster would reduce the blast radius to only 16 percent. But there’s always a tradeoff.

A sprawling deployment spanning hundreds of nodes is not ideal either. The more nodes

you have, the more likely you are to experience a node failure. Balance is key.

Chapter 2 Your Project, Through the Lens of Database Performance

40

�Summary
The specific database challenges you encounter, as well as your options for addressing

them, are highly dependent on your situation. For example, an AdTech use case that

demands single-digit millisecond P99 latencies for a large dataset with small item

sizes requires a different treatment than a fraud detection use case that prioritizes the

ingestion of massive amounts of data as rapidly as possible. One of the primary factors

influencing how these workloads are handled is how your database is architected. That’s

the focus for the next two chapters, which dive into database internals.

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 2 Your Project, Through the Lens of Database Performance

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

41

CHAPTER 3

Database Internals:
Hardware and Operating
System Interactions
A database’s internal architecture makes a tremendous impact on the latency it can

achieve and the throughput it can handle. Being an extremely complex piece of software,

a database doesn’t exist in a vacuum, but rather interacts with the environment, which

includes the operating system and the hardware.

While it’s one thing to get massive terabyte-to-petabyte scale systems up and

running, it’s a whole other thing to make sure they are operating at peak efficiency. In

fact, it’s usually more than just “one other thing.” Performance optimization of large

distributed systems is usually a multivariate problem—combining aspects of the

underlying hardware, networking, tuning operating systems, and finagling with layers of

virtualization and application architectures.

Such a complex problem warrants exploration from multiple perspectives. This

chapter begins the discussion of database internals by looking at ways that databases

can optimize performance by taking advantage of modern hardware and operating

systems. It covers how the database interacts with the operating system plus CPUs,

memory, storage, and networking. Then, the next chapter shifts focus to algorithmic

optimizations.1

1 This chapter draws from material originally published on the Seastar site (https://seastar.io/)
and the ScyllaDB blog (https://www.scylladb.com/blog/). It is used here with permission of
ScyllaDB.

© Felipe Cardeneti Mendes, Piotr Sarna, Pavel Emelyanov, Cynthia Dunlop 2023
F. C. Mendes et al., Database Performance at Scale, https://doi.org/10.1007/978-1-4842-9711-7_3

https://seastar.io/
https://www.scylladb.com/blog/
https://doi.org/10.1007/978-1-4842-9711-7_3

42

�CPU
Programming books tell programmers that they have this CPU that can run processes

or threads, and what runs means is that there’s some simple sequential instruction

execution. Then there’s a footnote explaining that with multiple threads you might need

to consider doing some synchronization. In fact, how things are actually executed inside

CPU cores is something completely different and much more complicated. It would

be very difficult to program these machines if you didn’t have those abstractions from

books, but they are a lie to some degree. How you can efficiently take advantage of CPU

capabilities is still very important.

�Share Nothing Across Cores
Individual CPU cores aren’t getting any faster. Their clock speeds reached a performance

plateau long ago. Now, the ongoing increase of CPU performance continues

horizontally: by increasing the number of processing units. In turn, the increase in the

number of cores means that performance now depends on coordination across multiple

cores (versus the throughput of a single core).

On modern hardware, the performance of standard workloads depends more on the

locking and coordination across cores than on the performance of an individual core.

Software architects face two unattractive alternatives:

•	 Coarse-grained locking, which will see application threads contend

for control of the data and wait instead of producing useful work.

•	 Fine-grained locking, which, in addition to being hard to program

and debug, sees significant overhead even when no contention

occurs due to the locking primitives themselves.

Consider an SSD drive. The typical time needed to communicate with an SSD on a

modern NVMe device is quite lengthy—it’s about 20 μseconds. That’s enough time for

the CPU to execute tens of thousands of instructions. Developers should consider it as

a networked device but generally do not program in that way. Instead, they often use an

API that is synchronous (we’ll return to this later), which produces a thread that can be

blocked.

Looking at the image of the logical layout of an Intel Xeon Processor (see Figure 3-1),

it’s clear that this is also a networked device.

Chapter 3 Database Internals: Hardware and Operating System Interactions

43

Figure 3-1.  The logical layout of an Intel Xeon Processor

The cores are all connected by what is essentially a network—a dual ring

interconnected architecture. There are two such rings and they are bidirectional. Why

should developers use a synchronous API for that then? Since sharing information

across cores requires costly locking, a shared-nothing model is perfectly worth

considering. In such a model, all requests are sharded onto individual cores, one

application thread is run per core, and communication depends on explicit message

passing, not shared memory between threads. This design avoids slow, unscalable lock

primitives and cache bounces.

Any sharing of resources across cores in modern processors must be handled

explicitly. For example, when two requests are part of the same session and two CPUs

each get a request that depends on the same session state, one CPU must explicitly

forward the request to the other. Either CPU may handle either response. Ideally,

your database provides facilities that limit the need for cross-core communication—

but when communication is inevitable, it provides high-performance non-blocking

communication primitives to ensure performance is not degraded.

�Futures-Promises
There are many solutions for coordinating work across multiple cores. Some are highly

programmer-friendly and enable the development of software that works exactly as if it

were running on a single core. For example, the classic UNIX process model is designed

Chapter 3 Database Internals: Hardware and Operating System Interactions

44

to keep each process in total isolation and relies on kernel code to maintain a separate

virtual memory space per process. Unfortunately, this increases the overhead at the

OS level.

There’s a model known as “futures and promises.” A future is a data structure that

represents some yet-undetermined result. A promise is the provider of this result. It

can be helpful to think of a promise/future pair as a first-in first-out (FIFO) queue

with a maximum length of one item, which may be used only once. The promise is the

producing end of the queue, while the future is the consuming end. Like FIFOs, futures

and promises decouple the data producer and the data consumer.

However, the optimized implementations of futures and promises need to take

several considerations into account. While the standard implementation targets coarse-

grained tasks that may block and take a long time to complete, optimized futures and

promises are used to manage fine-grained, non-blocking tasks. In order to meet this

requirement efficiently, they should:

•	 Require no locking

•	 Not allocate memory

•	 Support continuations

Future-promise design eliminates the costs associated with maintaining individual

threads by the OS and allows close to complete utilization of the CPU. On the other

hand, it calls for user-space CPU scheduling and very likely limits the developer with

voluntary preemption scheduling. The latter, in turn, is prone to generating phantom

jams in popular producer-consumer programming templates.2

Applying future-promise design to database internals has obvious benefits. First of

all, database workloads can be naturally CPU-bound. For example, that’s typically the

case with in-memory database engines, and aggregates’ evaluations also involve pretty

intensive CPU work. Even for huge on-disk datasets, when the query time is typically

dominated by the I/O, CPU should be considered. Parsing a query is a CPU-intensive

task regardless of whether the workload is CPU-bound or storage-bound, and collecting,

converting, and sending the data back to the user also calls for careful CPU utilization.

And last but not least: Processing the data always involves a lot of high-level operations

2 Watch the Linux Foundation video, “Exploring Phantom Traffic Jams in Your Data Flows,” on
YouTube (www.youtube.com/watch?v=IXS_Afb6Y4o) and/or read the corresponding article on the
ScyllaDB blog (www.scylladb.com/2022/04/19/exploring-phantom-jams-in-your-
data-flow/).

Chapter 3 Database Internals: Hardware and Operating System Interactions

http://www.youtube.com/watch?v=IXS_Afb6Y4o
http://www.scylladb.com/2022/04/19/exploring-phantom-jams-in-your-data-flow/
http://www.scylladb.com/2022/04/19/exploring-phantom-jams-in-your-data-flow/

45

and low-level instructions. Maintaining them in an optimal manner requires a good low-

level programming paradigm and future-promises is one of the best choices. However,

large instruction sets need even more care; this leads to “execution stages.”

�Execution Stages
Let’s dive deeper into CPU microarchitecture, because (as discussed previously)

database engine CPUs typically need to deal with millions and billions of instructions,

and it’s essential to help the poor thing with that. In a very simplified way, the

microarchitecture of a modern x86 CPU—from the point of view of top-down analysis—

consists of four major components: frontend, backend, branch speculation, and retiring.

�Frontend

The processor’s frontend is responsible for fetching and decoding instructions that are

going to be executed. It may become a bottleneck when there is either a latency problem

or insufficient bandwidth. The former can be caused, for example, by instruction cache

misses. The latter happens when the instruction decoders cannot keep up. In the latter

case, the solution may be to attempt to make the hot path (or at least significant portions

of it) fit in the decoded μop cache (DSB) or be recognizable by the loop detector (LSD).

�Branch Speculation

Pipeline slots that the top-down analysis classifies as bad speculation are not stalled, but

wasted. This happens when a branch is incorrectly predicted and the rest of the CPU

executes a μop that eventually cannot be committed. The branch predictor is generally

considered to be a part of the frontend. However, its problems can affect the whole pipeline

in ways beyond just causing the backend to be undersupplied by the instruction fetch and

decode. (Note: Branch mispredictions are covered in more detail a bit later in this chapter.)

�Backend

The backend receives decoded μops and executes them. A stall may happen either

because of an execution port being busy or a cache miss. At the lower level, a pipeline

slot may be core bound either due to data dependency or an insufficient number of

available execution units. Stalls caused by memory can be caused by cache misses at

different levels of data cache, external memory latency, or bandwidth.

Chapter 3 Database Internals: Hardware and Operating System Interactions

46

�Retiring

Finally, there are pipeline slots that get classified as retiring. They are the lucky ones that

were able to execute and commit their μop without any problems. When 100 percent

of the pipeline slots are able to retire without a stall, the program has achieved the

maximum number of instructions per cycle for that model of the CPU. Although this is

very desirable, it doesn’t mean that there’s no opportunity for improvement. Rather, it

means that the CPU is fully utilized and the only way to improve the performance is to

reduce the number of instructions.

�Implications for Databases

The way CPUs are architectured has direct implications on the database design. It may

very well happen that individual requests involve a lot of logic and relatively little data,

which is a scenario that stresses the CPU significantly. This kind of workload will be

completely dominated by the frontend—instruction cache misses in particular. If you

think about this for a moment, it shouldn’t be very surprising. The pipeline that each

request goes through is quite long. For example, write requests may need to go through

transport protocol logic, query parsing code, look up in the caching layer, or be applied

to the memtable, and so on.

The most obvious way to solve this is to attempt to reduce the amount of logic in

the hot path. Unfortunately, this approach does not offer a huge potential for significant

performance improvement. Reducing the number of instructions needed to perform a

certain activity is a popular optimization practice, but a developer cannot make any code

shorter infinitely. At some point, the code “freezes”—literally. There’s some minimal

amount of instructions needed even to compare two strings and return the result. It’s

impossible to perform that with a single instruction.

A higher-level way of dealing with instruction cache problems is called Staged

Event-Driven Architecture (SEDA for short). It’s an architecture that splits the request

processing pipeline into a graph of stages—thereby decoupling the logic from the event

and thread scheduling. This tends to yield greater performance improvements than the

previous approach.

Chapter 3 Database Internals: Hardware and Operating System Interactions

47

�Memory
Memory management is the central design point in all aspects of programming. Even

comparing programming languages to one another always involves discussions about

the way programmers are supposed to handle memory allocation and freeing. No

wonder memory management design affects the performance of a database so much.

Applied to database engineering, memory management typically falls into two

related but independent subsystems: memory allocation and cache control. The former

is in fact a very generic software engineering issue, so considerations about it are not

extremely specific to databases (though they are crucial and are worth studying). As

opposed to that, the latter topic is itself very broad, affected by the usage details and

corner cases. Respectively, in the database world, cache control has its own flavor.

�Allocation
The manner in which programs or subsystems allocate and free memory lies at the core

of memory management. There are several approaches worth considering.

As illustrated by Figure 3-2, a so-called “log-structured allocation” is known from

filesystems where it puts sequential writes to a circular log on the persisting storage and

handles updates the very same way. At some point, this filesystem must reclaim blocks

that became obsolete entries in the log area to make some more space available for

future writes. In a naive implementation, unused entries are reclaimed by rereading and

rewriting the log from scratch; obsolete blocks are then skipped in the process.

Chapter 3 Database Internals: Hardware and Operating System Interactions

48

Figure 3-2.  A log-structured allocation puts sequential writes to a circular log on
the persisting storage and handles updates the same way

A memory allocator for naive code can do something similar. In its simplest form,

it would allocate the next block of memory by simply advancing a next-free pointer.

Deallocation would just need to mark the allocated area as freed. One advantage of

this approach is the speed of allocation. Another is the simplicity and efficiency of

deallocation if it happens in FIFO order or affects the whole allocation space. Stack

memory allocations are later released in the order that’s reverse to allocation, so this is

the most prominent and the most efficient example of such an approach.

Using linear allocators as general-purpose allocators can be more problematic

because of the difficulty of space reclamation. To reclaim space, it’s not enough to just

mark entries as free. This leads to memory fragmentation, which in turn outweighs

the advantages of linear allocation. So, as with the filesystem, the memory must be

reclaimed so that it only contains allocated entries and the free space can be used again.

Reclamation requires moving allocated entries around—a process that changes and

invalidates their previously known addresses. In naive code, the locations of references

to allocated entries (addresses stored as pointers) are unknown to the allocator. Existing

references would have to be patched to make the allocator action transparent to the

caller; that’s not feasible for a general-purpose allocator like malloc. Logging allocator

Chapter 3 Database Internals: Hardware and Operating System Interactions

49

use is tied to the programming language selection. Some RTTIs, like C++, can greatly

facilitate this by providing move-constructors. However, passing pointers to libraries that

are outside of your control (e.g., glibc) would still be an issue.

Another alternative is adopting a strategy of pool allocators, which provide allocation

spaces for allocation of entries of a fixed size (see Figure 3-3). By limiting the allocation

space that way, fragmentation can be reduced. A number of general-purpose allocators

use pool allocators for small allocations. In some cases, those application spaces exist on

a per-thread basis to eliminate the need for locking and improve CPU cache utilization.

Figure 3-3.  Pool allocators provide allocation spaces for allocation of entries of a
fixed size. Fragmentation is reduced by limiting the allocation space

This pool allocation strategy provides two core benefits. First, it saves you

from having to search for available memory space. Second, it alleviates memory

fragmentation because it pre-allocates in memory a cache for use with a collection of

object sizes. Here’s how it works to achieve that:

Chapter 3 Database Internals: Hardware and Operating System Interactions

50

	 1.	 The region for each of the sizes has fixed-size memory chunks that

are suitable for the contained objects, and those chunks are all

tracked by the allocator.

	 2.	 When it’s time for the allocator to allocate memory for a certain

type of data object, it’s typically possible to use a free slot (chunk)

in one of the existing memory slabs.3

	 3.	 When it’s time for the allocator to free the object’s memory, it can

simply move that slot over to the containing slab’s list of unused/

free memory slots.

	 4.	 That memory slot (or some other free slot) will be removed from

the list of free slots whenever there’s a call to create an object of

the same type (or a call to allocate memory of the same size).

The best allocation approach to pick heavily depends on the usage scenario. One

great benefit of a log-structured approach is that it handles fragmentation of small

sub-pools in a more efficient way. Pool allocators, on the other hand, generate less

background load on the CPU because of the lack of compacting activity.

�Cache Control
When it comes to memory management in a software application that stores lots of data

on disk, you cannot overlook the topic of cache control. Caching is always a must in data

processing, and it’s crucial to decide what and where to cache.

If caching is done at the I/O level, for both read/write and mmap, caching can

become the responsibility of the kernel. The majority of the system’s memory is given

over to the page cache. The kernel decides which pages should be evicted when memory

runs low, decides when pages need to be written back to disk, and controls read-ahead.

The application can provide some guidance to the kernel using the madvise(2) and

fadvise(2) system calls.

The main advantage of letting the kernel control caching is that great effort has been

invested by the kernel developers over many decades into tuning the algorithms used

by the cache. Those algorithms are used by thousands of different applications and are

3 We are using the term “slab” to mean one or more contiguous memory pages that contain
pre-allocated chunks of memory.

Chapter 3 Database Internals: Hardware and Operating System Interactions

51

generally effective. The disadvantage, however, is that these algorithms are general-

purpose and not tuned to the application. The kernel must guess how the application

will behave next. Even if the application knows differently, it usually has no way to help

the kernel guess correctly. This results in the wrong pages being evicted, I/O scheduled

in the wrong order, or read-ahead scheduled for data that will not be consumed in the

near future.

Next, doing the caching at the I/O level interacts with the topic often referred to as

IMR—in memory representation. No wonder that the format in which data is stored on

disk differs from the form the same data is allocated in memory as objects. The simplest

reason that it’s not the same is byte-ordering. With that in mind, if the data is cached

once it’s read from the disk, it needs to be further converted or parsed into the object

used in memory. This can be a waste of CPU cycles, so applications may choose to cache

at the object level.

Choosing to cache at the object level affects a lot of other design points. With

that, the cache management is all on the application side including cross-core

synchronization, data coherence, invalidation, and so on. Next, since objects can be

(and typically are) much smaller than the average I/O size, caching millions and billions

of those objects requires a collection selection that can handle it (you’ll learn about this

quite soon). Finally, caching on the object level greatly affects the way I/O is done.

�I/O
Unless the database engine is an in-memory one, it will have to keep the data on external

storage. There can be many options to do that, including local disks, network-attached

storage, distributed file- and object- storage systems, and so on. The term “I/O” typically

refers to accessing data on local storage—disks or filesystems (that, in turn, are located

on disks as well). And in general, there are four choices for accessing files on a Linux

server: read/write, mmap, Direct I/O (DIO) read/write, and Asynchronous I/O (AIO/

DIO, because this I/O is rarely used in cached mode).

�Traditional Read/Write
The traditional method is to use the read(2) and write(2) system calls. In a modern

implementation, the read system call (or one of its many variants—pread, readv, preadv,

etc.) asks the kernel to read a section of a file and copy the data into the calling process

Chapter 3 Database Internals: Hardware and Operating System Interactions

52

address space. If all of the requested data is in the page cache, the kernel will copy it

and return immediately; otherwise, it will arrange for the disk to read the requested

data into the page cache, block the calling thread, and when the data is available, it will

resume the thread and copy the data. A write, on the other hand, will usually1 just copy

the data into the page cache; the kernel will write back the page cache to disk some time

afterward.

�mmap
An alternative and more modern method is to memory-map the file into the application

address space using the mmap(2) system call. This causes a section of the address space

to refer directly to the page cache pages that contain the file’s data. After this preparatory

step, the application can access file data using the processor’s memory read and

memory write instructions. If the requested data happens to be in cache, the kernel is

completely bypassed and the read (or write) is performed at memory speed. If a cache

miss occurs, then a page-fault happens and the kernel puts the active thread to sleep

while it goes off to read the data for that page. When the data is finally available, the

memory-management unit is programmed so the newly read data is accessible to the

thread, which is then awoken.

�Direct I/O (DIO)
Both traditional read/write and mmap involve the kernel page cache and defer the

scheduling of I/O to the kernel. When the application wants to schedule I/O itself (for

reasons that we will explain later), it can use Direct I/O, as shown in Figure 3-4. This

involves opening the file with the O_DIRECT flag; further activity will use the normal

read and write family of system calls. However, their behavior is now altered: Instead of

accessing the cache, the disk is accessed directly, which means that the calling thread

will be put to sleep unconditionally. Furthermore, the disk controller will copy the data

directly to userspace, bypassing the kernel.

Chapter 3 Database Internals: Hardware and Operating System Interactions

53

Figure 3-4.  Direct I/O involves opening the file with the O_DIRECT flag; further
activity will use the normal read and write family of system calls, but their
behavior is now altered

�Asynchronous I/O (AIO/DIO)
A refinement of Direct I/O, Asynchronous Direct I/O, behaves similarly but prevents the

calling thread from blocking (see Figure 3-5). Instead, the application thread schedules

Direct I/O operations using the io_submit(2) system call, but the thread is not blocked;

the I/O operation runs in parallel with normal thread execution. A separate system

call, io_getevents(2), waits for and collects the results of completed I/O operations.

Like DIO, the kernel’s page cache is bypassed, and the disk controller is responsible for

copying the data directly to userspace.

Chapter 3 Database Internals: Hardware and Operating System Interactions

54

Figure 3-5.  A refinement of Direct I/O, Asynchronous Direct I/O behaves similarly
but prevents the calling thread from blocking

Note: io_uring T he API to perform asynchronous I/O appeared in Linux long ago,
and it was warmly met by the community. However, as it often happens, real-
world usage quickly revealed many inefficiencies, such as blocking under some
circumstances (despite the name), the need to call the kernel too often, and poor
support for canceling the submitted requests. Eventually, it became clear that the
updated requirements were not compatible with the existing API and the need for a
new one arose.

This is how the io_uring() API appeared. It provides the same facilities as AIO
does, but in a much more convenient and performant way (it also has notably
better documentation). Without diving into implementation details, let’s just say that
it exists and is preferred over the legacy AIO.

�Understanding the Tradeoffs
The different access methods share some characteristics and differ in others. Table 3-1

summarizes these characteristics, which are discussed further in this section.

Chapter 3 Database Internals: Hardware and Operating System Interactions

55

Table 3-1.  Comparing Different I/O Access Methods

Characteristic R/W mmap DIO AIO/DIO

Cache control Kernel Kernel User User

Copying Yes No No No

MMU activity Low High None None

I/O scheduling Kernel Kernel Mixed User

Thread scheduling Kernel Kernel Kernel User

I/O alignment Automatic Automatic Manual Manual

Application complexity Low Low Moderate High

�Copying and MMU Activity

One of the benefits of the mmap method is that if the data is in cache, then the kernel

is bypassed completely. The kernel does not need to copy data from the kernel to

userspace and back, so fewer processor cycles are spent on that activity. This benefits

workloads that are mostly in cache (for example, if the ratio of storage size to RAM size is

close to 1:1).

The downside of mmap, however, occurs when data is not in the cache. This usually

happens when the ratio of storage size to RAM size is significantly higher than 1:1. Every

page that is brought into the cache causes another page to be evicted. Those pages have

to be inserted into and removed from the page tables; the kernel has to scan the page

tables to isolate inactive pages, making them candidates for eviction, and so forth. In

addition, mmap requires memory for the page tables. On x86 processors, this requires

0.2 percent of the size of the mapped files. This seems low, but if the application has a

100:1 ratio of storage to memory, the result is that 20 percent of memory (0.2% * 100) is

devoted to page tables.

�I/O Scheduling

One of the problems with letting the kernel control caching (with the mmap and read/

write access methods) is that the application loses control of I/O scheduling. The kernel

picks whichever block of data it deems appropriate and schedules it for write or read.

This can result in the following problems:

Chapter 3 Database Internals: Hardware and Operating System Interactions

56

•	 A write storm. When the kernel schedules large amounts of writes,

the disk will be busy for a long while and impact read latency.

•	 The kernel cannot distinguish between “important” and
“unimportant” I/O. I/O belonging to background tasks can

overwhelm foreground tasks, impacting their latency2

By bypassing the kernel page cache, the application takes on the burden of

scheduling I/O. This doesn’t mean that the problems are solved, but it does mean that

the problems can be solved—with sufficient attention and effort.

When using Direct I/O, each thread controls when to issue I/O. However, the kernel

controls when the thread runs, so responsibility for issuing I/O is shared between the

kernel and the application. With AIO/DIO, the application is in full control of when I/O

is issued.

�Thread Scheduling

An I/O intensive application using mmap or read/write cannot guess what its cache hit

rate will be. Therefore, it has to run a large number of threads (significantly larger than

the core count of the machine it is running on). Using too few threads, they may all be

waiting for the disk leaving the processor underutilized. Since each thread usually has

at most one disk I/O outstanding, the number of running threads must be around the

concurrency of the storage subsystem multiplied by some small factor in order to keep

the disk fully occupied. However, if the cache hit rate is sufficiently high, then these large

numbers of threads will contend with each other for the limited number of cores.

When using Direct I/O, this problem is somewhat mitigated. The application knows

exactly when a thread is blocked on I/O and when it can run, so the application can

adjust the number of running threads according to runtime conditions.

With AIO/DIO, the application has full control over both running threads and

waiting I/O (the two are completely divorced), so it can easily adjust to in-memory or

disk-bound conditions or anything in between.

�I/O Alignment

Storage devices have a block size; all I/O must be performed in multiples of this block

size which is typically 512 or 4096 bytes. Using read/write or mmap, the kernel performs

the alignment automatically; a small read or write is expanded to the correct block

boundary by the kernel before it is issued.

Chapter 3 Database Internals: Hardware and Operating System Interactions

57

With DIO, it is up to the application to perform block alignment. This incurs some

complexity, but also provides an advantage: The kernel will usually over-align to a 4096

byte boundary even when a 512-byte boundary suffices. However, a user application

using DIO can issue 512-byte aligned reads, which results in saving bandwidth on

small items.

�Application Complexity

While the previous discussions favored AIO/DIO for I/O intensive applications, that method

comes with a significant cost: complexity. Placing the responsibility of cache management

on the application means it can make better choices than the kernel and make those

choices with less overhead. However, those algorithms need to be written and tested. Using

asynchronous I/O requires that the application is written using callbacks, coroutines, or a

similar method, and often reduces the reusability of many available libraries.

�Choosing the Filesystem and/or Disk
Beyond performing the I/O itself, the database design must consider the medium

against which this I/O is done. In many cases, the choice is often between a filesystem or

a raw block device, which in turn can be a choice of a traditional spinning disk or an SSD

drive. In cloud environments, however, there can be the third option because local drives

are always ephemeral—which imposes strict requirements on the replication.

�Filesystems vs Raw Disks
This decision can be approached from two angles: management costs and performance.

If you’re accessing the storage as a raw block device, all the difficulties with block

allocation and reclamation are on the application side. We touched on this topic slightly

earlier when we talked about memory management. The same set of challenges apply to

RAM as well as disks.

A connected, though very different, challenge is providing data integrity in case

of crashes. Unless the database is purely in-memory, the I/O should be done in a way

that avoids losing data or reading garbage from disk after a restart. Modern filesystems,

however, provide both and are very mature to trust the efficiency of allocations and

integrity of data. Accessing raw block devices unfortunately lacks those features (so they

need to be implemented at the same quality on the application side).

Chapter 3 Database Internals: Hardware and Operating System Interactions

58

From the performance point of view, the difference is not that drastic. On one hand,

writing data to a file is always accompanied by associated metadata updates. This

consumes both disk space and I/O bandwidth. However, some modern filesystems

provide a very good balance of performance and efficiency, almost eliminating the I/O

latency. (One of the most prominent examples is XFS. Another really good and mature

piece of software is Ext4). The great ally in this camp is the fallocate(2) system call

that makes the filesystem preallocate space on disk. When used, filesystems also have a

chance to make full use of the extents mechanisms, thus bringing the QoS of using files

to the same performance level as when using raw block devices.

�Appending Writes

The database may have a heavy reliance on appends to files or require in-place updates

of individual file blocks. Both approaches need special attention from the system

architect because they call for different properties from the underlying system.

On one hand, appending writes requires careful interaction with the filesystem so

that metadata updates (file size, in particular) do not dominate the regular I/O. On the

other hand, appending writes (being sort of cache-oblivious algorithms) handle the disk

overwriting difficulties in a natural manner. Contrary to this, in-place updates cannot

happen at random offsets and sizes because disks may not tolerate this kind of workload,

even if they’re used in a raw block device manner (not via a filesystem).

That being said, let’s dive even deeper into the stack and descend into the

hardware level.

�How Modern SSDs Work
Like other computational resources, disks are limited in the speed they can provide. This

speed is typically measured as a two-dimensional value with Input/Output Operations

per Second (IOPS) and bytes per second (throughput). Of course, these parameters are

not cut in stone even for each particular disk, and the maximum number of requests or

bytes greatly depends on the requests’ distribution, queuing and concurrency, buffering

or caching, disk age, and many other factors. So when performing I/O, a disk must

always balance between two inefficiencies—overwhelming the disk with requests and

underutilizing it.

Chapter 3 Database Internals: Hardware and Operating System Interactions

59

Overwhelming the disk should be avoided because when the disk is full of requests

it cannot distinguish between the criticality of certain requests over others. Of course,

all requests are important, but it makes sense to prioritize latency-sensitive requests.

For example, ScyllaDB serves real-time queries that need to be completed in single-

digit milliseconds or less and, in parallel, it processes terabytes of data for compaction,

streaming, decommission, and so forth. The former have strong latency sensitivity; the

latter are less so. Good I/O maintenance that tries to maximize the I/O bandwidth while

keeping latency as low as possible for latency-sensitive tasks is complicated enough to

become a standalone component called the I/O Scheduler.

When evaluating a disk, you would most likely be looking at its four parameters—

read/write IOPS and read/write throughput (such as in MB/s). Comparing these

numbers to one another is a popular way of claiming one disk is better than the other

and estimating the aforementioned “bandwidth capacity” of the drive by applying Little’s

Law. With that, the I/O Scheduler’s job is to provide a certain level of concurrency inside

the disk to get maximum bandwidth from it, but not to make this concurrency too high

in order to prevent the disk from queueing requests internally for longer than needed.

For instance, Figure 3-6 illustrates how read request latency depends on the

intensity of small reads (challenging disk IOPS capacity) vs the intensity of large writes

(pursuing the disk bandwidth). The latency value is color-coded, and the “interesting

area” is painted in cyan—this is where the latency stays below 1 millisecond. The drive

measured is the NVMe disk that comes with the AWS EC2 i3en.3xlarge instance.

Chapter 3 Database Internals: Hardware and Operating System Interactions

60

4 You can access Diskplorer at https://github.com/scylladb/diskplorer. This project contains
instructions on how to generate a graph of your own.

Figure 3-6.  Bandwidth/latency graphs showing how read request latency depends
on the intensity of small reads (challenging disk IOPS capacity) vs the intensity of
large writes (pursuing the disk bandwidth)

This drive demonstrates almost perfect half-duplex behavior—increasing the read

intensity several times requires roughly the same reduction in write intensity to keep the

disk operating at the same speed.

Tip: How to Measure Your Own Disk Behavior Under Load T he better you
understand how your own disks perform under load, the better you can tune them
to capitalize on their “sweet spot.” One way to do this is with Diskplorer,4 an open-
source disk latency/bandwidth exploring toolset. By using Linux fio under the hood

Chapter 3 Database Internals: Hardware and Operating System Interactions

https://github.com/scylladb/diskplorer

61

it runs a battery of measurements to discover performance characteristics for a
specific hardware configuration, giving you an at-a-glance view of how server
storage I/O will behave under load.

For a walkthrough of how to use this tool, see the Linux Foundation video,
“Understanding Storage I/O Under Load.”5

�Networking
The conventional networking functionality available in Linux is remarkably full-featured,

mature, and performant. Since the database rarely imposes severe per-ping latency

requirements, there are very few surprises that come from it when properly configured

and used. Nonetheless, some considerations still need to be made.

As explained by David Ahern, “Linux will process a fair amount of packets in the

context of whatever is running on the CPU at the moment the IRQ is handled. System

accounting will attribute those CPU cycles to any process running at that moment even

though that process is not doing any work on its behalf. For example, ‘top’ can show a

process that appears to be using 99+% CPU, but in reality, 60 percent of that time is spent

processing packets—meaning the process is really only getting 40 percent of the CPU to

make progress on its workload.”6

However, for truly networking-intensive applications, the Linux stack is constrained:

•	 Kernel space implementation: Separation of the network stack

into kernel space means that costly context switches are needed to

perform network operations, and that data copies must be performed

to transfer data from kernel buffers to user buffers and vice versa.

•	 Time sharing: Linux is a time-sharing system, and so must rely on

slow, expensive interrupts to notify the kernel that there are new

packets to be processed.

5 Watch the video on YouTube (www.youtube.com/watch?v=Am-nXO6KK58).
6 For the source and additional detail, see David Ahern’s, “The CPU Cost of Networking on a Host”
(https://people.kernel.org/dsahern/the-cpu-cost-of-networking-on-a-host).

Chapter 3 Database Internals: Hardware and Operating System Interactions

http://www.youtube.com/watch?v=Am-nXO6KK58
https://people.kernel.org/dsahern/the-cpu-cost-of-networking-on-a-host

62

•	 Threaded model: The Linux kernel is heavily threaded, so all data

structures are protected with locks. While a huge effort has made

Linux very scalable, this is not without limitations and contention

occurs at large core counts. Even without contention, the locking

primitives themselves are relatively slow and impact networking

performance.

As before, the way to overcome this limitation is to move the packet processing to the

userspace. There are plenty of out-of-kernel implementations of the TCP algorithm that

are worth considering.

�DPDK
One of the generic approaches that’s often referred to in the networking area is the poll

mode vs interrupt model. When a packet arrives, the system may have two options for

how to get informed—set up and interrupt from the hardware (or, in the case of the

userspace implementation, from the kernel file descriptor using the poll family of system

calls) or keep polling the network card on its own from time to time until the packet is

noticed.

The famous userspace network toolkit, called DPDK, is designed specifically for

fast packet processing, usually in fewer than 80 CPU cycles per packet.7 It integrates

seamlessly with Linux in order to take advantage of high-performance hardware.

�IRQ Binding
As stated earlier, packet processing may take up to 60 percent of the CPU time, which

is way too much. This percentage leaves too few CPU ticks for the database work itself.

Even though in this case the backpressure mechanism would most likely keep the

external activity off and the system would likely find its balance, the resulting system

throughput would likely be unacceptable.

System architects may consider the non-symmetrical CPU approach to mitigate

this. If you’re letting the Linux kernel process network packets, there are several ways to

localize this processing on separate CPUs.

7 For details, see the Linux Foundation’s page on DPDK (Data Plane Developers Kit) at
www.dpdk.org.

Chapter 3 Database Internals: Hardware and Operating System Interactions

http://www.dpdk.org

63

The simplest way is to bind the IRQ processing from the NIC to specific cores or

hyper-threads. Linux uses two-step processing of incoming packets called IRQ and soft-

IRQ. If the IRQs are properly bound to cores, the soft-IRQ also happens on those cores—

thus completely localizing the processing.

For huge-scale nodes running tens to hundred(s) of cores, the number of network-

only cores may become literally more than one. In this case, it might make sense to

localize processing even further by assigning cores from different NUMA nodes and

teaching the NIC to balance the traffic between those using the receive packet steering

facility of the Linux kernel.

�Summary
This chapter introduced a number of ways that database engineering decisions enable

database users to squeeze more power out of modern infrastructure. For CPUs, the

chapter talked about taking advantage of multicore servers by limiting resource sharing

across cores and using future-promise design to coordinate work across cores. The

chapter also provided a specific example of how low-level CPU architecture has direct

implications on the database.

Moving on to memory, you read about two related but independent subsystems:

memory allocation and cache control. For I/O, the chapter discussed Linux options

such as traditional read/write, mmap, Direct I/O (DIO) read/write, and Asynchronous

I/O—including the various tradeoffs of each. This was followed by a deep dive into

how modern SSDs work and how a database can take advantage of a drive’s unique

characteristics. Finally, you looked at constraints associated with the Linux networking

stack and explored alternatives such as DPDK and IRQ binding. The next chapter shifts

the focus from hardware interactions to algorithmic optimizations: pure software

challenges.

Chapter 3 Database Internals: Hardware and Operating System Interactions

64

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter's Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 3 Database Internals: Hardware and Operating System Interactions

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

65

CHAPTER 4

Database Internals:
Algorithmic Optimizations
In the performance world, the hardware is always the unbreakable limiting factor—one

cannot squeeze more performing units from a system than the underlying chips may

provide. As opposed to that, the software part of the system is often considered the most

flexible thing in programming—in the sense that it can be changed at any time given

enough developers’ brains and hands (and investors’ cash).

However, that’s not always the case. Sometimes selecting an algorithm should be

done as early as the architecting stage in the most careful manner possible because the

chosen approach becomes so extremely fundamental that changing it would effectively

mean rewriting the whole engine from scratch or requiring users to migrate exabytes of

data from one instance to another.

This chapter shares one detailed example of algorithmic optimization—from the

perspective of the engineer who led this optimization. Specifically, this chapter looks

at how the B-trees family can be used to store data in cache implementations and

other accessory and in-memory structures. This look into a representative engineering

challenge should help you better understand what tradeoffs or optimizations various

databases might be making under the hood—ideally, so you can take better advantage of

its very deliberate design decisions.1

Note  The goal of this chapter is not to convince database users that they need a
database with any particular algorithmic optimization—or to educate infrastructure
engineers on designing B-trees or the finer points of algorithmic optimization.
Rather, it’s to help anyone selecting or working with a database understand the

1 This chapter draws from material originally published on the ScyllaDB blog (www.scylladb.com/
blog). It is used here with permission of ScyllaDB.

© Felipe Cardeneti Mendes, Piotr Sarna, Pavel Emelyanov, Cynthia Dunlop 2023
F. C. Mendes et al., Database Performance at Scale, https://doi.org/10.1007/978-1-4842-9711-7_4

http://www.scylladb.com/blog
http://www.scylladb.com/blog
https://doi.org/10.1007/978-1-4842-9711-7_4

66

level of algorithmic optimization that might impact a database’s performance.
Hopefully, it piques your curiosity in learning more about the engineering behind
the database you’re using and/or alternative databases you’re considering.

�Optimizing Collections
Maintaining large sets of objects in memory deserves the same level of attention as

maintaining objects in external memory—say, spinning disks or network-attached

storages. For a task as simple as looking up an object by a plain key, the acceptable

solution is often a plain hash table (even with great attention to hash function selection)

or a binary balanced tree (usually the red-black one due to its implementation

simplicity). However, branchy trees like the B-trees family can significantly boost

performance. They also have a lot of non-obvious pitfalls.

�To B- or Not to B-Tree
An important characteristic of a tree is cardinality. This is the maximum number of

child nodes that another node may have. In the corner case of cardinality of two, the

tree is called a binary tree. For other cases, there’s a wide class of so-called B-trees. The

common belief about binary vs B-trees is that the former ones should be used when the

data is stored in the RAM, while the latter trees should live in the disk. The justification

for this split is that RAM access speed is much higher than disk. Also, disk I/O is

performed in blocks, so it’s much better and faster to fetch several “adjacent” keys in one

request. RAM, unlike disks, allows random access with almost any granularity, so it’s

okay to have a dispersed set of keys pointing to each other.

However, there are many reasons that B-trees are often a good choice for in-memory

collections. The first reason is cache locality. When searching for a key in a binary tree,

the algorithm would visit up to logN elements that are very likely dispersed in memory.

On a B-tree, this search will consist of two phases—an intra-node search and descending

the tree—executed one after another. And while descending the tree doesn’t differ much

from the binary tree in the aforementioned sense, intra-node searching will access

keys that are located next to each other, thus making much better use of CPU caches.

Figure 4-1 exemplifies the process of walking down a binary tree. Compare it along with

Figure 4-2, which demonstrates a search in a B-tree set.

Chapter 4 Database Internals: Algorithmic Optimizations

67

Figure 4-1.  Searching in a binary tree root

Figure 4-2.  Searching in a B-tree set

The second reason that B-trees are often a good choice for in-memory collections

also comes from the dispersed nature of binary trees and from how modern CPUs

are designed. It’s well known that when executing a stream of instructions, CPU cores

split the processing of each instruction into stages (loading instructions, decoding

them, preparing arguments, and doing the execution itself) and the stages are run in

Chapter 4 Database Internals: Algorithmic Optimizations

68

parallel in a unit called a conveyor. When a conditional branching instruction appears

in this stream, the conveyor needs to guess which of two potential branches it will have

to execute next and start loading it into the conveyor pipeline. If this guess fails, the

conveyor is flushed and starts to work from scratch. Such failures are called branch

mispredictions. They are harmful from a performance point of view2 and have direct

implications on the binary search algorithm. When searching for a key in such a tree,

the algorithm jumps left and right depending on the key comparison result without

giving the CPU a chance to learn which direction is “preferred.” In many cases, the CPU

conveyer is flushed.

The two-phased B-tree search can be made better with respect to branch

predictions. The trick is in making the intra-node search linear (i.e., walking the array of

keys forward key-by-key). In this case, there will be only a “should you move forward”

condition that’s much more predictable. There’s even a nice trick of turning binary

search into linear without sacrificing the number of comparisons,3 but this approach

is good for read-mostly collections because insertion into this layout is tricky and has

worse complexity than for sorted arrays. This approach has proven itself in ScyllaDB’s

implementation and is also widely used in the Tarantool in-memory database.4

�Linear Search on Steroids
That linear search can be improved a bit more. Let’s carefully count the number of key

comparisons that it may take to find a single key in a tree. For a binary tree, it’s well

known that it takes log2N comparisons (on average) where N is the number of elements.

We put the logarithm base here for a reason. Next, consider a k-ary tree with k children

per node. Does it take fewer comparisons? (Spoiler: no). To find the element, you have to

do the same search—get a node, find in which branch it sits, then proceed to it. You have

logkN levels in the tree, so you have to do that many descending steps. However on each

step, you need to do the search within k elements, which is, again, log2k if you’re doing a

binary search. Multiplying both, you still need at least log2N comparisons.

2 See Marek Majkowski’s blog, “Branch predictor: How many ‘if’s are too many? Including x86 and
M1 benchmarks!” https://blog.cloudflare.com/branch-predictor/.
3 See the tutorial, “Eytzinger Binary Search” https://algorithmica.org/en/eytzinger.
4 Both are available as open-source software; see https://github.com/scylladb/scylladb and
https://github.com/tarantool/tarantool.

Chapter 4 Database Internals: Algorithmic Optimizations

https://blog.cloudflare.com/branch-predictor/
https://algorithmica.org/en/eytzinger
https://github.com/scylladb/scylladb
https://github.com/tarantool/tarantool

69

The way to reduce this number is to compare more than one key at a time when

doing intra-node searches. In case the keys are small enough, SIMD instructions can

compare up to 64 keys in one go. Although a SIMD compare instruction may be slower

than a classic cmp one and requires additional instructions to process the comparison

mask, linear SIMD-powered search wins on short enough arrays (and B-tree nodes can

be short enough). For example, Figure 4-3 shows the times of looking up an integer in a

sorted array using three techniques—linear search, binary search, and SIMD-optimized

linear search such as the x86 Advanced Vector Extensions (AVX).

Figure 4-3.  The test used a large amount of randomly generated arrays of values
dispersed in memory to eliminate differences in cache usage and a large amount
of random search keys to blur branch predictions. These are the average times of
finding a key in an array normalized by the array length. Smaller results are faster
(better)

�Scanning the Tree
One interesting flavor of B-trees is called a B+-tree. In this tree, there are two kinds of

keys—real keys and separation keys. The real keys live on leaf nodes (i.e., on those that

don’t have children), while separation keys sit on inner nodes and are used to select

which branch to go next when descending the tree. This difference has an obvious

consequence that it takes more memory to keep the same amount of keys in a B+-tree as

compared to B-tree. But it’s not only that.

Chapter 4 Database Internals: Algorithmic Optimizations

70

A great implicit feature of a tree is the ability to iterate over elements in a sorted

manner (called a scan). To scan a classical B-tree, there are both recursive and state-

machine algorithms that process the keys in a very non-uniform manner—the algorithm

walks up-and-down the tree while it moves. Despite B-trees being described as cache-

friendly, scanning them requires visiting every single node and inner nodes are visited in

a cache unfriendly manner. Figure 4-4 illustrates this phenomenon.

Figure 4-4.  Scanning a classical B-tree involves walking up and down the tree;
every node and inner node is visited

As opposed to this, B+-trees’ scan only needs to loop through its leaf nodes, which,

with some additional effort, can be implemented as a linear scan over a linked list of

arrays, as demonstrated in Figure 4-5.

Figure 4-5.  B+ tree scans only need to cover leaf nodes

�When the Tree Size Matters
Talking about memory, B-trees don’t provide all these benefits for free (neither do B+-

trees). As the tree grows, so does the number of nodes in it and it’s useful to consider the

Chapter 4 Database Internals: Algorithmic Optimizations

71

overhead needed to store a single key. For a binary tree, the overhead is three pointers—

to both left and right children as well as to the parent node. For a B-tree, it will differ for

inner and leaf nodes. For both types, the overhead is one parent pointer and k pointers

to keys, even if they are not inserted in the tree. For inner nodes there will additionally be

k+1 pointers to child nodes.

The number of nodes in a B-tree is easy to estimate for a large number of keys. As the

number of nodes grows, the per-key overhead blurs as keys “share” parent and children

pointers. However, there’s a very interesting point at the beginning of a tree’s growth.

When the number of keys becomes k+1 (i.e., the tree overgrows its first leaf node), the

number of nodes jumps three times because, in this case, it’s needed to allocate one

more leaf node and one inner node to link those two.

There is a good and pretty cheap optimization to mitigate this spike, called “linear

root.” The leaf root node grows on demand, doubling each step like a std::vector in

C++, and can overgrow the capacity of k up to some extent. Figure 4-6 shows the per-key

overhead for a 4-ary B-tree with 50 percent initial overgrowth. Note the first split spike of

a classical algorithm at five keys.

Figure 4-6.  The per-key overhead for a 4-ary B-tree with 50 percent initial
overgrowth

When discussing how B-trees work with small amounts of keys, it’s worth

mentioning the corner case of one key. In ScyllaDB, a B-tree is used to store sorted rows

inside a block of rows called a partition. Since it’s possible to have a schema where each

Chapter 4 Database Internals: Algorithmic Optimizations

72

partition always has a single row, this corner case is not that “corner” for us. In the case

of a binary tree, the single-element tree is equivalent to having a direct pointer from the

tree owner to this element (plus the cost of two nil pointers to the left and right children).

In case of a B-tree, the cost of keeping the single key is always in having a root node that

implies extra pointer fetching to access this key. Even the linear root optimization is

helpless here. Fixing this corner case was possible by reusing the pointer to the root node

to point directly to the single key.

�The Secret Life of Separation Keys
This section dives into technical details of B+-tree implementation.

There are two ways of managing separation keys in a B+-tree. The separation key

at any level must be less than or equal to all the keys from its right subtree and greater

than or equal to all the keys from its left subtree. Mind the “or” condition—the exact

value of the separation key may or may not coincide with the value of some key from the

respective branch (it’s clear that this some will be the rightmost key on the left branch

or leftmost on the right). Let’s look at these two cases. If the tree balancing maintains

the separation key to be independent from other key values, then it’s the light mode; if it

must coincide with some of them, then it will be called the strict mode.

In the light separation mode, the insertion and removal operations are a bit faster

because they don’t need to care about separation keys that much. It’s enough if they

separate branches, and that’s it. A somewhat worse consequence of the light separation

is that separation keys are separate values that may appear in the tree by copying existing

keys. If the key is simple, (e.g., an integer), this will likely not cause any trouble. However,

if keys are strings or, as in ScyllaDB’s case, database partition or clustering keys, copying

it might be both resource consuming and out-of-memory risky.

On the other hand, the strict separation mode makes it possible to avoid key copying

by implementing separation keys as references on real ones. This would involve some

complication of insertion and especially removal operations. In particular, upon real key

removal, it will be necessary to find and update the relevant separation keys. Another

difficulty to care about is that moving a real key value in memory, if it’s needed (e.g.,

in ScyllaDB’s case keys are moved in memory as a part of memory defragmentation

hygiene), will also need to update the relevant reference from separation keys. However,

it’s possible to show that each real key will be referenced by at most one separation key.

Chapter 4 Database Internals: Algorithmic Optimizations

73

Speaking about memory consumption, although large B-trees were shown to

consume less memory per-key as they get filled, the real overhead would very likely be

larger, since the nodes of the tree will typically be underfilled because of the way the

balancing algorithm works. For example, Figures 4-7 and 4-8 show how nodes look in a

randomly filled 4-ary B-tree.

Figure 4-7.  Distribution of number of keys in a node for leaf nodes

Figure 4-8.  Distribution of number of keys in a node for inner nodes

Chapter 4 Database Internals: Algorithmic Optimizations

74

It’s possible to define a compaction operation for a B-tree that will pick several

adjacent nodes and squash them together, but this operation has its limitations. First,

a certain amount of underoccupied nodes makes it possible to insert a new element

into a tree without the need to rebalance, thus saving CPU cycles. Second, since each

node cannot contain less than a half of its capacity, squashing two adjacent nodes

is impossible. Even if considering three adjacent nodes, then the amount of really

squashable nodes would be less than 5 percent of the leaves and less than 1 percent of

the inners.

�Summary
As extensive as these optimizations might seem, they are really just the tip of the iceberg

for this one particular example. Many finer points that matter from an engineering

perspective were skipped for brevity (for example, the subtle difference in odd vs

even number of keys on a node). For a database user, the key takeaway here is that

an excruciating level of design and experimentation often goes into the software for

determining how your database stores and retrieves data. You certainly don’t need to

be this familiar with every aspect of how your database was engineered. But knowing

what algorithmic optimizations your database has focused on will help you understand

why it performs in certain ways under different contexts. And you might discover some

impressively engineered capabilities that could help you handle more user requests or

shave a few precious milliseconds off your P99 latencies. The next chapter takes you into

the inner workings of database drivers and shares tips for getting the most out of a driver,

particularly from a performance perspective.

Chapter 4 Database Internals: Algorithmic Optimizations

75

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter's Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 4 Database Internals: Algorithmic Optimizations

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

77

CHAPTER 5

Database Drivers
Databases usually expose a specific communication protocol for their users. This

protocol is the foundation of communication between clients and servers, so it’s often

well-documented and has a formal specification. Some databases, like PostgreSQL,

implement their own binary format on top of the TCP/IP stack.1 Others, like Amazon

DynamoDB,2 build theirs on top of HTTP, which is a little more verbose, but also more

versatile and compatible with web browsers. It’s also not uncommon to see a database

exposing a protocol based on gRPC3 or any other well-established framework.

Regardless of the implementation details, users seldom use the bare protocol

themselves because it’s usually a fairly low-level API. What’s used instead is a driver—a

programming interface written in a particular language, implementing a higher-level

abstraction for communicating with the database. Drivers hide all the nitty-gritty details

behind a convenient interface, which saves users from having to manually handle

connection management, parsing, validation, handshakes, authentication, timeouts,

retries, and so on.

In a distributed environment (which a scalable database cluster usually is), clients,

and therefore drivers, are an extremely important part of the ecosystem. The clients

are usually the most numerous group of actors in the system, and they are also very

heterogeneous in nature, as visualized in Figure 5-1. Some clients are connected via

local network interfaces, other ones connect via a questionable Wi-Fi hotspot on another

continent and thus have vastly different latency characteristics and error rates. Some

might run on microcontrollers with 1MiB of random access memory, while others

utilize 128-core bare metal machines from a cloud provider. Due to this diversity, it’s

1 See the PostgreSQL documentation (https://www.postgresql.org/docs/7.3/protocol-
protocol.html).
2 See the DynamoDB Developer Guide on the DynamoDB API (https://docs.aws.amazon.com/
amazondynamodb/latest/developerguide/HowItWorks.API.html).
3 gRPC is “a high performance, open-source universal RPC framework;” see https://grpc.io for
details.

© Felipe Cardeneti Mendes, Piotr Sarna, Pavel Emelyanov, Cynthia Dunlop 2023
F. C. Mendes et al., Database Performance at Scale, https://doi.org/10.1007/978-1-4842-9711-7_5

https://www.postgresql.org/docs/7.3/protocol-protocol.html
https://www.postgresql.org/docs/7.3/protocol-protocol.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.API.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.API.html
https://grpc.io
https://doi.org/10.1007/978-1-4842-9711-7_5

78

very important to take drivers into consideration when thinking about performance,

scalability, and resilience to failures. Ultimately it’s the drivers that generate traffic and

its concurrency, so cooperation between them and database nodes is crucial for the

whole system to be healthy and efficient.

Note  As a reminder, concurrency, in the context of this book, is the measure of
how many operations are performed at the same point in time. It's conceptually
similar to parallelism. With concurrency, the operations occur physically at the
same time (e.g. on multiple CPU cores or multiple machines). Parallelism does
not specify that; the operations might just as well be executed in small steps on
a single machine. Nowadays, distributed systems must rely on providing high
concurrency in order to remain competitive and catch up with ever-developing
technology.

This chapter takes a look at how drivers impact performance—through the eyes of

someone who has engineered drivers for performance. It provides insight into various

ways that drivers can support efficient client-server interactions and shares tips for

getting the most out of a driver, particularly from the performance perspective. Finally,

the chapter wraps up with several considerations to keep in mind as you’re selecting

a driver.

�Relationship Between Clients and Servers
Scalability is a measure of how well your system reacts to increased load. This load is

usually generated by clients using their drivers, so keeping the relationship between

your clients and servers sound is an important matter. The more you know about your

workloads, your clients’ behavior, and their usage patterns, the better you’re prepared to

handle both sudden spikes in traffic and sustained, long-term growth in usage.

Each client is different and should be treated as such. The differences come both

from clients’ characteristics, like their number and volume, and from their requirements.

Some clients have strict latency guarantees, even at the cost of higher error rates. Others

do not particularly care about the latency of any single database query, but just want a

steady pace of progress in their long-standing queries. Some databases target specific

types of clients (e.g., analytical databases which expect clients processing large aggregate

Chapter 5 Database Drivers

79

queries operating on huge volumes of historical data). Other ones strive to be universal,

handling all kinds of clients and balancing the load so that everyone is happy (or, more

precisely, “happy enough”).

�Workload Types
There are multiple ways of classifying database clients. One particularly interesting

way is to delineate between clients processing interactive and batch (e.g., analytical)

workloads, also known as OLTP (online transaction processing) vs OLAP (online

analytical processing)—see Figure 5-2.

Figure 5-1.  Visualization of clients and servers in a distributed system

Chapter 5 Database Drivers

80

Figure 5-2.  Difference between interactive and batch (analytical) workloads

�Interactive Workloads

A client processing an interactive workload typically wants certain latency guarantees.

Receiving a response fast is more important than ensuring that the query succeeded.

In other words, it’s better to return an error in a timely manner than make the client

indefinitely wait for the correct response. Such workloads are often characterized by

unbounded concurrency, which means that the number of in-progress operations is

hard to predict.

A prime example of an interactive workload is a server handling requests from web

browsers. Imagine an online game, where players interact with the system straight from

their favorite browsers. High latency for such a player means a poor user experience

because people tend to despise waiting for online content for more than a few hundred

milliseconds; with multi-second delays, most will just ditch the game as unusable and

try something else. It’s therefore particularly important to be as interactive as possible

and return the results quickly—even if the result happens to be a temporary error. In

such a scenario, the concurrency of clients varies and is out of control for the database.

Sometimes there might be a large influx of players, and the database might need to

refuse some of them to avoid overload.

Chapter 5 Database Drivers

81

�Batch (Analytical) Workloads

A batch (analytical) workload is the conceptual opposite of an interactive one. With

such workloads, it doesn’t matter whether any single request is processed in a few

milliseconds or hours. The important thing is that the processing makes steady progress

with a satisfactory error rate, which is ideally zero. Batch workloads tend to have fixed

concurrency, which makes it easier for the database to keep the load under control.

A good example of a batch workload is an Apache Spark4 job performing analytics

on a big dataset (think terabytes). There are only a few connections established to

the database, and they continuously send requests in order to fetch data for long

computations. Because the concurrency is predictable, the database can easily respond

to an increased load by applying backpressure (e.g., by delaying the responses a little

bit). The analytical processing will simply slow down, adjusting its speed according to

the speed at which the database can consume queries.

�Mixed Workloads

Certain workloads cannot be easily qualified as fully interactive or fully batch. The

clients are free to intermix their requirements, concurrency, and load however they

please—so the databases should also be ready for surprises. For example, a batch

workload might suddenly experience a giant temporary spike in concurrency. Databases

should, on the one hand, maintain a level of trust in the workload’s typical patterns, but

on the other hand anticipate that workloads can simply change over time—due to bugs,

hardware changes, or simply because the use case has diverged from its original goal.

�Throughput vs Goodput
A healthy distributed database cluster is characterized by stable goodput, not

throughput. Goodput is an interesting portmanteau of good + throughput, and it’s a

measure of useful data being transferred between clients and servers over the network,

as opposed to just any data. Goodput disregards errors and other churn-like redundant

retries, and is used to judge how effective the communication actually is.

This distinction is important.

4 Apache Spark is “multi-language engine for executing data engineering, data science, and
machine learning on single-node machines or clusters.” For details, see https://spark.
apache.org/.

Chapter 5 Database Drivers

https://spark.apache.org/
https://spark.apache.org/

82

Imagine an extreme case of an overloaded node that keeps returning errors for each

incoming request. Even though stable and sustainable throughput can be observed,

this database brings no value to the end-user. Thus, it’s essential to track how much

useful data can be delivered in an acceptable time. For example, this can be achieved

by tracking both the total throughput and throughput spent on sending back error

messages and then subtracting one from another to see how much valid data was

transferred (see Figure 5-3).

Figure 5-3.  Note how a fraction of the throughput times out, effectively requiring
more work from clients to achieve goodput

Maximizing goodput is a delicate operation and it heavily depends on the

infrastructure, workload type, clients’ behavior, and many other factors. In some cases,

the database shedding load might be beneficial for the entire system. Shedding is a

rather radical measure of dealing with overload: Requests qualified as “risky” are simply

ignored by the server, or immediately terminated with an error. This type of overload

protection is especially useful against issues induced by interactive workloads with

unbounded concurrency (there’s not much a database can do to protect itself except

drop some of the incoming requests early).

The database server isn’t an oracle; it can’t accurately predict whether a request is

going to fail due to overload, so it must guess. Fortunately, there are quite a few ways of

making that guess educated:

•	 Shedding load if X requests are already being processed, where X is

the estimated maximum a database node can handle.

•	 Refusing a request if its estimated memory usage is larger than the

database could handle at the moment.

Chapter 5 Database Drivers

83

•	 Probabilistically refusing a request if Y requests are already being

processed, where Y is a percentage of the maximum a database node

can handle, with the probability raising to 100 percent once a certain

threshold is reached.

•	 Refusing a request if its estimated execution time indicates that it’s

not going to finish in time, and instead it is likely to time out anyway.

While refusing clients’ requests is detrimental to user experience, sometimes

it’s simply the lesser of two evils. If dropping a number of requests allows even more

requests to successfully finish in time, it increases the cluster’s goodput.

Clients can help the database maximize goodput and keep the latency low by

declaring for how long the request is considered valid. For instance, in high frequency

trading, a request that takes more than a couple of milliseconds is just as good as a

request that failed. By letting the database know that’s the case, you can allow it to retire

some requests early, leaving valuable resources for other requests which still have a

chance to be successful. Proper timeout management is a broad topic and it deserves a

separate section.

�Timeouts
In a distributed system, there are two fundamental types of timeouts that influence one

another: client-side timeouts and server-side timeouts. While both are conceptually

similar, they have different characteristics. It’s vital to properly configure both of them to

prevent problems like data races and consistency issues.

�Client-Side Timeouts
This type of timeout is generally configured in the database driver. It signifies how long it

takes for a driver to decide that a response from a server is not likely to arrive. In a perfect

world built on top of a perfect network, all parties always respond to their requests.

However, in practice, there are numerous causes for a response to either be late or lost:

•	 The recipient died

•	 The recipient is busy with other tasks

•	 The network failed, maybe due to hardware malfunction

Chapter 5 Database Drivers

84

•	 The network has a significant delay because packets get stuck in an

intermediate router

•	 A software bug caused the packet to be lost

•	 And so on

Since in a distributed environment it’s usually impossible to guess what

happened, the client must sometimes decide that a request is lost. The alternative

is to wait indefinitely. That might work for a select set of use cases, but it’s often

simply unacceptable. If a single failed request holds a resource for an unspecified

time, the system is eventually doomed to fail. Hence, client-side timeouts are used

as a mechanism to make sure that the system can operate even in the event of

communication issues.

A unique characteristic of a client-side timeout is that the decision to give up on a

request is made solely by the client, in the absence of any feedback from the server. It’s

entirely possible that the request in question is still being processed and utilizes the

server’s resources. And, worst of all, the unaware server can happily return the response

to the client after it’s done processing, even though nobody’s interested in this stale

data anymore! That presents another aspect of error handling: Drivers must be ready to

handle stray, expired responses correctly.

�Server-Side Timeouts
A server-side timeout determines when a database node should start considering a

particular request as expired. Once this point in time has passed, there is no reason

to continue processing the query. (Doing so would waste resources which could have

otherwise been used for serving other queries that still have a chance to succeed.)

When the specified time has elapsed, databases often return an error indicating that the

request took too long.

Using reasonable values for server-side timeouts helps the database manage its

priorities in a more precise way, allocating CPU, memory and other scarce resources on

queries likely to succeed in a timely manner. Drivers that receive an error indicating that

a server-side timeout has occurred should also act accordingly—perhaps by reducing

the pressure on a particular node or retrying on another node that hasn’t experienced

timeouts lately.

Chapter 5 Database Drivers

85

�A Cautionary Tale

The CQL protocol, which specifies the communication layer in Apache Cassandra and

ScyllaDB, comes with built-in support for concurrency. Namely, each request is assigned

a stream ID, unique for each connection. This stream ID is encoded as a 16-bit integer

with the first bit being reserved by the protocol, which leaves the drivers 32768 unique

values for handling in-flight requests per single connection. This stream ID is later

used to match an incoming response with its original request. That’s not a particularly

large number, given that modern systems are known to handle millions of requests per

second. Thus, drivers need to eventually reuse previously assigned stream IDs.

But the CQL driver for Python had a bug.5 In the event of a client-side timeout, it

assumed that the stream ID of an expired request was immediately free to reuse. While

the assumption holds true if the server dies, it is incorrect if processing simply takes

longer than expected. It was therefore possible that once a response with a given stream

ID arrived, another request had already reused the stream ID, and the driver would

mistakenly match the response with the new request. If the user was lucky, they would

simply receive garbage data that did not pass validation. Unfortunately, data from the

mismatched response might appear correct, even though it originates from a totally

different request. This is the kind of bug that looks innocent at first glance, but may cause

people to log in to other people’s bank accounts and wreak havoc on their lives.

A rule of thumb for client-side timeouts is to make sure that a server-side timeout

also exists and is strictly shorter than the client-side one. It should take into account

clock synchronization between clients and servers (or lack thereof), as well as estimated

network latency. Such a procedure minimizes the chances for a late response to arrive at

all, and thus removes the root cause of many issues and vulnerabilities.

5 Bug report and applied fixes can be found here:
https://datastax-oss.atlassian.net/browse/PYTHON-1286
https://github.com/scylladb/python-driver/pull/106
https://github.com/datastax/python-driver/pull/1114

Chapter 5 Database Drivers

https://datastax-oss.atlassian.net/browse/PYTHON-1286
https://github.com/scylladb/python-driver/pull/106
https://github.com/datastax/python-driver/pull/1114

86

�Contextual Awareness
At this point it should be clear that both servers and clients can make better, more

educated, and mutually beneficial decisions if they know more about each other.

Exchanging timeout information is important, but drivers and servers can do even more

to keep each other up to date.

�Topology and Metadata
Database servers are often combined into intricate topologies where certain nodes

are grouped in a single geographical location, others are used only as a fast cache

layer, and yet others store seldom accessed cold data in a cheap place, for emergency

purposes only.

Not every database exposes its topology to the end-user. For example, DynamoDB

takes that burden off of its clients and exposes only a single endpoint, taking care of

load balancing, overload prevention, and retry mechanisms on its own. On the other

hand, a fair share of popular databases (including ScyllaDB, Cassandra, and ArangoDB)

rely on the drivers to connect to each node, decide how many connections to keep,

when to speculatively retry, and when to close connections if they are suspected of

malfunctioning. In the ScyllaDB case, sharing up-to-date topology information with the

drivers helps them make the right decisions. This data can be shared in multiple ways:

•	 Clients periodically fetching topology information from the servers

•	 Clients subscribing to events sent by the servers

•	 Clients taking an active part in one of the information exchange

protocols (e.g., gossip6)

•	 Any combination of these

Depending on the database model, another valuable piece of information often

cached client-side is metadata—a prime example of which is database schema. SQL

databases, as well as many NoSQL ones, keep the data at least partially structured. A

schema defines the shape of a database row (or column), the kinds of data types stored

in different columns, and various other characteristics (e.g., how long a database row is

6 See the documentation on Gossip in ScyllaDB (https://docs.scylladb.com/stable/kb/
gossip.html).

Chapter 5 Database Drivers

https://docs.scylladb.com/stable/kb/gossip.html
https://docs.scylladb.com/stable/kb/gossip.html

87

supposed to live before it’s garbage-collected). Based on up-to-date schemas, drivers

can perform additional validation, making sure that data sent to the server has a proper

type and adheres to any constraints required by the database. On the other hand, when

a driver-side cache for schemas gets out of sync, clients can experience their queries

failing for no apparent reason.

Synchronizing full schema information can be costly in terms of performance, and

finding a good compromise in how often to update highly depends on the use case. A

rule of thumb is to update only as often as needed to ensure that the traffic induced by

metadata exchange never negatively impacts the user experience. It’s also worth noting

that in a distributed database, clients are not always up to date with the latest schema

information, and the system as a whole should be prepared to handle it and provide

tactics for dealing with such inconsistencies.

�Current Load
Overload protection and request latency optimization are tedious tasks, but they can be

substantially facilitated by exchanging as much context as possible between interested

parties.

The following methods can be applied to distribute the load evenly across the

distributed system and prevent unwanted spikes:

	 1.	 Gathering latency statistics per each database connection in the

drivers:

	 a.	 What’s the average latency for this connection?

	 b.	 What’s the 99th percentile latency?

	 c.	 What’s the maximum latency experienced in a recent time frame?

	 2.	 Exchanging information about server-side caches:

	 a.	 Is the cache full?

	 b.	 Is the cache warm (i.e., filled with useful data)?

	 c.	 Are certain items experiencing elevated traffic and/or latency?

Chapter 5 Database Drivers

88

	 3.	 Interpreting server events:

	 a.	 Has the server started replying with “overload errors”?

	 b.	 How often do requests for this server time out?

	 c.	 What is the general rate of errors for this server?

	 d.	 What is the measured goodput from this server?

Based on these indicators, drivers should try to amend the amount of data they

send, the concurrency, and the rate of retries as well as speculative execution, which

can keep the whole distributed system in a healthy, balanced state. It’s ultimately in the

driver’s interest to ease the pressure on nodes that start showing symptoms of getting

overloaded, be it by reducing the concurrency of operations, limiting the frequency

and number of retries, temporarily giving up on speculatively sent requests, and so on.

Otherwise, if the database servers get overloaded, all clients may experience symptoms

like failed requests, timeouts, increased latency, and so on.

�Request Caching
Many database management systems, ranging from SQLite, MySQL, and Postgres to

NoSQL databases, implement an optimization technique called prepared statements.

While the language used to communicate with the database is usually human-readable

(or at least developer-readable), it is not the most efficient way of transferring data from

one computer to another.

Let’s take a look at the (simplified) lifecycle of an unprepared statement once it’s sent

from a ScyllaDB driver to the database and back. This is illustrated in Figure 5-4.

Figure 5-4.  Lifecycle of an unprepared statement

Chapter 5 Database Drivers

89

	 1.	 A query string is created:

INSERT INTO my_table(id, descr) VALUES (42,

'forty two');

	 2.	 The string is packed into a CQL frame by the driver. Each CQL

frame consists of a header, which describes the purpose of a

particular frame. Following the header, a specific payload may be

sent as well. The full protocol specification is available at https://

github.com/apache/cassandra/blob/trunk/doc/native_

protocol_v4.spec.

	 3.	 The CQL frame is sent over the network.

	 4.	 The frame is received by the database.

	 5.	 Once the frame is received, the database interprets the frame

header and then starts parsing the payload. If there’s an

unprepared statement, the payload is represented simply as a

string, as seen in Step 1.

	 6.	 The database parses the string in order to validate its contents and

interpret what kind of an operation is requested: is it an insertion,

an update, a deletion, a selection?

	 7.	 Once the statement is parsed, the database can continue

processing it (e.g., by persisting data on disk, fetching whatever’s

necessary, etc.).

Now, imagine that a user wants to perform a hundred million operations on the

database in quick succession because the data is migrated from another system. Even

if parsing the query strings is a relatively fast operation and takes 50 microseconds, the

total time spent on parsing strings will take over an hour of CPU time. Sounds like an

obvious target for optimization.

The key observation is that operations performed on a database are usually similar

to one another and follow a certain pattern. For instance, migrating a table from one

system to another may mean sending lots of requests with the following schema:

INSERT INTO my_table(id, descr) VALUES (?, ?)

where ? denotes the only part of the string that varies between requests.

Chapter 5 Database Drivers

https://github.com/apache/cassandra/blob/trunk/doc/native_protocol_v4.spec
https://github.com/apache/cassandra/blob/trunk/doc/native_protocol_v4.spec
https://github.com/apache/cassandra/blob/trunk/doc/native_protocol_v4.spec

90

This query string with question marks instead of real values is actually also valid

CQL! While it can’t be executed as is (because some of the values are not known), it can

be prepared.

Preparing such a statement means that the database will meticulously analyze the

string, parse it, and create an internal representation of the statement in its own memory.

Once done, a unique identifier is generated and sent back to the driver. The client can now

execute the statement by providing only its identifier (which is a 128-bit UUID7 in ScyllaDB)

and all the values missing from the prepared query string. The process of replacing

question marks with actual values is called binding and it’s the only thing that the database

needs to do instead of launching a CQL parser, which offers a significant speedup.

Preparing statements without care can also be detrimental to overall cluster

performance though. When a statement gets prepared, the database needs to keep a

certain amount of information about it in memory, which is hardly a limitless resource.

Caches for prepared statements are usually relatively small, under the assumption that

the driver’s users (app developers) are kind and only prepare queries that are used

frequently. If, on the other hand, a user were to prepare lots of unique statements that

aren’t going to be reused any time soon, the database cache might invalidate existing

entries for frequently used queries. The exact heuristics of how entries are invalidated

depends on the algorithm used in the cache, but a naive LRU (least recently used)

eviction policy is susceptible to this problem. Therefore, other cache algorithms resilient

to such edge cases should be considered when designing a cache without full information

about expected usage patterns. Some notable examples include the following:

•	 LFU (least frequently used)

Aside from keeping track of which item was most recently accessed,

LFU also counts how many times it was needed in a given time

period, and tries to keep frequently used items in the cache.

•	 LRU with two pools

One probationary pool for new entries, and another, usually

larger, pool for frequently used items. This algorithm avoids cache

thrashing when lots of one-time entries are inserted in the cache,

because they only evict other items from the probationary pool,

while more frequently accessed entries are safe in the main pool.

7 See the memo, “A Universally Unique IDentifier (UUID) URN Namespace,” at https://www.
ietf.org/rfc/rfc4122.txt.

Chapter 5 Database Drivers

https://www.ietf.org/rfc/rfc4122.txt
https://www.ietf.org/rfc/rfc4122.txt

91

Finally, regardless of the algorithm used for cache eviction implemented server-side,

drivers should take care not to prepare queries too aggressively, especially if it happens

automatically, which is often the case in ORMs (object-relational mappings). Making

an interface convenient for the user may sound tempting, and developer experience is

indeed an important factor when designing a driver, but being too eager with reserving

precious database resources may be disadvantageous in the long term.

�Query Locality
In distributed systems, any kind of locality is welcome because it reduces the chances of

failure, keeps the latency low, and generally prevents many undesirable events. While

database clients, and thus also drivers, do not usually share the same machines with

the database cluster, it is possible to keep the distance between them short. “Distance”

might mean either a physical measure or the number of intermediary devices in the

network topology. Either way, for latency’s sake, it’s good to minimize it between parties

that need to communicate with each other frequently.

Many database management systems allow their clients to announce their

“location,” for example, by declaring which datacenter is their local, default one. Drivers

should take that information into account when communicating with the database

nodes. As long as all consistency requirements are fulfilled, it’s usually better to send

data directly to a nearby node, under the assumption that it will spend less time in

transit. Short routes also usually imply fewer middlemen, and that in turn translates to

fewer potential points of failure.

Drivers can make much more educated choices though. Quite a few NoSQL

databases can be described as “distributed hash tables” because they partition their

data and spread it across multiple nodes which own a particular set of hashes. If the

hashing algorithm is well known and deterministic, drivers can leverage that fact to try

to optimize the queries even further—sending data directly to the appropriate node, or

even the appropriate CPU core.

Chapter 5 Database Drivers

92

ScyllaDB, Cassandra, and other NoSQL databases apply a concept of token8

awareness (see Figures 5-5, 5-6, and 5-7):

	 1.	 A request arrives.

	 2.	 The receiving node computes the hash of the given input.

	 3.	 Based on the value of this hash, it computes which database

nodes are responsible for this particular value.

	 4.	 Finally, it forwards the request directly to the owning nodes.

However, in certain cases, the driver can compute the token locally on its own, and

then use the cluster topology information to route the request straight to the owning

node. This local node-level routing saves at least one network round-trip as well as the

CPU time of some of the nodes.

8 A token is how a hash value is named in Cassandra nomenclature.

Figure 5-5.  Naive clients route queries to any node (coordinator)

Chapter 5 Database Drivers

93

Figure 5-6.  Token-aware clients route queries to the right node(s)

In the Cassandra/ScyllaDB case, this is possible because each table has a well-

defined “partitioner,” which simply means a hash function implementation. The default

choice—used in Cassandra—is murmur3,9 which returns a 64-bit hash value, has

satisfying distribution, and is relatively cheap to compute. ScyllaDB takes it one step

further and allows the drivers to calculate which CPU core of which database node owns

a particular datum. When a driver is cooperative and proactively establishes a separate

connection per each core of each machine, it can send the data not only to the right

node, but also straight to the single CPU core responsible for handling it. This not only

saves network bandwidth, but is also very friendly to CPU caches.

9 See the DataStax documentation on Murmur3Partitioner (https://docs.datastax.com/en/
cassandra-oss/3.x/cassandra/architecture/archPartitionerM3P.html).

Chapter 5 Database Drivers

https://docs.datastax.com/en/cassandra-oss/3.x/cassandra/architecture/archPartitionerM3P.html
https://docs.datastax.com/en/cassandra-oss/3.x/cassandra/architecture/archPartitionerM3P.html

94

Figure 5-7.  Shard-aware clients route queries to the correct node(s) + core

�Retries
In a perfect system, no request ever fails and logic implemented in the drivers can

be kept clean and minimal. In the real world, failures happen disturbingly often, so

the drivers should also be ready to deal with them. One such mechanism for failure

tolerance is a driver’s retry policy. A retry policy’s job is to decide whether a request

should be sent again because it failed (or at least the driver strongly suspects that it did).

�Error Categories
Before diving into techniques for retrying requests in a smart way, there’s a more

fundamental question to consider: does a retry even make sense? The answer is not that

obvious and it depends on many internal and external factors. When a request fails, the

error can fall into the following categories, presented with a few examples:

	 1.	 Timeouts

	 a.	 Read timeouts

	 b.	 Write timeouts

Chapter 5 Database Drivers

95

	 2.	 Temporary errors

	 a.	 Database node overload

	 b.	 Dead target node

	 c.	 Temporary schema mismatch

	 3.	 Permanent errors

	 a.	 Incorrect query syntax

	 b.	 Authentication error

	 c.	 Insufficient permissions

Depending on the category, the retry decision may be vastly different. For instance,

it makes absolutely no sense to retry a request that has incorrect syntax. It will not

magically start being correct, and such a retry attempt would only waste bandwidth and

database resources.

�Idempotence
Error categories aside, retry policy must also consider one important trait of the request

itself: its idempotence. An idempotent request can be safely applied multiple times, and

the result will be indistinguishable from applying it just once.

Why does this need to be taken into account at all? For certain classes of errors, the

driver cannot be sure whether the request actually succeeded. A prime example of such

error is a timeout. The fact that the driver did not manage to get a response in time does

not mean that the server did not successfully process the request. It’s a similar situation

if the network connection goes down: The driver won’t know if the database server

actually managed to apply the request.

When in doubt, the driver should make an educated guess in order to ensure

consistency. Imagine a request that withdraws $100 from somebody’s bank account. You

certainly don’t want to retry the same request again if you’re not absolutely sure that

it failed; otherwise, the bank customer might become a bit resentful. This is a perfect

example of a non-idempotent request: Applying it multiple times changes the ultimate

outcome.

Chapter 5 Database Drivers

96

Fortunately, there’s a large subset of idempotent queries that can be safely retried,

even when it’s unclear whether they already succeeded:

	 1.	 Read-only requests

Since they do not modify any data, they won’t have any side

effects, no matter how often they’re retried.

	 2.	 Certain conditional requests that have compare-and-set
characteristics (e.g., “bump the value by 1 if the previous

value is 42”)

Depending on the use case, such a condition may be enough to

guarantee idempotence. Once this request is applied, applying

it again would have no effect since the previous value would

then be 43.

	 3.	 Requests with unique timestamps

When each request has a unique timestamp (represented in wall

clock time or based on a logical clock10), applying it multiple times

can be idempotent. A retry attempt will contain a timestamp

identical to the original request, so it will only overwrite data

identified by this particular timestamp. If newer data arrives

in-between with a newer timestamp, it will not be overwritten by a

retry attempt with an older timestamp.

In general, it’s a good idea for drivers to give users an opportunity to declare

their requests’ idempotence explicitly. Some queries can be trivially deduced to be

idempotent by the driver (e.g., when it’s a read-only SELECT statement in the database

world), but others may be less obvious. For example, the conditional example from the

previous Step 2 is idempotent if the value is never decremented, but not in the general

case. Imagine the following counter-example:

	 1.	 The current value is 42.

	 2.	 A request “bump the value by 1 if the previous value is 42” is sent.

10 See the Logical Clocks lecture by Arvind Krishnamurthy (https://homes.cs.washington.
edu/~arvind/cs425/lectureNotes/clocks-2.pdf).

Chapter 5 Database Drivers

https://homes.cs.washington.edu/~arvind/cs425/lectureNotes/clocks-2.pdf
https://homes.cs.washington.edu/~arvind/cs425/lectureNotes/clocks-2.pdf

97

	 3.	 A request “bump the value by 1 if the previous value is 42” is

retried.

	 4.	 Another request, “decrement the value by 1,” is sent.

	 5.	 The request from Step 2 arrives and is applied—changing the

value to 43.

	 6.	 The request from Step 4 arrives and is applied—changing the

value to 42.

	 7.	 The retry from Step 3 is applied—changing the value back to

43 and interfering with the effect of the query from Step 4. This

wasn’t idempotent after all!

Since it’s often impossible to guess if a request is idempotent just by analyzing its

contents, it’s best for drivers to have a set_idempotent() function exposed in their

API. It allows the users to explicitly mark some queries as idempotent, and then the logic

implemented in the driver can assume that it’s safe to retry such a request when the

need arises.

�Retry Policies
Finally, there’s enough context to discuss actual retry policies that a database driver

could implement. The sole job of a retry policy is to analyze a failed query and return a

decision. This decision depends on the database system and its intrinsics, but it’s often

one of the following (see Figure 5-8):

•	 Do not retry

•	 Retry on the same database node

•	 Retry, but on a different node

•	 Retry, but not immediately—apply some delay

Chapter 5 Database Drivers

98

Figure 5-8.  Decision graph for retrying a query

Deciding not to retry is often a decent choice—it’s the only correct one when the

driver isn’t certain whether an idempotent query really failed or just timed out. It’s also

the obvious choice for permanent errors; there’s no point in retrying a request that was

previously refused due to incorrect syntax. And whenever the system is overloaded, the

“do not retry” approach might help the entire cluster. Although the immediate effect

(preventing a user’s request from being driven to completion) is not desirable, it provides

a level of overload protection that might pay off in the future. It prevents the overload

condition from continuing to escalate. Once a node gets too much traffic, it refuses more

requests, which increases the rate of retries, and ends up in a vicious circle.

Retrying on the same database node is generally a good option for timeouts.

Assuming that the request is idempotent, the same node can probably resolve potential

conflicts faster. Retrying on a different node is a good idea if the previous node showed

symptoms of overload, or had an input/output error that indicated a temporary issue.

Finally, in certain cases, it’s a good idea to delay the retry instead of firing it off

immediately (see Figure 5-9).

Chapter 5 Database Drivers

99

Figure 5-9.  Retry attempts eventually resulting in a successful query

When the whole cluster shows the symptoms of overload—be it high reported CPU

usage or perceived increased latency—retrying immediately after a request failed may

only exacerbate the problem. What a driver can do instead is apply a gentle backoff

algorithm, giving the database cluster time to recover. Remember that even a failed retry

costs resources: networking, CPU, and memory. Therefore, it’s better to balance the costs

and chances for success in a reasonable manner.

The three most common backoff strategies are constant, linear, and exponential

backoff, as visualized in Figure 5-10.

Figure 5-10.  Constant, linear, and exponential backoffs

Chapter 5 Database Drivers

100

The first type (constant) simply waits a certain predefined amount of time before

retrying. Linear backoff increases the time between attempts in a linear fashion; it

could wait one second before the first attempt, two seconds before the second one,

and so forth. Finally, exponential backoff, arguably the most commonly used method,

increases the delay by multiplying it by a constant each time. Usually it just doubles

it—because both processors and developers love multiplying and dividing by two (the

latter ones mostly just to show off their intricate knowledge of the bitwise shift operator).

Exponential backoff has especially nice characteristics for overload prevention. The retry

rate drops exponentially, and so does the pressure that the driver places on the database

cluster.

�Paging
Databases usually store amounts of data that are orders of magnitude larger than a single

client machine could handle. If you fetch all available records, the result is unlikely to fit

into your local disks, not to mention your available RAM. Nonetheless, there are many

valid cases for processing large amounts of data, such as analyzing logs or searching for

specific documents. It is quite acceptable to ask the database to serve up all the data it

has—but you probably want it to deliver that data in smaller bits.

That technique is customarily called paging, and it is ubiquitous. It’s exactly what

you’ve experienced when browsing through page 17 of Google search results in futile

search for an answer to a question that was asked only on an inactive forum seven years

ago—or getting all the way to page 24 of eBay listings, hunting for that single perfect offer.

Databases and their drivers also implement paging as a mechanism beneficial for both

parties. Drivers get their data in smaller chunks, which can be done with lower latency.

And databases receive smaller queries, which helps with cache management, workload

prioritization, memory usage, and so on.

Different database models may have a different view of exactly what paging involves

and how you interface with it. Some systems may offer fine-grained control, which

allows you to ask for “page 16” of your data. Others are “forward-only”: They reduce the

user-facing interface to “here’s the current page—you can ask for the next page if you

want.” Your ability to control the page size also varies. Sometimes it’s possible to specify

the size in terms of a number of database records or bytes. In other cases, the page size

is fixed.

Chapter 5 Database Drivers

101

On top of a minimal interface that allows paging to be requested, drivers can

offer many interesting features and optimizations related to paging. One of them is

readahead—which usually means that the driver transparently and speculatively fetches

new pages before you actually ask for them to be read. A readahead is a classic example

of a double-edged sword. On the one hand, it makes certain read operations faster,

especially if the workload consists of large consecutive reads. On the other, it may cause

prohibitive overhead, especially if the workload is based on small random reads.

Although most drivers support paging, it’s important to check whether the feature

is opt-in or opt-out and consciously decide what’s best for a specific workload. In

particular, pay attention to the following aspects:

	 1.	 What’s the default behavior (would a read query be paged or

unpaged)?

	 2.	 What’s the default page size and is it configurable? If so, in what

units can a size be specified? Bytes? Number of records?

	 3.	 Is readahead on by default? Can it be turned on/off?

	 4.	 Can readahead be configured further? For example, can you

specify how many pages to fetch or when to decide to start

fetching (e.g., “When at least three consecutive read requests

already occurred”)?

Setting up paging properly is important because a single unpaged response can

be large enough to be problematic for both the database servers forced to produce it,

and for the client trying to receive it. On the other hand, too granular paging can lead

to unnecessary overhead (just imagine trying to read a billion records row-by-row, due

to the default page size of “1 row”). Finally, readahead can be a fantastic optimization

technique—but it can also be entirely redundant, fetching unwanted pages that cost

memory, CPU time, and throughput, as well as confuse the metrics and logs. With

paging configuration, it’s best to be as explicit as possible.

�Concurrency
In many cases, the only way to utilize a database to the fullest—and achieve optimal

performance—is to also achieve high concurrency. That often requires the drivers to

perform many I/O operations at the same time, and that’s in turn customarily achieved

Chapter 5 Database Drivers

102

by issuing asynchronous tasks. That being said, let’s take quite a few steps back to

explain what that really means and what’s involved in achieving that from both a

hardware and software perspective.

Note H igh concurrency is not a silver bullet. When it’s too high, it’s easy
to overload the system and ruin the quality of service for other users—see
Figure 5-11 for its effect on latency. Chapter 1 includes a cautionary tale on what
can happen when concurrency gets out of bounds and Chapter 2 also touches on
the dangers of unbounded concurrency.

�Modern Hardware
Back in the old days, making decisions around I/O concurrency was easy because

magnetic storage drives (HDD) had an effective concurrency of 1. There was (usually)

only a single actuator arm used to navigate the platters, so only a single sector of data

could have been read at once. Then, an SSD revolution happened. Suddenly, disks

could read from multiple offsets concurrently. Moreover, it became next to impossible to

fully utilize the disk (i.e., to read and write with the speeds advertised in shiny numbers

printed on their labels) without actually asking for multiple operations to be performed

concurrently. Now, with enterprise-grade NVMe drives and inventions like Intel

Optane,11 concurrency is a major factor when benchmarking input/output devices. See

Figure 5-11.

11 High speed persistent memory (sadly discontinued in 2021).

Chapter 5 Database Drivers

103

Figure 5-11.  Relationship between the system’s concurrency and latency

Networking technology is not lagging behind either. Modern networking cards

have multiple independent queues, which, with the help of receive-side scaling (RSS12),

enable previously unimaginable levels of performance, with throughput measured

in Tbps.13 With such advanced hardware, achieving high concurrency in software is

required to simply utilize the available capabilities.

CPU cores obviously deserve to be mentioned here as well. That’s the part

of computer infrastructure that’s undoubtedly most commonly associated with

concurrency. Buying a 64-core consumer-grade processor is just a matter of going to

the hardware store next door, and the assortment of professional servers is even more

plentiful.

Operating systems focus on facilitating highly concurrent programs too. io_uring14

by Jens Axboe is a novel addition to the Linux kernel. As noted in Chapter 3, it was

developed for asynchronous I/O, which in turn plays a major part in allowing high

concurrency in software to become the new standard. Some database drivers already

utilize io_uring underneath, and many more put the integration very high in the list of

priorities.

12 RSS allows directing traffic from specific queues directly into chosen CPUs.
13 Terabits per second
14 See the “Efficient IO with io_uring” article (https://kernel.dk/io_uring.pdf).

Chapter 5 Database Drivers

https://kernel.dk/io_uring.pdf

104

�Modern Software
How could modern software adapt to the new, highly concurrent era? Historically,

a popular model of ensuring that multiple operations can be performed at the same

time was to keep a pool of operating system threads, with each thread having its own

queue of tasks. That only scales in a limited way though, so now the industry leans

toward so-called “green threads,” which are conceptually similar to their operating

system namesakes, but are instead implemented in userspace, in a much more

lightweight manner.

For example, in Seastar (a high-performance asynchronous framework implemented

in C++ and based on a future-promise model15), there are quite a few ways of expressing

a single flow of execution, which could be called a green thread. A fiber of execution can

be created by chaining futures, and you can also use the C++ coroutines mechanism to

build asynchronous programs in a clean way, with the compiler assisting in making the

code async-friendly.

In the Rust language, the asynchronous model is quite unique. There, a future

represents the computation, and it’s the programmer’s responsibility to advance the

state of this asynchronous state machine. Other languages, like JavaScript, Go, and Java,

also come with well-defined and standardized support for asynchronous programming.

This async programming support is good, because database drivers are prime

examples of software that should support asynchronous operations from day one.

Drivers are generally responsible for communicating over the network with highly

specialized database clusters, capable of performing lots of I/O operations at the same

time. We can’t emphasize enough that high concurrency is the only way to utilize the

database to the fullest. Asynchronous code makes that substantially easier because it

allows high levels of concurrency to be achieved without straining the local resources.

Green threads are lightweight and there can be thousands of them even on a consumer-

grade laptop. Asynchronous I/O is a perfect fit for this use case as well because it allows

efficiently sending thousands of requests over the network in parallel, without blocking

the CPU and forcing it to wait for any of the operations to complete, which was a known

bottleneck in the legacy threadpool model.

15 See the Seastar documentation on futures and promises (https://seastar.io/
futures-promises/).

Chapter 5 Database Drivers

https://seastar.io/futures-promises/
https://seastar.io/futures-promises/

105

Note T he future-promise model and asynchronous I/O are introduced in
Chapter 3.

�What to Look for When Selecting a Driver
Database drivers are commonly available as open-source software. It’s a great model

that allows people to contribute and also makes the software easily accessible, ergo

popular (precisely what database vendors want). Drivers can be developed either by the

vendor, or another company, or simply your next door open-source contributor. This

kind of competition is very healthy for the entire system, but it also forces the users to

make a choice: which driver to use? For instance, at the time of this writing, the official

PostgreSQL documentation lists six drivers for C/C++ alone, with the complete list being

much longer.16

Choosing a driver should be a very deliberate decision, tailored to your unique

situation and preceded by tests, benchmarks, and evaluations. Nevertheless, there are

some general rules of thumb that can help guide you:

	 1.	 Clear documentation

Clear documentation is often initially underestimated by database

drivers’ users and developers alike. However, in the long term, it’s

the most important repository of knowledge for everyone, where

implementation details, good practices, and hidden assumptions

can be thoroughly explained. Choosing an undocumented driver

is a lottery—buying a pig in a poke. Don’t get distracted by shiny

benchmarks on the front page; the really valuable part is thorough

documentation. Note that it does not have to be a voluminous

book. On the contrary—concise, straight-to-the-point docs with

clear, working examples are even better.

16 See the PostgreSQL Drivers documentation at https://wiki.postgresql.org/wiki/
List_of_drivers.

Chapter 5 Database Drivers

https://wiki.postgresql.org/wiki/List_of_drivers
https://wiki.postgresql.org/wiki/List_of_drivers

106

	 2.	 Long-term support and active maintainership

Officially supported drivers are often maintained by their vendors,

get released regularly, and have their security vulnerabilities

fixed faster. External open-source drivers might look appealing

at first, easily winning in their self-presented benchmarks, but

it’s important to research how often they get released, how

often bugs are fixed, and how likely they are to be maintained

in the foreseeable future. On the other hand, sometimes the

situation is reversed: The most modern, efficient code can be

found in an open-source driver, while the official one is hardly

maintained at all!

	 3.	 Asynchronous API

Your code is eventually going to need high concurrency, so

it’s better to bet on an async-friendly driver, even if you’re not

ready to take advantage of that quite yet. The decision will likely

pay off later. While it’s easy to use an asynchronous driver in a

synchronous manner, the opposite is not true.

	 4.	 Decent test coverage

Testing is extremely important not only for the database nodes,

but also for the drivers. They are the first proxy between the users

and the database cluster, and any error in the driver can quickly

propagate to the whole system. If the driver corrupts outgoing

data, it may get persisted on the database, eventually making

the whole cluster unusable. If the driver incorrectly interprets

incoming data, its users will have a false picture of the database

state. And if it produces data based on this false picture, it can

just as well corrupt the entire database cluster. A driver that

cannot properly handle its load balancing and retry policy can

inadvertently overload a database node with excess requests,

which is detrimental to the whole system. If the driver is at least

properly tested, users can assume a higher level of trust in it.

Chapter 5 Database Drivers

107

	 5.	 Database-specific optimizations

A good driver should cooperate with its database. The more

context it gathers from the cluster, the more educated decisions

it can make. Remember that clients, and therefore drivers, are

often the most ubiquitous group of agents in distributed systems,

directly contributing to the cluster-wide concurrency. That makes

it especially important for them to be cooperative.

�Summary
This chapter provided insights into how the choice of a database driver impacts

performance and highlighted considerations to keep in mind when selecting a driver.

Drivers are often an overlooked part of a distributed system. That’s a shame because

drivers are so close to database users, both physically and figuratively! Proximity is an

extremely important factor in all networked systems because it directly translates to

latency. The next chapter ponders proximity from a subtly different point of view: How to

get the data itself closer to the application users.

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter's Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 5 Database Drivers

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

109

CHAPTER 6

Getting Data Closer
Location, location, location. Sometimes it’s just as important to database performance

as it is to real estate. Just as the location of a home influences how quickly it sells, the

location of where data “lives” and is processed also matters for response times and

latencies.

Pushing more logic into the database can often reduce network latency (and costs,

e.g., when your infrastructure provider charges for ingress/egress network traffic) while

taking advantage of the database’s powerful compute capability. And redistributing

database logic from fewer powerful datacenters to more minimalist ones that are closer

to users is another move that can yield discernable performance gains under the right

conditions.

This chapter explores the opportunities in both of these shifts. First, it looks at

databases as compute engines with a focus on user-defined functions and user-defined

aggregates. It then goes deeper into WebAssembly, which is now increasingly being

used to implement user-defined functions and aggregates (among many other things).

Finally, the chapter ventures to the edge—exploring what you stand to gain by moving

your database servers quite close to your users, as well as what potential pitfalls you

need to negotiate in this scenario.

�Databases as Compute Engines
Modern databases offer many more capabilities than just storing and retrieving

data. Some of them are nothing short of operating systems, capable of streaming,

modifying, encrypting, authorizing, authenticating, and virtually anything else with data

they manage.

Data locality is the holy grail of distributed systems. The less you need to move

data around, the more time can be spent on performing meaningful operations on

it—without excessive bandwidth costs. That’s why it makes sense to try to push more

logic into the database itself, letting it process as much as possible locally, then return

© Felipe Cardeneti Mendes, Piotr Sarna, Pavel Emelyanov, Cynthia Dunlop 2023
F. C. Mendes et al., Database Performance at Scale, https://doi.org/10.1007/978-1-4842-9711-7_6

https://doi.org/10.1007/978-1-4842-9711-7_6

110

the results to the users, or some middleware, for further processing. It makes even more

sense when you consider that database nodes generally run on powerful hardware,

with lots of RAM and fast I/O devices. This usually translates to formidable CPU power.

Dedicated large data processing frameworks aside (e.g., Apache Spark, which is out of

scope for this book), regular database engines almost always support some level of user-

defined computations. These can be classified into two major sections: user-defined

functions/procedures and user-defined aggregates.

Note that the definitions vary. Some database vendors use the general name

“functions” to mean both aggregate and scalar functions. Others actually mean

“scalar functions” when they reference “functions,” and use the name “aggregates” for

“aggregate functions.” That’s the convention applied to this chapter.

�User-Defined Functions and Procedures
In contrast to native functions, often implemented in database engines (think

lowercase(), now(), concat(), type casting, algebraic operations, and friends), user-

defined functions are provided by the users of the database (e.g., the developers building

applications). A “procedure” is substantially identical to a function in this context, except

it does not return any result; instead, it has side effects.

The exact interface of allowing users to define their own functions or procedures

varies wildly between database vendors. Still, several core strategies, listed here, are

often implemented:

	 1.	 A set of hardcoded native functions, not extensible, but at least

composable. For example, casting a type to string, concatenating

it with a predefined suffix, and then hashing it.

	 2.	 A custom scripting language, dedicated and vendor-locked to

a specific database, allowing users to write and execute simple

programs on the data.

	 3.	 Supporting a single general-purpose embeddable language

of choice. For example, Lisp, Lua, ChaiScript, Squirrel, or

WebAssembly might be used for this purpose. Note: You’ll explore

WebAssembly in more depth a little later in this chapter.

Chapter 6 Getting Data Closer

111

	 4.	 Supporting a variety of pluggable embeddable languages. A good

example is Apache Cassandra and its support of Java (native

language) and JavaScript1 as well as pluggable backend-loaded via

.jar files.

The first on the list is the least flexible, offers the worst developer experience, and

has the lowest security risk. The last has the most flexibility, offers the best developer

experience, and also harbors the most potential for being a security risk worthy of its

own CVE number.

Scalar functions are usually invoked per each row, at least for row-oriented

databases, which is usually the case for SQL. You might wonder if the computations can’t

simply be performed by end users on their machines. That’s a valid point. The main

advantage of that approach is fantastic scalability regardless of how many users perform

data transformations (if they do it locally on their own machines, then the database

cluster does not get overloaded).

There are several great reasons to push the computations closer to where the data

is stored:

•	 Databases have more context to efficiently cache the computed

results. Imagine tens of thousands of users asking for the same

function to be applied on a certain set of rows. That result can be

computed just once and then distributed to all interested parties.

•	 If the computed results are considerably smaller than their input

(think about returning just lengths of text values), it’s better to save

bandwidth and send over only the final results.

•	 Certain housekeeping operations (e.g., deleting data older than a

week) can be efficiently performed locally, without fetching any

information to the clients for validation.

1 It’s also a great example of the CVE risk: https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2021-44521
https://jfrog.com/blog/cve-2021-44521-exploiting-apache-cassandra-user-defined-
functions-for-remote-code-execution/

Chapter 6 Getting Data Closer

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44521
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44521
https://jfrog.com/blog/cve-2021-44521-exploiting-apache-cassandra-user-defined-functions-for-remote-code-execution/
https://jfrog.com/blog/cve-2021-44521-exploiting-apache-cassandra-user-defined-functions-for-remote-code-execution/

112

•	 If the processing is done on database servers, the instruction cache

residing on that database’s CPU chip is likely to be scorching hot with

opcodes responsible for carrying out the computations for each row.

And as a rule of thumb, hot cache translates to faster code execution

and lower latency.

•	 Some computations are not trivially distributed to users. If they

involve cryptographic private keys stored on the database servers,

it might actually be impossible to run the code anywhere but on the

server itself.

•	 If the data on which computations are performed is sensitive (e.g., it

falls under infamous, ever-changing European data protection laws

such as GDPR), it might be illegal to send raw data to the users. In

such cases, running an encryption function server-side can be a way

for users to obtain obfuscated, legal data.

�Determinism

In distributed environments, idempotence (discussed in Chapter 5) is an important

attribute that makes it possible to send requests in a speculative manner, potentially

increasing performance. Thus, it is better to make sure that user-defined functions are

deterministic. In other words, a user-defined function’s value should only depend on

the value of its arguments, and not on the value of any external factors like time, date,

pseudo-random seed, and so on.

A perfect example of a non-deterministic function is now(). Calling it twice might

yield the same value if you’re fast enough, but it’s generally not guaranteed since its

result is time-dependent. If possible, it’s a good idea to program the user-defined

functions in a deterministic way and mark them as such. For time/date, this might

involve computing the results based on a timestamp passed as a parameter rather than

using built-in time utilities. For pseudo-random sampling, the seed could also be passed

as a parameter, as opposed to relying on sources of entropy provided by the user-defined

function runtime.

Chapter 6 Getting Data Closer

113

�Latency

Running user-provided code on your database clusters is potentially dangerous in

aspects other than security. Most embedded languages are Turing-complete, and

customarily allow the developers to use loops, recursion, and other similar techniques

in their code. That’s risky. An undetected infinite loop may serve as a denial-of-service

attack, forcing the database servers to endlessly process a function and block other tasks

from used resources. And even if the user-defined function author did not have malicious

intentions, some computations simply consume a lot of CPU time and memory.

In a way, a user-defined function should be thought of as a potential “noisy

neighbor”2 and its resources should be as limited as possible. For some use cases,

a simple hard limit on memory and CPU time used is enough to ensure that the

performance of other database tasks does not suffer from a “noisy” user-defined

function. However, sometimes, a more specific solution is required—for example,

splitting a user-function definition into smaller time bits, assigning priorities to user-

defined functions, and so on.

One interesting metering mechanism was applied by Wasmtime,3 a WebAssembly

runtime. Code running in a WebAssembly instance consumes fuel,4 a synthetic unit used

for tracking how fast an instance exhausts system resources. When an instance runs out

of fuel, the runtime does one of the preconfigured actions—either “refills” and lets the

code execution continue or decides that the task reached its quota and terminates it.

�Just-in-Time Compilation (JIT)

Languages used for user-defined functions are often either interpreted (e.g., Lua) or

represented in bytecode that runs on a virtual machine (e.g., WebAssembly). Both of

these approaches can benefit from just-in-time compilation. It’s a broad topic, but the

essence of it is that during runtime, the code of user-defined functions can be compiled

to another, more efficient representation, and optimized along the way. This may mean

translating bytecode to machine code the program runs on (e.g., x86-64 instructions), or

compiling the source code represented in an interpreted language to machine code.

2 See the Microsoft Azure documentation on the Noisy Neighbor antipattern (https://learn.
microsoft.com/en-us/azure/architecture/antipatterns/noisy-neighbor/noisy-neighbor).
3 See the Bytecode Alliance documentation at https://wasmtime.dev.
4 See the Wasmtime docs (https://docs.wasmtime.dev/api/wasmtime/struct.Store.
html#method.fuel_consumed).

Chapter 6 Getting Data Closer

https://learn.microsoft.com/en-us/azure/architecture/antipatterns/noisy-neighbor/noisy-neighbor
https://learn.microsoft.com/en-us/azure/architecture/antipatterns/noisy-neighbor/noisy-neighbor
https://wasmtime.dev
https://docs.wasmtime.dev/api/wasmtime/struct.Store.html#method.fuel_consumed
https://docs.wasmtime.dev/api/wasmtime/struct.Store.html#method.fuel_consumed

114

JIT is a very powerful tool, but it’s not a silver bullet—compilation and additional

optimization can be an expensive process in terms of resources. A small user-defined

function may take less than a millisecond to run, but recompiling it can cause a

sudden spike in CPU and memory usage, as well as a multi-millisecond delay in the

processing—resulting in high tail latency. It should therefore be a conscious decision to

either enable just-in-time compilation for user-defined functions if the language allows

it, or disable it altogether.

�Examples

Let’s take a look at a few examples of user-defined functions. The function serving as

the example operates on floating point numbers; given two parameters, it returns the

sum of them, inverted. Given 5 and 7, it should return 1
5

1
7+ , which is approximately

0.34285714285.

Here’s how it could be defined in Apache Cassandra, which allows user-defined

function definitions to be provided in Java, its native language, as well as in other

languages:

CREATE OR REPLACE FUNCTION add_inverse(val1 double, val2 double)

 RETURNS NULL ON NULL INPUT

 RETURNS double LANGUAGE java

 AS '

 return (val1 == 0 || val2 == 0)

 ? Double.NaN

 : (1/val1 + 1/val2);

 ';

Let’s take a closer look at the definition. The first line is straightforward: it includes

the function’s name, parameters, and its types. It also specifies that if a function

definition with that name already exists, it should be replaced. Next, it explicitly declares

what happens if any of the parameters is null, which is a valid value for any type. The

function can either return null without calling the function at all or allow null and let

the source code handle it explicitly (the syntax for that is CALLED ON NULL INPUT). This

explicit declaration is required by Apache Cassandra.

Chapter 6 Getting Data Closer

115

That declaration is then followed by the return type and chosen language—from

which you can correctly deduce that multiple languages are supported. Then comes

the function body. The only non-obvious decision made by the programmer was how

to handle 0 as a parameter. Since the type system implemented in Apache Cassandra

already handles NaN,5 it’s a decent candidate (next to positive/negative infinity).

The newly created function can be easily tested by creating a table, filling it with a

few values, and inspecting the result:

CREATE TABLE test(v1 double PRIMARY KEY, v2 double);

INSERT INTO test(v1, v2) VALUES (5, 7);

INSERT INTO test(v1, v2) VALUES (2, 2);

INSERT INTO test(v1) VALUES (9);

INSERT INTO test(v1, v2) VALUES (7, 0);

SELECT v1, v2, add_inverse(v1, v2) FROM test;

cassandra@cqlsh:test> SELECT v1, v2, add_inverse(v1, v2) FROM test;

 v1 | v2 | test.add_inverse(v1, v2)

----+------+--------------------------

 9 | null | null

 5 | 7 | 0.342857

 2 | 2 | 1

 7 | 0 | NaN

From the performance perspective, is offloading such a simple function to the

database servers worth it? Not likely—the computations are fairly cheap, so users

shouldn’t have an issue deriving these values themselves, immediately after receiving

the data. The database servers, on the other hand, may need to initialize a runtime

for user-defined functions, since these functions are often sandboxed for security

purposes. That runtime initialization takes time and other resources. Offloading such

computations makes much more sense if the data is aggregated server-side, which is

discussed in the next section (on user-defined aggregates).

5 Not-a-number

Chapter 6 Getting Data Closer

116

�Best Practices

Before you learn about user-defined aggregates, which unleash the true potential of

user-defined functions, it’s important to sum up a few best practices for setting up user-

defined functions in your database management system:

	 1.	 Evaluate if you need user-defined functions at all—compare

the latency (and general performance) of queries utilizing user-

defined functions vs computing everything client-side (assuming

that’s even possible).

	 2.	 Test if offloading computations to the database servers scales.

Look at metrics like CPU utilization to assess how well your

database system can handle thousands of users requesting

additional computations.

	 3.	 Recognize that since user-defined functions are likely going

to be executed on the “fast path,” they need to be optimized

and benchmarked as well! Consider the performance best

practices for the language you’re using for user-defined function

implementation.

	 4.	 Make sure to properly handle any errors or exceptional cases in

your user-defined function to avoid disrupting the operation of

the rest of the database system.

	 5.	 Consider using built-in functions whenever possible instead of

creating a user-defined function. The built-in functions may be

more optimized and efficient.

	 6.	 Keep your user-defined functions simple and modular, breaking

up complex tasks into smaller, more manageable functions that

can be easily tested and reused.

	 7.	 Properly document your user-defined functions so that other

users of the database system can understand how they work and

how to use them correctly.

Chapter 6 Getting Data Closer

117

�User-Defined Aggregates
The greatest potential for user-defined functions lies in them being building blocks for

user-defined aggregates. Aggregate functions operate on multiple rows or columns,

sometimes on entire tables or databases.

Moving this kind of operation closer to where the data lies makes perfect sense.

Imagine 1TB worth of database rows that need to be aggregated into a single value: the

sum of their values. When a thousand users request all these rows in order to perform

the aggregation client-side, the following happens:

	 1.	 A total of a petabyte of data is sent over the network to each user.

	 2.	 Each user performs extensive computations, expensive in terms

of RAM and CPU, that lead to exactly the same result as the

other users.

If the aggregation is performed by the database servers, it not only avoids a petabyte

of traffic; it also saves computing power for the users (which is a considerably greener

solution). If the computation is properly cached, it only needs to be performed once.

This is a major win in terms of performance, and many use cases can immediately

benefit from pushing the aggregate computations closer to the data. This is especially

important for analytic workloads that tend to process large volumes of data in order to

produce useful statistics and feedback—a process that is its own type of aggregation.

�Built-In Aggregates

Databases that allow creating user-defined aggregates usually also provide a few

traditional built-in aggregation functions: the (in)famous COUNT(*), but also MAX, MIN,

SUM, AVG, and others. Such functions take into account multiple rows or values and return

an aggregated result. The result may be a single value. Or, it could also be a set of values

if the input is divided into smaller classes. One example of such an operation is SQL’s

GROUP BY statement, which applies the aggregation to multiple disjoint groups of values.

Built-in aggregates should be preferred over user-defined ones whenever possible—

they are likely written in the language native to the database server, already optimized,

and secure. Still, the set of predefined aggregate functions is often very basic and doesn’t

allow users to perform the complex computations that make user-defined aggregates

such a powerful tool.

Chapter 6 Getting Data Closer

118

�Components

User-defined aggregates are customarily built on top of user-defined scalar functions.

The details heavily depend on the database system, but the following components are

definitely worth mentioning.

Initial Value

An aggregation needs to start somewhere, and it’s up to the user to provide an initial

value from which the final result will eventually be computed. In the case of the COUNT

function, which returns the number of rows or values in a table, a natural candidate

for the initial value is 0. In the case of AVG, which computes the arithmetic mean from

all column values, the initial state could consist of two variables: The total number of

values, initialized to 0, and the total sum of values, also initialized to 0.

State Transition Function

The core of each user-defined aggregate is its state transition function. This function

is called for each new value that needs to be processed, and each time it is called, it

returns the new state of the aggregation. Following the COUNT function example, its state

transition function simply increments the number of rows by one. The state transition

function of the AVG aggregate just adds the current value to the total sum and increments

the total number of values by one.

Final Function

The final function is an optional feature for user-defined aggregates. Its sole purpose is

to transform the final state of the aggregation to something else. For COUNT, no further

transformations are required. The user is simply interested in the final state of the

aggregation (the number of values), so the final function doesn’t need to be present; it

can be assumed to be an identity function. However, in the case of AVG, the final function

is what makes the result useful to the user. It transforms the final state—the total number

of values and its total sum—and produces the arithmetic mean by simply dividing one

by the other, handling the special case of avoiding dividing by zero.

Chapter 6 Getting Data Closer

119

Reduce Function

The reduce function is an interesting optional addition to the user-defined aggregates

world, especially for distributed databases. It can be thought of as another state

transition function, but one that can combine two partial states into one.

With the help of a reduce function, computations of the user-defined aggregate

can be distributed to multiple database nodes, in a map-reduce6 fashion. This, in turn,

can bring massive performance gains, because the computations suddenly become

concurrent. Note that this optimization is not always possible—if the state transition

function is not commutative, distributing the partial computations may yield an

incorrect result.

In order to better imagine what a reduce function can look like, let’s go back to the

AVG example. A partial state for AVG can be represented as (n, s), where n is the number

of values, and s is the sum of them. Reducing two partial states into the new valid state

can be performed by simply adding the corresponding values: (n1, s1) + (n2, s2) → (n1+

n2, s1 + s2). An optional reduce function can be defined (e.g., in ScyllaDB’s user-defined

aggregate implementation7).

The user-defined aggregates support is not standardized among database vendors

and each database has its own quirks and implementation details. For instance, in

PostgreSQL, you can also implement a “moving” aggregate8 by providing yet another set

of functions and parameters: msfunc, minvfunc, mstype, and minitcond. Still, the general

idea remains unchanged: Let the users push aggregation logic as close to the data as

possible.

�Examples

Let’s create a custom integer arithmetic mean implementation in PostgreSQL.

That’s going to be done by providing a state transition function, called sfunc in

PostgreSQL nomenclature, finalfunc for the final function, initial value (initcond),

and the state type—stype. All of the functions will be implemented in SQL, PostgreSQL’s

native query language.

6 MapReduce is a framework for processing parallelizable problems across large datasets.
7 See the ScyllaDB documentation on ScyllaDB CQL Extensions (https://github.com/scylladb/
scylladb/blob/master/docs/cql/cql-extensions.md#reducefunc-for-uda).
8 See the PostgreSQL documentation on User-Defined Aggregates (https://www.postgresql.
org/docs/current/xaggr.html#XAGGR-MOVING-AGGREGATES).

Chapter 6 Getting Data Closer

https://github.com/scylladb/scylladb/blob/master/docs/cql/cql-extensions.md#reducefunc-for-uda
https://github.com/scylladb/scylladb/blob/master/docs/cql/cql-extensions.md#reducefunc-for-uda
https://www.postgresql.org/docs/current/xaggr.html#XAGGR-MOVING-AGGREGATES
https://www.postgresql.org/docs/current/xaggr.html#XAGGR-MOVING-AGGREGATES

120

State Transition Function

The state transition function, called accumulate, accepts a new integer value (the second

parameter) and applies it to the existing state (the first parameter). As mentioned earlier

in this chapter, a simple implementation keeps two variables in the state—the current

sum of all values, and their count. Thus, transitioning to the next state simply means that

the sum is incremented by the current value, and the total count is increased by one.

CREATE OR REPLACE FUNCTION accumulate(integer[], integer) RETURNS integer[]

 AS 'select array[$1[1] + $2, $1[2] + 1];'

 LANGUAGE SQL

 IMMUTABLE

 RETURNS NULL ON NULL INPUT;

Final Function

The final function divides the total sum of values by the total count of them, special-

casing an average of 0 values, which should be just 0. The final function returns a

floating point number because that’s how the aggregate function is going to represent an

arithmetic mean.

CREATE OR REPLACE FUNCTION divide(integer[]) RETURNS float8

 AS 'select case when $1[2]=0 then 0 else $1[1]::float/$1[2] end;'

 LANGUAGE SQL

 IMMUTABLE

 RETURNS NULL ON NULL INPUT;

Aggregate Definition

With all the building blocks in place, the user-defined aggregate can now be declared:

CREATE OR REPLACE AGGREGATE alternative_avg(integer)

(

 sfunc = accumulate,

 stype = integer[],

 finalfunc = divide,

 initcond = '{0, 0}'

);

Chapter 6 Getting Data Closer

121

In addition to declaring the state transition function and the final function, the state

type is also declared to be an array of integers (which will always keep two values in the

implementation), as well as the initial condition that sets both counters, the total sum

and the total number of values, to 0.

That’s it! Since the AVG aggregate for integers happens to be built-in, that gives you

the perfect opportunity to validate if the implementation is correct:

postgres=# CREATE TABLE t(v INTEGER);

postgres=# INSERT INTO t VALUES (3), (5), (9);

postgres=# SELECT * FROM t;

 v

 3

 5

 9

(3 rows)

postgres=# SELECT AVG(v), alternative_avg(v) FROM t;

 avg | alternative_avg

--------------------+-------------------

 5.6666666666666667 | 5.666666666666667

(1 row)

Voilà. Remember that while creating an alternative implementation for AVG is a great

academic example of user-defined aggregates, for production use it’s almost always

better to stick to the built-in aggregates whenever they’re available.

Distributed User-Defined Aggregate

For completeness, let’s take a look at an almost identical implementation of a custom

average function, but one accommodated to be distributed over multiple nodes. This

time, ScyllaDB will be used as a reference, since its implementation of user-defined

aggregates includes an extension for distributing the computations in a map-reduce

manner. Here’s the complete source code:

CREATE FUNCTION accumulate(acc tuple<bigint, int>, val int)

RETURNS NULL ON NULL INPUT

RETURNS tuple<bigint, int>

Chapter 6 Getting Data Closer

122

LANGUAGE lua

AS $$

 return { acc[1]+val, acc[2]+1 }

$$;

CREATE FUNCTION reduce(acc tuple<bigint, int>, acc2 tuple<bigint, int>)

RETURNS NULL ON NULL INPUT

RETURNS tuple<bigint, int>

LANGUAGE lua

AS $$

 return { acc[1]+acc2[1], acc[2]+acc2[2] }

$$;

CREATE FUNCTION divide(acc tuple<bigint, int>)

RETURNS NULL ON NULL INPUT

RETURNS double

LANGUAGE lua

AS $$

 return acc[1]/acc[2]

$$;

CREATE AGGREGATE alternative_avg(int)

SFUNC accumulate

STYPE tuple<bigint, int>

REDUCEFUNC reduce

FINALFUNC divide

INITCOND (0, 0);

ScyllaDB’s native query language, CQL, is extremely similar to SQL, even in its

acronym. It’s easy to see that most of the source code corresponds to the PostgreSQL

implementation from the previous paragraph. ScyllaDB does not allow defining user-

defined functions in CQL, but it does support Lua, a popular lightweight embeddable

language, as well as WebAssembly. Since this book is expected to be read mostly by

human beings (and occasionally ChatGPT once it achieves full consciousness), Lua was

chosen for this example due to the fact it’s much more concise.

Chapter 6 Getting Data Closer

123

The most notable difference is the reduce function, declared in the aggregate

under the REDUCEFUNC keyword. This function accepts two partial states and returns

another (composed) state. What ScyllaDB servers can do if this function is present is the

following:

	 1.	 Divide the domain (e.g., all rows in the database) into multiple

pieces and ask multiple servers to partially aggregate them, and

then send back the result.

	 2.	 Apply the reduce function to combine partial results into the

single final result.

	 3.	 Return the final result to the user.

Thus, by providing the reduce function, the user also allows ScyllaDB to compute

the aggregate concurrently on multiple machines. This can reduce the query execution

time by orders of magnitude compared to a large query that only gets executed on a

single server.

In this particular case, it might even be preferable to provide a user-defined

alternative for a user-defined function in order to increase its concurrency—unless the

built-in primitives also come with their reduce functions out of the box. That’s the case

in ScyllaDB, but not necessarily in other databases that offer similar capabilities.

�Best Practices

	 1.	 If the computations can be efficiently represented with built-

in aggregates, do so—or at least benchmark whether a custom

implementation is any faster. User-defined aggregates are very

expressive, but usually come with a cost of overhead compared to

built-in implementations.

	 2.	 Research if user-defined aggregates can be customized in order

to better fit specific use cases—for example, if the computations

can be distributed to multiple database nodes, or if the database

allows configuring its caches to store the intermediate results of

user-defined aggregates somewhere.

Chapter 6 Getting Data Closer

124

	 3.	 Always test the performance of your user-defined aggregates

thoroughly before using them in production. This will help to

ensure that they are efficient and can handle the workloads that

you expect them to.

	 4.	 Measure the cluster-wide effects of using user-defined aggregates

in your workloads. Similar to full table scans, aggregates are a

costly operation and it’s important to ensure that they respect the

quality of service of other workloads, not overloading the database

nodes beyond what’s acceptable in your system.

�WebAssembly for User-Defined Functions
WebAssembly, also known as Wasm, is a binary format for representing executable code,

designed to be easily embedded into other projects. It turns out that WebAssembly is

also a perfect candidate for user-defined functions on the backend, thanks to its ease of

integration, performance, and popularity.

There are multiple great books and articles9 on WebAssembly, and they all agree that

first and foremost, it’s a misnomer—WebAssembly’s usefulness ranges way beyond web

applications. It’s actually a solid general-purpose language that has already become the

default choice for an embedded language around the world. It ticks all the boxes:

☒ It’s open-source, with a thriving community

☒ It’s portable

☒ �It’s isolated by default, with everything running in a sandboxed

environment

☒ �It’s fast, comparable to native CPU code in terms of

performance

9 For example, “WebAssembly: The Definitive Guide” by Brian Sletten, “Programming
WebAssembly with Rust” by Kevin Hoffman, or “ScyllaDB’s Take on WebAssembly for User-
Defined Functions” by Piotr Sarna.

Chapter 6 Getting Data Closer

125

�Runtime

WebAssembly is compiled to bytecode. This bytecode is designed to run on a virtual

machine, which is usually part of a larger development environment called a runtime.

There are multiple implementations of WebAssembly runtimes, most notably:

•	 Wasmtime

https://wasmtime.dev/

A fast and secure runtime for WebAssembly, implemented in Rust,

backed by the Bytecode Alliance10 nonprofit organization.

•	 Wasmer.io

https://wasmer.io/

Another open-source initiative implemented in Rust; maintainers

of the WAPM11 project, which is a Wasm package manager.

•	 WasmEdge:

https://wasmedge.org/

Runtime implemented in C++, general-purpose, but focused on

edge computing.

•	 V8:

https://v8.dev/

Google’s monolith JavaScript runtime; written in C++, comes with

WebAssembly support as well.

Also, since the WebAssembly specification is public, feel free to implement your own!

Beware though: The standard is still in heavy development, changing rapidly every day.

10 https://bytecodealliance.org/
11 https://wapm.io/

Chapter 6 Getting Data Closer

https://wasmtime.dev/
https://wasmer.io/
https://wasmedge.org/
https://v8.dev/
https://bytecodealliance.org/
https://wapm.io/

126

�Back to Latency

Each runtime is free to define its own performance characteristics and guarantees. One

interesting feature introduced in Wasmtime is the concept of fuel, already mentioned in

the earlier discussion of user-defined functions. Combined with the fact that Wasmtime

provides an optional asynchronous interface for running WebAssembly modules, it gives

users an opportunity to fine-tune the runtime to their latency requirements.

When Wasmtime starts executing a given WebAssembly function, this unit of

execution is assigned a certain amount of fuel. Each execution step exhausts a small

amount of fuel—at the time of writing this paragraph, it simply consumes one unit of fuel

on each WebAssembly bytecode instruction, excluding a few flow control instructions

like branching. Once the execution unit runs out of fuel, it yields. After that happens, one

of the preconfigured actions is taken: either the execution unit is terminated, or its tank

gets refilled and it’s allowed to get back to whatever it was computing. This mechanism

allows the developer to control not only the total amount of CPU time that a single

function execution can take, but also how often the execution should yield and hand

over the CPU for other tasks. Thus, configuring fuel management the right way prevents

function executions from taking over the CPU for too long. That helps maintain low,

predictable latency in the whole system.

Another interesting aspect of WebAssembly is its portability. The fact that the

code can be distributed to multiple places and it’s guaranteed to run properly in

multiple environments makes it a great candidate for moving not only data, but also

computations, closer to the user.

Pushing the database logic from enormous datacenters to smaller ones, located

closer to end users, got its own buzzy name: edge computing.

�Edge Computing
Since the Internet of Things (IoT) became a thing, the term edge computing needs

disambiguation. This paragraph is (unfortunately?) not about:

•	 Utilizing the combined computing power of smart fridges in

your area

•	 Creating a data mesh from your local network of Bluetooth light bulbs

•	 Integrating your smart watch into a Raft cluster in witness mode

Chapter 6 Getting Data Closer

127

The edge described in this paragraph is of a more boring kind. It still means

performing computations on servers, but on ones closer to the user (e.g., located in a

local Equinix datacenter in Warsaw, rather than Amazon’s eu-central-1 in Frankfurt).

�Performance
What does edge computing have to do with database performance? It brings the data

closer to the user, and closer physical distance translates to lower latency. On the other

hand, having your database cluster distributed to multiple locations has its downsides

as well. Moving large amounts of data between those regions might be costly, as cloud

vendors tend to charge for cross-region traffic. If the latency between database nodes

reaches hundreds of milliseconds, which is the customer grade latency between

Northern America and Europe (unless you can afford Hibernia Express12), they can get

out of sync easily. Even a few round-trips—and distributed consensus algorithms alone

require at least two—can cause delays that exceed the comfort zone of one second.

Failure detection mechanisms are also affected since packet loss occurs much more

often when the cluster spans multiple geographical locations.

Database drivers for edge-friendly databases need to be aware of all these limitations

mentioned. In particular, they need to be extra careful to pick the closest region

whenever possible, minimizing the latency and the chance of failure.

�Conflict-Free Replicated Data Types
CRDT (conflict-free replicated data types) is an interesting way of dealing with

inconsistencies. It’s a family of data structures designed to have the following

characteristics:

•	 Users can update database replicas independently, without

coordinating with other database servers.

•	 There exists an algorithm to automatically resolve conflicts that

might occur when the same data is independently written to multiple

replicas concurrently.

•	 Replicas are allowed to be in different states, but they are guaranteed

to eventually converge to a common state.

12 A submarine link between Canada, Ireland, and the UK, offering sub-60ms latency.

Chapter 6 Getting Data Closer

128

The concept of CRDT gained traction along with edge computing because the two

complement each other. The database is allowed to keep replicas in multiple places and

allows them to act without central coordination—but at the same time, users can assume

that eventually the database state is going to become consistent.

A few interesting data structures that fit the definition of CRDT are discussed next.

�G-Counter

Grow-only counter. Usually implemented as an array of counters, keeping a local

counter value per each database node. Two array states from different nodes can

be merged by taking the maximum of each respective field. The actual value of the

G-Counter is simply a sum of all local counters.

�PN-Counter

Positive-Negative counter, brilliantly implemented by keeping two G-Counter

instances—one for accumulating positive values, the other for negative ones. The final

value is obtained by subtracting one from the other.

�G-Set

Grow-only set, that is, one that forbids the removal of elements. Converging two G-Sets

is a simple set union since values are never removed from a G-Set. One flavor of G-Set

is G-Map, where an entry, key, and value associated with the key cannot be removed

once added.

�LWW-Set

Last-write-wins set (and map, accordingly). This is a combination of two G-Sets, one

gathering added elements and the other containing removed ones. Conflict resolution is

based on a set union of the “added” G-Set, minus the union of the “removed” G-Set, but

timestamps are also taken into account. A value exists if its timestamp in the “added” set

is larger than its timestamp in the “removed” set, or if it’s not present in the “removed”

set at all.

The list is obviously not exhaustive, and countless other CRDTs exist. You’re hereby

encouraged to do research on the topic if you found it interesting!

Chapter 6 Getting Data Closer

129

CRDTs are not just theoretical structures; they are very much used in practice.

Variants of conflict-free replicated data types are common among databases that offer

eventual consistency, like Apache Cassandra and ScyllaDB. Their writes have last-write-

wins semantics for conflict resolution, and their implementation of counters is based on

the idea of a PN-Counter.

�Summary
At this point, it should be clear that there are a number of ways to improve

performance by using a database a bit unconventionally, as well as understanding

(and tapping) specialized capabilities built into the database and its drivers. Let’s

shift gears and look at the top “do’s and don’ts” that we recommend for ensuring that

your database is performing at its best. The next chapter begins this discussion by

focusing on infrastructure options (CPUs, memory, storage, and networking) and

deployment models.

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter's Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 6 Getting Data Closer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

131

CHAPTER 7

Infrastructure and
Deployment Models
As noted in the previous chapter, many modern databases offer capabilities beyond

“just” storing and retrieving data. But all databases are ultimately built from the ground

up in order to serve I/O in the most efficient way possible. And it’s crucial to remember

this when selecting your infrastructure and deployment model of choice.

In theory, a database’s purpose is fairly simple: You submit a request and expect

to receive a response. But as you have seen in the previous chapters, an insane level of

engineering effort is spent on continuously enhancing and speeding up this process.

Very likely, years and years were dedicated to optimizing algorithms that may give

you a processing boost of a few CPU cycles, or minimizing the amount of memory

fragmentation, or reducing the amount of storage I/O needed to look up a specific set

of data. All these advancements, eventually, converge to create a database suitable for

performance at scale.

Regardless of your database selection, you may eventually hit a wall that no

engineering effort can break through: the database’s physical hardware. It makes very

little sense to have a solution engineered for performance when the hardware you throw

at it may be suboptimal. Similarly, a less performant database will likely be unable to

make efficient use of an abundance of available physical resources.

This chapter looks at critical considerations and tradeoffs when selecting CPUs,

memory, storage, and networking for your distributed database infrastructure. It

describes how different resources cooperate and how to configure the database to

deliver the best performance. Special attention is drawn to storage I/O as the most

difficult component to deal with. There’s also a close look at optimal cloud-based

deployments suitable for highly-performant distributed databases (given that these are

the deployment preference of most businesses).

© Felipe Cardeneti Mendes, Piotr Sarna, Pavel Emelyanov, Cynthia Dunlop 2023
F. C. Mendes et al., Database Performance at Scale, https://doi.org/10.1007/978-1-4842-9711-7_7

https://doi.org/10.1007/978-1-4842-9711-7_7

132

While it is true that a Database-as-a-Service (DBaaS) deployment will shield you

from many infrastructure and hardware decisions through your selection process, a

fundamental understanding of the generic compute resources required by any database

is important for identifying potential bottlenecks that may limit performance. After an

introduction to the hardware that’s involved in every deployment model—whether you

think about it or not—the chapter shifts focus to different deployment options and their

impact on performance. It covers the special considerations associated with cloud-

hosted deployments, database-as-a-service, serverless, containerization, and container

orchestration technologies, such as Kubernetes.

�Core Hardware Considerations for Speed at Scale
When you are designing systems to handle large amounts of data and requests at scale,

the primary hardware considerations are:

•	 Storage

•	 CPU (cores)

•	 Memory (RAM)

•	 Network interfaces

Each could be a potential bottleneck for internal database latency: The delay from

when a request is received by the database (or a node in the database) and when the

database provides a response.

�Identifying the Source of Your Performance Bottlenecks
Knowing your database’s write and read paths is helpful for identifying potential

performance bottlenecks and tracking down the culprit. It’s also key to understanding

what physical resources your use case may be mostly bound against.

For example, write-optimized databases carry this nomenclature because writes

primarily go to memory, rather than being immediately persisted into disk. However,

most modern databases need to employ some “crash-recovery” mechanism and avoid

data loss caused by unexpected service interruptions. As a result, even write-optimized

databases will also resort to disk access to quickly persist your data, just in case. For

example, writes to Cassandra clusters will be persisted to a “write ahead log” disk

Chapter 7 Infrastructure and Deployment Models

133

structure called the “commit log” and a memory structure that’s named a “memtable.” A

write is considered successful only after both operations succeed.

On the other side of the spectrum, the database’s read path will typically also involve

several physical components. Assuming that you’re not using an in-memory database,

then the read path will start by checking whether the data you are looking for is present

within the database cache. But if it’s not, the database needs to look up and retrieve the

data from disk, de-serialize it, and then answer with the results.

Network also plays a crucial role throughout the entire process. When you write,

data needs to be rapidly replicated to other replicas. When you read, the database needs

to select the correct replicas (shards) containing the data that the application is after,

thus potentially having to communicate with other nodes in the cluster. Moreover,

strong consistency use cases always require the response of a majority of members for

an operation to be successful—so delayed responses from a replica can dramatically

increase the tail latency of a request routed to it.

�Achieving Balance
Balance is key to any distributed system, including and beyond databases. It makes

very little sense to try to achieve 1 million operations per second (OPS) in a system that

has the fastest network link available but relies on very few CPUs. Similarly, it’s not very

efficient to purchase the most expensive and performant infrastructure for your solution

if your use case requires only 10K OPS.

Additionally, it’s important to recognize that a cluster imbalance can easily drag

down performance across your entire distributed system. This happens because a

distributed system cannot be faster than your slowest component—a fact that frequently

surprises people.

Here’s a real-life example. A customer reported elevated latencies affecting their

entire 18-node cluster. After collecting system information, we noticed that the majority

of their nodes were properly using locally-attached nonvolatile memory express (NVMe)

disks—except for one that had a software Redundant Array of Independent Disks (RAID)

with a mix of NVMes and network-attached disks. The customer clarified that they

were running out of storage space and decided to attach another disk in order to relieve

the problem. However, they weren’t aware that this introduced a ticking time bomb

into their entire cluster. Here’s a brief explanation of what happened from a technical

perspective:

Chapter 7 Infrastructure and Deployment Models

134

	 1.	 With a slow disk introduced in their RAID array, storage I/O

operations in that specific replica took longer to complete.

	 2.	 As a result, the remaining replicas took additional time whenever

sending or waiting for a response that would require disk I/O.

	 3.	 As more and more requests came in, all these delays eventually

created a waiting queue on the replicas.

	 4.	 As the queue kept growing, this eventually affected the replicas’

performance, which ended up affecting the entire cluster’s

performance.

	 5.	 From that point on, the entire cluster speed was impeded by the

speed of its slowest node: the one that had the slowest disk.

�Setting Realistic Expectations
Even the most powerful hardware cannot ensure impressive end-to-end (or round-trip)

latency—the entire cycle time from when a client sends a request to the server until it

obtains a response. The end-to-end latency could be undermined by factors that might

be outside of the database’s control. For example:

•	 Multi-hop routing of packets from your client application to the

database server, adding hundreds of milliseconds in latency

•	 Client driver settings, connecting and sending requests to a remote

datacenter

•	 Consistency levels that require both local and remote datacenter

responses

•	 Poor network performance between clients and database servers

•	 Protocol overheads

•	 Client-side performance bottlenecks

Chapter 7 Infrastructure and Deployment Models

135

�Recommendations for Specific
Hardware Components
This section takes a deeper look at each of the primary hardware considerations:

•	 Storage

•	 CPU (cores)

•	 Memory (RAM)

•	 Network interfaces

�Storage
One of the fastest ways to undermine all your other performance optimizations is to send

every read and write operation through an unsuitable disk. Although recent technology

advancements greatly improved the performance of storage devices, disks are (by far)

still the slowest component in a computer system.

From a performance standpoint, disk performance is typically measured in two

dimensions:

•	 The bandwidth available for sequential reads and writes

•	 The IOPS for random reads and writes

Database engineers obsess over optimizing disk access patterns with respect to those

two dimensions. People who are selecting, managing, or using a database should focus

on two additional disk considerations: the storage technology and the disk size.

�Disk Types

Locally-attached NVMe Solid State Drives (SSDs) are the standard when latency is

critical. Compared with other bus interfaces, NVMe SSDs connected to a Peripheral

Component Interconnect Express (PCIe) interface will generally deliver lower latencies

than the Serial AT Attachment (SATA) interface. If your workload isn’t super latency

sensitive, you could also consider using disks via the SATA interface. But, definitely avoid

using network-attached disks if you expect single-digit millisecond latencies. Being

network attached, these disks require an additional hop to reach a storage server, and

that ends up increasing latency for every database request.

Chapter 7 Infrastructure and Deployment Models

136

If your focus is on throughput and latency really doesn’t matter for your use case

(e.g., for moving data into a data warehouse), you might be able to get away with a

persistent disk—but it’s not recommended. By persistent disks, we mean durable

network storage devices that your VMs can access like physical disks, but are located

independently from your VMs. We’re not going to pick on any specific vendors, but a

little research should reveal issues like subpar performance and overall instability. If

you’re forced to work with persistent disks, be prepared to craft a creative solution.1

Hard disk drives (HDDs) might fast become a bottleneck. Since SSDs are getting

progressively cheaper and cheaper, using HDDs is not recommended. Some workloads

may work with HDDs, especially if they play nice and minimize random seeks. An

example of an HDD-friendly workload is a write-mostly (98 percent writes) workload

with minimal random reads. If you decide to use HDDs, try to allocate a separate disk for

the commit log.

ScyllaDB published benchmarking results of several different storage devices—

demonstrating how they perform under extreme load simulating typical database access

patterns.2 For example, Figures 7-1 through 7-4 visualize the different performance

characteristics from two NVMes—a persistent disk and an HDD.

1 For inspiration, consider Discord’s approach—but recognize that this is
certainly not a one-size-fits-all solution. It’s described in their blog, “How Discord
Supercharges Network Disks for Extreme Low Latency” (https://discord.com/blog/
how-discord-supercharges-network-disks-for-extreme-low-latency).
2 You can find the results, as well as the tool to reproduce the results, at https://github.com/
scylladb/diskplorer#sample-results.

Chapter 7 Infrastructure and Deployment Models

https://discord.com/blog/how-discord-supercharges-network-disks-for-extreme-low-latency
https://discord.com/blog/how-discord-supercharges-network-disks-for-extreme-low-latency
https://github.com/scylladb/diskplorer#sample-results
https://github.com/scylladb/diskplorer#sample-results

137

Figure 7-1.  NVMe bandwidth/latency graphs for an AWS i3.2xlarge instance type

Chapter 7 Infrastructure and Deployment Models

138

Figure 7-2.  Bandwidth/latency graphs for an AWS Im4gn.4xlarge instance type
using AWS Nitro SSDs

Chapter 7 Infrastructure and Deployment Models

139

3 Strangely, the 95th percentile at low rates is worse than at high rates.

Figure 7-3.  Bandwidth/latency graphs for a Google Cloud n2-standard-8 instance
type with a 2TB SSD persistent disk3

Chapter 7 Infrastructure and Deployment Models

140

Figure 7-4.  Bandwidth/latency graphs for a Toshiba DT01ACA200 hard
disk drive4

4 Note the throughput and IOPS were allowed to miss by a 15 percent margin rather than the
normal 3 percent margin.

�Disk Setup

We hear a lot of questions about RAID setups. Hardware RAIDs are commonly used to

avoid outages introduced by disk failures. As a result, the RAID-5 (distributed parity)

setup is often used.

However, distributed databases typically have their own internal replication

mechanism to allow for business continuity and achieve high availability. Therefore,

RAID setups employing data mirroring or distributed parity have proven to be very

detrimental to disk I/O performance and, fairly often, are used redundantly. On top of

that, we have found that some hardware RAID vendors deliver poor performance results

Chapter 7 Infrastructure and Deployment Models

141

depending on your database access mechanisms. One notable example: hardware

RAIDs that are unable to perform efficiently via asynchronous I/O or direct I/O calls. If

you believe your disk I/O is suboptimal, consider directly exposing the disks from your

hardware RAID to your operating system.

Conversely, RAID-0 (striping) setups often provide a boost in disk I/O performance

and allow the database to achieve higher IOPS and bandwidth than a single disk can

provide. The general recommendation for creating a RAID-0 setup is to use all disks of

the same type and capacity to avoid variable performance during your daily workload.

While it is true you would lose the entire RAID array in the event of a disk failure, the

replication performed by your distributed database should be sufficient to ensure that

your data remains available.

A couple of additional considerations related to disk setup:

•	 Storage servers often serve several other users and workloads at
the same time. Therefore, even though disks would be dedicated to

the database, your access performance can be undermined by factors

like the level to which the storage system is serving other users

concurrently. Most of the time, the storage medium provided to you

will not be optimal for supporting a low-latency database workload.

This can often be mitigated by ensuring that the disks are allocated

from a high-performing disk pool.

•	 It’s important to expose your database infrastructure disks
directly to the operating system guest from your hypervisor. We

have seen many situations where the I/O capacity of a database

was greatly impacted when disks were virtualized. To eliminate

any possible bottlenecks in a low-latency environment, give your

database direct access to your disks so that they can perform I/O as

they were designed to.

�Disk Size

When considering how much storage you need, be sure to account for your existing

data—replicated—plus your anticipated near-term data growth, and also leave sufficient

room for the overhead of internal operations (like compactions [for LSM-tree-based

databases], the commit log, backups, etc.).

Chapter 7 Infrastructure and Deployment Models

142

As Chapter 8 discusses, the most common topology involves three replicas for each

dataset. Assume you have 5TB of raw data and use a replication factor of three:

5TB Data X 3 RF = 15TB

But 15TB is just a starting point since there are other sizing criteria:

•	 What is your dataset’s growth rate? (How much do you ingest per

hour or day?)

•	 Will you store everything forever, or will you have an eviction process

(for example, based on Time To Live [TTL])?

•	 Is your growth rate stable (a fixed rate of ingestion per week/day/

hour) or is it stochastic and bursty? The former would make it more

predictable; the latter may mean you have to give yourself more

leeway to account for unpredictable but probabilistic events.

You can model your data’s growth rate based on the number of users or endpoints

and how that number is expected to grow over time. Alternately, data models are often

enriched over time, resulting in more data per source. Or your sampling rate may

increase. For example, your system may begin ingesting data every five seconds rather

than every minute. All of these considerations impact your data storage volume.

It’s strongly recommended that you select storage that’s suitable for where you

expect to end up after a certain time span. If you’re running your database on a public

cloud provider (self-managed or as a fully-managed Database-as-a-Service [DBaaS]),

you won’t need very much lead time to provision new hardware and expand your cluster.

However, for an on-premises hardware purchase, you may need to provision based on

your quarterly or annual budgeting process. You could also face delays due to the supply

chain disruptions that have become increasingly common.

Also, be sure to leave storage space for internal temporary operations such as

compaction, repairs, backups, and commit logs, as well as any other background process

that may temporarily introduce a space amplification. On the other hand, if you’re using

compression, be sure to factor in the amount of space that your selected compression

algorithm can save you.

Finally, recognize that every database has an ideal memory-to-storage ratio—for

example, a certain amount of TB or GB per node that it can support with optimal

performance. If this isn’t readily apparent in your database’s documentation, press your

vendor for their recommendation.

Chapter 7 Infrastructure and Deployment Models

143

�Raw Devices and Custom Drivers

Some database vendors require direct access to storage devices—without needing a

filesystem to exist. Such direct access is often referred to as creating a “raw” device,

which refers to the fact that the operating system won’t know how to manage it, and any

I/O is handled directly by the database. Issuing I/O directly to the underlying storage

device may provide a performance boost to the database. However, it is important to

understand some of this approach’s drawbacks, which may not be important for your

specific deployment.

	 1.	 Error prone: Directly issuing I/O to a disk rather than through a

filesystem is error prone. While it will provide a performance gain,

incorrect handling of the underlying storage could result in data

corruption, data loss, or unexpected bugs.

	 2.	 Complex: Raw devices are not as common as one might expect. In

fact, very few databases decided to implement that approach. It’s

important to note that since raw devices aren’t typically mounted

as regular filesystems, their manageability will be fully dependent

on what your vendor provides.

	 3.	 Lock-in: Once you are using a raw device, it’s extremely difficult

to move away from it. You can’t mount raw devices or query their

storage consumption via typical operating system mechanisms.

All of your disks need to be arranged in a certain way, and you

can’t easily go back to a regular filesystem.

�Maintaining Disk Performance Over Time

Databases are very storage I/O intensive, so disks will wear out over time. Most disk

vendors provide estimates concerning the performance durability of their products.

Check on those and compare.

There are multiple tools and programs that can help with SSD performance over

time. One example is the fstrim program, which is frequently run weekly to discard

unused filesystem blocks. fstrim is an operating system background process that

doesn’t require any database action and may improve I/O to a significant extent.

Chapter 7 Infrastructure and Deployment Models

144

Tip  If you have to choose one place to invest—on CPU, storage, memory, or
networking—we recommend splurging on storage. Everything else has evolved
faster and better than storage. It still remains the slowest component in most
systems.

�Tiered Storage

Many use cases have different latency requirements for different sets of data. Similarly,

industries may see exponential storage utilization growth over time. It is not always

desirable, or even possible, to get rid of old data (for example, due to compliance

regulations, third-party contracts, or simply because it still carries relevance for the

business).

Teams with storage-heavy use cases often seek ways to minimize the costs of storage

consumption: by reducing the replication factor of their dataset, using less performant

(although cheaper) storage disks, or by employing a manual data rotation process from

faster to slower disks.

Tiered storage is a solution implemented by some databases in order to address most

of these concerns. It allows users to configure the database to use distinct storage tiers,

and to define which criteria the database should use to ensure that the data is correctly

replicated to its relevant tier. For example, MongoDB allows you to determine how data

is replicated to a specific storage tier by assigning different tier tags to shards, allowing

its balancer to migrate data between tiers automatically. On top of that, Atlas Online

Archive also allows the database to offload historical datasets to cloud storage.

�CPUs (Cores)
Next is the CPU. As of this writing, you are probably looking at modern servers running

some reasonably modern Intel, AMD, or ARM chips, which are commonly found across

most cloud providers and enterprise hardware vendors. Along with storage, CPUs are

another compute resource which—if not correctly sized—may introduce contention to

your workload and impact your latencies. Clusters handling hundreds of thousands up

to millions of operations per second tend to get very high CPU loads.

Chapter 7 Infrastructure and Deployment Models

145

More cores will generally mean better performance. This is important for achieving

optimal performance from databases that are architected to benefit from multithreading,

and it’s absolutely essential for databases that are architected with a shard-per-core

architecture—running a separate shard on each core in each server. In this case, the

more cores the CPU has, the more shards—and the better data distribution—the

database will have.

A combination of vendor recommendations and benchmarking (see Chapter 9)

can help you determine how much throughput each multicore chip can support. A

general recommendation is to avoid running production systems close to the CPU limits

and find the sweet spot between supporting your expected performance and leaving

room for throughput growth. On top of that, when doing benchmarking, remember

to also factor in background database operations that might be detrimental to your

performance. For example, Cassandra and Cassandra-compatible databases often

need to run repair: a weekly process to ensure data consistency across the cluster. This

process requires a lot of coordination and communication across the entire cluster. If

your workload is not properly sized to accommodate background database operations

and other events (such as node failures), your latency may increase to a level that

surprises you.

When using virtual machines, containers, or the public cloud, remember that each

virtual CPU is mapped to a single logical core, or thread. In many cloud deployments,

nodes are provided on a vCPU basis. The vCPU is typically a single hyperthread from

a dual hyperthread x86 physical core for Intel/AMD variants, or a single core for

ARM chips.

No matter what your deployment of choice involves, avoid overcommitting CPU

resources if performance is a priority. Doing so will prevent other guests from stealing

CPU time5 from your database.

�Memory (RAM)
If you’re working with an in-memory database, having enough memory to hold your

entire dataset is an absolute must. But every database uses in-memory caching to some

extent. For example, some databases require enough memory space for indexes to avoid

expensive round-trips to storage disks. Others leverage an internal data cache to allow

5 For more on CPU steal time, see “Detecting CPU Steal Time in Guest Virtual Machines” by Jamie
Fargen (https://opensource.com/article/20/1/cpu-steal-time).

Chapter 7 Infrastructure and Deployment Models

https://opensource.com/article/20/1/cpu-steal-time

146

for lower latencies when retrieving recently used data, Cassandra and Cassandra-like

databases implement memtables, and some databases allow you to control which tables

are served entirely from memory. The more memory the database has at its disposal,

the better you can take advantage of those mechanisms. After all, even the fastest NVMe

can’t come close to the speed of RAM access.

In general, there is no blanket recommendation for “how much memory is enough”

for a database. Different vendors have different requirements and different use cases also

require different memory sizes. However, latency-sensitive use cases typically require

high memory footprints in order to achieve high cache hit rates and serve low-latency

read requests efficiently.

For example, a use case with a higher payload size requires a larger memory

footprint than one with a smaller payload size. Another interesting aspect to consider is

how frequently the use case in question reads data that may be present in memory (hot

data) as opposed to data that was never read (cold data). As mentioned in Chapter 2, the

latter can easily undermine your latencies.

Without a sufficient disk-to-memory ratio, you will be hitting your storage far more

than you probably want if you intend to keep your latencies low. The ideal ratio varies

from database to database since every caching implementation is different, so be sure

to ask your vendor for their specific recommendations. For example, ScyllaDB currently

recommends that for every 1GB of memory allocated to a node, you can store up to

100GB of data (so if you have 32GB of memory, you can handle around 3TB). The higher

your memory-to-storage ratio gets, the less room you have for caching your total dataset.

Every database has some sort of hard physical limit. If you don’t have enough memory

and you have to run a workload on top of a very large dataset, it’s either going to be

rather slow or increase the risk of the database running out of memory.

Another ratio to keep in mind: memory per CPU core. At ScyllaDB, we recommend

at least 8GB of memory per CPU core for production purposes (because, given our

shared-nothing architecture, every shard works independently and has its own allocated

memory for caching). 8GB per vCPU is the same ratio used by most cloud providers for

NoSQL or Big Data-oriented instance types. Again, the recommended ratio will vary

across vendors, depending on the database’s specific internal cache implementation and

other implementation details. For example, in Cassandra and Cassandra-like databases,

part of the memory will be allocated for some of its SSTable-components in order to

speed up disk lookups when reading cold data. Aerospike will typically store all indexes

in RAM. And MongoDB, on average, requires 1GB of RAM per 100K assets.

Chapter 7 Infrastructure and Deployment Models

147

Distributed databases are notoriously high memory consumers. Regardless of its

implementation, the database will always need to store some relevant parts of your

dataset in memory in order to avoid wasting time on disk I/O. Insufficient memory can

manifest itself as unpredictable, erratic database behavior—even crashes.

�Network
Lastly, you have to ensure that network I/O does not become a bottleneck. Networking

is often an overlooked component. As with any distributed system, a database involves

a lot of traffic between all the cluster members to check for liveness, replicate state

and topology changes, and so on. As a result, network delays not only deteriorate your

application’s latency, but also prevent internode communication from functioning

effectively.

At ScyllaDB, we recommend a minimum network bandwidth of 10Gbps because

internal database operations such as streaming, repairs, and gossip can become very

network intensive. On top of that, you also need to factor in the actual throughput

required for the use case in question; the number of operations per second will certainly

be the highest bandwidth consumer for your deployment.

As with memory, the required network bandwidth will vary. Be sure to check your

vendor recommendations and consider the nature of your use case. A low throughput

workload will obviously consume less traffic than a higher throughput one.

Tip: Use CPU pinning to mitigate the impact of hardware
interrupts. H ardware interrupts, which typically stem from (but are not limited
to) high network Internet traffic, force the OS kernel to stop everything and respond
to the hardware before returning to the job at hand. Too many interrupts (e.g., a
high softirq percent) will degrade database performance, as your CPUs may stall
during processing for serving network traffic. One way to resolve this is to use
CPU pinning. This tells the system that all network interrupts should be handled
by specific CPUs that are not being used by the database. With that setup, you can
blast the database with network traffic and be reasonably confident that you won’t
overwhelm it or stall the database processing during normal operations.

Chapter 7 Infrastructure and Deployment Models

148

For cloud deployments, most IaaS vendors provide a modern network infrastructure

with ample bandwidth between your database servers and between the database

and the application clients. Be sure to check on your client’s network bandwidth

consumption if you suspect network problems. A common mistake we see in

deployments involves application clients deployed with suboptimal network capacity.

Also, be sure to place your application servers as close as possible to your database.

If you are deploying them in a single region, a shorter physical distance between the

servers will translate to better network performance (since it will require fewer network

hops for communication) and, as a result, lower latencies. If you need to go multi-region

and you require strong consistency or replication across these regions, then you need to

pay the latency penalty for traversing regions—plus, you also have to pay, quite literally,

with respect to cross-region networking transfer fees. For multi-region deployments with

cross-region replication, a slow network link may create replication delays that cause

the database to apply backpressure on your writes until it manages to replicate the data

piled up.

�Considerations in the Cloud
The “on-prem vs cloud” decision depends heavily on your organization’s security and

regulatory requirements as well as its business strategy—and is well beyond the scope

of this book. Instead of heading down that path, let’s focus on exploring performance

considerations that are unique to cloud deployments.

Most cloud providers offer a wide range of instance types that you may choose

to host your workload. In our experience, most of the mistakes and performance

bottlenecks seen on distributed databases within cloud deployments are due to an

incorrect instance or storage type selection during the initial cluster setup. A common

misunderstanding (and concern) that many people have is the fact that NVMe-based

storage may be more expensive than network-attached storage. The misconception likely

stems from the assumption that since NVMes are faster, they would incur elevated costs.

However it turns out to be quite the opposite: Since NVMe disks on cloud environments

are tied to the lifecycle of an instance, they end up being cheaper than network disks,

which require holding up your dataset for a prolonged period of time. We encourage

you to compare the costs of NVMe backed-up storage against network-attached disks on

your cloud vendor of choice.

Chapter 7 Infrastructure and Deployment Models

149

Some cloud vendors have different instance types for different distributed database

workloads. For example, some workloads may benefit more from compute-heavy

instance types, with more compute power than storage capacity. Conversely, storage-

dense instance types typically feature a higher storage to memory ratio and are often

used by storage-heavy workloads.

To complicate things even more, some cloud providers may offer different CPU

generations for the same instance type. If one CPU generation is considerably slower

than other nodes, the wrong choice could introduce performance bottlenecks into your

cluster.

We have seen some (although rare) scenarios where a noisy neighbor dragged down

an entire node performance with no reasonable explanation. The lack of visibility and

control in cloud instances makes it harder to diagnose such situations. Often, you need

to reach out to your cloud vendor directly to resolve the situation.

As you start configuring your instance, remember that a cloud environment isn’t

created exclusively for databases. You have access to a wide range of options, but it can

be confusing to determine where to start and which options to use. In general, it’s best

to check with your database vendor on which instance types are recommended for

deployment. Even better, go beyond that and compare the results of their benchmarks

against those same instance types running your workload.

After you have decided on your instance types and deployment options, it’s time to

think about instance placement. Most clouds will charge you for both inter-region traffic

and inter-zone traffic, which may quite surprisingly increase the overall networking

costs. Some companies try to mitigate this cost by placing all instances under a single

availability zone (AZ), which also carries the risk of potentially having to face a cluster-

wide outage if/when that AZ goes down. Others opt to ignore the cost aspect and

deploy their replicas in different AZs to ensure data is properly replicated to an isolated

environment. Regardless of your instance’s placement of choice, note that some

database drivers allow clients in specific AZs to route queries only against database

replicas living in the same availability zone in order to reduce costs. Similarly, you will

also want to ensure that your application clients are located under the same zones as

your database to minimize your networking costs.

Chapter 7 Infrastructure and Deployment Models

150

�Fully Managed Database-as-a-Service
Does the database-as-a-service model help or hurt database performance? It really

depends on the following:

•	 How much attention your database requires to achieve and

consistently meet your performance expectations

•	 Your team’s experience working with the specific database

you’re using

•	 Your team’s time and desire to tinker with that database

•	 The level of expertise—especially with respect to performance—that

your DBaaS provider dedicates to your account

Managed DBaaS solutions can easily speed up your go-to-market and allow you to

focus on priorities beyond your database. Most database vendors now provide some

sort of managed solution. There are even independent companies in the business of

providing this kind of service for a variety of different distributed databases.

We have seen many examples where a managed solution helped users succeed, as

well as numerous complaints over the fact that some managed solutions were rather

limited. It is not our intention to recommend nor criticize any specific service provider in

question. Here is some vendor-agnostic advice on things to consider before selecting a

managed solution:

•	 Does the vendor satisfy your existing security requirements? Does it

provide enough evidence of security certifications issued by a known

security company?

•	 What are the options for observability and how do you export the

data in question to your monitoring platform of choice?

•	 What kind of flexibility do you have with your deployment? What are

the available tunable options and the support for those within your

managed solution?

•	 Does it allow you to peer traffic from your existing application

network(s) to your database in a private and secure way?

•	 What are the available support options and SLAs?

Chapter 7 Infrastructure and Deployment Models

151

•	 Which deployment options are available, what’s the flexibility among

switching, and what’s the cost comparison if you were to deploy and

maintain it on your own?

•	 How easy is it for you to export your data if you need to move your

deployment to a different vendor in the future?

•	 What, if any, migration options are available and what amount of

effort do they require?

These are just some of the many questions and concerns that we’ve frequently

heard teams asking (or wishing they asked before they got caught in an undesirable

option). Considering a third-party vendor to manage a relatively critical aspect of your

infrastructure is very often challenging. However, under the right circumstances and

vendor-user fit, it can be a great option for reducing your admin burden and optimizing

your performance.

�Serverless Deployment Models
Serverless refers to database solutions that offer near-instant scaling up or scaling down

of database infrastructure—and charge you for the capacity and storage that you actually

consume.

A serverless model could theoretically yield a performance advantage. Before

serverless, many organizations faced a tradeoff:

•	 (Slightly or generously, depending on your risk tolerance)

overestimate the capacity they need to guarantee adequate

performance.

•	 Watch performance suffer if their overly-conservative capacity

estimates proved inadequate.

Serverless can help in a few different ways and situations.

First, with variable workloads. Since the database can rapidly scale up as your

workload increases, you can worry less about performance issues stemming from

inadequate capacity. If your traffic ebbs and flows across the day/week/month, you

can spend less during the light periods and dedicate those resources to supporting the

peak periods. And if your company suddenly experiences “catastrophic success,” you

don’t have to worry about the headaches associated with needing to suddenly scale

Chapter 7 Infrastructure and Deployment Models

152

your infrastructure. If all goes well, the vendor will “automagically” ensure that you’re

covered, with acceptable performance. You won’t need to procure any additional

servers, or even contact your cloud provider.

Serverless is also a great option to consider if you’re working on a new project and

are not sure what capacity you need to meet performance expectations. It gives you the

freedom to start fast and scale (or shrink) depending on real-world usage. Database

sizing is one less thing to worry about. And you don’t need to predict the future.

Finally, serverless also makes it simpler to justify the spend internally. With this

model, you can assure your organization that you are never overprovisioned—at least

not for long. You’re paying for exactly the amount of performance that the database

vendor determines you need at all times.

However, a serverless deployment also carries the risk of cost overruns and the

uncertainty of unpredictable costs. For example, DynamoDB pricing may not be very

attractive for write-heavy workloads. Similarly, serverless database services may charge

an arm and a leg (or an eye and a knee) depending on the number of operations per

second you plan to sustain over an extended period of time. In some cases, it could

become a double-edged sword from a cost perspective if your goal is to sustain a high-

throughput performant system at large scale.

Another aspect to consider when thinking about a serverless solution is whether

the solution in question is compatible with your existing infrastructure components.

For example, you’ll want to explore what amount of effort is required to connect your

message queueing or analytics tool with that specific serverless solution.

Remember that the overall concept behind serverless is to abstract away the

underlying infrastructure in such a way that not all database-configurable options are

available to you. As a result, troubleshooting potential performance problems is often

more challenging since you might need to rely on your vendor’s input and guidance to

understand which actions to take. Being serverless also means that you lack visibility

into whether the infrastructure you consume is shared with other tenants. Many

distributed database vendors may also offer you different pricing tiers for shared and

dedicated environments.

�Containerization and Kubernetes
Containers and Kubernetes are now ubiquitous, even for stateful systems like databases.

Should you use them? Probably—unless you have a good reason not to.

Chapter 7 Infrastructure and Deployment Models

153

But be aware that there is a performance penalty for the operational convenience

of using containers. This is to be expected because of the extra layer of abstraction (the

container itself), relaxation of resource isolation, and increased context switches. The

good news is that it can certainly be overcome. In our testing using ScyllaDB, we found

it is possible to take what was originally a 69 percent reduction in peak throughput down

to a 3 percent performance penalty.6

Here’s the TL;DR on that specific experiment:

Containerizing applications is not free. In particular, processes

comprising the containers have to be run in Linux cgroups and

the container receives a virtualized view of the network. Still,

the biggest cost of running a close-to-hardware, thread-per-core

application like ScyllaDB inside a Docker container comes from

the opportunity cost of having to disable most of the performance

optimizations that the database employs in VM and bare-metal

environments to enable it to run in potentially shared and

overcommitted platforms.

The best results with Docker are obtained when resources

are statically partitioned and we can bring back bare-metal

optimizations like CPU pinning and interrupt isolation. There is

only a 10 percent performance penalty in this case as compared

to the underlying platform—a penalty that is mostly attributed to

the network virtualization. Docker allows users to expose the host

network directly for specialized deployments. In cases in which this

is possible, we saw that the performance difference compared to the

underlying platform falls down to 3 percent.

Of course, the potential penalty and strategies for mitigating will vary from database

to database. But the key takeaway is that there is likely a significant performance

penalty—so be sure to hunt it down and research how to mitigate it. Some common

mitigation strategies include:

6 See “The Cost of Containerization for Your ScyllaDB” on the ScyllaDB blog (https://www.
scylladb.com/2018/08/09/cost-containerization-scylla/).

Chapter 7 Infrastructure and Deployment Models

https://www.scylladb.com/2018/08/09/cost-containerization-scylla/
https://www.scylladb.com/2018/08/09/cost-containerization-scylla/

154

•	 Ensure that your containers have direct access to the database’s

underlying storage.

•	 Expose the host OS network to the container in order to avoid the

performance penalty due to its network virtualization layer.

•	 Allocate enough resources to the container in question, and ensure

these are not overcommitted with other containers or processes

running within the underlying host OS.

Kubernetes adds yet another virtualization layer—and thus opens the door to yet

another layer of performance issues, as well as different strategies for mitigating them.

First off, if you have the choice of multiple options for deploying and managing database

clusters on Kubernetes, test them out with an eye on performance. Once you settle

on the best fit for your needs, dive into the configuration options that could impact

performance. Here are some performance tips that cross databases:

•	 Consider dedicating specific and independent Kubernetes nodes for

your database workloads and use affinities in order to configure their

placement.

•	 Enable hostNetworking and be sure to set up the required kernel

parameters as recommended by your vendor (for example, fs.

aio-max-nr for increasing the number of events available for

asynchronous I/O processing in the Linux kernel).

•	 Ensure that your database pods have a Guaranteed QoS class7 to

avoid other pods from potentially hurting your main workload.

•	 Be sure to use an operator8 in order to orchestrate and control the

lifecycle of your existing Kubernetes database cluster. For example,

ScyllaDB has its ScyllaDB Operator project.

7 For more detail, see “Create a Pod that Gets Assigned a QoS Class of Guaranteed” in the
Kubernetes docs (https://kubernetes.io/docs/tasks/configure-pod-container/
quality-service-pod/#create-a-pod-that-gets-assigned-a-qos-class-of-guaranteed).
8 For more detail, see “Operator Pattern” in the Kubernetes docs https://kubernetes.io/docs/
concepts/extend-kubernetes/operator/.

Chapter 7 Infrastructure and Deployment Models

https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/#create-a-pod-that-gets-assigned-a-qos-class-of-guaranteed
https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/#create-a-pod-that-gets-assigned-a-qos-class-of-guaranteed
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

155

�Summary
This chapter kicked off the final part of this book, focused on sharing recommendations

for getting better performance out of your database deployment. It looked at

infrastructure and deployment model considerations that are important to understand

whether you’re managing your own deployment or opting for a database-as-a-service

(maybe serverless) deployment model. The next chapter looks at performance

considerations relevant to the topology itself: replication, geographic distribution,

scaling up and/or out, and intermediaries like external caches, load balancers, and

abstraction layers.

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter's Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 7 Infrastructure and Deployment Models

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

157

CHAPTER 8

Topology Considerations
As mentioned in Chapter 5, database servers are often combined into intricate

topologies where certain nodes are grouped in a single geographical location; others

are used only as a fast cache layer, and yet others store seldom-accessed cold data in a

cheap place, for emergency purposes only. That chapter covered how drivers work to

understand and interact with that topology to exchange information more efficiently.

This chapter focuses on the topology in and of itself. How is data replicated across

geographies and datacenters? What are the risks and alternatives to taking the common

NoSQL practice of scaling out to the extreme? And what about intermediaries to your

database servers—for example, external caches, load balancers, and abstraction layers?

Performance implications of all this and more are all covered here.1

�Replication Strategy
First, let’s look at replication, which is how your data will be spread to other replicas

across your cluster.

Note  If you want a quick introduction to the concept of replication, see
Appendix A.

Having more replicas will slow your writes (since every write must be duplicated

to replicas), but it could accelerate your reads (since more replicas will be available for

serving the same dataset). It will also allow you to maintain operations and avoid data

1 This chapter draws from material originally published on the ScyllaDB blog (www.scylladb.
com/blog/), ScyllaDB Documentation (https://docs.scylladb.com/stable/), the ScyllaDB
whitepaper “Why Scaling Up Beats Scaling Out for NoSQL” (https://lp.scylladb.com/
whitepaper-scaling-up-vs-scaling-out-offer.html), and an article that ScyllaDB co-founder
and CEO Dor Laor wrote for The New Stack. It is used here with permission of ScyllaDB.

© Felipe Cardeneti Mendes, Piotr Sarna, Pavel Emelyanov, Cynthia Dunlop 2023
F. C. Mendes et al., Database Performance at Scale, https://doi.org/10.1007/978-1-4842-9711-7_8

http://www.scylladb.com/blog/
http://www.scylladb.com/blog/
https://docs.scylladb.com/stable/
https://lp.scylladb.com/whitepaper-scaling-up-vs-scaling-out-offer.html
https://lp.scylladb.com/whitepaper-scaling-up-vs-scaling-out-offer.html
https://doi.org/10.1007/978-1-4842-9711-7_8

158

loss in the event of node failures. Additionally, replicating data to get closer to your

application and closer to your users will reduce latency, especially if your application has

a highly geographically-distributed user base.

A replication factor (RF) of 1 means there is only one copy of a row in a cluster, and

there is no way to recover the data if the node is compromised or goes down (other than

restoring from a backup). An RF of 2 means that there are two copies of a row in a cluster.

An RF of at least three is used in most systems. This allows you to write and read with

strong consistency, as a quorum of replicas will be achieved, even if one node is down.

Many databases also let you fine-tune replication settings at the regional level. For

example, you could have three replicas in a heavily used region, but only two in a less

popular region.

Note that replicating data across multiple regions (as Bigtable recommends as a

safeguard against both availability zone failure and regional failure) can be expensive.

Before you set this up, understand the cost of replicating data between regions.

If you’re working with DynamoDB, you create tables (not clusters), and AWS

manages the replication for you as soon as you set a table to be Global. One notable

drawback of DynamoDB global tables is that transactions are not supported across

regions, which may be a limiting factor for some use cases.

�Rack Configuration
If all your nodes are in the same datacenter, how do you configure their placement? The

rule of thumb here is to have as many racks as you have replicas. For example, if you

have a replication factor of three, run it in three racks. That way, even if an entire rack

goes down, you can still continue to satisfy read and write requests to a majority of your

replicas. Performance might degrade a bit since you have lost roughly 33 percent of your

infrastructure (considering a total zone/rack outage), but overall you’ll still be up and

running. Conversely, if you have three replicas distributed across two racks, then losing

a rack may potentially affect two out of the three natural endpoints for part of your data.

That’s a showstopper if your use case requires strongly consistent reads/writes.

�Multi-Region or Global Replication
By placing your database servers close to your users, you lower the network latency. You

can also improve availability and insulate your business from regional outages.

Chapter 8 Topology Considerations

159

If you do have multiple datacenters, ensure that—unless otherwise required by the

business—reads and writes use a consistency level that is confined to replicas within

a specific datacenter. This approach avoids introducing a latency hit by instructing the

database to only select local replicas (under the same region) for achieving your required

consistency level. Also, ensure that each application client knows what datacenter is

considered its local one; it should prioritize that local one for connections and requests,

although it may also have a fallback strategy just in case that datacenter goes down.

Note that application clients may or may not be aware of the multi-datacenter

deployment, and it is up to the application developer to decide on the awareness to

fallback across regions. Although different settings and load balancing profiles exist

through a variety of database drivers, the general concept for an application to failover

to a different region in the event of a local failure may often break application semantics.

As a result, its reaction upon a failure must be handled directly by the application

developer.

�Multi-Availability Zones vs. Multi-Region
To mitigate a possible server or rack failure, cloud vendors offer (and recommend) a

multi-zone deployment. Think about it as if you have a datacenter at your fingertips

where you can deploy each server instance in its own rack, using its own power, top-of-

rack switch, and cooling system. Such a deployment will be bulletproof for any single

system or zonal failure, since each rack is self-contained. The availability zones are still

located in the same region. However, a specific zone failure won’t affect another zone’s

deployed instances.

For example, on Google Compute Engine, the us-east1-b, us-east1-c, and us-

east1-d availability zones are located in the us-east1 region (Moncks Corner, South

Carolina, USA). But each availability zone is self-contained. Network latency between

AZs in the same region is negligible for the purpose of this discussion.

In short, both multi-zone and multi-region deployments help with business

continuity and disaster recovery respectively, but multi-region has the additional benefit

of minimizing local application latencies in those local regions. It might come at a cost

though: cross-region data replication costs need to be considered for multi-regional

topologies.

Note that multi-zonal deployments will similarly charge you for inter-zone

replication. Although it is perfectly possible to have a single zone deployment for your

Chapter 8 Topology Considerations

160

database, it is often not a recommended approach because it will effectively be exposed

as a single point of failure toward your infrastructure. The choice here is quite simple:

Do you want to reduce costs as much as possible and risk potential unavailability, or

do you want to guarantee high availability in a single region at the expense of network

replication costs?

�Scaling Up vs Scaling Out
Is it better to have a larger number of smaller (read, “less powerful”) nodes or a smaller

number of larger nodes? We recommend aiming for the most powerful nodes and

smallest clusters that meet your high availability and resiliency goals—but only if your

database can truly take advantage of the power added by the larger nodes.

Let’s unravel that a bit. For over a decade, NoSQL’s promise has been enabling

massive horizontal scalability with relatively inexpensive commodity hardware. This

has allowed organizations to deploy architectures that would have been prohibitively

expensive and impossible to scale using traditional relational database systems.

Over that same decade, “commodity hardware” has also undergone a

transformation. But not all databases take advantage of modern computing resources.

Many aren’t architected to take advantage of the resources offered by large nodes, such

as the added CPU, memory, and solid-state drives (SSDs), nor can they store large

amounts of data on disk efficiently. Managed runtimes, like Java, are further constrained

by heap size. Multi-threaded code, with its locking and context-switches overhead and

lack of attention for Non-Uniform Memory Architecture (NUMA), imposes a significant

performance penalty against modern hardware architectures.

If your database is in this group, you might find that scaling up quickly brings you to

a point of diminishing returns. But even then, it’s best to max out your vertical scaling

potential before you shift to horizontal scaling.

A focus on horizontal scaling results in system sprawl, which equates to operational

overhead, with a far larger footprint to keep managed and secure. Server sprawl

also introduces more network overhead to distributed systems due to the constant

replication and health checks done by every single node in your cluster. Although most

vendors claim that scaling out will bring you linear performance, some others are more

conservative and state that it will bring you “near to linear performance.” For example,

Chapter 8 Topology Considerations

161

Cassandra Production Guidelines2 do not recommend clusters larger than 50 nodes

using the default number of 16 vNodes per instance because it may result in decreased

availability.

Moreover, there are quite a few advantages to using large, powerful nodes.

•	 Less noisy neighbors: On cloud platforms, multi-tenancy is

the norm. A cloud platform is, by definition, based on shared

network bandwidth, I/O, memory, storage, and so on. As a result,

a deployment of many small nodes is susceptible to the “noisy

neighbor” effect. This effect is experienced when one application

or virtual machine consumes more than its fair share of available

resources. As nodes increase in size, fewer and fewer resources

are shared among tenants. In fact, beyond a certain size, your

applications are likely to be the only tenant on the physical machines

on which your system is deployed.

•	 Fewer failures: Since large and small nodes fail at roughly the

same rate, large nodes deliver a higher mean time between failures

(MTBF) than small nodes. Failures in the data layer require operator

intervention, and restoring a large node requires the same amount of

human effort as a small one. In a cluster of a thousand nodes, you’ll

likely see failures every day—and this magnifies administrative costs.

•	 Datacenter density: Many organizations with on-premises

datacenters are seeking to increase density by consolidating

servers into fewer, larger boxes with more computing resources per

server. Small clusters of large nodes help this process by efficiently

consuming denser resources, in turn decreasing energy and

operating costs.

•	 Operational simplicity: Big clusters of small instances demand

more attention, and generate more alerts, than small clusters of large

instances. All of those small nodes multiply the effort of real-time

monitoring and periodic maintenance, such as rolling upgrades.

2 See https://cassandra.apache.org/doc/latest/cassandra/getting_started/
production.html.

Chapter 8 Topology Considerations

https://cassandra.apache.org/doc/latest/cassandra/getting_started/production.html
https://cassandra.apache.org/doc/latest/cassandra/getting_started/production.html

162

Some architects are concerned that putting more data on fewer nodes increases

the risks associated with outages and data loss. You can think of this as the “big basket”

problem. It may seem intuitive that storing all of your data on a few large nodes makes

them more vulnerable to outages, like putting all of your eggs in one basket. But this

doesn’t necessarily hold true. Modern databases use a number of techniques to ensure

availability while also accelerating recovery from failures, making big nodes both safer

and more economical. For example, consider capabilities that reduce the time required

to add and replace nodes and internal load balancing mechanisms to minimize the

throughput or latency impact across database restarts.3

�Workload Isolation
Many teams find themselves in a position where they need to run multiple different

workloads against the database. It is often compelling to aggregate different workloads

under a single cluster, especially when they need to work on the exact same dataset.

Keeping several workloads together under a single cluster can also reduce costs. But, it’s

essential to avoid resource contention when implementing latency-critical workloads.

Failure to do so may introduce hard-to-diagnose performance situations, where one

misbehaving workload ends up dragging down the entire cluster’s performance.

There are many ways to accomplish workload isolation to minimize the resource

contention that could occur when running multiple workloads on a single cluster. Here

are a few that work well. Keep in mind that the best approach depends on your existing

database’s available options, as well as your use case’s requirements:

•	 Physical isolation: This setup is often used to entirely isolate one

workload from another. It involves essentially extending your

deployment to an additional region (which may be physically the

same as your existing one, but logically different on the database

side). As a result, the workloads are split to replicate data to another

3 ScyllaDB Heat Weighted Load Balancing provides a smarter request redistribution
algorithm based on the cache hit ratio of nodes in the cluster. Learn more at www.scylladb.
com/2017/09/21/scylla-heat-weighted-load-balancing/.

Chapter 8 Topology Considerations

http://www.scylladb.com/2017/09/21/scylla-heat-weighted-load-balancing/
http://www.scylladb.com/2017/09/21/scylla-heat-weighted-load-balancing/

163

location, but queries are executed only within a particular location—

in such a way that a performance bottleneck in one workload won’t

degrade or bottleneck the other. Note that a downside of this solution

is that your infrastructure costs double.

•	 Logical isolation: Some databases or deployment options allow

you to logically isolate workloads without needing to increase your

infrastructure resources. For example, ScyllaDB has a workload

prioritization feature where you can assign different weights for

specific workloads to help the database understand which workload

you want it to prioritize in the event of system contention. If your

database does not offer such a feature, you may still be able to

run two or more workloads in parallel, but watch out for potential

contentions in your database.

•	 Scheduled isolation: Many times, you might need to simply run

batched scheduled jobs at specified intervals in order to support

other business-related activities, such as extracting analytics

reports. In those cases, consider running the workload in question

at low-peak periods (if any exist), and experiment with different

concurrency settings in order to avoid impairing the latency of the

primary workload that’s running alongside it.

�More on Workload Prioritization for Logical Isolation
ScyllaDB users sometimes use workload prioritization to balance OLAP and OLTP

workloads. The goal is to ensure that each defined task has a fair share of system

resources so that no single job monopolizes system resources, starving other jobs of their

needed minimums to continue operations.

In Figure 8-1, note that the latency for both workloads nearly converges. OLTP

processing began at or below 2ms P99 latency up until the OLAP job began at 12:15.

When the OLAP workload kicked in, OLTP P99 latencies shot up to 8ms, then further

degraded, plateauing around 11–12ms until the OLAP job terminated after 12:26.

Chapter 8 Topology Considerations

164

Figure 8-1.  Latency between OLTP and OLAP workloads on the same cluster
before enabling workload prioritization

These latencies are approximately six times greater than when OLTP ran by itself.

(OLAP latencies hover between 12–14ms, but, again, OLAP is not latency-sensitive).

Figure 8-2 shows that the throughput on OLTP sinks from around 60,000 OPS to

half that—30,000 OPS. You can see the reason why. OLAP, being throughput hungry, is

maintaining roughly 260,000 OPS.

Chapter 8 Topology Considerations

165

Figure 8-2.  Comparative throughput results for OLTP and OLAP on the same
cluster without workload prioritization enabled

Ultimately, OLTP suffers with respect to both latency and throughput, and users

experience slower response times. In many real-world conditions, such OLTP responses

would violate a customer’s SLA.

Figure 8-3 shows the latencies after workload prioritization is enabled. You can see

that the OLTP workload similarly starts out at sub-millisecond to 2ms P99 latencies.

Once an OLAP workload is added, OLTP processing performance degrades, but with

P99 latencies hovering between 4–7ms (about half of the 11–12ms P99 latencies when

workload prioritization was not enabled).

Chapter 8 Topology Considerations

166

Figure 8-3.  OLTP and OLAP latencies with workload prioritization enabled

It is important to note that once system contention kicks in, the OLTP latencies

are still somewhat impacted—just not to the same extent they were prior to workload

prioritization. If your real-time workload requires ultra-constant single-digit millisecond

or lower P99 latencies, then we strongly recommend that you avoid introducing any form

of contention.

The OLAP workload, not being as latency-sensitive, has P99 latencies that hover

between 25–65ms. These are much higher latencies than before—the tradeoff for

keeping the OLTP latencies lower.

Throughput wise, Figure 8-4 shows that the OLTP traffic is a smooth 60,000 OPS until

the OLAP load is also enabled.

Chapter 8 Topology Considerations

167

Figure 8-4.  OLTP and OLAP load throughput with workload
prioritization enabled

It does dip in performance at that point, but only slightly, hovering between 54,000 to

58,000 OPS. That is only a 3–10 percent drop in throughput. The OLAP workload, for its

part, hovers between 215,000–250,000 OPS. That is a drop of 4–18 percent, which means

an OLAP workload would take longer to complete. Both workloads suffer degradation, as

would be expected for an overloaded cluster, but neither to a crippling degree.

�Abstraction Layers
It’s becoming fairly common for teams to write an abstraction layer on top of their

databases. Instead of calling the database’s APIs directly, the applications connect to this

database-agnostic abstraction layer, which then manages the logistics of connecting to

the database.

There are usually a few main motives behind this move:

•	 Portability: If the team wants to move to another database, they

won’t need to modify their applications and queries. However, the

team responsible for the abstraction layer will need to modify that

code, which could turn out to be more complicated.

Chapter 8 Topology Considerations

168

•	 Developer simplicity: Developers don’t need to worry about the

inner details of working with any particular database. This can make

it easier for people to move around from team to team.

•	 Scalability: An abstraction layer can be easier to containerize. If the

API gets overloaded, it’s usually easier to scale out more containers in

Kubernetes than to spin off more containers of the database itself.

•	 Customer-facing APIs: Exposing the database directly to end-users

is typically not a good idea. As a result, many companies expose

common endpoints, which are eventually translated into actual

database queries. As a result, the abstraction layer can shed requests,

limit concurrency across tenants, and perform auditability and

accountability over its calls.

But, there’s definitely a potential for a performance penalty that is highly dependent

on how efficiently the layer was implemented. An abstraction layer that was fastidiously

implemented by a team of masterful Rust engineers is likely to have a much more

negligible impact than a Java or Python one cobbled together as a quick side project. If

you decide to take this route, be sure that the layer is developed with performance in

mind, and that you carefully measure its impact via both benchmarking and ongoing

monitoring. Remember that every application <> database communication is going to

use this layer, so a small inefficiency can quickly snowball into a significant performance

problem.

For example, we once saw a customer report an elevated latency situation coming

from their Golang abstraction layer. Once we realized that the latency on the database

side was within bounds for its use case, the investigation shifted from the database over

to the network and client side. Long story short, the application latency spikes were

identified as being heavily affected during the garbage collection process, dragging down

the client-side performance significantly. The problem was resolved after scaling out the

number of clients and by ensuring that they had enough compute resources to properly

function.

And another example: When working with a customer through a PostgreSQL to

NoSQL migration, we realized that their clients were fairly often opening too many

concurrent connections against the database. Although having a high number of sockets

opened is typically a good idea for distributed systems, an extremely high number of

them can easily overwhelm the client side (which needs to keep track of all open sockets)

Chapter 8 Topology Considerations

169

as well as the database. After we reported our findings to the customer, they discovered

that they were opening a new database session for every request they submitted against

the cluster. After correcting the malfunctioning code, the overall application throughput

was significantly increased because the abstraction layer was then using active sockets

opened when it routed requests.4

�Load Balancing
Should you put a dedicated load balancer in front of your database? In most cases, no.

Databases typically have their own way to balance traffic across the cluster, so layering

a load balancer on top of that won’t help—and it could actually hurt. Consider 1) how

many requests the load balancer can serve without becoming a bottleneck and 2) its

balancing policy. Also, recognize that it introduces a single point of failure that reduces

your database resilience. As a result, you overcomplicate your overall infrastructure

topology because you now need to worry about load balancing high availability.

Of course, there are always exceptions. For example, say you were previously using

a database API that’s unaware of the layout of the cluster and its individual nodes

(e.g., DynamoDB, where a client is configured with a single “endpoint address” and

all requests are sent to it). Now you’re shifting to a distributed leaderless database like

ScyllaDB, where clients are node aware and even token aware (aware of which token

ranges are natural endpoints for every node in your topology). If you simply configure

an application with the IP address of a single ScyllaDB node as its single DynamoDB

API endpoint address, the application will work correctly. After all, any node can answer

any request by forwarding it to other nodes as necessary. However, this single node will

be more loaded than the other nodes because it will be the only node actively serving

requests. This node will also become a single point of failure from your application’s

perspective.

In this special edge case, load balancing is critical—but load balancers are

not. Server-side load balancing is fairly complex from an admin perspective. More

importantly with respect to performance, server-side solutions add latency. Solutions

that involve a TCP or HTTP load balancer require another hop for each

4 Learn about abstraction layer usage at Discord in “How Discord Migrated Trillions of Messages
from Cassandra to ScyllaDB “(www.youtube.com/watch?v=S2xmFOAUhsk) and ShareChat
in “ShareChat’s Path to High-Performance NoSQL with ScyllaDB” (www.youtube.com/
watch?v=Y2yHv8iqigA).

Chapter 8 Topology Considerations

http://www.youtube.com/watch?v=S2xmFOAUhsk
http://www.youtube.com/watch?v=Y2yHv8iqigA
http://www.youtube.com/watch?v=Y2yHv8iqigA

170

request—increasing not just the cost of each request, but also its latency. We recommend

client-side load balancing: Modifying the application to send requests to the available

nodes versus a single one.

The key takeaway here is that load balancing generally isn’t needed—and when it

is, server-side load balancers yield a pretty severe performance penalty. If it’s absolutely

necessary, client-side load balancing is likely a better option.5

�External Caches
Teams often consider external caches when the existing database cluster cannot meet

the required SLA. This is a clear performance-oriented decision. Putting an external

cache in front of the database is commonly used to compensate for subpar latency

stemming from the various factors discussed throughout this book: inefficient database

internals, driver usage, infrastructure choices, traffic spikes, and so on.

Caching may seem like a fast and easy solution because the deployment can be

implemented without tremendous hassle and without incurring the significant cost of

database scaling, database schema redesign, or even a deeper technology transformation.

However, external caches are not as simple as they are often made out to be. In fact, they

can be one of the more problematic components of a distributed application architecture.

In some cases, it’s a necessary evil—particularly if you have an ultra-latency-sensitive

use case such as real-time ad bidding or streaming media, and you’ve tried all the other

means of reducing latency. But in many cases, the performance boost isn’t worth it. The

following sections outline some key risks and you can decide what makes sense for your

use case and SLAs.

�An External Cache Adds Latency
A separate cache means another hop on the way. When a cache surrounds the database,

the first access occurs at the cache layer. If the data isn’t in the cache, then the request is

sent to the database. The result is additional latency to an already slow path of uncached

data. One may claim that when the entire dataset fits the cache, the additional latency

doesn’t come into play. However, there is usually more than a single workload/pattern

that hits the database and some of it will carry the extra hop cost.

5 For an example of how to implement client-side load balancing, see www.scylladb.
com/2021/04/13/load-balancing-in-scylla-alternator/.

Chapter 8 Topology Considerations

http://www.scylladb.com/2021/04/13/load-balancing-in-scylla-alternator/
http://www.scylladb.com/2021/04/13/load-balancing-in-scylla-alternator/

171

�An External Cache Is an Additional Cost
Caching means expensive DRAM, which translates to a higher cost per gigabyte than

SSDs. Even when RAM can store frequently accessed objects, it is best to use the existing

database RAM, and even increase it for internal caching rather than provision entirely

separate infrastructure on RAM-oriented instances. Provisioning a cache to be the

same size as the entire persistent dataset may be prohibitively expensive. In other cases,

the working set size can be too big, often reaching petabytes, making an SSD-friendly

implementation the preferred, and cheaper, option.

�External Caching Decreases Availability
No cache’s high availability solution can match that of the database itself. Modern

distributed databases have multiple replicas; they also are topology-aware and speed-

aware and can sustain multiple failures without data loss.

For example, a common replication pattern is three local replicas, which generally

allows for reads to be balanced across such replicas in order to efficiently use your

database’s internal caching mechanism. Consider a nine-node cluster with a replication

factor of three: Essentially every node will hold roughly 33 percent of your total dataset

size. As requests are balanced among different replicas, this grants you more room

for caching your data, which could (potentially) completely eliminate the need for an

external cache. Conversely, if an external cache happens to invalidate entries right before

a surge of cold requests, availability could be impeded for a while since the database

won’t have that data in its internal cache (more on this in the section entitled “External

Caching Ruins the Database Caching” later in this chapter).

Caches often lack high-availability properties and can easily fail or invalidate records

depending on their heuristics. Partial failures, which are more common, are even worse

in terms of consistency. When the cache inevitably fails, the database will get hit by the

unmitigated firehose of queries and likely wreck your SLAs. In addition, even if a cache

itself has some high availability features, it can’t coordinate handling such failure with

the persistent database it is in front of. The bottom line: Rely on the database, rather than

making your latency SLAs dependent on a cache.

Chapter 8 Topology Considerations

172

�Application Complexity: Your Application Needs to Handle
More Cases
Application and operational complexity are problems for external caches. Once you

have an external cache, you need to keep the cache up-to-date with the client and the

database. For instance, if your database runs repairs, the cache needs to be synced or

invalidated. However, invalidating the cache may introduce a long period of time when

you need to wait for it to eventually get warm. Your client retry and timeout policies need

to match the properties of the cache but also need to function when the cache is done.

Usually, such scenarios are hard to test and implement.

�External Caching Ruins the Database Caching
Modern databases have embedded caches and complex policies to manage them. When

you place a cache in front of the database, most read requests will reach only the external

cache and the database won’t keep these objects in its memory. As a result, the database

cache is rendered ineffective. When requests eventually reach the database, its cache

will be cold and the responses will come primarily from the disk. As a result, the round-

trip from the cache to the database and then back to the application is likely to incur

additional latency.

�External Caching Might Increase Security Risks
An external cache adds a whole new attack surface to your infrastructure. Encryption,

isolation, and access control on data placed in the cache are likely to be different from

the ones at the database layer itself.

�External Caching Ignores the Database Knowledge
and Database Resources
Databases are quite complex and built for specialized I/O workloads on the system.

Many of the queries access the same data, and some amount of the working set size

can be cached in memory in order to save disk accesses. A good database should have

sophisticated logic to decide which objects, indexes, and accesses it should cache.

Chapter 8 Topology Considerations

173

The database also should have various eviction policies (such as the least recently

used [LRU] policy as a straightforward example) that determine when new data should

replace existing (older) cached objects.

Another example is scan-resistant caching. When scanning a large dataset, say a

large range or a full-table scan, a lot of objects are read from the disk. The database can

realize this is a scan (not a regular query) and choose to leave these objects outside its

internal cache. However, an external cache would treat the result set just like any other

and attempt to cache the results. The database automatically synchronizes the content

of the cache with the disk according to the incoming request rate, and thus the user and

the developer do not need to do anything to make sure that lookups to recently written

data are performant. Therefore, if, for some reason, your database doesn’t respond fast

enough, it means that:

•	 The cache is misconfigured

•	 It doesn’t have enough RAM for caching

•	 The working set size and request pattern don’t fit the cache

•	 The database cache implementation is poor

�Summary
This chapter shared strong opinions on how to navigate topology decisions. For example,

we recommended:

•	 Using an RF of at least 3 (with geographical fine-tuning if available)

•	 Having as many racks as replicas

•	 Isolating reads and writes within a specific datacenter

•	 Ensuring each client knows and prioritizes the local datacenter

•	 Considering the (cross-region replication) costs of multi-region

deployments as well as their benefits

•	 Scaling up as much as possible before scaling out

Chapter 8 Topology Considerations

174

•	 Considering a few different options to minimize the resource

contention that could occur when running multiple workloads on a

single cluster

•	 Carefully considering the caveats associated with external caches,

load balancers, and abstraction layers

The next chapter looks at best practices for testing your topology: Benchmarking it to

see what it’s capable of and how it compares to alternative configurations and solutions.

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter's Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 8 Topology Considerations

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

175

CHAPTER 9

Benchmarking
We won’t sugarcoat it: database benchmarking is hard. There are many moving parts

and nuances to consider and manage—and a bit of homework is required to really see

what a database is capable of and measure it properly. It’s not easy to properly generate

system load to reflect your real-life scenarios.1 It’s often not obvious how to correctly

measure and analyze the end results. And after extracting benchmarking results, you

need to be able to read them, understand potential performance bottlenecks, analyze

potential performance improvements, and possibly dive into other issues. You need to

make your benchmarking results meaningful, ensure they are easily reproducible, and

also be able to clearly explain these results to your team and other interested parties in a

way that reflects your business needs. There’s also hard mathematics involved: statistics

and queueing theory to help with black boxes and measurements, not to mention

domain-specific knowledge of the system internals of the servers, platforms, operating

systems, and the software running on it.

But when performance is a top priority, careful—and sometimes frequent—

benchmarking is essential. And in the long run, it will pay off. An effective benchmark

can save you from even worse pains, like the high-pressure database migration project

that ensues after you realize—too late—that your existing solution can’t support the

latest phase of company growth with acceptable latencies and/or throughput.

The goal of this chapter is to share strategies that ease the pain slightly and, more

importantly, increase the chances that the pain pays off by helping you select options

that meet your performance needs. The chapter begins by looking at the two key types of

benchmarks and highlighting critical considerations for each objective. Then, it presents

a phased approach that should help you expose problems faster and with lower costs.

Next, it dives into the do’s and don’ts of benchmark planning, execution, and reporting,

1 For an example of realistic benchmarking executed with impressive mastery, see Brian Taylor’s
talk, “How Optimizely (Safely) Maximizes Database Concurrency,” at www.youtube.com/
watch?v=cSiVoX_nq1s.

© Felipe Cardeneti Mendes, Piotr Sarna, Pavel Emelyanov, Cynthia Dunlop 2023
F. C. Mendes et al., Database Performance at Scale, https://doi.org/10.1007/978-1-4842-9711-7_9

http://www.youtube.com/watch?v=cSiVoX_nq1s
http://www.youtube.com/watch?v=cSiVoX_nq1s
https://doi.org/10.1007/978-1-4842-9711-7_9

176

with a focus on lessons learned from the best and worst benchmarks we’ve witnessed

over the past several years. Finally, the chapter closes with a look at some less common

benchmarking approaches you might want to consider for specialized needs.

�Latency or Throughput: Choose Your Focus
When benchmarking, you need to decide upfront whether you want to focus on

throughput or latency. Latency is measured in both cases. But here’s the difference:

•	 Throughput focus: You measure the maximum throughput by

sending a new request as soon as the previous request completes.

This helps you understand the highest number of IOPS that the

database can sustain. Throughput-focused benchmarks are often the

focus for analytics use cases (fraud detection, cybersecurity, etc.)

•	 Latency focus: You assess how many IOPS the database can handle

without compromising latency. This is usually the focus for most

user-facing and real-time applications.

Throughput tests are quite common, but latency tests are a better choice if you

already know the desired throughput (e.g., 1M OPS). This is especially true if your

production system must meet a specific latency goal (for example, the 99.99 percentile

should have a read latency of less than 10ms).

If you’re focused solely on latency, you need to measure and compare latency at

the same throughput rates. If you know only that database A can handle 30K OPS with

a certain P99 latency and database B can handle 50K OPS with a slightly higher P99

latency, you can’t really say which one is “more efficient.” For a fair comparison, you

would need to measure each database’s latencies at either 30K OPS or 50K OPS—or both.

Even better, you would track latency across a broader span of intervals (e.g., measuring

at 10K OPS increments up until when neither database could achieve the required P99

latency, as demonstrated in Figure 9-1.)

Chapter 9 Benchmarking

177

Figure 9-1.  A latency-oriented benchmark

Not all latency benchmarks need to take that form, however. Consider the example

of an AdTech company with a real-time bidding use case. For them, a request that takes

longer than 31ms is absolutely useless because it will fall outside of the bidding window.

It’s considered a timeout. And any request that is 30ms or less is fine; a 2ms response

is not any more valuable to them than a 20ms response. They care only about which

requests time out and which don’t.

Their benchmarking needs are best served by a latency benchmark measuring how

many OPS were generating timeouts over time. For example, Figure 9-2 shows that the

first database in their benchmark (the top line) resulted in over 100K timeouts a second

around 11:30; the other (the horizontal line near the bottom) experienced only around

200 timeouts at that same point in time, and throughout the duration of that test.

Chapter 9 Benchmarking

178

Figure 9-2.  A latency-oriented benchmark measuring how many OPS were
generating timeouts over time

Chapter 9 Benchmarking

179

For contrast, Figure 9-3 shows an example of a throughput benchmark.

Figure 9-3.  A throughput-oriented benchmark

With a throughput benchmark, you want to see one of the resources (e.g., the

CPU or disk) maxing out in order to understand how much the database can deliver

under extreme load conditions. If you don’t reach this level, it’s a sign that you’re not

really effectively benchmarking the database’s throughput. For example, Figure 9-4

demonstrates the load of two clusters during a benchmark run. Note how one cluster is

fully utilized whereas the other is very close to reaching its limits.

Chapter 9 Benchmarking

180

Figure 9-4.  Two clusters’ load comparison: one fully maxed out and another very
close to reaching its limit

�Less Is More (at First): Taking a Phased Approach
With either focus, the number one rule of benchmarking is to start simple. Always keep

a laser focus on the specific questions you want the benchmark to answer (more on that

shortly). But, realize that it could take a number of phases—each with a fair amount of

trial and error—to get meaningful results.

What could go wrong? A lot. For example:

•	 Your client might be a bottleneck

•	 Your database sizing might need adjustment

•	 Your tests might need tuning

•	 A sandbox environment could have very different resources than a

production one

•	 Your testing methodology might be too artificial to predict reality

If you start off with too much complexity, it will be a nightmare to discover what’s

going wrong and pinpoint the source of the problem. For example, assume you want

to test if a database can handle 1M OPS of traffic from your client with a P99 latency of

1ms or less. However, you notice the latencies are exceeding the expected threshold.

You might spend days adjusting database configurations to no avail, then eventually

figure out that the problem stemmed from a bug in client-side concurrency. This would

Chapter 9 Benchmarking

181

have been much more readily apparent if you started out with just a fraction of that

throughput. In addition to avoiding frustration and lost time, you would have saved your

team a lot of unnecessary infrastructure costs.

As a general rule of thumb, consider at least two phases of benchmarking: one with a

specialized stress tool and one with your real workload (or at least a sampling of it—e.g.,

sending 30 percent of your queries to a cluster for benchmarking). For each phase,

start super small (at around 10 percent of the throughput you ultimately want to test),

troubleshoot as needed, then gradually increase the scope until you reach your target

loads. Keep optimization in mind throughout. Do you need to add more servers or more

clients to achieve a certain throughput? Or are you limited (by budget or infrastructure)

to a fixed hardware configuration? Can you achieve your performance goals with less?

The key is to move incrementally. Of course, the exact approach will vary from

situation to situation. Consider a leading travel company’s approach. Having recently

moved from PostgreSQL to Cassandra, they were quite experienced benchmarkers when

they decided to evaluate Cassandra alternatives. The goal was to test the new database

candidate’s raw speed and performance, along with its support for their specific

workloads.

First, they stood up a five-node cluster and ran database comparisons with synthetic

traffic from cassandra-stress. This gave them confidence that the new database could

meet their performance needs with some workloads. However, their real workloads

are nothing like even customized cassandra-stress workloads. They experience highly

variable and unpredictable traffic (for example, massive surges and disruptions

stemming from a volcanic eruption). For a more realistic assessment, they started

shadowing production traffic. This second phase of benchmarking provided the added

confidence they needed to move forward with the migration.

Finally, they used the same shadowed traffic to determine the best deployment

option. Moving to a larger 21-node cluster, they tested across cloud provider A and cloud

provider B on bare metal. They also experimented with many different options on cloud

provider B: various storage options, CPUs, and so on.

The bottom line here: Start simple, confirm, then scale incrementally. It’s safer and

ultimately faster. Plus, you’ll save on costs. As you move through the process, check if you

need to tweak your setup during your testing. Once you are eventually satisfied with the

results, scale your infrastructure accordingly to meet your defined criteria.

Chapter 9 Benchmarking

182

�Benchmarking Do’s and Don’ts
The specific step-by-step instructions for how to configure and run a benchmark vary

across databases and benchmarking tools, so we’re not going to get into that. Instead,

let’s look at some of the more universal “do’s and don’ts” based on what we’ve seen in

the field.

Tip I f you haven’t done so yet, be sure to review the chapters on drivers,
infrastructure, and topology considerations before you begin benchmarking.

�Know What’s Under the Hood of Your Database (Or Find
Someone Who Knows)
Understand and anticipate what parts of the system your chosen workload will affect

and how. How will it stress your CPUs? Your memory? Your disks? Your network? Do you

know if the database automatically analyzes the system it’s running on and prioritizes

application requests as opposed to internal tasks? What’s going on as far as background

operations and how these may skew your results? And why does all this matter if you’re

just trying to run a benchmark?

Let’s take the example of compaction with LSM-tree based databases. As we’ll

cover in Chapter 11, compactions do have a significant impact on performance. But

compactions are unlikely to kick in if you run a benchmark for just a few minutes.

Given that compactions have dramatically different performance impacts on different

databases, it’s essential to know that they will occur and ensure that tests last long

enough to measure their impact.

The important thing here is to try to understand the system that you’re

benchmarking. The better you understand it, the better you can plan tests and interpret

the results. If there are vendors and/or user groups behind the database you’re

benchmarking, try to probe them for a quick overview of how the database works and

what you should watch out for. Otherwise, you might overlook something that comes

back to haunt you, such as finding out that your projected scale was too optimistic. Or,

you might freak out over some KPI that’s really a non-issue.

Chapter 9 Benchmarking

183

�Choose an Environment That Takes Advantage
of the Database’s Potential
This is really a corollary to the previous tip. With a firm understanding of your database’s

superpowers, you can design benchmark scenarios that fully reveal its potential. For

example, if you want to compare two databases designed for commodity hardware, don’t

worry about benchmarking them on a broad array of powerful servers. But if you’re

comparing a database that’s architected to take advantage of powerful servers, you’d be

remiss to benchmark it only on commodity hardware (or even worse, using a Docker

image on a laptop). That would be akin to test driving a race car on the crowded streets

of New York City rather than your local equivalent of the Autobahn highway.

Likewise, if you think some aspect of the database or your data modeling will be

problematic for your use case, now’s the time to push it to the limits and assess its true

impact. For example, if you think a subset of your data might have imbalanced access

patterns due to user trends, use the benchmark phase to reproduce that and assess the

impacts.

�Use an Environment That Represents Production
Benchmarking in the wrong environment can easily lead to an order-of-magnitude

performance difference. For example, a laptop might achieve 20K OPS where a dedicated

server could easily achieve 200K OPS. Unless you intend to have your production system

running on a laptop, do not benchmark (or run comparisons) on a laptop.

If you are using shared hardware in a containerized/virtualized environment, be

aware that one guest can increase latency in other guests. As a result, you’ll typically

want to ensure that hardware resources are dedicated to your database and that you

avoid resource overcommitment by any means possible.

Also, don’t overlook the environment for your load generators. If you underprovision

load generators, the load generators themselves will be the bottleneck. Another

consideration: Ensure that the database and the data loader are not running under the

same nodes. Pushing and pulling data is resource intensive, so the loader will definitely

steal resources from the database. This will impact your results with any database.

Chapter 9 Benchmarking

184

�Don’t Overlook Observability
Having observability into KPIs beyond throughput and latency is critical for identifying

and troubleshooting issues. For instance, you might not be hitting the cache as much

as intended. Or a network interface might be overwhelmed with data to the point that it

interferes with latency. Observability is also your primary tool for validating that you’re not

being overly optimistic—or pessimistic—when reviewing results. You may discover that even

read requests served from disk, with a cold cache, are within your latency requirements.

Note  For extensive discussion on this topic, see Chapter 10.

�Use Standardized Benchmarking Tools Whenever Feasible
Don’t waste resources building—and debugging and maintaining—your own version of

a benchmarking tool that has already been solved for. The community has developed an

impressive set of tools that can cover a wide range of needs. For example:

•	 YCSB2

•	 TPC-C3

•	 NdBench4

•	 Nosqlbench5

•	 pgbench6

•	 TLP-stress7

•	 Cassandra-stress8

•	 and more…

2 https://github.com/brianfrankcooper/YCSB
3 http://tpc.org/tpcc/default5.asp
4 https://github.com/Netflix/ndbench
5 https://github.com/nosqlbench/nosqlbench
6 www.postgresql.org/docs/current/pgbench.html
7 https://github.com/thelastpickle/tlp-stress
8 https://github.com/scylladb/scylla-tools-java/tree/master/tools/stress

Chapter 9 Benchmarking

https://github.com/brianfrankcooper/YCSB
http://tpc.org/tpcc/default5.asp
https://github.com/Netflix/ndbench
https://github.com/nosqlbench/nosqlbench
http://www.postgresql.org/docs/current/pgbench.html
https://github.com/thelastpickle/tlp-stress
https://github.com/scylladb/scylla-tools-java/tree/master/tools/stress

185

They are all relatively the same and provide similar configuration parameters. Your

task is to understand which one better reflects the workload you are interested in and

how to run it properly. When in doubt, consult with your vendor for specific tooling

compatible with your database of choice.

Of course, these options won’t cover everything. It makes sense to develop your own

tools if:

•	 Your workloads look nothing like the ones offered by standard tools

(for example, you rely on multiple operations that are not natively

supported by the tools)

•	 It helps you test against real (or more realistic) workloads in the later

phases of your benchmarking strategy

Ideally, the final stages of your benchmarking would involve connecting your

application to the database and seeing how it responds to your real workload. But what

if, for example, you are comparing two databases that require you to implement the

application logic in two totally different ways? In this case, the different application logic

implementations could influence your results as much as the difference in databases.

Again, we recommend starting small: Testing just the basic functionality of the

application against both targets (following each one’s best practices) and seeing what the

initial results look like.

�Use Representative Data Models, Datasets,
and Workloads
As you progress past the initial “does this even work” phase of your benchmarking,

it soon becomes critical to gravitate to representative data models, datasets, and

workloads. The closer you approximate your production environment, the better you can

trust that your results accurately represent what you will experience in production.

�Data Models

Tools such as cassandra-stress use a default data model that does not completely

reflect what most teams use in production. For example, the cassandra-stress default

data model has a replication factor set to 1 and uses LOCAL_ONE as a consistency

level. Although cassandra-stress is a convenient way to get some initial performance

impressions, it is critical to benchmark the same/similar data model that you will

Chapter 9 Benchmarking

186

use in production. That’s why we recommend using a custom data model and tuning

your consistency level and queries. cassandra-stress and other benchmarking tools

commonly provide ways to specify a user profile, where you can specify your own

schema, queries, replication factor, request distribution and sizes, throughput rates,

number of clients, and other aspects.

�Dataset Size

If you run the benchmark with a dataset that’s smaller than your production dataset, you

may have misleading or incorrect results due to the reduced number of I/O operations.

Eventually, you should configure a test that realistically reflects a fraction of your

production dataset size corresponding to your current scale.

�Workloads

Run the benchmark using a load that represents, as closely as possible, your anticipated

production workload. This includes the queries submitted by the load generator. When

you use the right type of queries, they are distributed over the cluster and the ratio

between reads and writes remains relatively constant.

The read/write ratio is important. Different combinations will impact your disk

in different ways. If you want results representative of production, use a realistic

workload mix.

Eventually, you will max out your storage I/O throughput and starve your disk, which

causes requests to start queuing on the database. If you continue pushing past that point,

latency will increase. When you hit that point of increased latency with unsatisfactory

results, stop, reflect on what happened, analyze how you can improve, and iterate

through the test again. Rinse and repeat as needed.

Here are some tips on creating realistic workloads for common use cases:

•	 Ingestion: Ingest data as fast as possible for at least a few hours, and

do it in a way that doesn’t produce timeouts or errors. The goal here

is to ensure that you’ve got a stable system, capable of keeping up

with your expected traffic rate for long periods.

•	 Real-time bidding: Use bulk writes coming in after hours or

constantly low background loads; the core of the workload is a lot of

reads with extremely strict latency requirements (perhaps below a

specific threshold).

Chapter 9 Benchmarking

187

•	 Time series: Use heavy and constant writes to ever-growing

partitions split and bucketed by time windows; reads tend to focus on

the latest rows and/or a specific range of time.

•	 Metadata store: Use writes occasionally, but focus on random

reads representing users accessing your site. There’s usually good

cacheability here.

•	 Analytics: Periodically write a lot of information and perform a

lot of full table scans (perhaps in parallel with some of the other

workloads).

The bottom line is to try to emulate what your workloads look like and run

something that’s meaningful to you.

�Exercise Your Cache Realistically
Unless you can absolutely guarantee that your workload has a high cache hit rate

frequency, be pessimistic and exercise it well.

You might be running workloads, getting great results, and seeing cache hits all

the way up to 90 percent. That’s great. But is this the way you’re going to be running

in practice all the time? Do you have periods throughout the day when your cache is

not going to be that warm, maybe because there’s something else running? In real-life

situations, you will likely have times when the cache is colder or even super cold (e.g.,

after an upgrade or after a hardware failure). Consider testing those scenarios in the

benchmark as well.

If you want to make sure that all requests are coming from the disk, you can disable

the cache altogether. However, be aware that this is typically an extreme situation, as

most workloads (one way or another) exercise some caching. Sometimes you can create

a cold cache situation by just restarting the nodes or restarting the processes.

�Look at Steady State
Most databases behave differently in real life than they do in short transient test

situations. They usually run for days or years—so when you test a database for two

minutes, you’re probably not getting a deep understanding of how it behaves, unless

you are working in memory only. Also, when you’re working with a database that is built

Chapter 9 Benchmarking

188

to serve tens or hundreds of terabytes—maybe even petabytes—know that it’s going

to behave rather differently at various data levels. Requests become more expensive,

especially read requests. If you’re testing something that only serves a gigabyte, it really

isn’t the same as testing something that’s serving a terabyte.

Figure 9-5 exemplifies the importance of looking at steady state. Can you tell what

throughput is being sustained by the database in question?

Figure 9-5.  A throughput graph that is not focused on steady state

Well, if you look just at the first minute, it seems that it’s serving 40K OPS. But if you

wait for a few minutes, the throughput decreases.

Whenever you want to make a statement about the maximum throughput that your

database can handle, do that from a steady state. Make sure that you’re inserting an

amount of data that is meaningful, not just a couple of gigabytes, and make sure that it

runs for enough time so it’s a realistic scenario. After you are satisfied with how many

requests can be sustained over a prolonged period of time, consider adding noise, such

as scaling clients, and introducing failure situations.

�Watch Out for Client-Side Bottlenecks
One of the most common mistakes with benchmarks is overlooking the fact that the

bottleneck could be coming from the application side. You might have to tune your

application clients to allow for a higher concurrency. You may also be running many

application pods on the same tenant—with all instances contending for the same

hardware resources. Make sure your application is running in a proper environment, as

is your database.

Chapter 9 Benchmarking

189

�Also Watch Out for Networking Issues
Networking issues could also muddle the results of your benchmarking. If the database

is consuming too much softirq from processing, this will degrade your performance. You

can detect this by analyzing CPU interrupt shares, for example. And you can typically

resolve it by using CPU pinning, which tells the system that all network interrupts should

be handled by specific CPUs that are not being used by the database.

Similarly, running your application through a slow link, such as routing traffic via the

Internet rather than via a private link, can easily introduce a networking bottleneck.

�Document Meticulously to Ensure Repeatability
It’s difficult to anticipate when or why you might want to repeat a benchmark. Maybe

you want to assess the impact of optimizations you made after getting some great tips at

the vendor’s user conference. Maybe you just learned that your company was acquired

and you should prepare to support ten times your current throughput—or much stricter

latency SLAs. Perhaps you learned about a cool new database that’s API-compatible with

your current one, and you’re curious how the performance stacks up. Or maybe you have

a new boss with a strong preference for another database and you suddenly need to re-

justify your decision with a head-to-head comparison.

Whatever the reason you’re repeating a benchmark scenario, one thing is certain:

You will be immensely appreciative of the time that you previously spent documenting

exactly what you did and why.

�Reporting Do’s and Don’ts
So you’ve completed your benchmark and you’ve gathered all sorts of data—what’s the

best way to report it? Don’t skimp on this final, yet critical step. Clear and compelling

reporting is critical for convincing others to support your recommended course of

action—be it embarking on a database migration, changing your configuration or data

modeling, or simply sticking with what’s working well for you.

Here are some reporting-focused do’s and don’ts.

Chapter 9 Benchmarking

190

�Be Careful with Aggregations
When it comes to aggregations, proceed with extreme caution. You could report the

result of a benchmark by saying something like “I ran this benchmark for three days, and

this is my throughput.” However, this overlooks a lot of critical information. For example,

consider the two graphs presented in Figures 9-6 and 9-7.

Figure 9-6.  Lower baseline throughput that’s almost constant and predictable
throughout a ten-minute period

Figure 9-7.  A bumpier path to a similar throughput at the end

Both of these loads have roughly the same throughput at the end. Figure 9-6 shows

lower baseline throughput—but it’s constant and very predictable throughout the

period. The OPS in Figure 9-7 dip much lower than the first baseline, but it also spikes to

a much higher value. The behavior shown in Figure 9-6 is obviously more desirable. But

if you aggregate your results, it would be really hard to notice a difference.

Chapter 9 Benchmarking

191

Another aggregation mistake is aggregating tail latencies: taking the average of P99

latencies from multiple load generators. The correct way to determine the percentiles

over multiple load generators is to merge the latency distribution of each load generator

and then determine the percentiles. If that isn’t an option, then the next best alternative

is to take the maximum (the P99, for example) of each of the load generators. The actual

P99 will be equal to or smaller than the maximum P99.

For example, assume you have the following clients:

•	 Client1: 100 total requests: 98 of them took 1ms, 2 took 3ms

•	 Client2: 100 total requests: 99 of them took 30ms, 1 took 31ms

The 99th percentile in the first example is 3 milliseconds. The 99th percentile for

the second client is 30 milliseconds. Average that out, and you get 16.5 milliseconds.

However, the true 99th percentile is acquired by putting those two arrays together and

taking the 99th percentile from there. The actual 99th percentile was 30 milliseconds.

That 16.5 millisecond “average” is meaningless—it doesn’t correlate to anything in

reality.

Also, do not blindly trust only your application latencies. In general, when evaluating

benchmarking results, be sure to consult your database-reported latencies to rule out

bottlenecks related to the database itself. Situations where the database latencies are

within your specific thresholds, but the client-side results deviate from your expected

numbers are fairly common—and may indicate a problem on either the network or at

the client side.

�Don’t Assume People Will Believe You
Assume that any claim you make will be met with a healthy dose of skepticism. One

of the best ways to combat this is to share fine granularity details about your setup.

Just reporting something like “Our cluster has a P99 which is lower than 1ms” is not

sufficient.

A better statement is: “We set up three cluster nodes with 3x i3.4xlarge (16vCPU,

122GiB RAM, up to 10Gbps network, 2x1.9TB NVMe). For loaders, we used 3x

c5n.9xlarge (36vCPU, 96GiB RAM, up to 50Gbps network). Here’s the graph of our P99

over time. Here’s the benchmarking profile used to stress the given workload.”

Chapter 9 Benchmarking

192

Also, provide enough detail so that the benchmark can be repeated. For example, for

a Cassandra benchmark, consider including details such as:

•	 JVM settings

•	 Any non-default settings used in cassandra.yaml

•	 Cassandra-stress parameters (driver version, replication factor,

compaction strategy, etc.)

•	 Exactly how you inserted data, warmed up the cache, and so on

Finally, keep in mind that the richer your reports, the easier it is for someone to

support your recommendation that option A is preferable to option B. For example, if

you’re looking into how two different databases compare on the same hardware, you

might share details in Table 9-1 in addition to the standard throughput and latency graphs.

Table 9-1.  Communicating the Results of Comparing Two Different Databases on

the Same Hardware

Test Database A Database B Difference Better Is:

Time to populate 5h 21m 29s 4h 27m 19s 20% Lower

Time to compact 7h 32m 21m 21x Lower

Total quiesce time (populate

and compact)

12h 43m 4h 48m 2.68x Lower

Read throughput

(small dataset)

51,267 reads/second 124,958 reads/second 2.43x Higher

Read throughput

(medium dataset)

7,363 reads/second 6,958 reads/second -5% Higher

Read throughput

(large dataset)

5,089 reads/second 5,592 reads/second 9.8% Higher

Reads during writes 547 reads/second 920 reads/second 68% Higher

99.9th latency

(at 5,000 writes/second)

130.3 milliseconds 11.9 milliseconds 10.9x Lower

99.9th latency

(at 10,000 writes/second)

153.3 milliseconds 16.9 milliseconds 9.0x Lower

Chapter 9 Benchmarking

193

�Take Coordinated Omission Into Account
A common problem when measuring latencies is the coordinated omission problem,

which causes the worst latencies to be omitted from the measurements and, as a

consequence, renders the higher percentiles useless.

Gil Tene coined this term to describe what happens when a measuring system

inadvertently coordinates with the system being measured in a way that avoids

measuring outliers and misses sending requests.9

Here’s a great analogy by Ivan Prisyazhynyy:10

“Let’s imagine a coffee-fueled office. Each hour a worker has to make a coffee run

to the local coffee shop. But what if there’s a road closure in the middle of the day? You

have to wait a few hours to go on that run. Not only is that hour’s particular coffee runner

late, but all the other coffee runs get backed up for hours behind that. Sure, it takes

the same amount of time to get the coffee once the road finally opens, but if you don’t

measure that gap caused by the road closure, you’re missing measuring the total delay

in getting your team their coffee. And, of course, in the meanwhile you will be woefully

undercaffeinated.”

Prisyazhynyy notes that most standard benchmarking tools now account for

coordinated omission (e.g., cassandra-stress and YCSB do; TLP-stress did not at the time

of writing). However, by default, they do not respect coordinated omissions, so anyone

using these tools still needs to be vigilant about spotting and combatting coordinated

omission. We strongly recommend reading his complete article. But, for brevity’s sake,

here’s his conclusion:

“We found that the best implementation involves a static schedule with queueing

and latency correction, and we showed how those approaches can be combined

together to effectively solve coordinated omission issues: queueing with correction or

simulation, or queueless with simulation.

9 See Tene’s talk, “How NOT to Measure Latency” (https://www.youtube.com/
watch?v=lJ8ydIuPFeU)
10 See Prisyazhynyy’s blog, “On Coordinated Omission” (https://www.scylladb.
com/2021/04/22/on-coordinated-omission/)

Chapter 9 Benchmarking

https://www.youtube.com/watch?v=lJ8ydIuPFeU
https://www.youtube.com/watch?v=lJ8ydIuPFeU
https://www.scylladb.com/2021/04/22/on-coordinated-omission/
https://www.scylladb.com/2021/04/22/on-coordinated-omission/

194

To mitigate coordinated omission effects, you must:

•	 Explicitly set the throughput target, the number of worker threads,

the total number of requests to send, or the total test duration

•	 Explicitly set the mode of latency measurement

•	 Correct for queueing implementations

•	 Simulate non-queuing implementations

For example, for YCSB the correct flags are:

-target 120000 -threads 840 -p recordcount=1000000000 -p

measurement.interval=both

For cassandra-stress, they are:

duration=3600s -rate fixed=100000/s threads=840”

Beyond these tips, there are even more parameters that impact coordinated

omissions. We strongly recommend that you seek recommendations from your vendor,

Stack Overflow, or other community resources.

�Special Considerations for Various
Benchmarking Goals
Many database benchmarks are performed primarily so the team can check a “due

diligence” box in the selection process. Since you’re now pretty deep into a book

focused on database performance, we assume that’s not your team. You have some lofty

performance goals and you know that benchmarking is key to achieving them. So what

exactly are you hoping to achieve with your latest and greatest benchmark? Here are

some common reasons and use cases, as well as tips and caveats for each.

�Preparing for Growth
You just learned that your application is expected to handle increased traffic—perhaps as

a result of a merger/acquisition, from some unexpected publicity or market movement,

or just the slow and steady accumulation of more users over time. Is your database up to

the task? You may want to test how your database scales under pressure. How long does

it take to add more resources? What about scaling it up?

Chapter 9 Benchmarking

195

�Comparing Different Databases
Maybe you have the luxury of architecting an application with “the best” database from

the ground up. Maybe you’ve hit the wall with your existing database and need to justify

a potentially painful and costly migration. Or maybe you’re curious if it’s worth it to

move across your existing database vendor’s various offerings. It’s critical to know how

each database is built and understand both how to test its strengths as well as how to

assess the true impact of its constraints.

�Comparing the Same Database on Different Infrastructure
Your preferred cloud vendor just released a shiny new series of instances with the

potential for great power. But will you see any impact given your database and your

workloads? Could vertical scaling reduce the size of your clusters (and the scope of your

maintenance headaches)?

Pay attention to any configuration changes that might be needed (and sometimes

unintended!) between both infrastructure settings. Recognize that some level of tuning

will inevitably be required to ensure you get the maximum out of each.

Also keep in mind that some databases have limits as to how far they can scale. Some

databases will be more efficient if you horizontally scale using smaller nodes. Others will

excel when they’re run on larger capacity nodes.

Finally, consider the application latency. In some cases, you can “bring” a testing

application with you to the same cloud environment and reproduce it as if it were a local

datacenter in order to reduce network RTT. In other cases, you might need to account

for network latency on top of the results you received. If the application is in a separate

environment, that can contribute to additional latency toward the database.

�Assessing the Impact of a Data Modeling or Database
Configuration Change
Say you just started reworking your data model and want to “unit test” it to check if

you’re going down the right path. Your team is debating among different options and

wants an objective assessment of how much they will optimize—or undermine—your

performance.

Chapter 9 Benchmarking

196

In this case, you have to consider a multitude of aspects. For instance, while

assessing the impact of encryption-in-transit on your workload, you might collect the

initial tests while the database was running with a hot cache. Then, after applying the

necessary changes, you restart your database and get higher latencies as a result. You

might think, “Oh no! The encryption setting is really hurting my latency!” But, you

forgot that restarting the cluster to apply the change also cleared the cache—and upon

restarting your tests, you’re basically reading from disk. In the end, after warming up the

cache, you notice the encryption option barely impacted your latency. Whew!

�Beyond the Usual Benchmark
Considering that you’re now many chapters deep into this book, you’re clearly quite

obsessed. Perhaps you want to put your database to some less common or more extreme

tests? Here are a few options.

�Benchmarking Admin Operations
Even if you don’t anticipate expanding capacity often or dramatically, checking how

long it takes to add a new node or increase your cluster capacity certainly falls under

the realm of “due diligence.” And if you do expect sudden and significant increases, it’s a

good idea to test something more extreme—like how rapidly you can double capacity.

Keep in mind that databases must stream data into new nodes, and that this will

consume some CPU time, along with disk I/O and networking bandwidth—so it’s

important to assess this in a safe and controlled environment.

Other admin operations you might want to benchmark include the time required

to replace nodes as well as the latency impacts of compaction and other background

operations. For example, in Cassandra or ScyllaDB, you might look into how repair

operations running in the background impact the live workload. If you notice that

the operation causes latency increases, you might be able to schedule a time window

to run repairs weekly or run them with a lower intensity.

�Testing Disaster Recovery
You need to test your ability to sustain regular life events. Nodes will crash. Disks

will become corrupt. And network cables will be disconnected. That will happen for

Chapter 9 Benchmarking

197

sure—and it could very well be during the worst possible time (e.g., Black Friday or

during the big game you’re streaming to millions). You need to account for potential

disasters and test capacity planning with reduced nodes, a network partition, or

other undesired events. This has the added benefit of teaching you about the true

capabilities of the system’s resiliency.

Also, test the time and effort required to restore from a backup. Yes, this requires

spending a fair bit of time and money on what’s essentially a fire drill. But knowing what

to expect in a time of crisis is quite valuable—and avoiding databases with unacceptable

recovery times can be priceless.

If you’re running on the cloud, you might think you’re safe from disaster. “I’ll just

spin up another cluster and move forward. Right?” Wrong! Apart from the data migration

itself, there are a ton of other things that can go wrong. You’ll need to reconnect all

network VPCs, redo all the networking configuration between the application and

database, and so on. You may also run out of instances of the desired type in a given

region or availability zone. Did you ever go to the supermarket to buy a basic item, say

toilet paper, and find empty shelves because everybody suddenly started filling their

carts with it (e.g., due to a disaster)? This can happen to anything, even virtual instances.

It’s best to test disaster scenarios to gain a better understanding of what issues you could

experience—and practice how you’ll react.

�Benchmarking at Extreme Scale
Benchmarks performed at petabyte scale can help you understand how a particular

database handles extremely large workloads that your company expects (or at least

hopes) to encounter. However, such benchmarks can be challenging to design and

execute.

The ScyllaDB engineering team recently decided to perform a petabyte-scale

benchmark on a rather short timeline. We constructed a 20-node ScyllaDB cluster

and loaded it with 1PB (replicated) of user data and 1TB of application data. The user

workload was ~5 million TPS, and we measured two variants of it: one read-only and

another with 80 percent reads and 20 percent writes. Since this workload simulated

online analytics, high throughput was critical. At the same time, we ran a smaller

200,000 TPS application workload with 50 percent reads and 50 percent writes. Since this

workload represented online transaction processing, low latency was prioritized over

high throughput.

Chapter 9 Benchmarking

198

To give you an idea of what this involved from a setup perspective, we provisioned 20

x i3en.metal AWS instances for the ScyllaDB cluster. Each instance had:

•	 96 vCPUs

•	 768 GiB RAM

•	 60 TB NVMe disk space

•	 100 Gbps network bandwidth

For the load generators, we used 50 x c5n.9xlarge AWS instances. Each instance had:

•	 36 vCPUs

•	 96 GiB RAM

•	 50 Gbps network bandwidth

If you’re thinking about performing your own extreme-scale benchmark, here are

some lessons learned that you might want to consider:

•	 Provisioning: It took a few days to find an availability zone in AWS

that had sufficient instance types for a petabyte-scale benchmark. If

you plan to deploy such a large cluster, make sure to provision your

resources well ahead.

•	 Hardware tuning/interrupt handling: At the time, our default

assignment of cores to I/O queue handling wasn’t optimized for

this extreme scenario. Interrupt handling CPUs had to be manually

assigned to maximize throughput.

•	 Hardware tuning/CPU power governor: We needed to set the CPU

power governor on each node to “performance” to maximize the

performance of the system.

•	 cassandra-stress: cassandra-stress was not designed for this scale

(the default population distribution is too small). Be prepared to

experiment with non-default settings if you’re aiming to create and

iterate through a petabyte dataset.

Chapter 9 Benchmarking

199

�Summary
Benchmarking is tedious and painstaking, so make sure that you have clear goals and

effective reporting to ensure the work pays off. Some of the top tips we shared include:

•	 Start small so you don’t end up wasting time and money.

•	 Understand your database in order to craft tests that showcase its

strengths and assess whether you can live with its weaknesses.

•	 Rely on standard tools to start, but be sure to work up to

representative data models, datasets, and workloads.

•	 Get your monitoring stack in shape prior to benchmarking, and use it

to benchmark strategically (e.g., to exercise your cache realistically).

•	 Plan to dedicate a good amount of time to crafting convincing reports

and beware of challenges such as coordinated omission.

The next chapter dives into best practices for the ongoing monitoring that is critical

to interpreting many benchmarking results, as well as preventing and troubleshooting

performance issues in production.

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter's Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 9 Benchmarking

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

201

CHAPTER 10

Monitoring
Databases require ongoing care and attention, especially when performance is a priority

and the data being stored is growing rapidly and/or changing frequently. Adverse events

that could place the business at risk—for example, node failures or a misbehaving

client—will inevitably occur. Given the complexity of both databases and data-intensive

applications, it’s not a matter of if some combination of factors ends up degrading

performance, but when.

Enter observability and monitoring. A proactive approach is the key to

understanding and optimizing your baseline performance, catching emerging issues

before your end-users feel the pain, and reacting fast when they do. This chapter helps

you determine where to focus your monitoring efforts—with examples from different

use cases—offers tips for exploring issues as they emerge, and details how you might

proceed when your key performance indicators (KPIs) are trending in the wrong

direction.

�Taking a Proactive Approach
Monitoring often doesn’t become a priority until something goes wrong. Users start

complaining about slowness, the system runs out of space, or your application simply

stops responding.

At that point, monitoring is a vital tool for digging into the problem, understanding

the root cause, and hopefully verifying that your mitigation attempts were successful.

Having insightful monitoring and knowing what to look for is invaluable at this point.

But what’s even more helpful is the knowledge gained by monitoring performance over

time, even when everything was humming along nicely.

If you have a good grasp of how your database generally behaves when it works

well, it’s much easier to spot the problem when it’s unhealthy. For example, if you see a

spike in request concurrency but you know that your system always properly applies a

© Felipe Cardeneti Mendes, Piotr Sarna, Pavel Emelyanov, Cynthia Dunlop 2023
F. C. Mendes et al., Database Performance at Scale, https://doi.org/10.1007/978-1-4842-9711-7_10

https://doi.org/10.1007/978-1-4842-9711-7_10

202

concurrency limiter, then you might focus your investigation on background operations

that may be slowing down your database. Or, maybe your application got scaled out to

handle more traffic, therefore breaking your previous client-side assumptions.

Monitoring trends over time can also help you predict and plan for peaks. For

instance, assume you’re a streaming media company. If you know that last year’s version

of a big sporting event drew over 25M active users when you had 250M subscribers,

you can use that data to make some predictions as to how much traffic you might

need to support this year—now that you have almost twice as many subscribers. It’s a

similar case for retail, fraud detection, or any other industry that experiences “Black

Friday” surges. One of the best ways to prepare for the next peak is to understand what

happened during the previous one.

Making monitoring a regular routine rather than an emergency response can also

help you spot potential issues as they emerge—and avoid them causing a crisis. For

example, one of the most common database mistakes is failing to carefully watch disk

utilization. By the time you realize that the system is running out of storage space, it

might be too late to respond.

As a nice side effect, monitoring can also provide a window into how your data and

application usage are evolving. For example, if you note a steady increase in data volume

and/or IOPs, you might consider benchmarking your database against what’s feasible in

the next year. Maybe you’re already built for that scale, or maybe you need to think about

your options for increasing capacity. Additionally, assessing what’s required to achieve

the expected latencies at the likely new scale also helps you predict and plan for the

associated cost increase.

Note: Do You Need to Monitor a DBaaS?  You selected a DBaaS because you
didn’t want to worry about your database, right? So does that mean you don’t have
to worry about monitoring? Yes … and no.

You should rest assured that your vendor of choice is carefully watching over
your instance with a great deal of automation as well as expertise. If you’re not
confident that this is the case, you might want to consider rethinking your DBaaS
vendor. But even if you are confident, it’s still advisable to keep a close eye on
database performance. To earn and retain your trust, your DBaaS vendor should
offer full transparency into what they’re monitoring. At a minimum, you should
understand:

Chapter 10 Monitoring

203

•	 Which KPIs are correlated to your team’s greatest performance concerns

•	 What triggers them to review KPIs, take action internally, and notify you of

an issue

•	 What level of effort they make in order to guarantee these KPIs

It’s probably overkill to keep a DBaaS monitoring dashboard open on one of your
monitors 24/7. But at least know enough for a basic level of confidence that your
database—and your DBaaS vendor—are both doing their job.

�Tracking Core Database KPIs
Less is more when you’re tracking database KPIs. We recommend zeroing in on a small

set of KPIs in each area (cluster, infrastructure, application) that really matter to your

business. Then, showcase those core KPIs prominently in a dashboard and set alerts

to trigger when they reach levels that you believe warrant an immediate response. Be

brutally honest here. It’s much better to have one custom alert you’ll really act on than

30 you’ll ignore. If you won’t address it immediately, it’s “noise” that will desensitize the

team to even the most critical issues.

What about all other KPIs? They’ll be key when it’s time to a) optimize your baseline

performance, b) see what’s needed to maintain that performance at a greater scale, or c)

diagnose an emerging performance issue.

Rather than try to cover every KPI for every popular high-performance database,

let’s take a critical look at what we’ve found are the most common and critical ones for

meeting throughput and latency expectations.

�Database Cluster KPIs
These are metrics that provide insight into a database cluster’s health. This bucket might

cover things like I/O queues, task groups, internal errors, reads/writes, timeouts and

errors, replicas, cache, and change data capture.

Chapter 10 Monitoring

204

The ultimate goal of monitoring a cluster is to ensure a steady state “healthy system.”

Before looking at specific KPIs, consider what an ideal cluster state looks like for your

database. For example, with a wide column database like ScyllaDB or Cassandra, your

target might be:

•	 All nodes are up and running

•	 There are no alerts indicating that a KPI you care about has exceeded

the acceptable threshold

•	 Clients are driving traffic to all nodes and shards in a

balanced manner

•	 Connections are balanced (your driver might balance them

automatically)

•	 The amount of traffic to the various shards is roughly the same

•	 The queries are spread out across the shards

•	 Requests for a partition/row are balanced (e.g., you don’t have a “hot

partition” with 50 percent of read requests going to a single partition)

•	 Partitions are balanced (e.g., you don’t have an average partition size

of .5 MB and a few partitions that are 10GB)

•	 The cache hit rate (rows read from the cache) follows a specific

distribution pattern

•	 Disk utilization has enough room to accommodate growth and other

background operations, such as compactions

Here are some specific KPIs to look into regarding your cluster health:

•	 Node availability: Indicates if a node is online and responding

through liveness checks. This can be used to assess whether the

node is available on the network and to the rest of the cluster. If

the cluster has one or more nodes that are unavailable, this means

that the cluster has fewer resources to process its workload, which

could result in increased latencies. Note that just because a node is

available does not necessarily mean it is healthy.

Chapter 10 Monitoring

205

•	 Average read/write latencies: Tells you the average latencies per

operation type. This is a good way of knowing how your cluster

delivers part of the requests, but there is more than meets the eye

when you inspect it closely (for example, P99 latencies).

•	 P99 read/write latencies: Provides insight into the latency of the

99th percentile of requests in your cluster. Most performance-

sensitive use cases aim at keeping P99 latencies (and sometimes P999

latencies) within acceptable ranges for the business case.

•	 Requests per second: Specifies how many operations per second

your database is processing. This KPI, along with latency, is crucial to

assess how the cluster processes the intended workloads. A sudden

drop in throughput might indicate a network failure, misbehaving

clients, or simply when a given high throughput workload processing

finished.

•	 Timeouts: Reveals if any timeouts have recently occurred on the

cluster. A timeout is not a bad sign per se. But the team might want

to consider how to tackle them from the application side and how to

stop timeouts from becoming common on a busy system. A cluster’s

timeout rates will usually spike when it is malfunctioning.

•	 Caching: This can vary from how much data your cache contains

to how much data is being read from the cache (as opposed to the

disk). The latter measurement will help you assess how the database

is using its caching system and if any tuning is required for it. It could

also explain some latency spikes, which would be correlated to reads

primarily hitting the disk.

•	 Connections: It is crucial to understand how your database is being

accessed over the network. Knowing how many connections are

currently active on the database can help you gauge application

connectivity issues and understand if connections are balanced

throughout the cluster (to catch whether a node is malfunctioning or

overloaded).

Chapter 10 Monitoring

206

•	 Garbage Collector (GC) pauses: If you’re using a database that

requires GC pauses to purge unused memory objects, pay close

attention to how GC pauses may be affecting your latencies and

throughput. In general, a GC pause is a small fraction of time when a

database is unavailable to process its work. That means that long GC

pauses may be wasting resources and hurting your workload.

�What to Look for at Different Levels (Datacenter, Node,
CPU/Shard)

Monitoring solutions will typically provide different views of your distributed topology.

For example, a global view of your P99 latencies within a multi-regional active-active

deployment will quickly help you identify whether your entire infrastructure is stable

and operational. However, when things go wrong, you may need a different level of

granularity in order to identify the culprit.

The higher the level of detail you choose, the more data points and information you

will have. However, it is not always a good idea to navigate through your monitoring

solution with a high level of detail until you identify possible suspects.

When investigating an unknown problem, we recommend that you initiate your

research with the datacenter-level view if you have a multi-regional topology. This allows

you to isolate whether a problem is specifically confined to a single region or whether the

problem in question affects all regions.

Once you have isolated the impacted location, the next step is to look into the

data points on a per-node level. This will reveal whether any specific replica may be

misbehaving, receiving more requests, experiencing an imbalance, or suffering from

higher latencies than the others.

For most databases, a per-node view is the lowest possible level. However, databases

with a shard-per-core architecture offer an additional granularity: the CPU level.

Switching your observability to the CPU level makes sense once you have identified

the main suspects of your performance problem. Otherwise, it will simply show you

too many data points that might look unintelligible at first glance. However, when

used properly, a per-CPU level view can greatly empower your observability and

troubleshooting skills.

Chapter 10 Monitoring

207

�Three Industry-Specific Examples

Here are a few examples of how cluster monitoring approaches vary across industries

and use cases:

•	 AdTech: AdTech is one of the most recognizable use cases that relies

heavily on sub-millisecond latencies. For example, in real-time

bidding, a single millisecond spike might be all it takes to miss a

targeted ad opportunity. As a result, these use cases often monitor

P99, P999, and even P9999 latencies and set up very aggressive

custom alerting thresholds so that spikes can be identified and

addressed immediately.

•	 Streaming media: Streaming media use cases typically serve

several distinct media types across several tenants, often through

different regions. At a region, data balancing is critical since a single

bottlenecked shard can introduce a widespread impact.

•	 Blockchain: Blockchain solutions are typically required to store,

compute, and analyze large amounts of data. As the blockchain in

question grows, tracking the history of transactions at fast speeds

may become very challenging. This specific use case focuses on two

main drivers: storage growth and disk I/O performance.

�Application KPIs
Your distributed database is the single most important stateful component in your

infrastructure. It is therefore no surprise that many database vendors invest a lot of time

and effort into improving and bundling observability capabilities within their products.

However, monitoring a database alone can only do so much. There will always be an

application (or an entire infrastructure) behind it which, if not observed properly, may

cause important business impacts. Application KPIs are the key to exposing things like

query issues, poor data models, and unexpected driver behavior.

Here are some important KPIs to look into regarding your application (client side):

•	 Latency: High P99 latency on your client side does not necessarily

mean that there’s a problem with your database latency. Client-

side latencies will typically be slightly higher than your database

Chapter 10 Monitoring

208

latencies due to the natural network round-trip delays involved when

communicating to and from your database. However, this metric

alone does not help you identify the actual culprit. Look at whether

your application is behaving erratically or whether it is simply

bottlenecked (in which case, you can scale it out as necessary).

•	 CPU consumption: High CPU consumption could stem from several

causes. Maybe your client is simply overwhelmed, unable to keep up

with the pace of incoming requests. Maybe your request balancing

is not appropriate. Maybe a “noisy neighbor” is stealing your CPU

capacity, among other things. In general, if you suspect that the root

cause of the high CPU consumption is due to an inefficiency in your

code, you could collect tracepoints on your code or use advanced

Heat Map profiling tools, such as perf.1 Otherwise, simply scaling out

your application deployments or moving the application to another

host might be enough to resolve the problem.

•	 Network IRQs: Applications that need to achieve a high throughput

with low latencies can be rather network intensive. As a result,

a high network IRQ consumption may prevent your application

from fully maximizing the intended rate of requests you initially

projected. Use low-level CPU observability tools to check your softirq

consumption, such as the top and htop commands available in most

Linux platforms. Another mechanism employed to stop IRQs from

undermining your performance involves CPU-pinning or simply

scaling out your application to run on different host machines.

•	 Readiness/liveness: Any application is prone to bugs and

infrastructure failures. Readiness and liveness probes will help you

identify when a specific set of your distributed application may

start to misbehave and—in many situations—will automatically

redeploy or restart the faulty client. Readiness and liveness probes

are standard for Kubernetes stateless applications. Whenever your

application pods start to misbehave, your Kubernetes controller will

typically take action to move it back into a healthy state. Applications

1 See www.brendangregg.com/blog/2014-07-01/perf-heat-maps.html.

Chapter 10 Monitoring

http://www.brendangregg.com/blog/2014-07-01/perf-heat-maps.html

209

that frequently restart due to readiness or liveness problems may

indicate problematic logic, a memory leak, or other issues. Check

your application or Kubernetes logs for more details on the actual

cause of such events.

•	 GC pauses: Many applications are developed in programming

languages that experience garbage collection pauses while freeing up

memory. Depending on its aggressiveness, it can cause CPU spikes

(preventing your application from keeping up with its incoming rate)

or introduce severe latency spikes. It indicates either a problematic

memory management algorithm, or an inefficiency with your garbage

collector overall. Consider spreading out your application to run with

more independent clients and see if that improves the situation.

�Infrastructure/Hardware KPIs
Keeping an eye on the database and application sounds reasonable, but what about

the underlying hardware and infrastructure? Keeping it all healthy and humming is the

top priority of infrastructure teams. After all, what good does tuning and monitoring a

database do if the server that powers it goes offline due to a weeks-long malfunction that

went unnoticed?

Here are the top infrastructure/hardware KPIs that are relevant from a database

perspective:

•	 Disk space utilization: A database, being a stateful application,

certainly has disk space utilization as a top priority KPI. It’s extremely

dangerous to have disks reaching full capacity because the database

has no option other than to shed requests. A database might even

shut itself down to avoid unintentional data loss. Keeping disk

utilization well under control is crucial to a healthy, performant

database.

•	 Disk bandwidth utilization: Apart from the disk space utilization,

monitor how disks are being actively used and performing. In a

world of multi-gigabyte RAM, disk bandwidth cannot fall behind;

otherwise, you might risk increased latencies or even a complete

failure due to disks being unable to attend to requests within

acceptable timeframes.

Chapter 10 Monitoring

210

•	 CPU utilization: This is the one and only metric that counts…or is

it? CPU utilization can be looked at from different perspectives. On

the one hand, the OS might say that a CPU is 100 percent busy and

therefore it has certainly reached its limit and cannot possibly accept

more work. Right? Wrong! A busy CPU does not always mean that

the system has reached its limits. Databases such as ScyllaDB have

internal mechanisms to prioritize user workloads over background

internal processes such as compactions and repairs. In such a system,

it is actually expected to see CPU utilization at 100 percent most of

the time—and it does not mean that the system has reached its limits!

•	 Memory utilization: No one wants to see a database swapping

to disk since it can become very detrimental to performance.

Heavy memory pressure can trigger your database to crash (or get

its process killed) if the underlying operating system runs out of

memory. In general, database nodes should be the only memory-

hungry resource running on a given server and the system must be

configured to avoid swapping unless strictly necessary.

•	 Network availability: A distributed database heavily relies on

networking in order to communicate with other nodes to replicate

your data, liveness information, and—at the same time—serve your

application queries. Network failures may introduce a split-brain

situation, or make node(s) completely inaccessible momentarily,

whereas hitting network bandwidth limits may result in additional

latency to your workloads.

�Creating Effective Custom Alerts
Most tools you use to monitor databases provide built-in alerting systems with

predefined rules that should meet most users’ needs. But what if you’d sleep better with

more specialized monitoring rules and alerts in place?

First, start by understanding what you want to monitor, then see how that can be

achieved using existing metrics (or a combination of them). After selecting the metric(s)

that will drive the custom alert, think about the frequency of checks and set a threshold

Chapter 10 Monitoring

211

for the possible values. For instance, maybe you think that a workload crossing its

expected peak for one minute is acceptable, three minutes should trigger warnings,

and five minutes indicates something is definitely wrong. Set your monitoring system

accordingly and bind the appropriate alerting channels for each type of alert.

Also, make good use of alerting channels! Be sure to tag and appropriately direct

each level of alert to its own set of target channels. You don’t want the alerting system

automation to silently drop a message on a random Slack channel in the middle of the

night if the production system is down.

�Walking Through Sample Scenarios
To help you see how these principles translate into practice, here are two sample

scenarios.

�One Replica Is Lagging in Acknowledging Requests
Assume that you’re looking at the dashboard in Figure 10-1 and notice that one replica is

taking much longer than all the others to acknowledge requests. Since the application’s

incoming request rate is constant (you’re not throttling requests), the other replicas will

also start suffering after some time.

Figure 10-1.  One replica taking much longer than all the others to acknowledge
requests

To see what’s going on here, let’s look at the foreground and background write

queues. But first: what’s a foreground and background queue? Foreground queues

are requests that the application directed to the specified node, but were not yet

Chapter 10 Monitoring

212

acknowledged back to the client. That is, the requests were received, but are waiting to

be processed because the database is currently busy serving other requests. Background

queues are application requests that were already acknowledged back to the application,

but still require additional work in the database before they can be considered done.

Delays replicating data across nodes are typically the reason for high background

queues. High foreground and background queues both correlate with high latencies.

So what’s the true problem here? Figure 10-2 indicates that the application is

overloading the system. It’s sending more requests than the database can handle. And

since the running time of a single task in a distributed system is governed by the slowest

node, the entire system will throttle down to the speed of that slow node.

Figure 10-2.  Foreground writes per shard

Figure 10-3 shows that the background queues in other nodes start climbing right

after one node gets overwhelmed with requests it can’t handle. This makes sense,

because the busy node is clearly taking longer to acknowledge requests sent to it.

Figure 10-3.  Background writes per shard

Chapter 10 Monitoring

213

There are a couple of options for resolving this. First, consider modifying the

application to throttle requests. If you can’t do that, then scale out the cluster to give it

more capacity.

�Disappointing P99 Read Latencies
Assume that you’re looking at the dashboard shown in Figure 10-4 and notice that the

read latencies seem disappointing. The P99 read latency is 40ms most of the time, with a

spike above 100ms under some circumstances. What’s going on here?

Figure 10-4.  Disappointing P99 read latencies

To analyze this, let’s look at the internal cache metrics. The Reads with Misses graph

in Figure 10-5 shows that the reads aren’t hitting the cache—they’re all going to disk

instead. Fetching information from the disk is an order of magnitude slower than doing

so from memory. At this point, you know something weird is going on.

Chapter 10 Monitoring

214

Figure 10-5.  Database reads with cache misses; reads are going to disk instead
of cache

Similarly, Figure 10-6 shows the cache hits. You can see that almost no requests

are being served by the cache. This is a likely indication that the workload in question

heavily relies on reading cold (uncached) data.

Figure 10-6.  Database reads with cache hits

To investigate further, look at the Active SSTable Reads graph in Figure 10-7. Here,

you can see that the amount of active read requests going to the disk is quite high.

Chapter 10 Monitoring

215

Figure 10-7.  Active SSTable Reads graph showing that the amount of active read
requests going to the disk is quite high

On the Queued Reads graph in Figure 10-8, you can see there’s a bit of queuing. This

queuing means that the underlying storage system can’t keep up with the request rate.

Requests need to wait longer before being served—and latency increases.

Chapter 10 Monitoring

216

Figure 10-8.  Queued Reads graph demonstrates that several requests are
getting queued

How do you resolve this? Review your queries and access patterns to use the

cache more efficiently. This is where query analysis is helpful. For example, with CQL,

you could look at the distribution of inserts, reads, deletes, and updates, the number

of connections per node or shard, and how many rows you’re currently reading. If

available, also check whether your queries are following the relevant best practices (for

CQL, this could be using prepared statements, token-aware queries, paged queries,

and so on).

Also, watch out for queries that require nodes across datacenters to participate

before requests are considered successful. Cross-datacenter traffic is usually more

expensive in terms of latencies and actual cost. Figure 10-9 shows an example of how to

identify queries traversing to remote regions.

Chapter 10 Monitoring

217

Figure 10-9.  Tracking cross-datacenter traffic, which is usually more expensive in
terms of latencies and cost

�Monitoring Options
Once you have a good grasp of what you’re looking for, how do you find it? There are a

number of tools and technologies available; here’s a quick rundown of the pros and cons

of common options.

�The Database Vendor’s Monitoring Stack
Under most circumstances, your database’s bundled monitoring solution should be

sufficient for gaining insight into how the database is performing. It is typically the

recommended solution for a number of reasons. Since it was engineered by your vendor,

it likely contains many of the details you should care about the most. Moreover, if you

turn to your vendor with a performance problem that you’re unable to diagnose on your

own, the vendor is likely to request visibility through their provided solution. For that

reason, we recommend that you always deploy your vendor’s monitoring stack—even if

you plan to use another solution you prefer.

Chapter 10 Monitoring

218

�Build Your Own Dashboards and Alerting (Grafana,
Grafana Loki)
What if the vendor-provided monitoring stack doesn’t allow you customization options

and the ability to create additional monitors that could yield additional insight into your

use case, application, or database? In this case, it’s great to have the flexibility of going

open-source to build your own monitoring stack by stitching together every monitor and

chart that you need.

Just keep in mind that a vendor’s monitoring system is usually tuned to provide

valuable metrics that are commonly used during troubleshooting. It’s still important to

keep that foundation operational alongside the additional monitoring options you and

your team decide to use.

�Third-Party Database Monitoring Tools
Some teams might already be using a database monitoring tool that’s built and

maintained by someone other than their database vendor. If it’s a tool you’re already

familiar with, you get the benefit of working with a familiar solution that’s probably

already integrated into your existing monitoring framework. However, you might

need to manually build and track all the relevant dashboards you want, which can be

tedious and time-consuming. Other potential drawbacks of implementing a third-party

monitoring tool can be the lack of vendor support and the risk of your dashboards

becoming obsolete whenever your vendor implements a new metric or changes the

meaning of a metric.

�Full Stack Application Performance Monitoring (APM) Tool
A full-stack APM system collects remote metrics and aggregates them in a central

solution that provides insight across different types of services and products. An

organization might use an APM tool for a global view of all assets, services, and nodes

across a portfolio. It is the preferred way for larger companies to manage infrastructure,

and it certainly has its benefits. It’s usually serverless and only a client is required to push

information to the centralized service.

Chapter 10 Monitoring

219

However, a centralized solution requires a subscription and constant internet access.

You might also be charged per device and have less flexibility on how to customize

metrics collection, create panels and alerts, and so on. APM platforms usually offer a

wide range of plugins that can be tailor-made to monitor products. But not all of them

are created the same, so your mileage may vary.

Teams often ask if their favorite observability solution can impact their performance.

Yes, it can. We have learned from experience that some observability or monitoring

solutions, especially those that require an agent to be installed on top of your database

nodes, may introduce performance problems. In one extreme example, we saw an agent

totally hanging the database process, introducing a real business outage. Whenever

installing third-party solutions that could directly interact with your database process,

ensure that you first consult with your vendor about its compatibility and support.

�Summary
This chapter began by recommending that you make monitoring a regular habit so

that you’re well-prepared to spot emerging issues and effectively diagnose the problem

when something goes wrong. It outlined a number of KPIs that have proven helpful

for tracking business-critical enterprise deployments. For each KPI, it explained what

to look for and offered some tips for how to react when the trends indicate a problem.

The chapter offered some high-level guidelines for creating custom alerts. Finally, we

walked through two sample monitoring scenarios and shared our take on the pros and

cons of different monitoring platform options. The next (and final) chapter looks at the

performance impacts of common admin operations and offers some tips on how you

might mitigate them.

Chapter 10 Monitoring

220

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 10 Monitoring

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

221

CHAPTER 11

Administration
A database’s automated admin operations work to keep things tight and tidy behind

the scenes, but a level of supervision is required. Databases don’t know your business

and could very naively decide to execute resource-intensive admin operations at

what’s actually a performance-critical time. This final chapter details how common

admin operations tend to impact performance. It covers the nature and severity of

representative impacts and offers some tips on how you might mitigate them.

�Admin Operations and Performance
You might see promises of “zero impact” admin operations, but remember that the laws

of physics mean that’s not possible. Performing any operation consumes resources.

And when you’re operating at extreme speed and scale, these operations may introduce

exacerbated impacts. Given use cases that need to operate at sub-millisecond or single-

digit millisecond P99 latency, it doesn’t take much for background tasks to have a

noticeable impact. With a latency-sensitive use case, there can be absolutely no system

contention during its execution. Even admin operations that will ultimately improve

your database performance could inevitably hurt performance to some extent as they

are executing. The better you understand the extent of their impact on your specific

workload, the more effectively you can strategize to minimize disruption.

Low-level details about what admin operations are required will vary from database

to database and also change over time; that’s well beyond the scope of this book. This

chapter focuses on how admin operations could end up undermining the other work

you’ve done to optimize database performance—and how to avoid that scenario. It starts

by presenting a quick rule of thumb to prioritize your focus. Then, examples of backups

and compaction will showcase the potentially significant—and also highly variable—

impact of admin operations on performance.

© Felipe Cardeneti Mendes, Piotr Sarna, Pavel Emelyanov, Cynthia Dunlop 2023
F. C. Mendes et al., Database Performance at Scale, https://doi.org/10.1007/978-1-4842-9711-7_11

https://doi.org/10.1007/978-1-4842-9711-7_11

222

�Looking at Admin Operations Through the Lens
of Performance
Every admin operation, from backups to data migrations to adding and reducing

capacity, consumes resources that might otherwise be spent on your workload. The

impact of an admin operation will vary across databases and workloads. What’s more, an

impact that results in lost revenue for one company might be completely acceptable for

another.

What admin operations should you focus on from the performance perspective? As

shown in Figure 11-1, work through three key considerations for every admin operation

that’s being performed.

	 1.	 What’s the impact on your specific workload at your current or

projected scale?

	 2.	 How much does that impact matter to your business?

	 3.	 To what extent can you control it?

Figure 11-1.  A quick rule of thumb for where to focus your admin-related
performance optimizations

Chapter 11 Administration

223

If there is no discernible performance impact for your scenario, then the second and

third questions don’t really matter. If there’s a significant and business-critical impact

but you can’t control it, you’re in the tough position of deciding whether to accept it

or consider moving to an alternative database. If the stars align and you can control

something that’s both impactful and business-critical, that’s a great place to focus.

For example, consider PostgreSQL’s autovacuum function. As of this writing,

autovacuum is triggered when a specified scale factor/threshold is exceeded. This

is likely to coincide with heavy activity on the table—which is probably not when

you want background admin tasks to kick in. Starving some tables while repeatedly

vacuuming others is common, and users trying to compel autovacuum to hit starved

tables can easily end up pushing the system beyond its limit. What’s the likely impact

on the business? Probably fairly high for any performance-sensitive use case. And to

what extent can you control it? Quite well. For example, you can tune autovacuum

settings at both the global and table level, as well as apply strategies like supplementing

autovacuum with additional scheduled vacuum jobs. The bottom line here is that this is

a great performance optimization opportunity.

On the other hand, if you are using a managed DBaaS such as DynamoDB, admin

operations such as data cleanup might be largely beyond your scope of visibility and

control. It certainly doesn’t hurt to ask your vendor what they’re willing to divulge about

what, when, and how admin operations are performed. Even if you discover that an

admin operation undermines performance in a way that matters for you, you might

not be able to control it—but at least you can better prepare for it and diagnose the

performance hit when it occurs.

Among admin operations that could negatively impact performance, some of the

most common suspects are:

•	 Node recovery: This involves existing replicas streaming data in

order to recover the missing replica. Existing replicas need to read

through all the data required by the recovered replica and transfer its

results via the network.

•	 Ramping up/down capacity: This often requires an entire cluster or

region to rebalance data. Ramping up capacity means that data will

be streamed from other replicas to the new one, while ramping down

means that the node being removed will stream data out to existing

replicas.

Chapter 11 Administration

224

•	 Data migration: Migration often affects latency on the source cluster.

Since a data migration typically involves no downtime, a balance

between speed and service stability is needed in order to avoid

impacting existing production workloads.

•	 Database upgrades: Although the outcome of an upgrade is likely to

improve performance, remember that restarting a database instance

results in a cold cache. This may affect read latencies if the use case in

question is cache heavy.

•	 Logging and tracing: When you’re trying to understand a specific

pattern or impact, logging and tracing will be important. Databases

provide several verbosity levels for many logging components, as well

as the ability to enable tracepoints toward your query plans. However,

enabling both logging and tracing should be done with caution

because they can potentially be resource-intensive operations.

•	 Data synchronization: Eventually consistent databases don’t

guarantee that all the data you’re looking for will be immediately

available across all natural replicas. As a result, a background process

is often needed to get data in sync. This typically involves each

replica reading through its existing data, comparing it with its peers,

and applying any relevant changes.

Two of the most common operations that impact performance across a variety of

databases are backups and compaction. Let’s take a deeper look at both.

�Backups
Backups—a common maintenance procedure for any database—can be surprisingly

resource intensive. For example, consider a backup strategy where data deduplication

is required. As data in the database frequently gets written or overwritten, backups may

consume several CPU cycles and disk I/O on reads in order to compare whether the

data to be backed up has already been saved. Then, as it finds newer data that must

be retained, it eventually uploads the data (which also involves issuing underlying I/O

reads) to a safe location. As the process is repeated across multiple nodes, its parallelism

often ends up hurting latencies, especially for use cases that heavily rely on disk I/O to

fetch information.

Chapter 11 Administration

225

�Impacts
Factors that influence a backup’s performance impact include:

•	 Dataset size and replication factor: The more data you’re backing

up, the more time it takes to run a backup. Depending on the number

of files stored on disk, backing up may use a lot of read I/O to scan

through all the required database blobs.

•	 Scope: Are you backing up all on-disk data files all the time (full

backup)? A specific cluster? A system-wide snapshot? An incremental

backup? A properly defined backup strategy and scope will help you

mitigate the impact.

•	 Frequency: Frequent small backups will result in a more constant

low-level pain; less frequent, but larger backups will cause a sharper

pain, but that pain will be inflicted less frequently.

•	 Bandwidth throttling: The option to compress or spread out the

backup pain helps teams who want to get backups completed as fast

as possible during low peak periods (if any exist) or to run them as

unobtrusively as possible during steady workloads.

•	 Scheduling options: The ability to control precisely when backups

occur allows teams with spiky workloads to avoid backups during

likely peak periods.

•	 Data compression: Greater compression will save on storage, but it

comes at the cost of increased CPU usage as the backup runs.

•	 Parallelism: The more nodes you back up in parallel, the faster it

completes—but at the risk of starving disk I/O capacity along with

your ongoing workload.

•	 Storage medium: Reads from local SSDs are noticeably faster than

regular disks. As a result, if your database relies on slow-access

storage devices, it is much easier for backups to deplete your

available read capacity.

Chapter 11 Administration

226

�Optimization
Before you start adjusting any options, consider these two critical questions:

•	 What’s your business’ tolerance for data loss?

•	 What type of backup makes the most sense given your workloads?

For example, if you’re working on a food delivery app, a large backup that kicks off

in the middle of the Friday lunch surge could result in lost business. The pain could be

alleviated by running regular backups during predictable downtimes (e.g., very early in

the morning), when there are resources to spare.

But other businesses don’t have a predictable downtime. For another example,

consider an application that provides location tracking services for ambulances—a

use case where a catastrophic event could bring a dramatic surge at any time without

warning. In that case, many small and frequent backups might be the best strategy. This

way, backups are unlikely to significantly impact database performance, no matter when

the unpredictable demand happens to rise.

Work with your team to understand the backup coverage that you need and what

type of backup pain you’re willing to accept, then adjust your options accordingly.

Note R epairs are a totally different process, but they have a similar impact.
Eventually consistent databases need to ensure that replicas (eventually) all have
the appropriate updates. In Cassandra and Cassandra-like databases, this process
is referred to as repairs. When repair runs, it could cause latency to spike. The
key to minimizing its performance impact varies according to your workload.
If there’s a time when your database is predictably idle, run repair then—with
high parallelism and intensity. If your use case can withstand minor latency
spikes, you can try to limit the repair’s intensity and parallelism. But, if you can’t
afford any latency spikes (e.g., a real-time bidding use case that must provide
sub-millisecond P9999 latencies around the clock), your best bet is to limit the
operation to run as slowly as possible.

Chapter 11 Administration

227

�Compaction
As mentioned in Chapter 2 and covered more in Appendix A, LSM-based databases use

compaction—a process of rewriting tables to remove deleted entries and reorganize data

to enable faster, more efficient reads and writes. Compaction operations are expensive in

terms of CPU, memory, and disk I/O.1

The degree to which you can control compaction varies dramatically from database

to database. For example, with Bigtable, it’s all done automatically. However, databases

such as Couchbase, HBase, Cassandra, and ScyllaDB let you choose from a variety of

compaction strategies, many of which have additional options you can use to fine-tune

how compaction is performed, as well as other settings that influence compaction

performance (for example, rate-limiting it).

�Impacts
The performance impact of compaction also varies dramatically from database to

database. One fundamental factor that influences compaction speed is whether the

database is performing the major compactions on each shard/CPU concurrently, or the

compaction is bound to a single thread. As shown in Figure 11-2, benchmarks found that

there can reflect a nearly 60X difference in the time required to run a major compaction

of 1TB of data at RF=1 on i3.4xlarge machines.

1 For an interesting perspective on compaction, see Avi Kivity’s real-time visualization
in “How a Database Looks from a Disk’s Perspective” (www.p99conf.io/session/
how-a-database-looks-from-a-disks-perspective/).

Chapter 11 Administration

http://www.p99conf.io/session/how-a-database-looks-from-a-disks-perspective/
http://www.p99conf.io/session/how-a-database-looks-from-a-disks-perspective/

228

Figure 11-2.  The wide range of time required to perform compaction on similar
databases—from 36 minutes to 37 hours and 56 minutes

Additional factors that influence the impact of compaction include:

•	 Compaction backlog: Since compacting data is a process that is

always running in the background, the amount of data to compact

is expressed by its growing backlog. If compaction falls behind, it

will eventually try to catch up in an attempt to keep the database

from running out of resources and to minimize read amplification.

A growing compaction backlog indicates that the cluster is not sized

appropriately, the use case in question is using an inappropriate

compaction strategy, or the process is being throttled too aggressively

in the database settings.

•	 Inefficient compaction strategy selection: Write-mostly workloads

are different from read-mostly workloads, which are different from

update-heavy and delete-heavy workloads. Understanding the

Chapter 11 Administration

229

concepts behind every compaction strategy and how it impacts

your workload is important to avoid read amplification, write

amplification, or space amplification.

•	 Compaction throughput: In situations where your use case

relies heavily on reading from cold data, having overly aggressive

compaction throughput would end up stealing some important IOPS

and bandwidth needed for your workload. Play with different rate-

limiting values and keep an eye on your compaction backlog until

you find your sweet spot.

An inefficient compaction strategy may affect workloads differently, depending on what

level of inefficiency it is. For example, a write-heavy workload will typically want to prevent

compactions from running too aggressively; otherwise, it may exhaust the existing disk

bandwidth capacity and eventually throttle down the database write path. On the other

hand, a read-heavy workload will likely want compaction to run more aggressively, given that

compactions may actually improve read latencies by requiring the database to issue fewer

underlying storage disk I/O operations. Time-series use cases will typically prefer data to be

separated into buckets so that eventual eviction can be done efficiently. And so on, and so on.

�Optimization
When selecting a compaction strategy, keep in mind that the ultimate goal should be low

amplification. You want to avoid:

•	 Read amplification (read requests needing many files to look up

relevant data)

•	 Excessive temporary disk space that requires the disk to be larger

than a perfectly-compacted representation of the data (space

amplification)

•	 Compacting the same data over and over again (write amplification)

•	 Overwritten/deleted/expired data remaining on disk, slowing down

your read path

Since not everyone is using a database that performs compaction, this chapter

doesn’t go deep into the weeds of the pros and cons of specific strategies. Table 11-1

provides an overview of which compaction strategy generally works best for different

workloads (your results may vary).

Chapter 11 Administration

230

Table 11-1.  Comparing Compaction Strategies

Size-
Tiered

Leveled Incremental Time
Window

Comments

Write-only When using size-tiered with write-only

workloads, it will use approximately 2x

peak space. With incremental, the size

amplification is much less.

When using leveled compaction

with write-only workloads, you will

experience high write amplification.

Overwrite When using size-tired or incremental

with overwrite workloads, size

amplification occurs.

When using leveled compaction with

overwrite workloads, write amplification

occurs.

Read-
mostly, with
few updates

When using size-tiered with read-

mostly workloads with few updates, size

amplification and read amplification occur.

Read-
mostly,
with many
updates

When using leveled with read-mostly

workloads with many updates, write

amplification occurs in excess.

Time series When using size-tiered or incremental

with time series workloads, size

amplification, read amplification, and

write amplification all occur.

When using leveled with time series

workloads, size amplification and write

amplification occur.

Two key takeaways should be that 1) one size never fits all, so it’s nice to have a

choice in admin matters, and 2) tradeoffs are inevitable—know what pain you can

tolerate best so pick your poison.

Chapter 11 Administration

231

To drive the point home, here’s a real-world story. Once upon a time, a new ScyllaDB

user reported high read latencies. The use case was a TTL’d time series to support

live media streaming. Time series use cases heavily rely on fetching data in specific

timeframes and expect that such lookups are fast enough to be served by the database.

As a result, time series use cases often rely on a Time-Bucketed compaction strategy,

which ensures that the data in question is compacted together under the same time

window to avoid the database having to potentially scan through multiple files across

distinct windows just to retrieve the data. However, if configured incorrectly, the strategy

may backfire and introduce severe performance headaches.

In this particular situation, we discovered that their time buckets were too small

for the amount of data they were frequently retrieving as part of a single query. For

example, if you decide to time-bucket your data every ten minutes, but always want to

retrieve ten hours’ worth of data, that will require the database to scan through

60 (6 buckets/hour * 10 hours) of buckets! With the right amount of concurrency, every

query scanning through these large chunks of data could starve the underlying disk I/O

capacity. Therefore, the resolution was to update the compaction configuration to reflect

a more realistic data grouping as required by the use case.

One final note on adjusting your compaction strategy for performance: Remember

that when you adjust your compaction strategy, your database will need to rewrite all

your table data. This will incur a significant performance penalty and should be carefully

planned to occur at a time that works best for your business.

�Summary
Admin operations like repair, compactions, and backups are an unavoidable part of

running a healthy, well-performing database. There’s no such thing as a “zero impact”

admin operation; performing any operation consumes resources, and these operations

can have exacerbated impacts if you’re operating at extreme scale. This chapter used the

examples of backups and compaction to showcase the potentially significant—and also

highly variable—impact of admin operations on performance.

This is the final official chapter of this book—the end of these highly opinionated

recommendations for improving database performance based on what we’ve seen

working with a broad range of database users and databases. It’s hardly the end of

options for optimizing database performance though. Some potential next steps:

Chapter 11 Administration

232

•	 Flag the considerations/recommendations that seem to offer potential

for your specific workloads and use case, then discuss with your team.

•	 Take another look at your database’s specific options (e.g., for

monitoring, drivers, admin, etc.) and see if it’s time to rethink any of

your previous decisions.

•	 Tap your database vendor and/or community to learn about

performance-related engineering decisions and optimizations that

might offer untapped opportunities (or be responsible for some of

your current constraints).

•	 Consider whether your data modeling might need a tune-up or

overhaul (monitoring can help you assess this). If so, we recommend

NoSQL Distilled by Pramod J. Sadalge and Martin Fowler—assuming

you’re using NoSQL. If not, browse the wealth of resources on

RDBMS data modeling.

•	 Continue learning more about the fundamental database design

decisions made when building any distributed database: replication

and sharding strategies, consensus algorithms, data structures

(B-tree vs LSM tree), and so on. You can get a performance-focused

introduction to these topics, as well as recommendations for learning

more from the masters, in Appendix A.

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 11 Administration

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

233

APPENDIX A

�A Brief Look at
Fundamental Database
Design Decisions
This appendix briefly touches on a number of fundamental database design decisions

that impact database performance. Why “briefly?” First, because we suspect that

many readers are already familiar with them. But, more importantly, because other

resources have covered them quite extensively, and extremely well. Honestly, there’s

not much to add. So, we’ll offer a short take on some of the most pressing decisions

that any distributed database must make, then share our top picks for learning more on

each topic.

�Sharding and Replication
Modern databases can rarely afford to be a single-node instance. The most obvious

reason for being distributed is the need to avoid data loss in the case of a crash of any

kind. Keeping data distributed across several nodes in a cluster inevitably means that the

data needs to be split up (sharded) and copied between those nodes (replicated). The

result is a distributed system in which users can quickly access data according to their

queries.

© Felipe Cardeneti Mendes, Piotr Sarna, Pavel Emelyanov, Cynthia Dunlop 2023
F. C. Mendes et al., Database Performance at Scale, https://doi.org/10.1007/978-1-4842-9711-7

https://doi.org/10.1007/978-1-4842-9711-7

234

�Sharding
The point of sharding is to ensure that data is well-balanced across your cluster for

reading and writing. You’re going to get the best performance by having all available

nodes reading and writing data—not by overloading some nodes while others are idle or

highly underutilized.

With most databases, sharding is built into its architecture. If that’s the case, it’s

important to get the data modeling correct (e.g., high cardinality partition keys) to help

the database’s automated sharding approach achieve an efficient balance across nodes.

However, if the database requires you to define the sharding strategy, you’re going to

have to bear the burden of more decisions that can impact balancing and, ultimately,

performance. If you see that certain shards are receiving or handling more requests than

others, it’s time to reconsider your strategy.

Also, all automated sharding is not the same. The two most common approaches

used in the class of databases we’ve been covering in this book are:

•	 Range-based sharding: Dividing data into contiguous ranges

determined by the shard key values. This offers the best performance

for range lookups, but is otherwise prone to hotspots. (Bigtable and

HBase use this approach.)

•	 Hash-based sharding: Dividing data evenly and randomly across

shards as determined by a sharding algorithm. This offers the best

performance for most scenarios. (Cassandra, ScyllaDB, DynamoDB,

and Redis use this approach.)

The level at which the sharding is performed also matters. The most common

approach is to shard per node: Distribute data into separate database server nodes.

Another option is to shard per each core in your server, across all the servers in the

cluster. This divides a server’s resources into shared-nothing units of CPU core, RAM,

persistent storage, and network I/O. The advantage of this approach is that it maximizes

utilization of all the available cores of multi-CPU hardware architectures. If paired with

shard-aware drivers, each client writing or requesting data can send queries directly to

the CPU core responsible for that shard of data. This minimizes hot shards and removes

extra hops—improving performance. However, if you’re not running on powerful

servers, you’re less likely to take full advantage of the potential performance gains here.

Appendix A A Brief Look at Fundamental Database Design Decisions

235

�Replication
Being synchronous, replication affects the performance of the database at runtime.

Poorly designed or inappropriately selected replication can cause performance

bottlenecks.

There are many possible approaches to the design and implementation of database

replication. Database replication can either happen on an explicit command or be an

ongoing background process. Either approach should be well-accommodated by the

infrastructure that the database is running on.

For data replication, the database engineer needs to select a replication strategy:

The process for selecting the nodes to which each portion of data will be copied. Some

replication strategies don’t just copy data to a set of nodes; they also apply prioritization.

One or more nodes are called primary replicas for this portion of data, while the other

nodes are called secondary replicas.

Think about the number of nodes in the replica sets. To begin with, each piece of

data can be replicated to a single node, as shown in Figure A-1.

Figure A-1.  Replicating data to a single node

Here, data is sharded across the different nodes for load balancing, but it doesn’t

provide high availability because none of the shards is replicated.

In more complex cases (shown in Figure A-2), there’s one primary replica and one or

more secondary replica nodes.

Appendix A A Brief Look at Fundamental Database Design Decisions

236

Figure A-2.  Replicating data to several nodes, with a single primary and multiple
secondary replicas

Here, one node writes data, which then can be propagated to other read-only nodes.

This approach provides some level of high availability since a replica can take over the

cluster if the primary goes offline. However, it does not properly balance your workload.

All writes must be handled by the primary—which means that the primary becomes

a bottleneck. As a result, this method of data replication may be impractical for write-

intensive workloads. Spreading out the primary replicas for different portions of data

across different nodes in the cluster is one potential way to address this.

In a more extreme form, there are no secondary replicas (like in Figure A-3).

Figure A-3.  Full active-active-style replication

Appendix A A Brief Look at Fundamental Database Design Decisions

237

Here, all data is replicated in an active-active leaderless topology. Every node can

accept read and write operations, so all are peers in managing the workload. When this

strategy is applied, any loss to part of the cluster will not result in lost data.

This active-active leaderless topology leads to what is called eventual consistency:

The guarantee that when an update is made in a distributed database, that update will

eventually be reflected in all nodes that store the data—resulting in the same response

every time the data is queried. In an eventually consistent system, the replication

strategy defines a number called the “replication factor” (RF), which is the number of

nodes on which the portion of data can be found. Writing the data to (and reading the

data from) such a system also conforms to different consistency requirements, which is

referred to as consistency level (CL).

The most restrictive consistency level is often called “all.” Writing in this mode

means that the data must be written on disk on all replica nodes in the cluster. Reading

returns the data after all replicas have responded, and the read operation fails if at least

one replica does not respond.

Some less restrictive, but more performant, consistency levels may specify the exact

number of nodes that must confirm the operation. Usually, this number is selected in

the range of one through three, depending on how many replicas the cluster operator

expects to crash.

“Quorum” consistency level provides much stronger consistency for the data.

Writing or reading the data at this level means that the majority of nodes from the replica

set should confirm the operation. In multi-datacenter setups, quorum consistency often

has sub-levels depending on which datacenters the nodes from the replica set belong to.

Note that read and write consistency levels are independent of each other. Even if

data was written with one consistency level (e.g. quorum), reading can use a different

consistency level depending on the intention. For example, a CL of ONE can be used for

data that doesn’t need to be consistent, QUORUM CL can be used for a regular (or “unsure”)

case, and the most restrictive level of ALL can be used to effectively force full data repair.

�Learning More
Designing Data-Intensive Applications, by Martin Kleppman (Chapters 5 and 6)

Database Internals: A Deep Dive Into How Distributed Data Systems Work, by Alex

Petrov (Chapters 11, 12, and 13)

Appendix A A Brief Look at Fundamental Database Design Decisions

https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/
https://www.oreilly.com/library/view/database-internals/9781492040330/

238

NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence, by

Pramod J. Sadalage and Martin Fowler (Chapters 4 and 5)

�Consensus Algorithms
Even though quorum consistency level works extremely well and provides data

persistence, data consistency, and low latency access, it still does not guarantee the

linearizability, isolation, and atomicity required by transactions: queries that heavily rely

on ACID properties. One of the simplest and most obvious examples of a transaction can

be any CAS (compare-and-set) operation (e.g., increment a counter provided its value

is below 42). When transactions come into play, simple eventually consistent models

stop working and call for stronger means. One option can be a consensus algorithm on a

distributed system.

Consensus algorithms provide strong consistency guarantees about the underlying

data and allow a set of replicas to work together as a coherent unit. Provided the nodes

conform to the protocol, algorithms tolerate failures of less than half of replicas even in

the presence of message loss and reordering. They guarantee the following properties:

•	 Validity: If a decision is made, it must have been proposed by at least

one of the replicas.

•	 Agreement: If a decision is made at some point, nodes shouldn’t

decide differently.

•	 Stability: If a decision is made at some point, it remains such forever.

•	 Termination: If a decision is made, it eventually gets spread to all

correct replicas.

Consensus algorithms fall into two large classes—those that need a leader to make

a decision and those that don’t. The latter are called leaderless. Algorithms from the

former class can suffer from periods of silence if the leader fails, so the new leader

election process is started and the cluster cannot service requests while it’s happening.

Appendix A A Brief Look at Fundamental Database Design Decisions

https://martinfowler.com/books/nosql.html

239

�Raft
Raft is an example of a consensus algorithm with a leader. Raft was invented to be

simple. It replicates a log of commands from a leader to follower nodes; that log of

commands is called a “replicated state machine.” And, of course, it has the leader-

election algorithm on board too.

Each replica participating in Raft replication can be in one of three states: follower,

candidate, or leader (see Figure A-4). Any attempt to make a decision over the cluster

must be described in terms of a state change in the replicated state machine. Since the

client may not know who the leader is, it sends its decision requests to whatever node

it selects first. Thus, if the decision request is not sent to the leader, followers would

re-route it to one, and then the leader would replicate the decision across its followers.

In the case of leader failure, the followers turn into candidates. The election process

ultimately converts one of those candidates into a leader after it obtains votes from a

majority of replicas.

Figure A-4.  Each replica participating in Raft replication can be a follower,
leader, or candidate; upon leader failure, followers can turn into candidates, and a
candidate is elected leader

Appendix A A Brief Look at Fundamental Database Design Decisions

240

�Paxos
Paxos appeared earlier than Raft. It’s an example of a leaderless algorithm, and it was

one of the first algorithms that proved the quorum-based way of making distributed

decisions.

According to the algorithm, each replica can play one or more of three roles—the

proposer, the acceptor, and the learner (see Figure A-5). The decision is made through a

two-step process in which the roles are involved, but from a practical perspective, nodes

usually combine those roles. The first step, or, as it’s usually called—the phase—is in

proposing some value. In order to be proposed, the value must be accompanied with

the sequence number. After the proposal is confirmed by the majority of acceptors,

the proposer may proceed to the confirmation phase. After the confirmation phase is

confirmed (again) by the majority of acceptors, the decision is made.

Figure A-5.  Each replica participating in Paxos can be the proposer, accepter,
or learner

Once the decision is made, none of the participants may fall back to the first phase.

If the next decision should be made, a new run of the algorithm should be taken. Due to

this, Paxos is never used alone. It’s always part of a larger algorithm that implements all

the necessary “paperwork” needed to instantiate, execute, and wrap up algorithm runs

for individual decisions. One example of such a larger algorithm might be “distributed

log replication.”

Appendix A A Brief Look at Fundamental Database Design Decisions

241

Note I t’s worth mentioning that Paxos was one of the first consensus algorithms
that appeared and its goal was to prove how the distributed consensus is made.
It’s not used in its pure form; it’s commonly extended with something else. One
such extension was Raft, which (pretty successfully) tried to reduce Paxos’
complexity at the cost of a potential imbalance in nodes’ roles.

�Comparing Leaderless and “Leader-Based” Classes
Although both leaderless and leader-based algorithm classes solve similar problems, the

approach that involves a leader in the decision is considered to be simpler to implement

and maintain. It also requires less time to converge upon a decision.

Even though “new leader selection” is just as complex as leaderless algorithms, it

happens rarely and is considered to be a necessary evil. On the other hand, the single-

leader approach often becomes a limitation to scaling consensus on large clusters—

then, leader-less algorithms come to the rescue. Another option to overcome the

leadership bottleneck is to apply some sharding on the decisions themselves. However,

even when this is feasible, the added complexity might not be worth it.

�Learning More
Designing Data-Intensive Applications, by Martin Kleppman (Chapter 9)

Database Internals: A Deep Dive Into How Distributed Data Systems Work, by Alex

Petrov (Chapter 14)

NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence, by

Pramod J. Sadalage and Martin Fowler (Chapter 4)

�B-Tree vs LSM Tree
As mentioned when talking about read-write ratios back in Chapter 2, LSM trees,

illustrated in Figure A-6, are optimized for heavy write workloads and B-trees are

optimized for heavy read workloads. LSM-based databases are append-only. They never

update values; they just add new ones. This means that when the database is servicing

Appendix A A Brief Look at Fundamental Database Design Decisions

https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/
https://www.oreilly.com/library/view/database-internals/9781492040330/
https://martinfowler.com/books/nosql.html

242

reads, it might have to search quite a while to find the appropriate value. However,

compaction can help to avoid this read amplification. Choosing an effective compaction

strategy for your workload, as well as optimizing when compactions are performed,

can significantly impact the read penalty sometimes associated with LSM trees. Also,

mechanisms like built-in caching can enable an LSM-based database to achieve fast

reads as well as writes.

Figure A-6.  With LSM trees, compaction creates fewer (and larger) files

On the other hand, B-tree based databases (as in Figure A-7) are optimized for reads.

B-trees offer fast reads since their structure—and lack of duplication—makes them

much more efficient to search than LSM trees. Traversing the tree is a straightforward

path down a tree (as opposed to searching through potentially many files, as is the case

with LSM trees).

Appendix A A Brief Look at Fundamental Database Design Decisions

243

Figure A-7.  B-trees are updated in place (vs LSM trees, which are append only

The B-tree write path is not optimized for speed, though. Each time there’s a write,

the database must traverse the tree to find the appropriate location. If a value already

exists there, it’s updated. If not, a new leaf is added. This is quite disk-intensive, even for

small records. In some cases, moving to faster disks can improve performance.

The database creates a snapshot of the tree each time, which enables you to perform

rollback (including point-in-time restore). B-trees are also well suited to transactions.

When you are going to perform a transaction, you typically want to read the data and

then start snapshotting everything. If the conflict resolution doesn’t go as planned, you

can simply roll it all back. B-trees make this feasible.

�Learning More
Designing Data-Intensive Applications, by Martin Kleppman (Chapter 3)

Database Internals: A Deep Dive Into How Distributed Data Systems Work, by Alex

Petrov (Chapters 2, 4, 6, and 7)

The B-Tree, LSM-Tree, and the Bw-Tree in Between, by PhotonDB

Appendix A A Brief Look at Fundamental Database Design Decisions

https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/
https://www.oreilly.com/library/view/database-internals/9781492040330/
https://photondb.io/2022/08/15/bw-tree.html

244

�Record Storage Approach
One of the fundamental properties of the database is the way to store the data records

in persistent storage. A wrong choice at this stage may force end-users into one of two

alternatives—exabytes of data migrations vs extremely inefficient disk usage on user

queries. To explore the impact, let’s look at two fundamentally different approaches—

row-oriented and column-oriented, each of which is suitable for different use cases.

Data stored on a hard disk is always split into blocks of a fixed size, which is the

smallest I/O unit the application can use (see Figure A-8). Databases looking for the data

will need to load all the information from the blocks that contain it. Respectively, the

fewer blocks the target data is stored in, the faster the database operates. For spinning

disks, this requirement always comes next to the data locality one—it’s better for the

blocks the database reads to get data that’s adjacent rather than dispersed across

the disk.

Figure A-8.  Data is split into blocks of a fixed size; adjacent data is preferred over
data dispersed across the disk

There are many algorithms to group data in a logical way, each trying to improve

search efficiency (for example, partition and clustering).

When data is organized in the form of a table, the cells can be stored in at least two

ways: row-oriented (e.g., wide column) and column-oriented. It’s not feasible to shift

from one approach to the other because of the amount of I/O required to convert data

between versions. At the same time, this decision has a major impact on the database’s

Appendix A A Brief Look at Fundamental Database Design Decisions

245

performance. The choice between row-oriented or column-oriented usually aligns

with different access patterns (i.e. whether it’s optimized for analytical or transactional

workloads).

�Row-Oriented Databases
Let’s look at a sample table for a better understanding of how different storage

approaches work. Figure A-9 shows a table containing information about a person in

each row (the person’s name, age, address, etc.).

With row-oriented storage, data is put on disk row-by-row, and each chunk of data

from a block consists of the cells from one table row. This design is perfect for so-called

OLTP (Online Transaction Processing) applications, since such workloads can often

modify the data by adding—or deleting—entities in the table. Writing a new row is

optimal because it involves just appending an entire row to the existing blocks or putting

it into new blocks. Another reason that row-oriented storage is good for OLTP workloads

is because these workloads are typically loaded with requests retrieving every attribute

from a single entity. Some examples of row-oriented databases are Cassandra, ScyllaDB,

Postgres, and MySQL.

In other words, row-oriented storage is beneficial when all or most of the record

needs to be accessed in the same query or transaction. In this case, it’s better to have

narrow tables. The more columns there are in a given table, the less likely it is that your

query will need all of them. In the extreme case when the query requires only a few

Figure A-9.  Row-based storage

Appendix A A Brief Look at Fundamental Database Design Decisions

246

columns (or even a single column), the row-store becomes too expensive. It needs to

read the whole block, but the whole block will likely contain redundant data that would

just be thrown away after being read.

�Column-Oriented Databases
On the other hand, column-oriented databases store data on disk column-by-column.

Let’s take the same table, but consider each data chunk to be its column, not the row. As

shown in Figure A-10, the “names” will be grouped together on the disk, the “ages” will

be grouped together on the disk, the “addresses” will be grouped together on the disk,

and so on and so forth.

This approach is a good choice for OLAP (Online Analytical Processing) workloads

because those workloads generally aggregate specific data over a very large number of

records. OLAP queries are mainly interested in a small subset of columns; for example,

calculating the average age of the people from the table. Also, these workloads rarely

modify data, and even when they do, the modification is appending new records. Some

examples of column-oriented databases are Google BigQuery and Amazon Redshift.

It’s also worth mentioning that the compression rate is often much higher in column-

store rather than in row-store. That’s because in column-store, all cells from the column

have the same data type, and that makes it quite compression-friendly.

Figure A-10.  Column-based storage

Appendix A A Brief Look at Fundamental Database Design Decisions

247

Table A-1 breaks down the impact of these different approaches to storing records on

the disk.

Table A-1.  Row-Oriented and Column-Oriented Approaches at a Glance

Pros Cons

Row-
oriented
databases

• Good for OLTP applications

• Inserting, updating, and deleting data is easy

• �The compression rate is

often not very high, so the

data takes up more space

• �Queries might result in

reading unnecessary data

Column-
oriented
databases

• Perfect for OLAP applications

• �The compression rate can be made very high even

with simple methods like RLE (Run Length Encoding)

because the compression algorithms usually work

better on values having the same data type

• �The query may skip scanning unnecessary columns,

which is extremely useful for aggregation queries

• �Reading and writing a

full record is significantly

slower

• �Modifying data is only

efficient when appending

These are just two representative examples. Data can also be stored using document,

graph, and other models. See the following resources for a comprehensive discussion of

how the various models store data, and the best and worst use cases for each.

�Learning More
Designing Data-Intensive Applications, by Martin Kleppman (Chapter 3)

Database Internals: A Deep Dive Into How Distributed Data Systems Work, by Alex

Petrov (Chapter 1)

NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence, by

Pramod J. Sadalage and Martin Fowler (Chapters 8-11)

Appendix A A Brief Look at Fundamental Database Design Decisions

https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/
https://www.oreilly.com/library/view/database-internals/9781492040330/
https://martinfowler.com/books/nosql.html

249

Index

A
Active-active leaderless topology, 237
Administration

backups
definition, 224
impacts, 225
optimization, 226

compaction
impacts, 227–229
optimization, 229, 231
strategies, 230

operation/performance, 221–224, 232
AdTech use case, 40, 207
Advanced Vector Extensions (AVX), 69
Algorithmic optimization

B-trees, 66, 67
cache implementations, 65
database, 74
linear search, steroids, 68, 69
optimizing collections, 66
scanning tree, 69, 70
separation key, 72, 73
tree size, 71

Amazon DynamoDB, 16, 24, 36, 77, 86,
158, 223

Apache Cassandra-compatible database, 20,
21, 25, 36, 85, 111, 114, 115, 129, 145

Asynchronous Direct I/O (AIO/DIO), 53, 54
Atomic, consistent, isolated, and durable

(ACID), 1, 34–36, 238

B
B+-tree, 69, 70, 72
B-tree vs. LSM Tree, 241–243
Batch (analytical) workload, 79–81
Benchmarking

admin operations, 196
cache, 187
client side mistakes, 188
database’s superpowers, 183
data models, 185
dataset size, 186
domain-specific knowledge, 175
extreme scale, 197, 198
goals, 194–196
latency/throughput, 176–178, 180
networking issues, 189
observability, 184
phased approach, 180, 181
production, 183
repeatability, 189
reporting, 189–193
results, 199
steady state, 187, 188
testing disaster

recovery, 197
tools, 184, 185
workloads, 186

Binary tree, 66–68, 71, 72
Blockchain, 207
Branch mispredictions, 68

© Felipe Cardeneti Mendes, Piotr Sarna, Pavel Emelyanov, Cynthia Dunlop 2023
F. C. Mendes et al., Database Performance at Scale, https://doi.org/10.1007/978-1-4842-9711-7

https://doi.org/10.1007/978-1-4842-9711-7

250

C
Caching, 17, 18, 50, 146, 170, 171, 173, 205
Cassandra-stress, 181, 184, 185
Cloud-based deployments, 131
Commit log, 133, 141, 142
Concurrency, 4, 5, 10–12, 28, 31–32,

36, 56, 78
Conflict-free replicated data types

(CRDT), 127, 129
Consensus algorithms

consistency guarantees, 238
leader-based classes, 241
Paxos, 240
Raft, 239

Consistency level (CL), 134, 159, 185, 237
Conventional networking functionality, 61
Conveyor, 68
COUNT function, 117, 118
CPU

cores, 42
execution stages, 45, 46
futures and promises, 44
software architects, 42
SSD drive, 42

CQL protocol, 85

D
Database as a compute engine

CPU power, 110
data locality, 109
user-defined aggregates, 117
user-defined computations, 110
user-defined functions/

procedures, 110
WebAssembly, 124–126

Database-as-a-service (DBaaS), 7, 8, 132,
142, 150, 155

Database cluster KPIs
average read/write latencies, 205
caching, 205
column database, 204
CPU level, 206
GC, 206
industries/use cases, 207
I/O queues, 203
node availability, 204
operations per second, 205
timeouts, 205

Database drivers
choosing driver, 105, 106
clients/server

batch (analytical)
workload, 81

characteristics, 78
distributed system, 79
interactive workload, 80
scalability, 78
workload types, 79

concurrency, 101
modern hardware, 102, 103
modern software, 104

paging, 100, 101
query locality, 91, 93, 94
request caching, 88–90
retries, 94
throughput vs. goodput, 81, 83
timeouts

client-side, 83
server-side, 84

topology/metadata, 86, 87
Data locality, 109
Decoded μop cache (DSB), 45
Deployment models

cloud providers, 148
cloud vendors, 149

INDEX

251

Containers/Kubernetes, 152–154
DBaaS, 150, 151
NVMes, 148
physical hardware, 131
serverless, 151, 152

“do not retry” approach, 98
Driver’s retry policy

error categories, 94, 95
idempotence, 95–97
retry policies, 97–100

E
Edge computing

CRDT
characteristics, 127, 128
definition, 127
G-set, 128
LWW-set, 128, 129
PN-counter, 128

database drivers, 127
performance, 127

Eventual consistency, 36, 129, 237
External caches

complexity, 172
cost, 171
database caching, 172
database knowledge/resources, 173
decreases availability, 171
latency, 170
security risks, 172

F
Final function, 118–120
Full active-active-style

replication, 236
Full-stack APM system, 218

G
Garbage Collector (GC), 206, 209
Golang abstraction layer, 168
Goodput, 81–83
Google Cloud storage, 24
GROUP BY statement, 117
Grow-only counter, 128

H
Hard disk drives (HDDs), 102, 136
Hardware components

CPU, 144, 145
memory (RAM), 145–147
network, 147, 148
storage, 135

Hardware considerations, 132
balance, 133
performance bottlenecks, 132, 133
setting realistic expectations, 134

Hash-based sharding, 234
Hashing key implementation, 2

I
Intel Xeon Processor, 42, 43
Internet of Things (IoT), 126
I/O

access methods, 55–57
AIO/DIO, 53, 54
definition, 51
direct I/O, 52, 53
filesystem/disk, choosing, 57
filesystem vs. raw disk, 57
mmap, 52
SSDs work, 58, 60
traditional method, 51

I/O scheduling, 55, 59

INDEX

252

J
Just-in-time compilation (JIT), 113–114

K
Key performance indicators (KPIs), 201,

203–205, 219
Kubernetes, 152, 154, 208, 209

L
Last-write-wins set, 128, 129
Leader-based algorithm classes, 241
Linear root, 71, 72
Log-structured allocation, 47, 48
Log-structured approach, 50
LSM-tree based databases, 141, 182, 227,

241, 242

M
Memory management

allocation, 47–50
cache control, 50, 51
database engineering, 47
definition, 47

mmap method, 55
Monitoring

custom alerts, 210
dashboards/alerting, 218
database KPIs

applications, 207–209
database cluster, 203, 204
high-performance database, 203
infrastructure/hardware, 209, 210

database monitoring tool, 218
full-stack APM system, 218, 219
proactive approach, 201, 202

sample scenarios, 211–217
vendor’s monitoring stack, 217

Multi-hop routing, 134

N
Networking

DPDK, 62
intensive applications, 61, 62
IRQ binding, 62, 63
Linux, 61

Non-Uniform Memory Architecture
(NUMA), 160

Nonvolatile memory express (NVMe)
disks, 133, 148

O
Online analytical processing

(OLAP), 79, 246
Online transaction processing (OLTP), 21,

79, 163–167, 245

P, Q
Partitioner, 93
Paxos, 240, 241
Pool allocation strategy, 49
Positive-Negative counter, 128
PostgreSQL, 35, 77, 105, 119, 122, 168,

181, 245
Prepared statements, 88, 90, 216
Primary replicas, 235, 236

R
Raft, 239
Range-based sharding, 234

INDEX

253

Receive-side scaling (RSS), 103
Record storage approach

column-oriented databases, 246, 247
data stored, 244
raw-oriented databases, 245
search efficiency, 244

REDUCEFUNC keyword, 119, 123
Redundant Array of Independent Disks

(RAID) array, 133, 140, 141
Replication, 235–237

cluster, 157
multi-availability zones vs. multi-

region, 159
multi-region/global, 159
racks, 158
RF, 158

Runtime, 113, 115, 125, 126, 235

S
Scalar functions, 110, 111, 118
ScyllaDB, 85, 90, 92, 123, 154, 163, 196,

204, 227, 245
Secondary replicas, 235, 236
Serial AT Attachment (SATA)

interface, 135
Serverless, 1, 132, 151, 152
Sharding, 232, 234, 241
SIMD-optimized linear search, 69
Solid-state drives (SSDs), 135, 160
Staged Event-Driven Architecture

(SEDA), 46
State transition function, 118–121
Storage

disk performance, 135, 143
disk setup, 140, 141
disk size, 141, 142
disk types, 135, 136, 139, 140

raw devices/custom drivers, 143
tiered storage, 144

Streaming media, 170, 202, 207

T
Throughput, 7, 8, 10, 11, 23, 27, 28,

31, 32, 58
Tiered storage, 144
Topology

abstraction layers, 167, 168
load balancer, 169
scaling up vs. scaling out, 160–162
workloads, 162, 163, 165–167

U, V
User-defined aggregates

aggregate definition, 120
aggregate functions, 117
best practices, 123, 124
built-in aggregation functions, 117
client-side, 117
components, 118
distributed, 121, 123
examples, 119
final function, 120
state transition function, 120

User-defined functions/procedures
best practices, 116
computations, 111, 112
core strategies, 110
determinism, 112
examples, 114, 115
JIT, 113
latency, 113
scalar functions, 111

User-Defined Types (UDTs), 25, 26

INDEX

254

W, X, Y, Z
WebAssembly, 109, 113, 122, 124–126
Workload (read/write ratio), 15

ACID properties, 34, 35
concurrency, 31, 32
connected technologies, 32
consistency, 36
consistency requirements, 15
dataset size, 26
delete-heavy workloads, 20
demand fluctuations, 33

expected throughput, 27, 28
geographic distribution, 38, 39
heavy workloads, 15
high-availability expectations, 39
item size, 23, 24
item type, 24, 25
latency expectation, 29–31
mixed access patterns, 19, 20
OLTP vs. OLAP, 21–23
read-heavy workloads, 17, 18
write-heavy workload, 16, 17

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: A Taste of What You’re Up Against: Two Tales
	Joan Dives Into Drivers and Debugging
	Joan’s Diary of Lessons Learned, Part I
	The Tuning
	Joan’s Diary of Lessons Learned, Part II

	Patrick’s Unlucky Green Fedoras
	Patrick’s Diary of Lessons Learned, Part I
	The First Spike
	Patrick’s Diary of Lessons Learned, Part II
	The First Loss
	Patrick’s Diary of Lessons Learned, Part III

	The Spike Strikes Again
	Patrick’s Diary of Lessons Learned, Part IV

	Backup Strikes Back
	Patrick’s Diary of Lessons Learned, Part V

	Summary

	Chapter 2: Your Project, Through the Lens of Database Performance
	Workload Mix (Read/Write Ratio)
	Write-Heavy Workloads
	Read-Heavy Workloads
	Mixed Workloads
	Delete-Heavy Workloads
	Competing Workloads (Real-Time vs Batch)

	Item Size
	Item Type
	Dataset Size
	Throughput Expectations
	Latency Expectations
	Concurrency
	Connected Technologies
	Demand Fluctuations
	ACID Transactions
	Consistency Expectations
	Geographic Distribution
	High-Availability Expectations
	Summary

	Chapter 3: Database Internals: Hardware and Operating System Interactions
	CPU
	Share Nothing Across Cores
	Futures-Promises
	Execution Stages
	Frontend
	Branch Speculation
	Backend
	Retiring
	Implications for Databases

	Memory
	Allocation
	Cache Control

	I/O
	Traditional Read/Write
	mmap
	Direct I/O (DIO)
	Asynchronous I/O (AIO/DIO)
	Understanding the Tradeoffs
	Copying and MMU Activity
	I/O Scheduling
	Thread Scheduling
	I/O Alignment
	Application Complexity

	Choosing the Filesystem and/or Disk
	Filesystems vs Raw Disks
	Appending Writes

	How Modern SSDs Work

	Networking
	DPDK
	IRQ Binding

	Summary

	Chapter 4: Database Internals: Algorithmic Optimizations
	Optimizing Collections
	To B- or Not to B-Tree
	Linear Search on Steroids
	Scanning the Tree
	When the Tree Size Matters
	The Secret Life of Separation Keys
	Summary

	Chapter 5: Database Drivers
	Relationship Between Clients and Servers
	Workload Types
	Interactive Workloads
	Batch (Analytical) Workloads
	Mixed Workloads

	Throughput vs Goodput

	Timeouts
	Client-Side Timeouts
	Server-Side Timeouts
	A Cautionary Tale

	Contextual Awareness
	Topology and Metadata
	Current Load
	Request Caching

	Query Locality
	Retries
	Error Categories
	Idempotence
	Retry Policies

	Paging
	Concurrency
	Modern Hardware
	Modern Software

	What to Look for When Selecting a Driver
	Summary

	Chapter 6: Getting Data Closer
	Databases as Compute Engines
	User-Defined Functions and Procedures
	Determinism
	Latency
	Just-in-Time Compilation (JIT)
	Examples
	Best Practices

	User-Defined Aggregates
	Built-In Aggregates
	Components
	Initial Value
	State Transition Function
	Final Function
	Reduce Function

	Examples
	State Transition Function
	Final Function
	Aggregate Definition
	Distributed User-Defined Aggregate

	Best Practices

	WebAssembly for User-Defined Functions
	Runtime
	Back to Latency

	Edge Computing
	Performance
	Conflict-Free Replicated Data Types
	G-Counter
	PN-Counter
	G-Set
	LWW-Set

	Summary

	Chapter 7: Infrastructure and Deployment Models
	Core Hardware Considerations for Speed at Scale
	Identifying the Source of Your Performance Bottlenecks
	Achieving Balance
	Setting Realistic Expectations

	Recommendations for Specific Hardware Components
	Storage
	Disk Types
	Disk Setup
	Disk Size
	Raw Devices and Custom Drivers
	Maintaining Disk Performance Over Time
	Tiered Storage

	CPUs (Cores)
	Memory (RAM)
	Network

	Considerations in the Cloud
	Fully Managed Database-as-a-Service
	Serverless Deployment Models
	Containerization and Kubernetes
	Summary

	Chapter 8: Topology Considerations
	Replication Strategy
	Rack Configuration
	Multi-Region or Global Replication
	Multi-Availability Zones vs. Multi-Region

	Scaling Up vs Scaling Out
	Workload Isolation
	More on Workload Prioritization for Logical Isolation

	Abstraction Layers
	Load Balancing
	External Caches
	An External Cache Adds Latency
	An External Cache Is an Additional Cost
	External Caching Decreases Availability
	Application Complexity: Your Application Needs to Handle More Cases
	External Caching Ruins the Database Caching
	External Caching Might Increase Security Risks
	External Caching Ignores the Database Knowledge and Database Resources

	Summary

	Chapter 9: Benchmarking
	Latency or Throughput: Choose Your Focus
	Less Is More (at First): Taking a Phased Approach
	Benchmarking Do’s and Don’ts
	Know What’s Under the Hood of Your Database (Or Find Someone Who Knows)
	Choose an Environment That Takes Advantage of the Database’s Potential
	Use an Environment That Represents Production
	Don’t Overlook Observability
	Use Standardized Benchmarking Tools Whenever Feasible
	Use Representative Data Models, Datasets, and Workloads
	Data Models
	Dataset Size
	Workloads

	Exercise Your Cache Realistically
	Look at Steady State
	Watch Out for Client-Side Bottlenecks
	Also Watch Out for Networking Issues
	Document Meticulously to Ensure Repeatability

	Reporting Do’s and Don’ts
	Be Careful with Aggregations
	Don’t Assume People Will Believe You
	Take Coordinated Omission Into Account

	Special Considerations for Various Benchmarking Goals
	Preparing for Growth
	Comparing Different Databases
	Comparing the Same Database on Different Infrastructure
	Assessing the Impact of a Data Modeling or Database Configuration Change

	Beyond the Usual Benchmark
	Benchmarking Admin Operations
	Testing Disaster Recovery
	Benchmarking at Extreme Scale

	Summary

	Chapter 10: Monitoring
	Taking a Proactive Approach
	Tracking Core Database KPIs
	Database Cluster KPIs
	What to Look for at Different Levels (Datacenter, Node, CPU/Shard)
	Three Industry-Specific Examples

	Application KPIs
	Infrastructure/Hardware KPIs

	Creating Effective Custom Alerts
	Walking Through Sample Scenarios
	One Replica Is Lagging in Acknowledging Requests
	Disappointing P99 Read Latencies

	Monitoring Options
	The Database Vendor’s Monitoring Stack
	Build Your Own Dashboards and Alerting (Grafana, Grafana Loki)
	Third-Party Database Monitoring Tools
	Full Stack Application Performance Monitoring (APM) Tool

	Summary

	Chapter 11: Administration
	Admin Operations and Performance
	Looking at Admin Operations Through the Lens of Performance
	Backups
	Impacts
	Optimization

	Compaction
	Impacts
	Optimization

	Summary

	Appendix A: A Brief Look at Fundamental Database Design Decisions
	Sharding and Replication
	Sharding
	Replication
	Learning More

	Consensus Algorithms
	Raft
	Paxos
	Comparing Leaderless and “Leader-Based” Classes
	Learning More

	B-Tree vs LSM Tree
	Learning More

	Record Storage Approach
	Row-Oriented Databases
	Column-Oriented Databases
	Learning More

	Index

