
221

CHAPTER 9

Communication
and Synchronization
In Chapter 4, we discussed ways to express parallelism, using basic data-

parallel kernels or explicit ND-range kernels. We discussed how basic

data-parallel kernels apply the same operation to every piece of data

independently. We also discussed how explicit ND-range kernels divide

the execution range into work-groups of work-items.

In this chapter, we will revisit the question of how to break up a

problem into bite-sized chunks in our continuing quest to Think Parallel.

This chapter provides more detail regarding explicit ND-range kernels

and describes how groupings of work-items may be used to improve the

performance of some types of algorithms. We will describe how groups

of work-items provide additional guarantees for how parallel work is

executed, and we will introduce language features that support groupings

of work-items. Many of these ideas and concepts will be important when

optimizing programs for specific devices in Chapters 15, 16, and 17 and to

describe common parallel patterns in Chapter 14.

 Work-Groups and Work-Items
Recall from Chapter 4 that explicit ND-range kernels organize work-items

into work-groups and that all work-items in the same work-group have

© Intel Corporation 2023
J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-9691-2_9

https://doi.org/10.1007/978-1-4842-9691-2_4
https://doi.org/10.1007/978-1-4842-9691-2_15
https://doi.org/10.1007/978-1-4842-9691-2_16
https://doi.org/10.1007/978-1-4842-9691-2_17
https://doi.org/10.1007/978-1-4842-9691-2_14
https://doi.org/10.1007/978-1-4842-9691-2_4
https://doi.org/10.1007/978-1-4842-9691-2_9#DOI

222

additional scheduling guarantees. This property is important, because

it means that the work-items in a work-group can cooperate to solve a

problem.

Figure 9-1 shows an ND-range divided into work-groups, where each

work-group is represented by a different color. The work-items in each

work-group can safely communicate with other work-items that share the

same color.

Figure 9-1. Two-dimensional ND-range of size (8, 8) divided into
four work-groups of size (4,4)

There are no guarantees that work-items in different work-groups will

be executing at the same time, and so a work-item with one color cannot

reliably communicate with a work-item with a different color. A kernel may

deadlock if one work-item attempts to communicate with another work-

item that is not currently executing. Since we want our kernels to complete

execution, we must ensure that when one work-item communicates with

another work-item, they are in the same work-group.

Chapter 9 CommuniCation and SynChronization

223

 Building Blocks for Efficient Communication
This section describes building blocks that support efficient

communication between work-items in a group. Some are fundamental

building blocks that enable construction of custom algorithms, whereas

others are higher level and describe common operations used by many

kernels.

 Synchronization via Barriers
The most fundamental building block for communication is the barrier

function. The barrier function serves two key purposes:

First, the barrier function synchronizes execution of work-items in a

group. By synchronizing execution, one work-item can ensure that another

work-item in the same group has completed an operation before using

the result of that operation. Alternatively, one work-item is given time to

complete its operation before another work-item uses the result of the

operation.

Second, the barrier function synchronizes how each work-item views

the state of memory. This type of synchronization operation is known

as enforcing memory consistency or fencing memory (more details in

Chapter 19). Memory consistency is at least as important as synchronizing

execution since it ensures that the results of memory operations

performed before the barrier are visible to other work-items after the

barrier. Without memory consistency, an operation in one work-item is

like a tree falling in a forest, where the sound may or may not be heard by

other work-items!

Figure 9-2 shows four work-items in a group that synchronize at a

barrier function. Even though the execution time for each work-item may

differ, no work-items can execute past the barrier until all work-items

execute the barrier. After executing the barrier function, all work-items

have a consistent view of memory.

Chapter 9 CommuniCation and SynChronization

https://doi.org/10.1007/978-1-4842-9691-2_19

224

Figure 9-2. Four work-items in a group synchronize at a barrier
function

WHY ISN’T MEMORY CONSISTENT BY DEFAULT?

For many programmers, the idea of memory consistency—and that different

work-items can have different views of memory—can feel very strange.

Wouldn’t it be easier if all memory was consistent for all work-items by

default? the short answer is that it would, but it would also be very expensive

to implement. By allowing work-items to have inconsistent views of memory

and only requiring memory consistency at defined points during program

execution, accelerator hardware may be cheaper, may perform better, or both.

Chapter 9 CommuniCation and SynChronization

225

Because barrier functions synchronize execution, it is critically

important that either all work-items in the group execute the barrier or

no work-items in the group execute the barrier. If some work-items in the

group branch around any barrier function, the other work-items in the

group may wait at the barrier forever—or at least until the user gives up

and terminates the program!

COLLECTIVE FUNCTIONS

When a function is required to be executed by all work-items in a group, it

may be called a collective function, since the operation is performed by the

group and not by individual work-items in the group. Barrier functions are not

the only collective functions available in SyCL. other collective functions are

described later in this chapter.

 Work-Group Local Memory
The work-group barrier function is sufficient to coordinate communication

among work-items in a work-group, but the communication itself must

occur through memory. Communication may occur through USM

or buffers, but this can be inconvenient and inefficient: it requires a

dedicated allocation for communication and requires partitioning the

allocation among work-groups.

To simplify kernel development and accelerate communication

between work-items in a work-group, SYCL defines a special local

memory space specifically for communication between work-items in a

work-group.

Chapter 9 CommuniCation and SynChronization

226

In Figure 9-3, two work-groups are shown. Both work-groups may

access USM and buffers in the global memory space. Each work-group may

access variables in its own local memory space but cannot access variables

in another work-group’s local memory.

Figure 9-3. Each work-group may access all global memory, but only
its own local memory

When a work-group begins, the contents of its local memory are

uninitialized, and local memory does not persist after a work-group

finishes executing. Because of these properties, local memory may only be

used for temporary storage while a work-group is executing.

For some devices, such as for many CPU devices, local memory is

a software abstraction and is implemented using the same memory

subsystems as global memory. On these devices, using local memory is

primarily a convenience mechanism for communication. Some compilers

may use the memory space information for compiler optimizations, but

otherwise using local memory for communication will not fundamentally

perform better than communication via global memory on these devices.

For other devices, such as many GPU devices, there are dedicated

resources for local memory. On these devices, communicating via local

memory will perform better than communicating via global memory.

Chapter 9 CommuniCation and SynChronization

227

Communication between work-items in a work-group can be more
convenient and faster when using local memory!

We can use the device query info::device::local_mem_type to

determine whether an accelerator has dedicated resources for local

memory or whether local memory is implemented as a software

abstraction of global memory. Please refer to Chapter 12 for more

information about querying properties of a device and to Chapters 15, 16,

and 17 for more information about how local memory is typically

implemented for CPUs, GPUs, and FPGAs.

 Using Work-Group Barriers
and Local Memory
Now that we have identified the basic building blocks for efficient

communication between work-items, we can describe how to express

work-group barriers and local memory in kernels. Remember that

communication between work-items requires a notion of work-item

grouping, so these concepts can only be expressed for ND-range kernels

and are not included in the execution model for basic data-parallel

kernels.

This chapter will build upon the naïve matrix multiplication kernel

examples introduced in Chapter 4 by introducing communication between

the work-items in the work-groups executing the matrix multiplication.

On many devices—but not necessarily all!—communicating through local

memory will improve the performance of the matrix multiplication kernel.

Chapter 9 CommuniCation and SynChronization

https://doi.org/10.1007/978-1-4842-9691-2_12
https://doi.org/10.1007/978-1-4842-9691-2_15
https://doi.org/10.1007/978-1-4842-9691-2_16
https://doi.org/10.1007/978-1-4842-9691-2_17
https://doi.org/10.1007/978-1-4842-9691-2_4

228

A NOTE ABOUT MATRIX MULTIPLICATION

in this book, matrix multiplication kernels are used to demonstrate how

changes in a kernel affect performance. although matrix multiplication

performance may be improved on many devices using the techniques

described in this chapter, matrix multiplication is such an important and

common operation that many vendors have implemented highly tuned

versions of matrix multiplication. Vendors invest significant time and effort

implementing and validating functions for specific devices and in some cases

may use functionality or techniques that are difficult or impossible to use in

standard parallel kernels.

USE VENDOR-PROVIDED LIBRARIES!

When a vendor provides a library implementation of a function, it is almost

always beneficial to use it rather than reimplementing the function as a

parallel kernel! For matrix multiplication, one can look to onemKL as part of

intel’s toolkits for solutions appropriate for C++ with SyCL programmers.

Figure 9-4 shows the naïve matrix multiplication kernel we will be

starting from, similar to the matrix multiplication kernel from Chapter 4.

For this kernel, and for all of the matrix multiplication kernels in this

chapter, T is a template type indicating the type of data stored in the

matrix, such as a 32-bit float or a 64-bit double.

Chapter 9 CommuniCation and SynChronization

https://doi.org/10.1007/978-1-4842-9691-2_4

229

h.parallel_for(range{M, N}, [=](id<2> id) {
int m = id[0];
int n = id[1];

// Template type T is the type of data stored
// in the matrix
T sum = 0;
for (int k = 0; k < K; k++) {

sum += matrixA[m][k] * matrixB[k][n];
 }

matrixC[m][n] = sum;
});

Figure 9-4. The naïve matrix multiplication kernel from Chapter 4

In Chapter 4, we observed that the matrix multiplication algorithm has

a high degree of reuse, and that grouping work-items may improve locality

of access and therefore may also improve cache hit rates. In this chapter,

instead of relying on implicit cache behavior to improve performance, our

modified matrix multiplication kernels will instead use local memory as an

explicit cache, to guarantee locality of access.

For many algorithms, it is helpful to think of local memory as an
explicit cache.

Figure 9-5 is a modified diagram from Chapter 4 showing a work-group

consisting of a single row, which makes the algorithm using local memory

easier to understand. Observe that for elements in a row of the result

matrix, every result element is computed using a unique column of data

from one of the input matrices, shown in blue and orange. Because there

is no data sharing for this input matrix, it is not an ideal candidate for local

memory. Observe, though, that every result element in the row accesses

the exact same data in the other input matrix, shown in green. Because

this data is reused, it is an excellent candidate to benefit from work-group

local memory.

Chapter 9 CommuniCation and SynChronization

https://doi.org/10.1007/978-1-4842-9691-2_4
https://doi.org/10.1007/978-1-4842-9691-2_4
https://doi.org/10.1007/978-1-4842-9691-2_4

230

Figure 9-5. Mapping of matrix multiplication to work-groups and
work-items

Because we want to multiply matrices that are potentially very large

and because work-group local memory may be a limited resource, our

modified kernels will process subsections of each matrix, which we will

refer to as a matrix tile. For each tile, our modified kernel will load data for

the tile into local memory, synchronize the work-items in the group, and

then load the data from local memory rather than global memory. The

data that is accessed for the first tile is shown in Figure 9-6.

Figure 9-6. Processing the first tile: the green input data (left of X)
is reused and is read from local memory, the blue and orange input
data (right of X) is read from global memory

Chapter 9 CommuniCation and SynChronization

231

In our kernels, we have chosen the tile size to be equivalent to the

work-group size. This is not required, but because it simplifies transfers

into or out of local memory, it is common and convenient to choose a tile

size that is a multiple of the work-group size.

 Work-Group Barriers and Local Memory
in ND- Range Kernels
This section describes how work-group barriers and local memory are

expressed in ND-range kernels. For ND-range kernels, the representation

is explicit: a kernel declares and operates on a local accessor representing

an allocation in the local address space and calls a barrier function to

synchronize the work-items in a work-group.

 Local Accessors

To declare local memory for use in an ND-range kernel, use a local

accessor. Like other accessor objects, a local accessor is constructed within

a command group handler, but unlike the accessor objects discussed

in Chapters 3 and 7, a local accessor is not created from a buffer object.

Instead, a local accessor is created by specifying a type and a range

describing the number of elements of that type. Like other accessors,

local accessors may be one-dimensional, two-dimensional, or three-

dimensional. Figure 9-7 demonstrates how to declare local accessors and

use them in a kernel.

Chapter 9 CommuniCation and SynChronization

https://doi.org/10.1007/978-1-4842-9691-2_3
https://doi.org/10.1007/978-1-4842-9691-2_7

232

/ This is a typical global accessor.
accessor dataAcc{dataBuf, h};

// This is a 1D local accessor consisting of 16 ints:
auto localIntAcc = local_accessor<int, 1>(16, h);

// This is a 2D local accessor consisting of 4 x 4
// floats:
auto localFloatAcc =

local_accessor<float, 2>({4, 4}, h);

h.parallel_for(
nd_range<1>{{size}, {16}}, [=](nd_item<1> item) {
auto index = item.get_global_id();
auto local_index = item.get_local_id();

// Within a kernel, a local accessor may be read
// from and written to like any other accessor.
localIntAcc[local_index] = dataAcc[index] + 1;
dataAcc[index] = localIntAcc[local_index];

});

Figure 9-7. Declaring and using local accessors

Remember that local memory is uninitialized when each work-group

begins and does not persist after each work-group completes. This means

that a local accessor must always be read_write, since otherwise a kernel

would have no way to assign the contents of local memory or view the

results of an assignment. Local accessors may optionally be atomic though,

in which case accesses to local memory via the accessor are performed

atomically. Atomic accesses are discussed in more detail in Chapter 19.

 Synchronization Functions

To synchronize the work-items in an ND-range kernel work-group, call

the group_barrier function with a group representing the work-group.

Because the group representing the work-group may only be queried from

an nd_item and cannot be queried from an item, work-group barriers are

only available to ND-range kernels and are not available to basic data-

parallel kernels.

Chapter 9 CommuniCation and SynChronization

https://doi.org/10.1007/978-1-4842-9691-2_19

233

The group_barrier function accepts one additional optional

argument to describe the scope of any memory consistency operations that

are performed by the barrier. When no additional arguments are passed

to the group_barrier function, the barrier function will determine the

default scope based on the passed-in group. The default scope is usually

correct and therefore an explicit scope is rarely required, but the memory

scope can be broadened if necessary for some algorithms.

Please note that the explicit scope only affects the memory operations

that are performed by the barrier, and that the set of work-items that

synchronize execution at the barrier is determined entirely by the group

object passed to the barrier. We cannot synchronize more or fewer work-

items by passing a different memory scope to the barrier, but we can

synchronize a different set of work-items by passing a different group

object to the barrier.

 A Full ND-Range Kernel Example

Now that we know how to declare a local memory accessor and

synchronize accesses to it using a barrier function, we can implement

an ND-range kernel version of matrix multiplication that coordinates

communication among work-items in the work-group to reduce traffic to

global memory. The complete example is shown in Figure 9-8.

Chapter 9 CommuniCation and SynChronization

234

// Traditional accessors, representing matrices in
// global memory:
accessor matrixA{bufA, h};
accessor matrixB{bufB, h};
accessor matrixC{bufC, h};

// Local accessor, for one matrix tile:
constexpr int tile_size = 16;

// Template type T is the type of data stored in the matrix
auto tileA = local_accessor<T, 1>(tile_size, h);

h.parallel_for(
nd_range<2>{{M, N}, {1, tile_size}},
[=](nd_item<2> item) {
// Indices in the global index space:
int m = item.get_global_id()[0];
int n = item.get_global_id()[1];

// Index in the local index space:
int i = item.get_local_id()[1];

T sum = 0;
for (int kk = 0; kk < K; kk += tile_size) {
// Load the matrix tile from matrix A, and
// synchronize to ensure all work-items have a
// consistent view of the matrix tile in local
// memory.
tileA[i] = matrixA[m][kk + i];
group_barrier(item.get_group());

// Perform computation using the local memory
// tile, and matrix B in global memory.
for (int k = 0; k < tile_size; k++) {
sum += tileA[k] * matrixB[kk + k][n];

 }

// After computation, synchronize again, to
// ensure all reads from the local memory tile
// are complete.
group_barrier(item.get_group());

 }

// Write the final result to global memory.
matrixC[m][n] = sum;

});

Figure 9-8. Expressing a tiled matrix multiplication kernel with an
ND-range parallel_for and work-group local memory

Chapter 9 CommuniCation and SynChronization

235

The main loop in this kernel can be thought of as two distinct phases:

in the first phase, the work-items in the work-group collaborate to load

shared data from the A matrix into work-group local memory; and in the

second, the work-items perform their own computations using the shared

data. To ensure that all work-items have completed the first phase before

moving onto the second phase, the two phases are separated by a call to

group_barrier to synchronize all work-items in the work-group and to

provide a memory fence. This pattern is a common one, and the use of

work-group local memory in a kernel almost always necessitates the use of

work-group barriers.

Note that there must also be a call to group_barrier to synchronize

execution between the computation phase for the current tile and the

loading phase for the next matrix tile. Without this synchronization

operation, part of the current matrix tile may be overwritten by one work-

item in the work-group before another work-item is finished computing

with it. In general, any time that one work-item is reading or writing

data in local memory that was read or written by another work-item,

synchronization is required. In Figure 9-8, the synchronization is done at

the end of the loop, but it would be equally correct to synchronize at the

beginning of each loop iteration instead.

 Sub-Groups
So far in this chapter, work-items have communicated with other work-

items in the work-group by exchanging data through work-group local

memory and by synchronizing using the group_barrier function on a

work-group.

In Chapter 4, we discussed another grouping of work-items. A sub-

group is an implementation-defined subset of work-items in a work-group

that execute together on the same hardware resources or with additional

scheduling guarantees. Because the implementation decides how to group

Chapter 9 CommuniCation and SynChronization

https://doi.org/10.1007/978-1-4842-9691-2_4

236

work-items into sub-groups, the work-items in a sub-group may be able to

communicate or synchronize more efficiently than the work-items in an

arbitrary work-group.

This section describes the building blocks for communication among

work-items in a sub-group. Sub-groups also require a notion of work-

item grouping, so sub-groups also require ND-range kernels and are not

included in the execution model for basic data-parallel kernels.

 Synchronization via Sub-Group Barriers
Just like how the work-items in a work-group may synchronize using a

work-group barrier, the work-items in a sub-group may synchronize using

a sub-group barrier. To perform a sub-group barrier, call the same group_

barrier function, but pass a group object representing the sub-group

rather than the work-group, as shown in Figure 9-9. Like for work-group

objects, a group object representing the sub-group can be queried from

the nd_item class for ND-range kernels but cannot be queried from a basic

data-parallel item.

h.parallel_for(
nd_range{{size}, {16}}, [=](nd_item<1> item) {
auto sg = item.get_sub_group();
group_barrier(sg);
// ...
auto index = item.get_global_id();
data_acc[index] = data_acc[index] + 1;

});

Figure 9-9. Querying and using the sub_group class

Also like the work-group barrier, the sub-group barrier may accept

optional arguments to broaden the scope of any memory operations

associated with the sub-group barrier, but this is uncommon and in most

cases we can simply use the default memory scope.

Chapter 9 CommuniCation and SynChronization

237

 Exchanging Data Within a Sub-Group
Unlike work-groups, sub-groups do not have a dedicated memory space

for exchanging data. Instead, work-items in the sub-group may exchange

data through work-group local memory, through global memory, or more

commonly by using sub-group collective functions.

As described previously, a collective function is a function that

describes an operation performed by a group of work-items, not an

individual work-item. Because a barrier synchronization function is an

operation performed by a group of work-items, it is one example of a

collective function.

Other collective functions express common communication patterns.

We will describe the semantics for many collective functions in detail later

in this chapter, but for now, we focus on the group_broadcast collective

function that we will use to implement matrix multiplication using

sub-groups.

The group_broadcast collective function takes a value from one

work-item in the group and communicates it to all other work-items in

the group. An example is shown in Figure 9-10. Notice that the semantics

of the broadcast function require that the local_id identifying the value

in the group to communicate must be the same for all work-items in the

group, ensuring that the result of the broadcast function is also the same

for all work-items in the group.

Figure 9-10. Processing by the broadcast function

Chapter 9 CommuniCation and SynChronization

238

If we look at the innermost loop of our local memory matrix

multiplication kernel, shown in Figure 9-11, we can see that the access to

the matrix tile is a broadcast operation, since each work-item in the group

reads the same value out of the matrix tile.

h.parallel_for(
nd_range<2>{{M, N}, {1, tile_size}},
[=](nd_item<2> item) {
// Indices in the global index space:
int m = item.get_global_id()[0];
int n = item.get_global_id()[1];

// Index in the local index space:
int i = item.get_local_id()[1];

// Template type T is the type of data stored in
// the matrix
T sum = 0;
for (int kk = 0; kk < K; kk += tile_size) {
// Load the matrix tile from matrix A, and
// synchronize to ensure all work-items have a
// consistent view of the matrix tile in local
// memory.
tileA[i] = matrixA[m][kk + i];
group_barrier(item.get_group());

// Perform computation using the local memory
// tile, and matrix B in global memory.
for (int k = 0; k < tile_size; k++) {
// Because the value of k is the same for
// all work-items in the group, these reads
// from tileA are broadcast operations.
sum += tileA[k] * matrixB[kk + k][n];

 }

// After computation, synchronize again, to
// ensure all reads from the local memory tile
// are complete.
group_barrier(item.get_group());

 }

// Write the final result to global memory.
matrixC[m][n] = sum;

});

Figure 9-11. Matrix multiplication kernel includes a broadcast
operation

Chapter 9 CommuniCation and SynChronization

239

We will use the group_broadcast function with a sub-group object

to implement a matrix multiplication kernel that does not require work-

group local memory or barriers. On many devices, sub-group broadcasts

are faster than work-group broadcasts using work-group local memory and

barriers.

 A Full Sub-Group ND-Range Kernel Example
Figure 9-12 is a complete example that implements matrix multiplication

using sub-groups. Notice that this kernel requires no work-group local

memory or explicit synchronization and instead uses a sub-group

broadcast collective function to communicate the contents of the matrix

tile among the work-items in the sub-group.

Chapter 9 CommuniCation and SynChronization

240

// Note: This example assumes that the sub-group size
// is greater than or equal to the tile size!
constexpr int tile_size = 4;
h.parallel_for(

nd_range<2>{{M, N}, {1, tile_size}},
[=](nd_item<2> item) {
auto sg = item.get_sub_group();

// Indices in the global index space:
int m = item.get_global_id()[0];
int n = item.get_global_id()[1];

// Index in the local index space:
int i = item.get_local_id()[1];

// Template type T is the type of data stored
// in the matrix
T sum = 0;
for (int kk = 0; kk < K; kk += tile_size) {

// Load the matrix tile from matrix A.
T tileA = matrixA[m][kk + i];

// Perform computation by broadcasting from
// the matrix tile and loading from matrix B
// in global memory. The loop variable k
// describes which work-item in the sub-group
// to broadcast data from.
for (int k = 0; k < tile_size; k++) {

sum += group_broadcast(sg, tileA, k) *
matrixB[kk + k][n];

 }
 }

// Write the final result to global memory.
matrixC[m][n] = sum;

});

Figure 9-12. Tiled matrix multiplication kernel expressed with ND-
range parallel_for and sub-group collective functions

Chapter 9 CommuniCation and SynChronization

241

 Group Functions and Group Algorithms
In the “Sub-Groups” section of this chapter, we described collective

functions and how collective functions express common communication

patterns. We specifically discussed the broadcast collective function,

which is used to communicate a value from one work-item in a group

to the other work-items in the group. This section describes additional

collective functions.

Although the collective functions described in this section can be

implemented directly in our programs using features such as atomics,

work-group local memory, and barriers, many devices include dedicated

hardware to accelerate collective functions. Even when a device does

not include specialized hardware, vendor-provided implementations of

collective functions are likely tuned for the device they are running on,

so calling a built-in collective function will usually perform better than a

general-purpose implementation that we might write.

use collective functions for common communication patterns to
simplify code and increase performance!

 Broadcast
The group_broadcast function enables one work-item in a group to share

the value of a variable with all other work-items in the group. A diagram

showing how the broadcast function works can be found in Figure 9-10.

The group_broadcast function is supported for both work-groups and

sub-groups.

Chapter 9 CommuniCation and SynChronization

242

 Votes
The any_of_group, all_of_group, and none_of_group functions

(henceforth referred to as “vote” functions) enable work-items to compare

the result of a Boolean condition across their group: any_of_group returns

true if the condition is true for at least one work-item in the group, all_of_

group returns true if the condition is true for all work-items in the group,

and none_of_group returns true if the condition is false for all of the work-

items in the group. A comparison of these two functions for an example

input is shown in Figure 9-13.

Figure 9-13. Comparison of the any_of_group, all_of_group, and
none_of_group functions

SYCL 2020 also supports another variant of these functions where

the work-items in a group cooperate to evaluate a range of data like the

standard C++ all_of, any_of, and none_of algorithms. These functions

are named joint_any_of, joint_all_of, and joint_none_of to

differentiate from the variants where each work-item in the group holds

the data to compare directly.

The vote functions are useful for some iterative algorithms to

determine when a solution has converged for all work-items in the group,

for example. The vote functions are supported for work-groups and

sub-groups.

Chapter 9 CommuniCation and SynChronization

243

 Shuffles
One of the most useful features of sub-groups is the ability to communicate

directly between individual work-items without explicit memory

operations. In many cases, such as the sub-group matrix multiplication

kernel, these shuffle operations enable us to both remove work-group local

memory usage from our kernels and avoid unnecessary repeated accesses

to global memory. There are several flavors of these shuffle functions

available.

The most general of the shuffle functions is called select_from_group,

and as shown in Figure 9-14, it allows for arbitrary communication

between any pair of work-items in the sub-group. This generality may

come at a performance cost, however, and we strongly encourage making

use of the more specialized shuffle functions wherever possible.

Figure 9-14. Using a generic select_from_group to sort values
based on precomputed indices

In Figure 9-14, a generic shuffle is used to sort the values of a sub-

group using precomputed permutation indices. Arrows are shown for one

work-item in the sub-group, where the result of the shuffle is the value of x

for the work-item with local_id equal to 7.

Note that the sub-group group_broadcast function can be thought

of as a specialized version of the general-purpose select_from_group

function, where the shuffle index is the same for all work-items in the

sub-group. When the shuffle index is known to be the same for all work-

Chapter 9 CommuniCation and SynChronization

244

items in the sub-group, using group_broadcast instead of select_from_

group provides the compiler additional information and may increase

performance on some implementations.

The shift_group_right and shift_group_left functions effectively

shift the contents of a sub-group by a fixed number of elements in a given

direction, as shown in Figure 9-15. Note that the values returned to the last

five work-items in the sub-group are undefined and are shown as blank

in Figure 9-15. Shifting can be useful for parallelizing loops with loop-

carried dependences or when implementing common algorithms such as

exclusive or inclusive scans.

Figure 9-15. Using shift_group_left to shift x values of a sub-
group by five items

The permute_group_by_xor function swaps the values of two work-

items, specified by the result of an XOR operation applied to the work-

item’s sub-group local id and a fixed constant. As shown in Figure 9-16 and

Figure 9-17, several common communication patterns can be expressed

using an XOR, such as swapping pairs of neighboring values or reversing

the sub-group values.

Chapter 9 CommuniCation and SynChronization

245

Figure 9-16. Swapping neighboring pairs of x using a permute_
group_by_xor

Figure 9-17. Reversing the values of x using a permute_
group_by_xor

SUB-GROUP OPTIMIZATIONS USING BROADCAST, VOTE, AND COLLECTIVES

the behavior of broadcast, vote, and other collective functions applied to sub-

groups is identical to when they are applied to work-groups, but they deserve

additional attention because they may enable aggressive optimizations in

certain compilers. For example, a compiler may be able to reduce register

usage for variables that are broadcast to all work-items in a sub-group, or

may be able to reason about control flow divergence based on usage of the

any_of_group and all_of_group functions.

Chapter 9 CommuniCation and SynChronization

246

Because the shuffle functions are so specialized, they are only available

for sub-groups and are not available for work-groups.

 Summary
This chapter discussed how work-items in a group may communicate and

cooperate to improve the performance of some types of kernels.

We first discussed how ND-range kernels support grouping work-items

into work-groups. We discussed how grouping work-items into work-

groups changes the parallel execution model, guaranteeing that the work-

items in a work-group are scheduled for execution in a way that enables

communication and synchronization.

Next, we discussed how the work-items in a work-group may

synchronize using barriers and how barriers are expressed in kernels. We

also discussed how communication between work-items in a work-group

can be performed via work-group local memory, to simplify kernels and to

improve performance, and we discussed how work-group local memory is

represented using local accessors.

We discussed how work-groups in ND-range kernels may be further

divided into sub-groupings of work-items, where the sub-groups of work-

items may support additional communication patterns or scheduling

guarantees.

For both work-groups and sub-groups, we discussed how common

communication patterns may be expressed and accelerated through the

use of collective functions.

The concepts in this chapter are an important foundation for

understanding the common parallel patterns described in Chapter 14 and

for understanding how to optimize for specific devices in Chapters 15, 16,

and 17.

Chapter 9 CommuniCation and SynChronization

https://doi.org/10.1007/978-1-4842-9691-2_14
https://doi.org/10.1007/978-1-4842-9691-2_15
https://doi.org/10.1007/978-1-4842-9691-2_16
https://doi.org/10.1007/978-1-4842-9691-2_17

247

Open Access This chapter is licensed under the terms of

the Creative Commons Attribution 4.0 International License

(https://creativecommons.org/licenses/by/4.0/), which permits use,

sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter’s Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter’s

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 9 CommuniCation and SynChronization

https://creativecommons.org/licenses/by/4.0/

	Chapter 9: Communication and Synchronization
	Work-Groups and Work-Items
	Building Blocks for Efficient Communication
	Synchronization via Barriers
	Work-Group Local Memory

	Using Work-Group Barriers and Local Memory
	Work-Group Barriers and Local Memory in ND-Range Kernels
	Local Accessors
	Synchronization Functions
	A Full ND-Range Kernel Example

	Sub-Groups
	Synchronization via Sub-Group Barriers
	Exchanging Data Within a Sub-Group
	A Full Sub-Group ND-Range Kernel Example

	Group Functions and Group Algorithms
	Broadcast
	Votes
	Shuffles

	Summary

