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CHAPTER 1

Introduction
We have undeniably entered the age of accelerated computing. In order to 

satisfy the world’s insatiable appetite for more computation, accelerated 

computing drives complex simulations, AI, and much more by providing 

greater performance and improved power efficiency when compared with 

earlier solutions.

Heralded as a “New Golden Age for Computer Architecture,”1 we are 

faced with enormous opportunity through a rich diversity in compute 

devices. We need portable software development capabilities that are 

not tied to any single vendor or architecture in order to realize the full 

potential for accelerated computing.

SYCL (pronounced sickle) is an industry-driven Khronos Group 

standard adding advanced support for data parallelism with C++ to 

support accelerated (heterogeneous) systems. SYCL provides mechanisms 

for C++ compilers to exploit accelerated (heterogeneous) systems in a way 

that is highly synergistic with modern C++ and C++ build systems. SYCL is 

not an acronym; SYCL is simply a name.

1 A New Golden Age for Computer Architecture by John L. Hennessy, David 
A. Patterson; Communications of the ACM, February 2019, Vol. 62 No. 2, 
Pages 48-60.
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J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-9691-2_1
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ACCELERATED VS. HETEROGENEOUS

These terms go together. Heterogeneous is a technical description 

acknowledging the combination of compute devices that are programmed 

differently. Accelerated is the motivation for adding this complexity to systems 

and programming. There is no guarantee of acceleration ever; programming 

heterogeneous systems will only accelerate our applications when we do it 

right. This book helps teach us how to do it right!

Data parallelism in C++ with SYCL provides access to all the compute 

devices in a modern accelerated (heterogeneous) system. A single C++ 

application can use any combination of devices—including GPUs, CPUs, 

FPGAs, and application-specific integrated circuits (ASICs)—that are 

suitable to the problems at hand. No proprietary, single-vendor, solution 

can offer us the same level of flexibility.

This book teaches us how to harness accelerated computing using 

data-parallel programming using C++ with SYCL and provides practical 

advice for balancing application performance, portability across compute 

devices, and our own productivity as programmers. This chapter lays 

the foundation by covering core concepts, including terminology, which 

are critical to have fresh in our minds as we learn how to accelerate C++ 

programs using data parallelism.

�Read the Book, Not the Spec
No one wants to be told “Go read the spec!”—specifications are hard to 

read, and the SYCL specification (www.khronos.org/sycl/) is no different. 

Like every great language specification, it is full of precision but is light on 

motivation, usage, and teaching. This book is a “study guide” to teach C++ 

with SYCL.
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No book can explain everything at once. Therefore, this chapter does 

what no other chapter will do: the code examples contain programming 

constructs that go unexplained until future chapters. We should not get 

hung up on understanding the coding examples completely in Chapter 1 

and trust it will get better with each chapter.

�SYCL 2020 and DPC++
This book teaches C++ with SYCL 2020. The first edition of this book 

preceded the SYCL 2020 specification, so this edition includes updates 

including adjustments in the header file location (sycl instead of CL), 

device selector syntax, and removal of an explicit host device.

DPC++ is an open source compiler project based on LLVM. It is 

our hope that SYCL eventually be supported by default in the LLVM 

community and that the DPC++ project will help make that happen. The 

DPC++ compiler offers broad heterogeneous support that includes GPU, 

CPU, and FPGA. All examples in this book work with the DPC++ compiler 

and should work with any C++ compiler supporting SYCL 2020.

Important resources for updated SYCL information, including any 
known book errata, include the book GitHub (github.com/Apress/
data-parallel-CPP), the Khronos Group SYCL standards website 
(www.khronos.org/sycl), and a key SYCL education website 
(sycl.tech).

As of publication time, no C++ compiler claims full conformance or 

compliance with the SYCL 2020 specification. Nevertheless, the code in 

this book works with the DPC++ compiler and should work with other C++ 

compilers that have most of SYCL 2020 implemented. We use only standard 

C++ with SYCL 2020 excepting for a few DPC++-specific extensions that 
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are clearly called out in Chapter 17 (Programming for FPGAs) to a small 

degree, Chapter 20 (Backend Interoperability) when connecting to Level 

Zero backends, and the Epilogue when speculating on the future.

�Why Not CUDA?
Unlike CUDA, SYCL supports data parallelism in C++ for all vendors and 

all types of architectures (not just GPUs). CUDA is focused on NVIDIA 

GPU support only, and efforts (such as HIP/ROCm) to reuse it for GPUs 

by other vendors have limited ability to succeed despite some solid 

success and usefulness. With the explosion of accelerator architectures, 

only SYCL offers the support we need for harnessing this diversity and 

offering a multivendor/multiarchitecture approach to help with portability 

that CUDA does not offer. To more deeply understand this motivation, 

we highly recommend reading (or watching the video recording of their 

excellent talk) “A New Golden Age for Computer Architecture” by industry 

legends John L. Hennessy and David A. Patterson. We consider this a 

must-read article.

Chapter 21, in addition to addressing topics useful for migrating code 

from CUDA to C++ with SYCL, is valuable for those experienced with 

CUDA to bridge some terminology and capability differences. The most 

significant capabilities beyond CUDA come from the ability for SYCL to 

support multiple vendors, multiple architectures (not just GPUs), and 

multiple backends even for the same device. This flexibility answers the 

question “Why not CUDA?”

SYCL does not involve any extra overhead compared with CUDA or 

HIP. It is not a compatibility layer—it is a generalized approach that is open 

to all devices regardless of vendor and architecture while simultaneously 

being in sync with modern C++. Like other open multivendor and 

multiarchitecture techniques, such as OpenMP and OpenCL, the ultimate 

proof is in the implementations including options to access hardware-

specific optimizations when absolutely needed.
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�Why Standard C++ with SYCL?
As we will point out repeatedly, every program using SYCL is first and 

foremost a C++ program. SYCL does not rely on any language changes 

to C++. SYCL does take C++ programming places it cannot go without 

SYCL. We have no doubt that all programming for accelerated computing 

will continue to influence language standards including C++, but we do 

not believe the C++ standard should (or will) evolve to displace the need 

for SYCL any time soon. SYCL has a rich set of capabilities that we spend 

this book covering that extend C++ through classes and rich support for 

new compiler capabilities necessary to meet needs (already existing today) 

for multivendor and multiarchitecture support.

�Getting a C++ Compiler with SYCL Support
All examples in this book compile and work with all the various 

distributions of the DPC++ compiler and should compile with other C++ 

compilers supporting SYCL (see “SYCL Compilers in Development” at 

www.khronos.org/sycl). We are careful to note the very few places where 

extensions are used that are DPC++ specific at the time of publication.

The authors recommend the DPC++ compiler for a variety of reasons, 

including our close association with the DPC++ compiler. DPC++ is an 

open source compiler project to support SYCL. By using LLVM, the DPC++ 

compiler project has access to backends for numerous devices. This has 

already resulted in support for Intel, NVIDIA, and AMD GPUs, numerous 

CPUs, and Intel FPGAs. The ability to extend and enhance support openly 

for multiple vendors and multiple architecture makes LLVM a great choice 

for open source efforts to support SYCL.

There are distributions of the DPC++ compiler, augmented with 

additional tools and libraries, available as part of a larger project to 

offer broad support for heterogeneous systems, which include libraries, 
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debuggers, and other tools, known as the oneAPI project. The oneAPI 

tools, including the DPC++ compiler, are freely available (www.oneapi.io/

implementations).

�Hello, World! and a SYCL 
Program Dissection
Figure 1-1 shows a sample SYCL program. Compiling and running it 

results in the following being printed:

Hello, world! (and some additional text left to experience by running it)

We will completely understand this example by the end of Chapter 4. 

Until then, we can observe the single include of <sycl/sycl.hpp> (line 2) 

that is needed to define all the SYCL constructs. All SYCL constructs live 

inside a namespace called sycl.

1. #include <iostream>
2. #include <sycl/sycl.hpp>
3. using namespace sycl;
4.
5. const std::string secret{
6. "Ifmmp-!xpsme\"\012J(n!tpssz-!Ebwf/!"
7. "J(n!bgsbje!J!dbo(u!ep!uibu/!.!IBM\01"};
8.
9. const auto sz = secret.size();
10.
11. int main() {
12. queue q;
13.
14. char* result = malloc_shared<char>(sz, q);
15. std::memcpy(result, secret.data(), sz);
16.
17. q.parallel_for(sz, [=](auto& i) {
18. result[i] -= 1;
19. }).wait();
20.
21. std::cout << result << "\n";
22. free(result, q);
23. return 0;
24. }

Figure 1-1.  Hello data-parallel programming
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•	 Line 3 lets us avoid writing sycl:: over and over.

•	 Line 12 instantiates a queue for work requests directed 

to a particular device (Chapter 2).

•	 Line 14 creates an allocation for data shared with the 

device (Chapter 3).

•	 Line 15 copies the secret string into device memory, 

where it will be processed by the kernel.

•	 Line 17 enqueues work to the device (Chapter 4).

•	 Line 18 is the only line of code that will run on the 

device. All other code runs on the host (CPU).

Line 18 is the kernel code that we want to run on devices. That kernel 

code decrements a single character. With the power of parallel_for(), 

that kernel is run on each character in our secret string in order to decode 

it into the result string. There is no ordering of the work required, and it is 

run asynchronously relative to the main program once the parallel_for 

queues the work. It is critical that there is a wait (line 19) before looking at 

the result to be sure that the kernel has completed, since in this example 

we are using a convenient feature (Unified Shared Memory, Chapter 6). 

Without the wait, the output may occur before all the characters have been 

decrypted. There is more to discuss, but that is the job of later chapters.

�Queues and Actions
Chapter 2 discusses queues and actions, but we can start with a simple 

explanation for now. Queues are the only connection that allows an 

application to direct work to be done on a device. There are two types 

of actions that can be placed into a queue: (a) code to execute and (b) 

memory operations. Code to execute is expressed via either single_task 

or parallel_for (used in Figure 1-1). Memory operations perform copy 
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operations between host and device or fill operations to initialize memory. 

We only need to use memory operations if we seek more control than 

what is done automatically for us. These are all discussed later in the 

book starting with Chapter 2. For now, we should be aware that queues 

are the connection that allows us to command a device, and we have 

a set of actions available to put in queues to execute code and to move 

around data. It is also very important to understand that requested actions 

are placed into a queue without waiting. The host, after submitting an 

action into a queue, continues to execute the program, while the device 

will eventually, and asynchronously, perform the action requested via 

the queue.

QUEUES CONNECT US TO DEVICES

We submit actions into queues to request computational work and data 

movement.

Actions happen asynchronously.

�It Is All About Parallelism
Since programming in C++ for data parallelism is all about parallelism, 

let’s start with this critical concept. The goal of parallel programming is 

to compute something faster. It turns out there are two aspects to this: 

increased throughput and reduced latency.

�Throughput
Increasing throughput of a program comes when we get more work done 

in a set amount of time. Techniques like pipelining may stretch out the 

time necessary to get a single work-item done, to allow overlapping of 
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work that leads to more work-per-unit-of-time being done. Humans 

encounter this often when working together. The very act of sharing work 

involves overhead to coordinate that often slows the time to do a single 

item. However, the power of multiple people leads to more throughput. 

Computers are no different—spreading work to more processing cores 

adds overhead to each unit of work that likely results in some delays, but 

the goal is to get more total work done because we have more processing 

cores working together.

�Latency
What if we want to get one thing done faster—for instance, analyzing 

a voice command and formulating a response? If we only cared about 

throughput, the response time might grow to be unbearable. The concept 

of latency reduction requires that we break up an item of work into 

pieces that can be tackled in parallel. For throughput, image processing 

might assign whole images to different processing units—in this case, 

our goal may be optimizing for images per second. For latency, image 

processing might assign each pixel within an image to different processing 

cores—in this case, our goal may be maximizing pixels per second from a 

single image.

�Think Parallel
Successful parallel programmers use both techniques in their 

programming. This is the beginning of our quest to Think Parallel.

We want to adjust our minds to think first about where parallelism 

can be found in our algorithms and applications. We also think about how 

different ways of expressing the parallelism affect the performance we 

ultimately achieve. That is a lot to take in all at once. The quest to Think 

Parallel becomes a lifelong journey for parallel programmers. We can learn 

a few tips here.

Chapter 1  Introduction
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�Amdahl and Gustafson
Amdahl’s Law, stated by the supercomputer pioneer Gene Amdahl in 

1967, is a formula to predict the theoretical maximum speed-up when 

using multiple processors. Amdahl lamented that the maximum gain from 

parallelism is limited to (1/(1-p)) where p is the fraction of the program 

that runs in parallel. If we only run two-thirds of our program in parallel, 

then the most that program can speed up is a factor of 3. We definitely 

need that concept to sink in deeply! This happens because no matter how 

fast we make that two-thirds of our program run, the other one-third still 

takes the same time to complete. Even if we add 100 GPUs, we will only get 

a factor of 3 increase in performance.

For many years, some viewed this as proof that parallel computing 

would not prove fruitful. In 1988, John Gustafson wrote an article titled 

“Reevaluating Amdahl’s Law.” He observed that parallelism was not used 

to speed up fixed workloads, but it was used to allow work to be scaled 

up. Humans experience the same thing. One delivery person cannot 

deliver a single package faster with the help of many more people and 

trucks. However, a hundred people and trucks can deliver one hundred 

packages more quickly than a single driver with a truck. Multiple drivers 

will definitely increase throughput and will also generally reduce latency 

for package deliveries. Amdahl’s Law tells us that a single driver cannot 

deliver one package faster by adding ninety-nine more drivers with their 

own trucks. Gustafson noticed the opportunity to deliver one hundred 

packages faster with these extra drivers and trucks.

This emphasizes that parallelism is most useful because the size of 

problems we tackle keep growing in size year after year. Parallelism would 

not nearly as important to study if year after year we only wanted to run the 

same size problems faster. This quest to solve larger and larger problems 

fuels our interest in exploiting data parallelism, using C++ with SYCL, for 

the future of computer (heterogeneous/accelerated systems).

Chapter 1  Introduction
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�Scaling
The word “scaling” appeared in our prior discussion. Scaling is a measure 

of how much a program speeds up (simply referred to as “speed-up”) 

when additional computing is available. Perfect speed-up happens if 

one hundred packages are delivered in the same time as one package, 

by simply having one hundred trucks with drivers instead of a single 

truck and driver. Of course, it does not reliably work that way. At some 

point, there is a bottleneck that limits speed-up. There may not be one 

hundred places for trucks to dock at the distribution center. In a computer 

program, bottlenecks often involve moving data around to where it will 

be processed. Distributing to one hundred trucks is similar to having to 

distribute data to one hundred processing cores. The act of distributing 

is not instantaneous. Chapter 3 starts our journey of exploring how to 

distribute data to where it is needed in a heterogeneous system. It is critical 

that we know that data distribution has a cost, and that cost affects how 

much scaling we can expect from our applications.

�Heterogeneous Systems
For our purposes, a heterogeneous system is any system which contains 

multiple types of computational devices. For instance, a system with both 

a central processing unit (CPU) and a graphics processing unit (GPU) is a 

heterogeneous system. The CPU is often just called a processor, although 

that can be confusing when we speak of all the processing units in a 

heterogeneous system as compute processors. To avoid this confusion, 

SYCL refers to processing units as devices. An application always runs on 

a host that in turn sends work to devices. Chapter 2 begins the discussion 

of how our main application (host code) will steer work (computations) to 

particular devices in a heterogeneous system.

Chapter 1  Introduction
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A program using C++ with SYCL runs on a host and issues kernels of 

work to devices. Although it might seem confusing, it is important to know 

that the host will often be able to serve as a device. This is valuable for two 

key reasons: (1) the host is most often a CPU that will run a kernel if no 

accelerator is present—a key promise of SYCL for application portability 

is that a kernel can always be run on any system even those without 

accelerators—and (2) CPUs often have vector, matrix, tensor, and/or 

AI processing capabilities that are accelerators that kernels map well to 

run upon.

Host code invokes code on devices. The capabilities of the host are 
very often available as a device also, to provide both a back-up 
device and to offer any acceleration capabilities the host has for 
processing kernels as well. Our host is most often a CPU, and as such 
it may be available as a CPU device. There is no guarantee by SYCL of 
a CPU device, only that there is at least one device available to be the 
default device for our application.

While heterogeneous describes the system from a technical 

standpoint, the reason to complicate our hardware and software is to 

obtain higher performance. Therefore, the term accelerated computing is 

popular for marketing heterogeneous systems or their components. We 

like to emphasize that there is no guarantee of acceleration. Programming 

of heterogeneous systems will only accelerate our applications when we do 

it right. This book helps teach us how to do it right!

GPUs have evolved to become high-performance computing (HPC) 

devices and therefore are sometimes referred to as general-purpose GPUs, 

or GPGPUs. For heterogeneous programming purposes, we can simply 

assume we are programming such powerful GPGPUs and refer to them 

as GPUs.

Chapter 1  Introduction
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Today, the collection of devices in a heterogeneous system can include 

CPUs, GPUs, FPGAs (field-programmable gate arrays), DSPs (digital signal 

processors), ASICs (application-specific integrated circuits), and AI chips 

(graph, neuromorphic, etc.).

The design of such devices will involve duplication of compute 

processors (multiprocessors) and increased connections (increased 

bandwidth) to data sources such as memory. The first of these, 

multiprocessing, is particularly useful for raising throughput. In our 

analogy, this was done by adding additional drivers and trucks. The latter 

of these, higher bandwidth for data, is particularly useful for reducing 

latency. In our analogy, this was done with more loading docks to enable 

trucks to be fully loaded in parallel.

Having multiple types of devices, each with different architectures and 

therefore different characteristics, leads to different programming and 

optimization needs for each device. That becomes the motivation for C++ 

with SYCL and the majority of what this book has to teach.

SYCL was created to address the challenges of C++ data-parallel 
programming for heterogeneous (accelerated) systems.

�Data-Parallel Programming
The phrase “data-parallel programming” has been lingering unexplained 

ever since the title of this book. Data-parallel programming focuses on 

parallelism that can be envisioned as a bunch of data to operate on in 

parallel. This shift in focus is like Gustafson vs. Amdahl. We need one 

hundred packages to deliver (effectively lots of data) in order to divide 

up the work among one hundred trucks with drivers. The key concept 

comes down to what we should divide. Should we process whole images 

Chapter 1  Introduction
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or process them in smaller tiles or process them pixel by pixel? Should 

we analyze a collection of objects as a single collection or a set of smaller 

groupings of objects or object by object?

Choosing the right division of work and mapping that work onto 

computational resources effectively is the responsibility of any parallel 

programmer using C++ with SYCL. Chapter 4 starts this discussion, and it 

continues through the rest of the book.

�Key Attributes of C++ with SYCL
Every program using SYCL is first and foremost a C++ program. SYCL does 

not rely on any language changes to C++. 

C++ compilers with SYCL support will optimize code based on built-

in knowledge of the SYCL specification as well as implement support so 

heterogeneous compilations “just work” within traditional C++ build 

systems.

Next, we will explain the key attributes of C++ with SYCL: single-source 

style, host, devices, kernel code, and asynchronous task graphs.

�Single-Source
Programs are single-source, meaning that the same translation unit2 

contains both the code that defines the compute kernels to be executed 

on devices and also the host code that orchestrates execution of those 

compute kernels. Chapter 2 begins with a more detailed look at this 

capability. We can still divide our program source into different files and 

translation units for host and device code if we want to, but the key is that 

we don’t have to!

2 We could just say “file,” but that is not entirely correct here. A translation unit 
is the actual input to the compiler, made from the source file after it has been 
processed by the C preprocessor to inline header files and expand macros.
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�Host
Every program starts by running on a host, and most of the lines of code 

in a program are usually for the host. Thus far, hosts have always been 

CPUs. The standard does not require this, so we carefully describe it as 

a host. This seems unlikely to be anything other than a CPU because the 

host needs to fully support C++17 in order to support all C++ with SYCL 

programs. As we will see shortly, devices (accelerators) do not need to 

support all of C++17.

�Devices
Using multiple devices in a program is what makes it heterogeneous 

programming. That is why the word device has been recurring in this 

chapter since the explanation of heterogeneous systems a few pages ago. 

We already learned that the collection of devices in a heterogeneous 

system can include GPUs, FPGAs, DSPs, ASICs, CPUs, and AI chips, but is 

not limited to any fixed list.

Devices are the targets to gain acceleration. The idea of offloading 

computations is to transfer work to a device that can accelerate completion 

of the work. We have to worry about making up for time lost moving 

data—a topic that needs to constantly be on our minds.

�Sharing Devices

On a system with a device, such as a GPU, we can envision two or more 

programs running and wanting to use a single device. They do not need to 

be programs using SYCL. Programs can experience delays in processing by 

the device if another program is currently using it. This is really the same 

philosophy used in C++ programs in general for CPUs. Any system can be 

overloaded if we run too many active programs on our CPU (mail, browser, 

virus scanning, video editing, photo editing, etc.) all at once.

Chapter 1  Introduction
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On supercomputers, when nodes (CPUs + all attached devices) are 

granted exclusively to a single application, sharing is not usually a concern. 

On non-supercomputer systems, we can just note that the performance 

of a program may be impacted if there are multiple applications using the 

same devices at the same time.

Everything still works, and there is no programming we need to do 

differently.

�Kernel Code
Code for a device is specified as kernels. This is a concept that is not 

unique to C++ with SYCL: it is a core concept in other offload acceleration 

languages including OpenCL and CUDA. While it is distinct from loop-

oriented approaches (such as commonly used with OpenMP target 

offloads), it may resemble the body of code within the innermost loop 

without requiring the programmer to write the loop nest explicitly.

Kernel code has certain restrictions to allow broader device support 

and massive parallelism. The list of features not supported in kernel code 

includes dynamic polymorphism, dynamic memory allocations (therefore 

no object management using new or delete operators), static variables, 

function pointers, runtime type information (RTTI), and exception 

handling. No virtual member functions, and no variadic functions, are 

allowed to be called from kernel code. Recursion is not allowed within 

kernel code.
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VIRTUAL FUNCTIONS?

While we will not discuss it further in this book, the DPC++ compiler project does 

have an experimental extension (visible in the open source project, of course) to 

implement some support for virtual functions within kernels. Thanks to the nature 

of offloading to accelerator efficiently, virtual functions cannot be supported well 

without some restrictions, but many users have expressed interest in seeing 

SYCL offer such support even with some restrictions. The beauty of open source, 

and the open SYCL specification, is the opportunity to participate in experiments 

that can inform the future of C++ and SYCL specifications. Visit the DPC++ 

project (github.com/intel/llvm) for more information.

Chapter 3 describes how memory allocations are done before and 

after kernels are invoked, thereby making sure that kernels stay focused 

on massively parallel computations. Chapter 5 describes handling of 

exceptions that arise in connection with devices.

The rest of C++ is fair game in a kernel, including functors, lambda 

expressions, operator overloading, templates, classes, and static 

polymorphism. We can also share data with the host (see Chapter 3) and 

share the read-only values of (non-global) host variables (via lambda 

expression captures).

�Kernel: Vector Addition (DAXPY)

Kernels should feel familiar to any programmer who has worked on 

computationally complex code. Consider implementing DAXPY, which 

stands for “double-precision A times X Plus Y.” A classic for decades. 

Figure 1-2 shows DAXPY implemented in modern Fortran, C/C++, and 

SYCL. Amazingly, the computation lines (line 3) are virtually identical. 

Chapters 4 and 10 explain kernels in detail. Figure 1-2 should help remove 

any concerns that kernels are difficult to understand—they should feel 

familiar even if the terminology is new to us.
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1. ! Fortran loop
2. do i = 1, n
3. z(i) = alpha * x(i) + y(i)
4. end do

1. // C/C++ loop
2. for (int i=0;i<n;i++) {
3. z[i] = alpha * x[i] + y[i];
4. }

1. // SYCL kernel
2. q.parallel_for(range{n},[=](id<1> i) {
3. z[i] = alpha * x[i] + y[i];
4. }).wait();

Figure 1-2.  DAXPY computations in Fortran, C/C++, and SYCL

�Asynchronous Execution
The asynchronous nature of programming using C++ with SYCL must not 

be missed. Asynchronous programming is critical to understand for two 

reasons: (1) proper use gives us better performance (better scaling), and 

(2) mistakes lead to parallel programming errors (usually race conditions) 

that make our applications unreliable.

The asynchronous nature comes about because work is transferred to 

devices via a “queue” of requested actions. The host program submits a 

requested action into a queue, and the program continues without waiting 

for any results. This no waiting is important so that we can try to keep 

computational resources (devices and the host) busy all the time. If we had 

to wait, that would tie up the host instead of allowing the host to do useful 

work. It would also create serial bottlenecks when the device finished, until 

we queued up new work. Amdahl’s Law, as discussed earlier, penalizes us 

for time spent not doing work in parallel. We need to construct our programs 

to be moving data to and from devices while the devices are busy and keep 

all the computational power of the devices and host busy any time work is 

available. Failure to do so will bring the full curse of Amdahl’s Law upon us.
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Chapter 3 starts the discussion on thinking of our program as an 

asynchronous task graph, and Chapter 8 greatly expands upon this 

concept.

�Race Conditions When We Make a Mistake
In our first code example (Figure 1-1), we specifically did a “wait” on 

line 19 to prevent line 21 from writing out the value from result before it 

was available. We must keep this asynchronous behavior in mind. There 

is another subtle thing done in that same code example—line 15 uses 

std::memcpy to load the input. Since std::memcpy runs on the host, line 

17 and later do not execute until line 15 has completed. After reading 

Chapter 3, we could be tempted to change this to use q.memcpy (using 

SYCL). We have done exactly that in Figure 1-3 on line 7. Since that is a 

queue submission, there is no guarantee that it will execute before line 

9. This creates a race condition, which is a type of parallel programming 

bug. A race condition exists when two parts of a program access the same 

data without coordination. Since we expect to write data using line 7 and 

then read it in line 9, we do not want a race that might have line 9 execute 

before line 7 completes! Such a race condition would make our program 

unpredictable—our program could get different results on different runs 

and on different systems. A fix for this would be to explicitly wait for 

q.memcpy to complete before proceeding by adding .wait() to the end of 

line 7. That is not the best fix. We could have used event dependences to 

solve this (Chapter 8). Creating the queue as an ordered queue would also 

add an implicit dependence between the memcpy and the parallel_for. 

As an alternative, in Chapter 7, we will see how a buffer and accessor 

programming style can be used to have SYCL manage the dependences 

and waits automatically for us.
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1. // ...we are changing one line from Figure 1-1
2. char* result = malloc_shared<char>(sz, q);
3.
4. // Introduce potential data race!  We don't define a
5. // dependence to ensure correct ordering with later
6. // operations.
7. q.memcpy(result, secret.data(), sz);
8.
9. q.parallel_for(sz, [=](auto& i) {
10. result[i] -= 1;
11. }).wait();
12.
13. // ...

Figure 1-3.  Adding a race condition to illustrate a point about being 
asynchronous

RACE CONDITIONS DO NOT ALWAYS CAUSE A PROGRAM TO FAIL

An astute reader noticed that the code in Figure 1-3 did not fail on every 

system they tried. Using a GPU with partition_max_sub_devices==0 did 

not fail because it was a small GPU not capable of running the parallel_for 

until the memcpy had completed. Regardless, the code is flawed because the 

race condition exists even if it does not universally cause a failure at runtime. 

We call it a race—sometimes we win, and sometimes we lose. Such coding 

flaws can lay dormant until the right combination of compile and runtime 

environments lead to an observable failure.

Adding a wait() forces host synchronization between the memcpy and 

the kernel, which goes against the previous advice to keep the device busy 

all the time. Much of this book covers the different options and trade-offs 

that balance program simplicity with efficient use of our systems.
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OUT-OF-ORDER QUEUES VS. IN-ORDER QUEUES

We will use out-of-order queues in this book because of their potential 

performance benefits, but it is important to know that support for in-order 

queues does exist. In-order is simply an attribute we can request when 

creating a queue. CUDA programmers will know that CUDA streams are 

unconditionally in-order. SYCL queues instead are out-of-order by default but 

may optionally be in-order by passing the in_order queue property when the 

SYCL queue is created (refer to Chapter 8). Chapter 21 provides information on 

this and other considerations for programmers coming from using CUDA.

For assistance with detecting data race conditions in a program, 

including kernels, tools such as Intel Inspector (available with the oneAPI 

tools mentioned previously in “Getting a DPC++ Compiler”) can be 

helpful. The sophisticated methods used by such tools often do not work 

on all devices. Detecting race conditions may be best done by having all 

the kernels run on a CPU, which can be done as a debugging technique 

during development work. This debugging tip is discussed as Method#2 in 

Chapter 2.

TO TEACH THE CONCEPT OF DEADLOCK, THE DINING PHILOSOPHERS 
PROBLEM IS A CLASSIC ILLUSTRATION OF A SYNCHRONIZATION  

PROBLEM IN COMPUTER SCIENCE

Imagine a group of philosophers sitting around a circular table, with a single 

chopstick placed between each philosopher. Every philosopher needs two 

chopsticks to eat their meal, and they always pick up chopsticks one at a time. 

Regrettably, if all philosophers first grab the chopstick to their left and then 

hold it waiting for the chopstick from their right, we have a problem if they 

all get hungry at the same time. Specifically, they will end up all waiting for a 

chopstick that will never be available.
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Poor algorithm design (grab left, then wait until grab right) in this case can 

result in deadlock and all the philosophers starving to death. That is sad. 

Discussing the numerous ways to design an algorithm that starves fewer 

philosophers to death, or hopefully is fair and feeds them all (none starve), is a 

topic that is fun to consider and has been written about many times.

Realizing how easy it is to make such programming errors, looking for them 

when debugging, and gaining a feel for how to avoid them are all essential 

experiences on the journey to become an effective parallel programmer.

�Deadlock
Deadlocks are bad, and we will emphasize that understanding 

concurrency vs. parallelism (see last section of this chapter) is essential to 

understanding how to avoid deadlock.

Deadlock occurs when two or more actions (processes, threads, 

kernels, etc.) are blocked, each waiting for the other to release a resource 

or complete a task, resulting in a standstill. In other words, our application 

will never complete. Every time we use a wait, synchronization, or lock, we 

can create deadlocks. Lack of synchronization can lead to deadlock, but 

more often it manifests as a race condition (see prior section).

Deadlocks can be difficult to debug. We will revisit this in the 

“Concurrency vs. Parallelism” section at the end of this chapter.

Chapter 4 will tell us “lambda expressions not considered harmful.” 
We should be comfortable with lambda expressions in order to use 
DPC++, SYCL, and modern C++ well.
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�C++ Lambda Expressions
A feature of modern C++ that is heavily used by parallel programming 

techniques is the lambda expression. Kernels (the code to run on a device) 

can be expressed in multiple ways, the most common one being a lambda 

expression. Chapter 10 discusses all the various forms that a kernel can 

take, including lambda expressions. Here we have a refresher on C++ 

lambda expressions plus some notes regarding use to define kernels. 

Chapter 10 expands on the kernel aspects after we have learned more 

about SYCL in the intervening chapters.

The code in Figure 1-3 has a lambda expression. We can see it because 

it starts with the very definitive [=]. In C++, lambdas start with a square 

bracket, and information before the closing square bracket denotes how to 

capture variables that are used within the lambda but not explicitly passed 

to it as parameters. For kernels in SYCL, the capture must be by value 

which is denoted by the inclusion of an equals sign within the brackets.

Support for lambda expressions was introduced in C++11. They are 

used to create anonymous function objects (although we can assign them 

to named variables) that can capture variables from the enclosing scope. 

The basic syntax for a C++ lambda expression is

[ capture-list ] ( params ) -> ret { body }

where

•	 capture-list is a comma-separated list of captures. 

We capture a variable by value by listing the variable 

name in the capture-list. We capture a variable by 

reference by prefixing it with an ampersand, for 

example, &v. There are also shorthands that apply to 
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all in-scope automatic variables: [=] is used to capture 

all automatic variables used in the body by value and 

the current object by reference, [&] is used to capture 

all automatic variables used in the body as well as the 

current object by reference, and [] captures nothing. 

With SYCL, [=] is always used because no variable 

is allowed to be captured by reference for use in a 

kernel. Global variables are not captured in a lambda, 

per the C++ standard. Non-global static variables can 

be used in a kernel but only if they are const. The 

few restrictions noted here allow kernels to behave 

consistently across different device architectures and 

implementations.

•	 params is the list of function parameters, just like for 

a named function. SYCL provides for parameters to 

identify the element(s) the kernel is being invoked to 

process: this can be a unique id (one-dimensional) or a 

2D or 3D id. These are discussed in Chapter 4.

•	 ret is the return type. If ->ret is not specified, it is 

inferred from the return statements. The lack of a 

return statement, or a return with no value, implies a 

return type of void. SYCL kernels must always have a 

return type of void, so we should not bother with this 

syntax to specify a return type for kernels.

•	 body is the function body. For a SYCL kernel, the 

contents of this kernel have some restrictions (see 

earlier in this chapter in the “Kernel Code” section).
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Figure 1-4 shows a C++ lambda expression that captures one variable, 

i, by value and another, j, by reference. It also has a parameter k0 and 

another parameter l0 that is received by reference. Running the example 

will result in the output shown in Figure 1-5.

int i = 1, j = 10, k = 100, l = 1000; 
 
auto lambda = [i, &j](int k0, int& l0) -> int { 
  j = 2 * j; 
  k0 = 2 * k0; 
  l0 = 2 * l0; 
  return i + j + k0 + l0; 
}; 
 
print_values(i, j, k, l); 
std::cout << "First call returned " << lambda(k, l) 
          << "\n"; 
print_values(i, j, k, l); 
std::cout << "Second call returned " << lambda(k, l) 
          << "\n"; 
print_values(i, j, k, l); 

Figure 1-4.  Lambda expression in C++ code

i == 1
j == 10
k == 100
l == 1000
First call returned 2221
i == 1
j == 20
k == 100
l == 2000
Second call returned 4241
i == 1
j == 40
k == 100
l == 4000

Figure 1-5.  Output from the lambda expression demonstration code 
in Figure 1-4
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We can think of a lambda expression as an instance of a function 

object, but the compiler creates the class definition for us. For example, the 

lambda expression we used in the preceding example is analogous to an 

instance of a class as shown in Figure 1-6. Wherever we use a C++ lambda 

expression, we can substitute it with an instance of a function object like 

the one shown in Figure 1-6.

Whenever we define a function object, we need to assign it a name 

(Functor in Figure 1-6). Lambda expressions expressed inline (as in 

Figure 1-4) are anonymous because they do not need a name.

�Functional Portability 
and Performance Portability
Portability is a key objective for using C++ with SYCL; however, nothing 

can guarantee it. All a language and compiler can do is to make portability 

a little easier for us to achieve in our applications when we want to do so. 

It is true that higher-level (more abstract) programming—such as domain-

specific languages, libraries, and frameworks—can offer more portability 

class Functor {
public:
Functor(int i, int &j) : my_i{i}, my_jRef{j} {}

int operator()(int k0, int &l0) {
my_jRef = 2 * my_jRef;
k0 = 2 * k0;
l0 = 2 * l0;
return my_i + my_jRef + k0 + l0;

}

private:
int my_i;
int &my_jRef;

};

Figure 1-6.  Function object instead of a lambda expression (more on 
this in Chapter 10)
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in large part because they allow less prescriptive programming. Since we 

are focused on data-parallel programming in C++ in this book, we assume 

a desire to have more control and with that comes more responsibility to 

understand how our coding affects portability.

Portability is a complex topic and includes the concept of functional 

portability as well as performance portability. With functional portability, 

we expect our program to compile and run equivalently on a wide variety 

of platforms. With performance portability, we would like our program to 

get reasonable performance on a wide variety of platforms. While that is 

a pretty soft definition, the converse might be clearer—we do not want to 

write a program that runs superfast on one platform only to find that it is 

unreasonably slow on another. In fact, we would prefer that it got the most 

out of any platform upon which it is run. Given the wide variety of devices 

in a heterogeneous system, performance portability requires nontrivial 

effort from us as programmers.

Fortunately, SYCL defines a way to code that can improve performance 

portability. First of all, a generic kernel can run everywhere. In a limited 

number of cases, this may be enough. More commonly, several versions 

of important kernels may be written for different types of devices. 

Specifically, a kernel might have a generic GPU and a generic CPU version. 

Occasionally, we may want to specialize our kernels for a specific device 

such as a specific GPU. When that occurs, we can write multiple versions 

and specialize each for a different GPU model. Or we can parameterize 

one version to use attributes of a GPU to modify how our GPU kernel runs 

to adapt to the GPU that is present.

While we are responsible for devising an effective plan for performance 

portability ourselves as programmers, SYCL defines constructs to allow 

us to implement a plan. As mentioned before, capabilities can be layered 

by starting with a kernel for all devices and then gradually introducing 

additional, more specialized kernel versions as needed. This sounds great, 

but the overall flow for a program can have a profound impact as well 

because data movement and overall algorithm choice matter. Knowing 

Chapter 1  Introduction



28

that gives insight into why no one should claim that C++ with SYCL (or 

other programming solution) solves performance portability. However, it 

is a tool in our toolkit to help us tackle these challenges.

�Concurrency vs. Parallelism
The terms concurrent and parallel are not necessarily equivalent, although 

they are sometimes misconstrued as such. Any discussion of these terms 

is further complicated by the fact that various sources rarely agree on the 

same definitions.

Consider these definitions from the Sun Microsystems Multithreaded 

Programming Guide:3

•	 Concurrency: A condition that exists when at least two 

threads are making progress

•	 Parallelism: A condition that exists when two threads 

are executing simultaneously

To fully appreciate the difference between these concepts, we need 

to seek an intuitive understanding of what matters here. The following 

observations can help us gain that understanding:

•	 Executing simultaneously can be faked: Even without 

hardware support for doing more than one thing at a 

time, software can fake doing multiple things at once 

by multiplexing. Multiplexing is a good example of 

concurrency without parallelism.

3 The authors are fans of this programming guide’s coverage of the 
fundamentals that never go away. It is online at docs.oracle.com/cd/
E19253-01/816-5137/816-5137.pdf.
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•	 Hardware resources are limited: Hardware is never 

infinitely “wide” because hardware always has a finite 

number of execution resources (e.g., processors, cores, 

execution units). When hardware can execute each of 

our threads using dedicated resources, we have both 

concurrency and parallelism.

When we as programmers say, “do X, Y and Z at the same time,” we 

often do not actually care whether hardware provides concurrency or 

parallelism. We probably do not want our program (with three tasks) to 

fail to launch on a machine that can only run two of them simultaneously. 

We would prefer that as many tasks as possible are processed in parallel, 

repeatedly stepping through batches of tasks until they are all complete.

But sometimes, we do care. And mistakes in our thinking can have 

disastrous effects (like “deadlock”). Imagine that our example from the 

last paragraph was modified such that the last thing a task (X, Y, or Z) 

does is “wait until all the tasks are done.” Our program will run just fine 

if the number of tasks never exceeds the limits of the hardware. But if 

we break our tasks into batches, a task in our first batch will wait forever. 

Unfortunately, that means our application never finishes.

This is a common mistake that is easy to make, which is why we are 

emphasizing these concepts. Even expert programmers must focus to try to 

avoid this—and we all find that we will need to debug issues when we miss 

something in our thinking. These concepts are not simple, and the C++ 

specification includes a lengthy section detailing the precise conditions 

in which threads are guaranteed to make progress. All we can do in this 

introductory section is highlight the importance of understanding these 

concepts as much as we can.

Developing an intuitive grasp of these concepts is important for 

effective programming of heterogeneous and accelerated systems. We all 

need to give ourselves time to gain such intuition—it does not happen all 

at once.
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�Summary
This chapter provided terminology needed for understanding C++ with 

SYCL and provided refreshers on key aspects of parallel programming and 

C++ that are critical to SYCL. Chapters 2, 3, and 4 expand on three keys to 

data-parallel programming while using C++ with SYCL: devices need to be 

given work to do (send code to run on them), be provided with data (send 

data to use on them), and have a method of writing code (kernels).

Open Access   This chapter is licensed under the terms of 

the Creative Commons Attribution 4.0 International License 

(https://creativecommons.org/licenses/by/4.0/), which permits use, 

sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and 

the source, provide a link to the Creative Commons license and indicate if 

changes were made.

The images or other third party material in this chapter are included 

in the chapter's Creative Commons license, unless indicated otherwise 

in a credit line to the material. If material is not included in the chapter's 

Creative Commons license and your intended use is not permitted by 

statutory regulation or exceeds the permitted use, you will need to obtain 

permission directly from the copyright holder.
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