
1

CHAPTER 1

Introduction
We have undeniably entered the age of accelerated computing. In order to

satisfy the world’s insatiable appetite for more computation, accelerated

computing drives complex simulations, AI, and much more by providing

greater performance and improved power efficiency when compared with

earlier solutions.

Heralded as a “New Golden Age for Computer Architecture,”1 we are

faced with enormous opportunity through a rich diversity in compute

devices. We need portable software development capabilities that are

not tied to any single vendor or architecture in order to realize the full

potential for accelerated computing.

SYCL (pronounced sickle) is an industry-driven Khronos Group

standard adding advanced support for data parallelism with C++ to

support accelerated (heterogeneous) systems. SYCL provides mechanisms

for C++ compilers to exploit accelerated (heterogeneous) systems in a way

that is highly synergistic with modern C++ and C++ build systems. SYCL is

not an acronym; SYCL is simply a name.

1 A New Golden Age for Computer Architecture by John L. Hennessy, David
A. Patterson; Communications of the ACM, February 2019, Vol. 62 No. 2,
Pages 48-60.

© Intel Corporation 2023
J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-9691-2_1

https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/abstract
https://doi.org/10.1007/978-1-4842-9691-2_1#DOI

2

ACCELERATED VS. HETEROGENEOUS

These terms go together. Heterogeneous is a technical description

acknowledging the combination of compute devices that are programmed

differently. Accelerated is the motivation for adding this complexity to systems

and programming. There is no guarantee of acceleration ever; programming

heterogeneous systems will only accelerate our applications when we do it

right. This book helps teach us how to do it right!

Data parallelism in C++ with SYCL provides access to all the compute

devices in a modern accelerated (heterogeneous) system. A single C++

application can use any combination of devices—including GPUs, CPUs,

FPGAs, and application-specific integrated circuits (ASICs)—that are

suitable to the problems at hand. No proprietary, single-vendor, solution

can offer us the same level of flexibility.

This book teaches us how to harness accelerated computing using

data-parallel programming using C++ with SYCL and provides practical

advice for balancing application performance, portability across compute

devices, and our own productivity as programmers. This chapter lays

the foundation by covering core concepts, including terminology, which

are critical to have fresh in our minds as we learn how to accelerate C++

programs using data parallelism.

�Read the Book, Not the Spec
No one wants to be told “Go read the spec!”—specifications are hard to

read, and the SYCL specification (www.khronos.org/sycl/) is no different.

Like every great language specification, it is full of precision but is light on

motivation, usage, and teaching. This book is a “study guide” to teach C++

with SYCL.

Chapter 1 Introduction

https://www.khronos.org/sycl/

3

No book can explain everything at once. Therefore, this chapter does

what no other chapter will do: the code examples contain programming

constructs that go unexplained until future chapters. We should not get

hung up on understanding the coding examples completely in Chapter 1

and trust it will get better with each chapter.

�SYCL 2020 and DPC++
This book teaches C++ with SYCL 2020. The first edition of this book

preceded the SYCL 2020 specification, so this edition includes updates

including adjustments in the header file location (sycl instead of CL),

device selector syntax, and removal of an explicit host device.

DPC++ is an open source compiler project based on LLVM. It is

our hope that SYCL eventually be supported by default in the LLVM

community and that the DPC++ project will help make that happen. The

DPC++ compiler offers broad heterogeneous support that includes GPU,

CPU, and FPGA. All examples in this book work with the DPC++ compiler

and should work with any C++ compiler supporting SYCL 2020.

Important resources for updated SYCL information, including any
known book errata, include the book GitHub (github.com/Apress/
data-parallel-CPP), the Khronos Group SYCL standards website
(www.khronos.org/sycl), and a key SYCL education website
(sycl.tech).

As of publication time, no C++ compiler claims full conformance or

compliance with the SYCL 2020 specification. Nevertheless, the code in

this book works with the DPC++ compiler and should work with other C++

compilers that have most of SYCL 2020 implemented. We use only standard

C++ with SYCL 2020 excepting for a few DPC++-specific extensions that

Chapter 1 Introduction

https://doi.org/10.1007/978-1-4842-9691-2_1
https://github.com/Apress/data-parallel-CPP
https://github.com/Apress/data-parallel-CPP
https://www.khronos.org/sycl
https://sycl.tech

4

are clearly called out in Chapter 17 (Programming for FPGAs) to a small

degree, Chapter 20 (Backend Interoperability) when connecting to Level

Zero backends, and the Epilogue when speculating on the future.

�Why Not CUDA?
Unlike CUDA, SYCL supports data parallelism in C++ for all vendors and

all types of architectures (not just GPUs). CUDA is focused on NVIDIA

GPU support only, and efforts (such as HIP/ROCm) to reuse it for GPUs

by other vendors have limited ability to succeed despite some solid

success and usefulness. With the explosion of accelerator architectures,

only SYCL offers the support we need for harnessing this diversity and

offering a multivendor/multiarchitecture approach to help with portability

that CUDA does not offer. To more deeply understand this motivation,

we highly recommend reading (or watching the video recording of their

excellent talk) “A New Golden Age for Computer Architecture” by industry

legends John L. Hennessy and David A. Patterson. We consider this a

must-read article.

Chapter 21, in addition to addressing topics useful for migrating code

from CUDA to C++ with SYCL, is valuable for those experienced with

CUDA to bridge some terminology and capability differences. The most

significant capabilities beyond CUDA come from the ability for SYCL to

support multiple vendors, multiple architectures (not just GPUs), and

multiple backends even for the same device. This flexibility answers the

question “Why not CUDA?”

SYCL does not involve any extra overhead compared with CUDA or

HIP. It is not a compatibility layer—it is a generalized approach that is open

to all devices regardless of vendor and architecture while simultaneously

being in sync with modern C++. Like other open multivendor and

multiarchitecture techniques, such as OpenMP and OpenCL, the ultimate

proof is in the implementations including options to access hardware-

specific optimizations when absolutely needed.

Chapter 1 Introduction

https://doi.org/10.1007/978-1-4842-9691-2_17
https://doi.org/10.1007/978-1-4842-9691-2_20
https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/abstract
https://doi.org/10.1007/978-1-4842-9691-2_21

5

�Why Standard C++ with SYCL?
As we will point out repeatedly, every program using SYCL is first and

foremost a C++ program. SYCL does not rely on any language changes

to C++. SYCL does take C++ programming places it cannot go without

SYCL. We have no doubt that all programming for accelerated computing

will continue to influence language standards including C++, but we do

not believe the C++ standard should (or will) evolve to displace the need

for SYCL any time soon. SYCL has a rich set of capabilities that we spend

this book covering that extend C++ through classes and rich support for

new compiler capabilities necessary to meet needs (already existing today)

for multivendor and multiarchitecture support.

�Getting a C++ Compiler with SYCL Support
All examples in this book compile and work with all the various

distributions of the DPC++ compiler and should compile with other C++

compilers supporting SYCL (see “SYCL Compilers in Development” at

www.khronos.org/sycl). We are careful to note the very few places where

extensions are used that are DPC++ specific at the time of publication.

The authors recommend the DPC++ compiler for a variety of reasons,

including our close association with the DPC++ compiler. DPC++ is an

open source compiler project to support SYCL. By using LLVM, the DPC++

compiler project has access to backends for numerous devices. This has

already resulted in support for Intel, NVIDIA, and AMD GPUs, numerous

CPUs, and Intel FPGAs. The ability to extend and enhance support openly

for multiple vendors and multiple architecture makes LLVM a great choice

for open source efforts to support SYCL.

There are distributions of the DPC++ compiler, augmented with

additional tools and libraries, available as part of a larger project to

offer broad support for heterogeneous systems, which include libraries,

Chapter 1 Introduction

https://www.khronos.org/sycl

6

debuggers, and other tools, known as the oneAPI project. The oneAPI

tools, including the DPC++ compiler, are freely available (www.oneapi.io/

implementations).

�Hello, World! and a SYCL
Program Dissection
Figure 1-1 shows a sample SYCL program. Compiling and running it

results in the following being printed:

Hello, world! (and some additional text left to experience by running it)

We will completely understand this example by the end of Chapter 4.

Until then, we can observe the single include of <sycl/sycl.hpp> (line 2)

that is needed to define all the SYCL constructs. All SYCL constructs live

inside a namespace called sycl.

1. #include <iostream>
2. #include <sycl/sycl.hpp>
3. using namespace sycl;
4.
5. const std::string secret{
6. "Ifmmp-!xpsme\"\012J(n!tpssz-!Ebwf/!"
7. "J(n!bgsbje!J!dbo(u!ep!uibu/!.!IBM\01"};
8.
9. const auto sz = secret.size();
10.
11. int main() {
12. queue q;
13.
14. char* result = malloc_shared<char>(sz, q);
15. std::memcpy(result, secret.data(), sz);
16.
17. q.parallel_for(sz, [=](auto& i) {
18. result[i] -= 1;
19. }).wait();
20.
21. std::cout << result << "\n";
22. free(result, q);
23. return 0;
24. }

Figure 1-1.  Hello data-parallel programming

Chapter 1 Introduction

https://www.oneapi.io/implementations/
https://www.oneapi.io/implementations/
https://doi.org/10.1007/978-1-4842-9691-2_4

7

•	 Line 3 lets us avoid writing sycl:: over and over.

•	 Line 12 instantiates a queue for work requests directed

to a particular device (Chapter 2).

•	 Line 14 creates an allocation for data shared with the

device (Chapter 3).

•	 Line 15 copies the secret string into device memory,

where it will be processed by the kernel.

•	 Line 17 enqueues work to the device (Chapter 4).

•	 Line 18 is the only line of code that will run on the

device. All other code runs on the host (CPU).

Line 18 is the kernel code that we want to run on devices. That kernel

code decrements a single character. With the power of parallel_for(),

that kernel is run on each character in our secret string in order to decode

it into the result string. There is no ordering of the work required, and it is

run asynchronously relative to the main program once the parallel_for

queues the work. It is critical that there is a wait (line 19) before looking at

the result to be sure that the kernel has completed, since in this example

we are using a convenient feature (Unified Shared Memory, Chapter 6).

Without the wait, the output may occur before all the characters have been

decrypted. There is more to discuss, but that is the job of later chapters.

�Queues and Actions
Chapter 2 discusses queues and actions, but we can start with a simple

explanation for now. Queues are the only connection that allows an

application to direct work to be done on a device. There are two types

of actions that can be placed into a queue: (a) code to execute and (b)

memory operations. Code to execute is expressed via either single_task

or parallel_for (used in Figure 1-1). Memory operations perform copy

Chapter 1 Introduction

https://doi.org/10.1007/978-1-4842-9691-2_2
https://doi.org/10.1007/978-1-4842-9691-2_3
https://doi.org/10.1007/978-1-4842-9691-2_4
https://doi.org/10.1007/978-1-4842-9691-2_6
https://doi.org/10.1007/978-1-4842-9691-2_2

8

operations between host and device or fill operations to initialize memory.

We only need to use memory operations if we seek more control than

what is done automatically for us. These are all discussed later in the

book starting with Chapter 2. For now, we should be aware that queues

are the connection that allows us to command a device, and we have

a set of actions available to put in queues to execute code and to move

around data. It is also very important to understand that requested actions

are placed into a queue without waiting. The host, after submitting an

action into a queue, continues to execute the program, while the device

will eventually, and asynchronously, perform the action requested via

the queue.

QUEUES CONNECT US TO DEVICES

We submit actions into queues to request computational work and data

movement.

Actions happen asynchronously.

�It Is All About Parallelism
Since programming in C++ for data parallelism is all about parallelism,

let’s start with this critical concept. The goal of parallel programming is

to compute something faster. It turns out there are two aspects to this:

increased throughput and reduced latency.

�Throughput
Increasing throughput of a program comes when we get more work done

in a set amount of time. Techniques like pipelining may stretch out the

time necessary to get a single work-item done, to allow overlapping of

Chapter 1 Introduction

https://doi.org/10.1007/978-1-4842-9691-2_2

9

work that leads to more work-per-unit-of-time being done. Humans

encounter this often when working together. The very act of sharing work

involves overhead to coordinate that often slows the time to do a single

item. However, the power of multiple people leads to more throughput.

Computers are no different—spreading work to more processing cores

adds overhead to each unit of work that likely results in some delays, but

the goal is to get more total work done because we have more processing

cores working together.

�Latency
What if we want to get one thing done faster—for instance, analyzing

a voice command and formulating a response? If we only cared about

throughput, the response time might grow to be unbearable. The concept

of latency reduction requires that we break up an item of work into

pieces that can be tackled in parallel. For throughput, image processing

might assign whole images to different processing units—in this case,

our goal may be optimizing for images per second. For latency, image

processing might assign each pixel within an image to different processing

cores—in this case, our goal may be maximizing pixels per second from a

single image.

�Think Parallel
Successful parallel programmers use both techniques in their

programming. This is the beginning of our quest to Think Parallel.

We want to adjust our minds to think first about where parallelism

can be found in our algorithms and applications. We also think about how

different ways of expressing the parallelism affect the performance we

ultimately achieve. That is a lot to take in all at once. The quest to Think

Parallel becomes a lifelong journey for parallel programmers. We can learn

a few tips here.

Chapter 1 Introduction

10

�Amdahl and Gustafson
Amdahl’s Law, stated by the supercomputer pioneer Gene Amdahl in

1967, is a formula to predict the theoretical maximum speed-up when

using multiple processors. Amdahl lamented that the maximum gain from

parallelism is limited to (1/(1-p)) where p is the fraction of the program

that runs in parallel. If we only run two-thirds of our program in parallel,

then the most that program can speed up is a factor of 3. We definitely

need that concept to sink in deeply! This happens because no matter how

fast we make that two-thirds of our program run, the other one-third still

takes the same time to complete. Even if we add 100 GPUs, we will only get

a factor of 3 increase in performance.

For many years, some viewed this as proof that parallel computing

would not prove fruitful. In 1988, John Gustafson wrote an article titled

“Reevaluating Amdahl’s Law.” He observed that parallelism was not used

to speed up fixed workloads, but it was used to allow work to be scaled

up. Humans experience the same thing. One delivery person cannot

deliver a single package faster with the help of many more people and

trucks. However, a hundred people and trucks can deliver one hundred

packages more quickly than a single driver with a truck. Multiple drivers

will definitely increase throughput and will also generally reduce latency

for package deliveries. Amdahl’s Law tells us that a single driver cannot

deliver one package faster by adding ninety-nine more drivers with their

own trucks. Gustafson noticed the opportunity to deliver one hundred

packages faster with these extra drivers and trucks.

This emphasizes that parallelism is most useful because the size of

problems we tackle keep growing in size year after year. Parallelism would

not nearly as important to study if year after year we only wanted to run the

same size problems faster. This quest to solve larger and larger problems

fuels our interest in exploiting data parallelism, using C++ with SYCL, for

the future of computer (heterogeneous/accelerated systems).

Chapter 1 Introduction

11

�Scaling
The word “scaling” appeared in our prior discussion. Scaling is a measure

of how much a program speeds up (simply referred to as “speed-up”)

when additional computing is available. Perfect speed-up happens if

one hundred packages are delivered in the same time as one package,

by simply having one hundred trucks with drivers instead of a single

truck and driver. Of course, it does not reliably work that way. At some

point, there is a bottleneck that limits speed-up. There may not be one

hundred places for trucks to dock at the distribution center. In a computer

program, bottlenecks often involve moving data around to where it will

be processed. Distributing to one hundred trucks is similar to having to

distribute data to one hundred processing cores. The act of distributing

is not instantaneous. Chapter 3 starts our journey of exploring how to

distribute data to where it is needed in a heterogeneous system. It is critical

that we know that data distribution has a cost, and that cost affects how

much scaling we can expect from our applications.

�Heterogeneous Systems
For our purposes, a heterogeneous system is any system which contains

multiple types of computational devices. For instance, a system with both

a central processing unit (CPU) and a graphics processing unit (GPU) is a

heterogeneous system. The CPU is often just called a processor, although

that can be confusing when we speak of all the processing units in a

heterogeneous system as compute processors. To avoid this confusion,

SYCL refers to processing units as devices. An application always runs on

a host that in turn sends work to devices. Chapter 2 begins the discussion

of how our main application (host code) will steer work (computations) to

particular devices in a heterogeneous system.

Chapter 1 Introduction

https://doi.org/10.1007/978-1-4842-9691-2_3
https://doi.org/10.1007/978-1-4842-9691-2_2

12

A program using C++ with SYCL runs on a host and issues kernels of

work to devices. Although it might seem confusing, it is important to know

that the host will often be able to serve as a device. This is valuable for two

key reasons: (1) the host is most often a CPU that will run a kernel if no

accelerator is present—a key promise of SYCL for application portability

is that a kernel can always be run on any system even those without

accelerators—and (2) CPUs often have vector, matrix, tensor, and/or

AI processing capabilities that are accelerators that kernels map well to

run upon.

Host code invokes code on devices. The capabilities of the host are
very often available as a device also, to provide both a back-up
device and to offer any acceleration capabilities the host has for
processing kernels as well. Our host is most often a CPU, and as such
it may be available as a CPU device. There is no guarantee by SYCL of
a CPU device, only that there is at least one device available to be the
default device for our application.

While heterogeneous describes the system from a technical

standpoint, the reason to complicate our hardware and software is to

obtain higher performance. Therefore, the term accelerated computing is

popular for marketing heterogeneous systems or their components. We

like to emphasize that there is no guarantee of acceleration. Programming

of heterogeneous systems will only accelerate our applications when we do

it right. This book helps teach us how to do it right!

GPUs have evolved to become high-performance computing (HPC)

devices and therefore are sometimes referred to as general-purpose GPUs,

or GPGPUs. For heterogeneous programming purposes, we can simply

assume we are programming such powerful GPGPUs and refer to them

as GPUs.

Chapter 1 Introduction

13

Today, the collection of devices in a heterogeneous system can include

CPUs, GPUs, FPGAs (field-programmable gate arrays), DSPs (digital signal

processors), ASICs (application-specific integrated circuits), and AI chips

(graph, neuromorphic, etc.).

The design of such devices will involve duplication of compute

processors (multiprocessors) and increased connections (increased

bandwidth) to data sources such as memory. The first of these,

multiprocessing, is particularly useful for raising throughput. In our

analogy, this was done by adding additional drivers and trucks. The latter

of these, higher bandwidth for data, is particularly useful for reducing

latency. In our analogy, this was done with more loading docks to enable

trucks to be fully loaded in parallel.

Having multiple types of devices, each with different architectures and

therefore different characteristics, leads to different programming and

optimization needs for each device. That becomes the motivation for C++

with SYCL and the majority of what this book has to teach.

SYCL was created to address the challenges of C++ data-parallel
programming for heterogeneous (accelerated) systems.

�Data-Parallel Programming
The phrase “data-parallel programming” has been lingering unexplained

ever since the title of this book. Data-parallel programming focuses on

parallelism that can be envisioned as a bunch of data to operate on in

parallel. This shift in focus is like Gustafson vs. Amdahl. We need one

hundred packages to deliver (effectively lots of data) in order to divide

up the work among one hundred trucks with drivers. The key concept

comes down to what we should divide. Should we process whole images

Chapter 1 Introduction

14

or process them in smaller tiles or process them pixel by pixel? Should

we analyze a collection of objects as a single collection or a set of smaller

groupings of objects or object by object?

Choosing the right division of work and mapping that work onto

computational resources effectively is the responsibility of any parallel

programmer using C++ with SYCL. Chapter 4 starts this discussion, and it

continues through the rest of the book.

�Key Attributes of C++ with SYCL
Every program using SYCL is first and foremost a C++ program. SYCL does

not rely on any language changes to C++.

C++ compilers with SYCL support will optimize code based on built-

in knowledge of the SYCL specification as well as implement support so

heterogeneous compilations “just work” within traditional C++ build

systems.

Next, we will explain the key attributes of C++ with SYCL: single-source

style, host, devices, kernel code, and asynchronous task graphs.

�Single-Source
Programs are single-source, meaning that the same translation unit2

contains both the code that defines the compute kernels to be executed

on devices and also the host code that orchestrates execution of those

compute kernels. Chapter 2 begins with a more detailed look at this

capability. We can still divide our program source into different files and

translation units for host and device code if we want to, but the key is that

we don’t have to!

2 We could just say “file,” but that is not entirely correct here. A translation unit
is the actual input to the compiler, made from the source file after it has been
processed by the C preprocessor to inline header files and expand macros.

Chapter 1 Introduction

https://doi.org/10.1007/978-1-4842-9691-2_4
https://doi.org/10.1007/978-1-4842-9691-2_2

15

�Host
Every program starts by running on a host, and most of the lines of code

in a program are usually for the host. Thus far, hosts have always been

CPUs. The standard does not require this, so we carefully describe it as

a host. This seems unlikely to be anything other than a CPU because the

host needs to fully support C++17 in order to support all C++ with SYCL

programs. As we will see shortly, devices (accelerators) do not need to

support all of C++17.

�Devices
Using multiple devices in a program is what makes it heterogeneous

programming. That is why the word device has been recurring in this

chapter since the explanation of heterogeneous systems a few pages ago.

We already learned that the collection of devices in a heterogeneous

system can include GPUs, FPGAs, DSPs, ASICs, CPUs, and AI chips, but is

not limited to any fixed list.

Devices are the targets to gain acceleration. The idea of offloading

computations is to transfer work to a device that can accelerate completion

of the work. We have to worry about making up for time lost moving

data—a topic that needs to constantly be on our minds.

�Sharing Devices

On a system with a device, such as a GPU, we can envision two or more

programs running and wanting to use a single device. They do not need to

be programs using SYCL. Programs can experience delays in processing by

the device if another program is currently using it. This is really the same

philosophy used in C++ programs in general for CPUs. Any system can be

overloaded if we run too many active programs on our CPU (mail, browser,

virus scanning, video editing, photo editing, etc.) all at once.

Chapter 1 Introduction

16

On supercomputers, when nodes (CPUs + all attached devices) are

granted exclusively to a single application, sharing is not usually a concern.

On non-supercomputer systems, we can just note that the performance

of a program may be impacted if there are multiple applications using the

same devices at the same time.

Everything still works, and there is no programming we need to do

differently.

�Kernel Code
Code for a device is specified as kernels. This is a concept that is not

unique to C++ with SYCL: it is a core concept in other offload acceleration

languages including OpenCL and CUDA. While it is distinct from loop-

oriented approaches (such as commonly used with OpenMP target

offloads), it may resemble the body of code within the innermost loop

without requiring the programmer to write the loop nest explicitly.

Kernel code has certain restrictions to allow broader device support

and massive parallelism. The list of features not supported in kernel code

includes dynamic polymorphism, dynamic memory allocations (therefore

no object management using new or delete operators), static variables,

function pointers, runtime type information (RTTI), and exception

handling. No virtual member functions, and no variadic functions, are

allowed to be called from kernel code. Recursion is not allowed within

kernel code.

Chapter 1 Introduction

17

VIRTUAL FUNCTIONS?

While we will not discuss it further in this book, the DPC++ compiler project does

have an experimental extension (visible in the open source project, of course) to

implement some support for virtual functions within kernels. Thanks to the nature

of offloading to accelerator efficiently, virtual functions cannot be supported well

without some restrictions, but many users have expressed interest in seeing

SYCL offer such support even with some restrictions. The beauty of open source,

and the open SYCL specification, is the opportunity to participate in experiments

that can inform the future of C++ and SYCL specifications. Visit the DPC++

project (github.com/intel/llvm) for more information.

Chapter 3 describes how memory allocations are done before and

after kernels are invoked, thereby making sure that kernels stay focused

on massively parallel computations. Chapter 5 describes handling of

exceptions that arise in connection with devices.

The rest of C++ is fair game in a kernel, including functors, lambda

expressions, operator overloading, templates, classes, and static

polymorphism. We can also share data with the host (see Chapter 3) and

share the read-only values of (non-global) host variables (via lambda

expression captures).

�Kernel: Vector Addition (DAXPY)

Kernels should feel familiar to any programmer who has worked on

computationally complex code. Consider implementing DAXPY, which

stands for “double-precision A times X Plus Y.” A classic for decades.

Figure 1-2 shows DAXPY implemented in modern Fortran, C/C++, and

SYCL. Amazingly, the computation lines (line 3) are virtually identical.

Chapters 4 and 10 explain kernels in detail. Figure 1-2 should help remove

any concerns that kernels are difficult to understand—they should feel

familiar even if the terminology is new to us.

Chapter 1 Introduction

https://github.com/intel/llvm
https://doi.org/10.1007/978-1-4842-9691-2_3
https://doi.org/10.1007/978-1-4842-9691-2_5
https://doi.org/10.1007/978-1-4842-9691-2_3
https://doi.org/10.1007/978-1-4842-9691-2_4
https://doi.org/10.1007/978-1-4842-9691-2_10

18

1. ! Fortran loop
2. do i = 1, n
3. z(i) = alpha * x(i) + y(i)
4. end do

1. // C/C++ loop
2. for (int i=0;i<n;i++) {
3. z[i] = alpha * x[i] + y[i];
4. }

1. // SYCL kernel
2. q.parallel_for(range{n},[=](id<1> i) {
3. z[i] = alpha * x[i] + y[i];
4. }).wait();

Figure 1-2.  DAXPY computations in Fortran, C/C++, and SYCL

�Asynchronous Execution
The asynchronous nature of programming using C++ with SYCL must not

be missed. Asynchronous programming is critical to understand for two

reasons: (1) proper use gives us better performance (better scaling), and

(2) mistakes lead to parallel programming errors (usually race conditions)

that make our applications unreliable.

The asynchronous nature comes about because work is transferred to

devices via a “queue” of requested actions. The host program submits a

requested action into a queue, and the program continues without waiting

for any results. This no waiting is important so that we can try to keep

computational resources (devices and the host) busy all the time. If we had

to wait, that would tie up the host instead of allowing the host to do useful

work. It would also create serial bottlenecks when the device finished, until

we queued up new work. Amdahl’s Law, as discussed earlier, penalizes us

for time spent not doing work in parallel. We need to construct our programs

to be moving data to and from devices while the devices are busy and keep

all the computational power of the devices and host busy any time work is

available. Failure to do so will bring the full curse of Amdahl’s Law upon us.

Chapter 1 Introduction

19

Chapter 3 starts the discussion on thinking of our program as an

asynchronous task graph, and Chapter 8 greatly expands upon this

concept.

�Race Conditions When We Make a Mistake
In our first code example (Figure 1-1), we specifically did a “wait” on

line 19 to prevent line 21 from writing out the value from result before it

was available. We must keep this asynchronous behavior in mind. There

is another subtle thing done in that same code example—line 15 uses

std::memcpy to load the input. Since std::memcpy runs on the host, line

17 and later do not execute until line 15 has completed. After reading

Chapter 3, we could be tempted to change this to use q.memcpy (using

SYCL). We have done exactly that in Figure 1-3 on line 7. Since that is a

queue submission, there is no guarantee that it will execute before line

9. This creates a race condition, which is a type of parallel programming

bug. A race condition exists when two parts of a program access the same

data without coordination. Since we expect to write data using line 7 and

then read it in line 9, we do not want a race that might have line 9 execute

before line 7 completes! Such a race condition would make our program

unpredictable—our program could get different results on different runs

and on different systems. A fix for this would be to explicitly wait for

q.memcpy to complete before proceeding by adding .wait() to the end of

line 7. That is not the best fix. We could have used event dependences to

solve this (Chapter 8). Creating the queue as an ordered queue would also

add an implicit dependence between the memcpy and the parallel_for.

As an alternative, in Chapter 7, we will see how a buffer and accessor

programming style can be used to have SYCL manage the dependences

and waits automatically for us.

Chapter 1 Introduction

https://doi.org/10.1007/978-1-4842-9691-2_3
https://doi.org/10.1007/978-1-4842-9691-2_8
https://doi.org/10.1007/978-1-4842-9691-2_3
https://doi.org/10.1007/978-1-4842-9691-2_8
https://doi.org/10.1007/978-1-4842-9691-2_7

20

1. // ...we are changing one line from Figure 1-1
2. char* result = malloc_shared<char>(sz, q);
3.
4. // Introduce potential data race! We don't define a
5. // dependence to ensure correct ordering with later
6. // operations.
7. q.memcpy(result, secret.data(), sz);
8.
9. q.parallel_for(sz, [=](auto& i) {
10. result[i] -= 1;
11. }).wait();
12.
13. // ...

Figure 1-3.  Adding a race condition to illustrate a point about being
asynchronous

RACE CONDITIONS DO NOT ALWAYS CAUSE A PROGRAM TO FAIL

An astute reader noticed that the code in Figure 1-3 did not fail on every

system they tried. Using a GPU with partition_max_sub_devices==0 did

not fail because it was a small GPU not capable of running the parallel_for

until the memcpy had completed. Regardless, the code is flawed because the

race condition exists even if it does not universally cause a failure at runtime.

We call it a race—sometimes we win, and sometimes we lose. Such coding

flaws can lay dormant until the right combination of compile and runtime

environments lead to an observable failure.

Adding a wait() forces host synchronization between the memcpy and

the kernel, which goes against the previous advice to keep the device busy

all the time. Much of this book covers the different options and trade-offs

that balance program simplicity with efficient use of our systems.

Chapter 1 Introduction

21

OUT-OF-ORDER QUEUES VS. IN-ORDER QUEUES

We will use out-of-order queues in this book because of their potential

performance benefits, but it is important to know that support for in-order

queues does exist. In-order is simply an attribute we can request when

creating a queue. CUDA programmers will know that CUDA streams are

unconditionally in-order. SYCL queues instead are out-of-order by default but

may optionally be in-order by passing the in_order queue property when the

SYCL queue is created (refer to Chapter 8). Chapter 21 provides information on

this and other considerations for programmers coming from using CUDA.

For assistance with detecting data race conditions in a program,

including kernels, tools such as Intel Inspector (available with the oneAPI

tools mentioned previously in “Getting a DPC++ Compiler”) can be

helpful. The sophisticated methods used by such tools often do not work

on all devices. Detecting race conditions may be best done by having all

the kernels run on a CPU, which can be done as a debugging technique

during development work. This debugging tip is discussed as Method#2 in

Chapter 2.

TO TEACH THE CONCEPT OF DEADLOCK, THE DINING PHILOSOPHERS
PROBLEM IS A CLASSIC ILLUSTRATION OF A SYNCHRONIZATION

PROBLEM IN COMPUTER SCIENCE

Imagine a group of philosophers sitting around a circular table, with a single

chopstick placed between each philosopher. Every philosopher needs two

chopsticks to eat their meal, and they always pick up chopsticks one at a time.

Regrettably, if all philosophers first grab the chopstick to their left and then

hold it waiting for the chopstick from their right, we have a problem if they

all get hungry at the same time. Specifically, they will end up all waiting for a

chopstick that will never be available.

Chapter 1 Introduction

https://doi.org/10.1007/978-1-4842-9691-2_8
https://doi.org/10.1007/978-1-4842-9691-2_21
https://doi.org/10.1007/978-1-4842-9691-2_2

22

Poor algorithm design (grab left, then wait until grab right) in this case can

result in deadlock and all the philosophers starving to death. That is sad.

Discussing the numerous ways to design an algorithm that starves fewer

philosophers to death, or hopefully is fair and feeds them all (none starve), is a

topic that is fun to consider and has been written about many times.

Realizing how easy it is to make such programming errors, looking for them

when debugging, and gaining a feel for how to avoid them are all essential

experiences on the journey to become an effective parallel programmer.

�Deadlock
Deadlocks are bad, and we will emphasize that understanding

concurrency vs. parallelism (see last section of this chapter) is essential to

understanding how to avoid deadlock.

Deadlock occurs when two or more actions (processes, threads,

kernels, etc.) are blocked, each waiting for the other to release a resource

or complete a task, resulting in a standstill. In other words, our application

will never complete. Every time we use a wait, synchronization, or lock, we

can create deadlocks. Lack of synchronization can lead to deadlock, but

more often it manifests as a race condition (see prior section).

Deadlocks can be difficult to debug. We will revisit this in the

“Concurrency vs. Parallelism” section at the end of this chapter.

Chapter 4 will tell us “lambda expressions not considered harmful.”
We should be comfortable with lambda expressions in order to use
DPC++, SYCL, and modern C++ well.

Chapter 1 Introduction

https://doi.org/10.1007/978-1-4842-9691-2_4

23

�C++ Lambda Expressions
A feature of modern C++ that is heavily used by parallel programming

techniques is the lambda expression. Kernels (the code to run on a device)

can be expressed in multiple ways, the most common one being a lambda

expression. Chapter 10 discusses all the various forms that a kernel can

take, including lambda expressions. Here we have a refresher on C++

lambda expressions plus some notes regarding use to define kernels.

Chapter 10 expands on the kernel aspects after we have learned more

about SYCL in the intervening chapters.

The code in Figure 1-3 has a lambda expression. We can see it because

it starts with the very definitive [=]. In C++, lambdas start with a square

bracket, and information before the closing square bracket denotes how to

capture variables that are used within the lambda but not explicitly passed

to it as parameters. For kernels in SYCL, the capture must be by value

which is denoted by the inclusion of an equals sign within the brackets.

Support for lambda expressions was introduced in C++11. They are

used to create anonymous function objects (although we can assign them

to named variables) that can capture variables from the enclosing scope.

The basic syntax for a C++ lambda expression is

[capture-list] (params) -> ret { body }

where

•	 capture-list is a comma-separated list of captures.

We capture a variable by value by listing the variable

name in the capture-list. We capture a variable by

reference by prefixing it with an ampersand, for

example, &v. There are also shorthands that apply to

Chapter 1 Introduction

https://doi.org/10.1007/978-1-4842-9691-2_10
https://doi.org/10.1007/978-1-4842-9691-2_10

24

all in-scope automatic variables: [=] is used to capture

all automatic variables used in the body by value and

the current object by reference, [&] is used to capture

all automatic variables used in the body as well as the

current object by reference, and [] captures nothing.

With SYCL, [=] is always used because no variable

is allowed to be captured by reference for use in a

kernel. Global variables are not captured in a lambda,

per the C++ standard. Non-global static variables can

be used in a kernel but only if they are const. The

few restrictions noted here allow kernels to behave

consistently across different device architectures and

implementations.

•	 params is the list of function parameters, just like for

a named function. SYCL provides for parameters to

identify the element(s) the kernel is being invoked to

process: this can be a unique id (one-dimensional) or a

2D or 3D id. These are discussed in Chapter 4.

•	 ret is the return type. If ->ret is not specified, it is

inferred from the return statements. The lack of a

return statement, or a return with no value, implies a

return type of void. SYCL kernels must always have a

return type of void, so we should not bother with this

syntax to specify a return type for kernels.

•	 body is the function body. For a SYCL kernel, the

contents of this kernel have some restrictions (see

earlier in this chapter in the “Kernel Code” section).

Chapter 1 Introduction

https://doi.org/10.1007/978-1-4842-9691-2_4

25

Figure 1-4 shows a C++ lambda expression that captures one variable,

i, by value and another, j, by reference. It also has a parameter k0 and

another parameter l0 that is received by reference. Running the example

will result in the output shown in Figure 1-5.

int i = 1, j = 10, k = 100, l = 1000;

auto lambda = [i, &j](int k0, int& l0) -> int {
 j = 2 * j;
 k0 = 2 * k0;
 l0 = 2 * l0;
 return i + j + k0 + l0;
};

print_values(i, j, k, l);
std::cout << "First call returned " << lambda(k, l)
 << "\n";
print_values(i, j, k, l);
std::cout << "Second call returned " << lambda(k, l)
 << "\n";
print_values(i, j, k, l);

Figure 1-4.  Lambda expression in C++ code

i == 1
j == 10
k == 100
l == 1000
First call returned 2221
i == 1
j == 20
k == 100
l == 2000
Second call returned 4241
i == 1
j == 40
k == 100
l == 4000

Figure 1-5.  Output from the lambda expression demonstration code
in Figure 1-4

Chapter 1 Introduction

26

We can think of a lambda expression as an instance of a function

object, but the compiler creates the class definition for us. For example, the

lambda expression we used in the preceding example is analogous to an

instance of a class as shown in Figure 1-6. Wherever we use a C++ lambda

expression, we can substitute it with an instance of a function object like

the one shown in Figure 1-6.

Whenever we define a function object, we need to assign it a name

(Functor in Figure 1-6). Lambda expressions expressed inline (as in

Figure 1-4) are anonymous because they do not need a name.

�Functional Portability
and Performance Portability
Portability is a key objective for using C++ with SYCL; however, nothing

can guarantee it. All a language and compiler can do is to make portability

a little easier for us to achieve in our applications when we want to do so.

It is true that higher-level (more abstract) programming—such as domain-

specific languages, libraries, and frameworks—can offer more portability

class Functor {
public:
Functor(int i, int &j) : my_i{i}, my_jRef{j} {}

int operator()(int k0, int &l0) {
my_jRef = 2 * my_jRef;
k0 = 2 * k0;
l0 = 2 * l0;
return my_i + my_jRef + k0 + l0;

}

private:
int my_i;
int &my_jRef;

};

Figure 1-6.  Function object instead of a lambda expression (more on
this in Chapter 10)

Chapter 1 Introduction

https://doi.org/10.1007/978-1-4842-9691-2_10

27

in large part because they allow less prescriptive programming. Since we

are focused on data-parallel programming in C++ in this book, we assume

a desire to have more control and with that comes more responsibility to

understand how our coding affects portability.

Portability is a complex topic and includes the concept of functional

portability as well as performance portability. With functional portability,

we expect our program to compile and run equivalently on a wide variety

of platforms. With performance portability, we would like our program to

get reasonable performance on a wide variety of platforms. While that is

a pretty soft definition, the converse might be clearer—we do not want to

write a program that runs superfast on one platform only to find that it is

unreasonably slow on another. In fact, we would prefer that it got the most

out of any platform upon which it is run. Given the wide variety of devices

in a heterogeneous system, performance portability requires nontrivial

effort from us as programmers.

Fortunately, SYCL defines a way to code that can improve performance

portability. First of all, a generic kernel can run everywhere. In a limited

number of cases, this may be enough. More commonly, several versions

of important kernels may be written for different types of devices.

Specifically, a kernel might have a generic GPU and a generic CPU version.

Occasionally, we may want to specialize our kernels for a specific device

such as a specific GPU. When that occurs, we can write multiple versions

and specialize each for a different GPU model. Or we can parameterize

one version to use attributes of a GPU to modify how our GPU kernel runs

to adapt to the GPU that is present.

While we are responsible for devising an effective plan for performance

portability ourselves as programmers, SYCL defines constructs to allow

us to implement a plan. As mentioned before, capabilities can be layered

by starting with a kernel for all devices and then gradually introducing

additional, more specialized kernel versions as needed. This sounds great,

but the overall flow for a program can have a profound impact as well

because data movement and overall algorithm choice matter. Knowing

Chapter 1 Introduction

28

that gives insight into why no one should claim that C++ with SYCL (or

other programming solution) solves performance portability. However, it

is a tool in our toolkit to help us tackle these challenges.

�Concurrency vs. Parallelism
The terms concurrent and parallel are not necessarily equivalent, although

they are sometimes misconstrued as such. Any discussion of these terms

is further complicated by the fact that various sources rarely agree on the

same definitions.

Consider these definitions from the Sun Microsystems Multithreaded

Programming Guide:3

•	 Concurrency: A condition that exists when at least two

threads are making progress

•	 Parallelism: A condition that exists when two threads

are executing simultaneously

To fully appreciate the difference between these concepts, we need

to seek an intuitive understanding of what matters here. The following

observations can help us gain that understanding:

•	 Executing simultaneously can be faked: Even without

hardware support for doing more than one thing at a

time, software can fake doing multiple things at once

by multiplexing. Multiplexing is a good example of

concurrency without parallelism.

3 The authors are fans of this programming guide’s coverage of the
fundamentals that never go away. It is online at docs.oracle.com/cd/
E19253-01/816-5137/816-5137.pdf.

Chapter 1 Introduction

https://tinyurl.com/SunMTguide
https://tinyurl.com/SunMTguide

29

•	 Hardware resources are limited: Hardware is never

infinitely “wide” because hardware always has a finite

number of execution resources (e.g., processors, cores,

execution units). When hardware can execute each of

our threads using dedicated resources, we have both

concurrency and parallelism.

When we as programmers say, “do X, Y and Z at the same time,” we

often do not actually care whether hardware provides concurrency or

parallelism. We probably do not want our program (with three tasks) to

fail to launch on a machine that can only run two of them simultaneously.

We would prefer that as many tasks as possible are processed in parallel,

repeatedly stepping through batches of tasks until they are all complete.

But sometimes, we do care. And mistakes in our thinking can have

disastrous effects (like “deadlock”). Imagine that our example from the

last paragraph was modified such that the last thing a task (X, Y, or Z)

does is “wait until all the tasks are done.” Our program will run just fine

if the number of tasks never exceeds the limits of the hardware. But if

we break our tasks into batches, a task in our first batch will wait forever.

Unfortunately, that means our application never finishes.

This is a common mistake that is easy to make, which is why we are

emphasizing these concepts. Even expert programmers must focus to try to

avoid this—and we all find that we will need to debug issues when we miss

something in our thinking. These concepts are not simple, and the C++

specification includes a lengthy section detailing the precise conditions

in which threads are guaranteed to make progress. All we can do in this

introductory section is highlight the importance of understanding these

concepts as much as we can.

Developing an intuitive grasp of these concepts is important for

effective programming of heterogeneous and accelerated systems. We all

need to give ourselves time to gain such intuition—it does not happen all

at once.

Chapter 1 Introduction

30

�Summary
This chapter provided terminology needed for understanding C++ with

SYCL and provided refreshers on key aspects of parallel programming and

C++ that are critical to SYCL. Chapters 2, 3, and 4 expand on three keys to

data-parallel programming while using C++ with SYCL: devices need to be

given work to do (send code to run on them), be provided with data (send

data to use on them), and have a method of writing code (kernels).

Open Access  This chapter is licensed under the terms of

the Creative Commons Attribution 4.0 International License

(https://creativecommons.org/licenses/by/4.0/), which permits use,

sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter's Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter's

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 1 Introduction

https://doi.org/10.1007/978-1-4842-9691-2_2
https://doi.org/10.1007/978-1-4842-9691-2_3
https://doi.org/10.1007/978-1-4842-9691-2_4
https://creativecommons.org/licenses/by/4.0/

	Chapter 1: Introduction
	Read the Book, Not the Spec
	SYCL 2020 and DPC++
	Why Not CUDA?
	Why Standard C++ with SYCL?
	Getting a C++ Compiler with SYCL Support
	Hello, World! and a SYCL Program Dissection
	Queues and Actions
	It Is All About Parallelism
	Throughput
	Latency
	Think Parallel
	Amdahl and Gustafson
	Scaling
	Heterogeneous Systems
	Data-Parallel Programming

	Key Attributes of C++ with SYCL
	Single-Source
	Host
	Devices
	Sharing Devices

	Kernel Code
	Kernel: Vector Addition (DAXPY)

	Asynchronous Execution
	Race Conditions When We Make a Mistake
	Deadlock
	C++ Lambda Expressions
	Functional Portability and Performance Portability

	Concurrency vs. Parallelism
	Summary

