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Preface

If you are new to parallel programming that is okay. If you have never 

heard of SYCL or the DPC++ compilerthat is also okay

Compared with programming in CUDA, C++ with SYCL offers 

portability beyond NVIDIA, and portability beyond GPUs, plus a tight 

alignment to enhance modern C++ as it evolves too. C++ with SYCL offers 

these advantages without sacrificing performance.

C++ with SYCL allows us to accelerate our applications by harnessing 

the combined capabilities of CPUs, GPUs, FPGAs, and processing devices 

of the future without being tied to any one vendor.

SYCL is an industry-driven Khronos Group standard adding 

advanced support for data parallelism with C++ to exploit accelerated 

(heterogeneous) systems. SYCL provides mechanisms for C++ compilers 

that are highly synergistic with C++ and C++ build systems. DPC++ is an 

open source compiler project based on LLVM that adds SYCL support. 

All examples in this book should work with any C++ compiler supporting 

SYCL 2020 including the DPC++ compiler.

If you are a C programmer who is not well versed in C++, you are in 

good company. Several of the authors of this book happily share that 

they picked up much of C++ by reading books that utilized C++ like this 

one. With a little patience, this book should also be approachable by C 

programmers with a desire to write modern C++ programs.

 Second Edition
With the benefit of feedback from a growing community of SYCL users, we 

have been able to add content to help learn SYCL better than ever.
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This edition teaches C++ with SYCL 2020. The first edition preceded 

the SYCL 2020 specification, which differed only slightly from what the 

first edition taught (the most obvious changes for SYCL 2020 in this edition 

are the header file location, the device selector syntax, and dropping an 

explicit host device).

Important resources for updated sYCl information, including any 
known book errata, include the book Github (https://github.
com/Apress/data-parallel-CPP), the Khronos Group sYCl 
standards website (www.khronos.org/sycl), and a key sYCl 
education website (https://sycl.tech).

Chapters 20 and 21 are additions encouraged by readers of the first 

edition of this book.

We added Chapter 20 to discuss backend interoperability. One of 

the key goals of the SYCL 2020 standard is to enable broad support for 

hardware from many vendors with many architectures. This required 

expanding beyond the OpenCL-only backend support of SYCL 1.2.1. While 

generally “it just works,” Chapter 20 explains this in more detail for those 

who find it valuable to understand and interface at this level.

For experienced CUDA programmers, we have added Chapter 21 to 

explicitly connect C++ with SYCL concepts to CUDA concepts both in 

terms of approach and vocabulary. While the core issues of expressing 

heterogeneous parallelism are fundamentally similar, C++ with SYCL offers 

many benefits because of its multivendor and multiarchitecture approach. 

Chapter 21 is the only place we mention CUDA terminology; the rest of this 

book teaches using C++ and SYCL terminology with its open multivendor, 

multiarchitecture approaches. In Chapter 21, we strongly encourage 

looking at the open source tool “SYCLomatic” (github.com/oneapi-src/

SYCLomatic), which helps automate migration of CUDA code. Because it 

PrefaCe
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is helpful, we recommend it as the preferred first step in migrating code. 

Developers using C++ with SYCL have been reporting strong results on 

NVIDIA, AMD, and Intel GPUs on both codes that have been ported from 

CUDA and original C++ with SYCL code. The resulting C++ with SYCL 

offers portability that is not possible with NVIDIA CUDA.

The evolution of C++, SYCL, and compilers including DPC++ 

continues. Prospects for the future are discussed in the Epilogue, after 

we have taken a journey together to learn how to create programs for 

heterogeneous systems using C++ with SYCL.

It is our hope that this book supports and helps grow the SYCL 

community and helps promote data-parallel programming in C++ 

with SYCL.

 Structure of This Book
This book takes us on a journey through what we need to know to be an 

effective programmer of accelerated/heterogeneous systems using C++ 

with SYCL.

 Chapters 1–4: Lay Foundations
Chapters 1–4 are important to read in order when first approaching C++ 

with SYCL.

Chapter 1 lays the first foundation by covering core concepts that are 

either new or worth refreshing in our minds.

Chapters 2–4 lay a foundation of understanding for data-parallel 

programming in C++ with SYCL. When we finish reading Chapters 1–4, 

we will have a solid foundation for data-parallel programming in C++. 

Chapters 1–4 build on each other and are best read in order.

PrefaCe
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 Chapters 5–12: Build on Foundations
With the foundations established, Chapters 5–12 fill in vital details by 

building on each other to some degree while being easy to jump between 

as desired. All these chapters should be valuable to all users of C++ 

with SYCL.

 Chapters 13–21: Tips/Advice for SYCL in Practice
These final chapters offer advice and details for specific needs. We 

encourage at least skimming them all to find content that is important to 

your needs.

 Epilogue: Speculating on the Future
The book concludes with an Epilogue that discusses likely and potential 

future directions for C++ with SYCL, and the Data Parallel C++ compiler 

for SYCL.

We wish you the best as you learn to use C++ with SYCL.

PrefaCe
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Foreword

SYCL 2020 is a milestone in parallel computing. For the first time we have 

a modern, stable, feature-complete, and portable open standard that can 

target all types of hardware, and the book you hold in your hand is the 

premier resource to learn SYCL 2020.

Computer hardware development is driven by our needs to solve 

larger and more complex problems, but those hardware advances are 

largely useless unless programmers like you and me have languages that 

allow us to implement our ideas and exploit the power available with 

reasonable effort. There are numerous examples of amazing hardware, 

and the first solutions to use them have often been proprietary since it 

saves time not having to bother with committees agreeing on standards. 

However, in the history of computing, they have eventually always ended 

up as vendor lock-in—unable to compete with open standards that allow 

developers to target any hardware and share code—because ultimately the 

resources of the worldwide community and ecosystem are far greater than 

any individual vendor, not to mention how open software standards drive 

hardware competition.

Over the last few years, my team has had the tremendous privilege 

of contributing to shaping the emerging SYCL ecosystem through our 

development of GROMACS, one of the world’s most widely used scientific 

HPC codes. We need our code to run on every supercomputer in the 

world as well as our laptops. While we cannot afford to lose performance, 

we also depend on being part of a larger community where other teams 

invest effort in libraries we depend on, where there are open compilers 

available, and where we can recruit talent. Since the first edition of this 

book, SYCL has matured into such a community; in addition to several 
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vendor-provided compilers, we now have a major community-driven 

implementation1 that targets all hardware, and there are thousands of 

developers worldwide sharing experiences, contributing to training 

events, and participating in forums. The outstanding power of open 

source—whether it is an application, a compiler, or an open standard—is 

that we can peek under the hood to learn, borrow, and extend. Just as we 

repeatedly learn from the code in the Intel-led LLVM implementation,2 

the community-driven implementation from Heidelberg University, and 

several other codes, you can use our public repository3 to compare CUDA 

and SYCL implementations in a large production codebase or borrow 

solutions for your needs—because when you do so, you are helping to 

further extend our community.

Perhaps surprisingly, data-parallel programming as a paradigm is 

arguably far easier than classical solutions such as message-passing 

communication or explicit multithreading—but it poses special challenges 

to those of us who have spent decades in the old paradigms that focus on 

hardware and explicit data placement. On a small scale, it was trivial for 

us to explicitly decide how data is moved between a handful of processes, 

but as the problem scales to thousands of units, it becomes a nightmare to 

manage the complexity without introducing bugs or having the hardware 

sit idle waiting for data. Data-parallel programming with SYCL solves 

this by striking the balance of primarily asking us to explicitly express the 

inherent parallelism of our algorithm, but once we have done that, the 

compiler and drivers will mostly handle the data locality and scheduling 

over tens of thousands of functional units. To be successful in data-parallel 

programming, it is important not to think of a computer as a single unit 

executing one program, but as a collection of units working independently 

1 Community-driven implementation from Heidelberg University: tinyurl.com/
HeidelbergSYCL
2 DPC++ compiler project: github.com/intel/llvm
3 GROMACS: gitlab.com/gromacs/gromacs/
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to solve parts of a large problem. As long as we can express our problem as 

an algorithm where each part does not have dependencies on other parts, 

it is in theory straightforward to implement it, for example, as a parallel 

for-loop that is executed on a GPU through a device queue. However, for 

more practical examples, our problems are frequently not large enough 

to use an entire device efficiently, or we depend on performing tens of 

thousands of iterations per second where latency in device drivers starts 

to be a major bottleneck. While this book is an outstanding introduction to 

performance-portable GPU programming, it goes far beyond this to show 

how both throughput and latency matter for real-world applications, how 

SYCL can be used to exploit unique features both of CPUs, GPUs, SIMD 

units, and FPGAs, but it also covers the caveats that for good performance 

we need to understand and possibly adapt code to the characteristics of 

each type of hardware. Doing so, it is not merely a great tutorial on data-

parallel programing, but an authoritative text that anybody interested in 

programming modern computer hardware in general should read.

One of SYCL’s key strengths is the close alignment to modern C++.  

This can seem daunting at first; C++ is not an easy language to fully master 

(I certainly have not), but Reinders and coauthors take our hand and lead 

us on a path where we only need to learn a handful of C++ concepts to get 

started and be productive in actual data-parallel programming. However, 

as we become more experienced, SYCL 2020 allows us to combine this 

with the extreme generality of C++17 to write code that can be dynamically 

targeted to different devices, or relying on heterogeneous parallelism that 

uses CPU, GPU, and network units in parallel for different tasks. SYCL is 

not a separate bolted-on solution to enable accelerators but instead holds 

great promise to be the general way we express data parallelism in C++. 

The SYCL 2020 standard now includes several features previously only 

available as vendor extensions, for example, Unified Shared Memory, 

sub-groups, atomic operations, reductions, simpler accessors, and many 

other concepts that make code cleaner, and facilitates both development 

as well as porting from standard C++17 or CUDA to have your code target 

foreword
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more diverse hardware. This book provides a wonderful and accessible 

introduction to all of them, and you will also learn how SYCL is expected to 

evolve together with the rapid development C++ is undergoing.

This all sounds great in theory, but how portable is SYCL in practice? 

Our application is an example of a codebase that is quite challenging to 

optimize since data access patterns are random, the amount of data to 

process in each step is limited, we need to achieve thousands of iterations 

per second, and we are limited both by memory bandwidth, floating-point, 

and integer operations—it is an extreme opposite of a simple data-parallel 

problem. We spent over two decades writing assembly SIMD instructions 

and native implementations for several GPU architectures, and our 

very first encounters with SYCL involved both pains with adapting to 

differences and reporting performance regressions to driver and compiler 

developers. However, as of spring 2023, our SYCL kernels can achieve 

80–100% of native performance on all GPU architectures not only from a 

single codebase but even a single precompiled binary.

SYCL is still young and has a rapidly evolving ecosystem. There are 

a few things not yet part of the language, but SYCL is unique as the only 

performance-portable standard available that successfully targets all 

modern hardware. Whether you are a beginner wanting to learn parallel 

programming, an experienced developer interested in data-parallel 

programming, or a maintainer needing to port 100,000 lines of proprietary 

API code to an open standard, this second edition is the only book you will 

need to become part of this community.

Erik Lindahl

Professor of Biophysics

Dept. Biophysics & Biochemistry

Science for Life Laboratory

Stockholm University
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CHAPTER 1

Introduction
We have undeniably entered the age of accelerated computing. In order to 

satisfy the world’s insatiable appetite for more computation, accelerated 

computing drives complex simulations, AI, and much more by providing 

greater performance and improved power efficiency when compared with 

earlier solutions.

Heralded as a “New Golden Age for Computer Architecture,”1 we are 

faced with enormous opportunity through a rich diversity in compute 

devices. We need portable software development capabilities that are 

not tied to any single vendor or architecture in order to realize the full 

potential for accelerated computing.

SYCL (pronounced sickle) is an industry-driven Khronos Group 

standard adding advanced support for data parallelism with C++ to 

support accelerated (heterogeneous) systems. SYCL provides mechanisms 

for C++ compilers to exploit accelerated (heterogeneous) systems in a way 

that is highly synergistic with modern C++ and C++ build systems. SYCL is 

not an acronym; SYCL is simply a name.

1 A New Golden Age for Computer Architecture by John L. Hennessy, David 
A. Patterson; Communications of the ACM, February 2019, Vol. 62 No. 2, 
Pages 48-60.

© Intel Corporation 2023 
J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-9691-2_1

https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/abstract
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2

ACCELERATED VS. HETEROGENEOUS

These terms go together. Heterogeneous is a technical description 

acknowledging the combination of compute devices that are programmed 

differently. Accelerated is the motivation for adding this complexity to systems 

and programming. There is no guarantee of acceleration ever; programming 

heterogeneous systems will only accelerate our applications when we do it 

right. This book helps teach us how to do it right!

Data parallelism in C++ with SYCL provides access to all the compute 

devices in a modern accelerated (heterogeneous) system. A single C++ 

application can use any combination of devices—including GPUs, CPUs, 

FPGAs, and application-specific integrated circuits (ASICs)—that are 

suitable to the problems at hand. No proprietary, single-vendor, solution 

can offer us the same level of flexibility.

This book teaches us how to harness accelerated computing using 

data-parallel programming using C++ with SYCL and provides practical 

advice for balancing application performance, portability across compute 

devices, and our own productivity as programmers. This chapter lays 

the foundation by covering core concepts, including terminology, which 

are critical to have fresh in our minds as we learn how to accelerate C++ 

programs using data parallelism.

 Read the Book, Not the Spec
No one wants to be told “Go read the spec!”—specifications are hard to 

read, and the SYCL specification (www.khronos.org/sycl/) is no different. 

Like every great language specification, it is full of precision but is light on 

motivation, usage, and teaching. This book is a “study guide” to teach C++ 

with SYCL.
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No book can explain everything at once. Therefore, this chapter does 

what no other chapter will do: the code examples contain programming 

constructs that go unexplained until future chapters. We should not get 

hung up on understanding the coding examples completely in Chapter 1 

and trust it will get better with each chapter.

 SYCL 2020 and DPC++
This book teaches C++ with SYCL 2020. The first edition of this book 

preceded the SYCL 2020 specification, so this edition includes updates 

including adjustments in the header file location (sycl instead of CL), 

device selector syntax, and removal of an explicit host device.

DPC++ is an open source compiler project based on LLVM. It is 

our hope that SYCL eventually be supported by default in the LLVM 

community and that the DPC++ project will help make that happen. The 

DPC++ compiler offers broad heterogeneous support that includes GPU, 

CPU, and FPGA. All examples in this book work with the DPC++ compiler 

and should work with any C++ compiler supporting SYCL 2020.

Important resources for updated SYCL information, including any 
known book errata, include the book Github (github.com/Apress/
data-parallel-CPP), the Khronos Group SYCL standards website 
(www.khronos.org/sycl), and a key SYCL education website 
(sycl.tech).

As of publication time, no C++ compiler claims full conformance or 

compliance with the SYCL 2020 specification. Nevertheless, the code in 

this book works with the DPC++ compiler and should work with other C++ 

compilers that have most of SYCL 2020 implemented. We use only standard 

C++ with SYCL 2020 excepting for a few DPC++-specific extensions that 
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are clearly called out in Chapter 17 (Programming for FPGAs) to a small 

degree, Chapter 20 (Backend Interoperability) when connecting to Level 

Zero backends, and the Epilogue when speculating on the future.

 Why Not CUDA?
Unlike CUDA, SYCL supports data parallelism in C++ for all vendors and 

all types of architectures (not just GPUs). CUDA is focused on NVIDIA 

GPU support only, and efforts (such as HIP/ROCm) to reuse it for GPUs 

by other vendors have limited ability to succeed despite some solid 

success and usefulness. With the explosion of accelerator architectures, 

only SYCL offers the support we need for harnessing this diversity and 

offering a multivendor/multiarchitecture approach to help with portability 

that CUDA does not offer. To more deeply understand this motivation, 

we highly recommend reading (or watching the video recording of their 

excellent talk) “A New Golden Age for Computer Architecture” by industry 

legends John L. Hennessy and David A. Patterson. We consider this a 

must-read article.

Chapter 21, in addition to addressing topics useful for migrating code 

from CUDA to C++ with SYCL, is valuable for those experienced with 

CUDA to bridge some terminology and capability differences. The most 

significant capabilities beyond CUDA come from the ability for SYCL to 

support multiple vendors, multiple architectures (not just GPUs), and 

multiple backends even for the same device. This flexibility answers the 

question “Why not CUDA?”

SYCL does not involve any extra overhead compared with CUDA or 

HIP. It is not a compatibility layer—it is a generalized approach that is open 

to all devices regardless of vendor and architecture while simultaneously 

being in sync with modern C++. Like other open multivendor and 

multiarchitecture techniques, such as OpenMP and OpenCL, the ultimate 

proof is in the implementations including options to access hardware- 

specific optimizations when absolutely needed.
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 Why Standard C++ with SYCL?
As we will point out repeatedly, every program using SYCL is first and 

foremost a C++ program. SYCL does not rely on any language changes 

to C++. SYCL does take C++ programming places it cannot go without 

SYCL. We have no doubt that all programming for accelerated computing 

will continue to influence language standards including C++, but we do 

not believe the C++ standard should (or will) evolve to displace the need 

for SYCL any time soon. SYCL has a rich set of capabilities that we spend 

this book covering that extend C++ through classes and rich support for 

new compiler capabilities necessary to meet needs (already existing today) 

for multivendor and multiarchitecture support.

 Getting a C++ Compiler with SYCL Support
All examples in this book compile and work with all the various 

distributions of the DPC++ compiler and should compile with other C++ 

compilers supporting SYCL (see “SYCL Compilers in Development” at 

www.khronos.org/sycl). We are careful to note the very few places where 

extensions are used that are DPC++ specific at the time of publication.

The authors recommend the DPC++ compiler for a variety of reasons, 

including our close association with the DPC++ compiler. DPC++ is an 

open source compiler project to support SYCL. By using LLVM, the DPC++ 

compiler project has access to backends for numerous devices. This has 

already resulted in support for Intel, NVIDIA, and AMD GPUs, numerous 

CPUs, and Intel FPGAs. The ability to extend and enhance support openly 

for multiple vendors and multiple architecture makes LLVM a great choice 

for open source efforts to support SYCL.

There are distributions of the DPC++ compiler, augmented with 

additional tools and libraries, available as part of a larger project to 

offer broad support for heterogeneous systems, which include libraries, 
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debuggers, and other tools, known as the oneAPI project. The oneAPI 

tools, including the DPC++ compiler, are freely available (www.oneapi.io/

implementations).

 Hello, World! and a SYCL 
Program Dissection
Figure 1-1 shows a sample SYCL program. Compiling and running it 

results in the following being printed:

Hello, world! (and some additional text left to experience by running it)

We will completely understand this example by the end of Chapter 4. 

Until then, we can observe the single include of <sycl/sycl.hpp> (line 2) 

that is needed to define all the SYCL constructs. All SYCL constructs live 

inside a namespace called sycl.

1. #include <iostream>
2. #include <sycl/sycl.hpp>
3. using namespace sycl;
4.
5. const std::string secret{
6. "Ifmmp-!xpsme\"\012J(n!tpssz-!Ebwf/!"
7. "J(n!bgsbje!J!dbo(u!ep!uibu/!.!IBM\01"};
8.
9. const auto sz = secret.size();
10.
11. int main() {
12. queue q;
13.
14. char* result = malloc_shared<char>(sz, q);
15. std::memcpy(result, secret.data(), sz);
16.
17. q.parallel_for(sz, [=](auto& i) {
18. result[i] -= 1;
19. }).wait();
20.
21. std::cout << result << "\n";
22. free(result, q);
23. return 0;
24. }

Figure 1-1. Hello data-parallel programming
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• Line 3 lets us avoid writing sycl:: over and over.

• Line 12 instantiates a queue for work requests directed 

to a particular device (Chapter 2).

• Line 14 creates an allocation for data shared with the 

device (Chapter 3).

• Line 15 copies the secret string into device memory, 

where it will be processed by the kernel.

• Line 17 enqueues work to the device (Chapter 4).

• Line 18 is the only line of code that will run on the 

device. All other code runs on the host (CPU).

Line 18 is the kernel code that we want to run on devices. That kernel 

code decrements a single character. With the power of parallel_for(), 

that kernel is run on each character in our secret string in order to decode 

it into the result string. There is no ordering of the work required, and it is 

run asynchronously relative to the main program once the parallel_for 

queues the work. It is critical that there is a wait (line 19) before looking at 

the result to be sure that the kernel has completed, since in this example 

we are using a convenient feature (Unified Shared Memory, Chapter 6). 

Without the wait, the output may occur before all the characters have been 

decrypted. There is more to discuss, but that is the job of later chapters.

 Queues and Actions
Chapter 2 discusses queues and actions, but we can start with a simple 

explanation for now. Queues are the only connection that allows an 

application to direct work to be done on a device. There are two types 

of actions that can be placed into a queue: (a) code to execute and (b) 

memory operations. Code to execute is expressed via either single_task 

or parallel_for (used in Figure 1-1). Memory operations perform copy 
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operations between host and device or fill operations to initialize memory. 

We only need to use memory operations if we seek more control than 

what is done automatically for us. These are all discussed later in the 

book starting with Chapter 2. For now, we should be aware that queues 

are the connection that allows us to command a device, and we have 

a set of actions available to put in queues to execute code and to move 

around data. It is also very important to understand that requested actions 

are placed into a queue without waiting. The host, after submitting an 

action into a queue, continues to execute the program, while the device 

will eventually, and asynchronously, perform the action requested via 

the queue.

QUEUES CONNECT US TO DEVICES

We submit actions into queues to request computational work and data 

movement.

actions happen asynchronously.

 It Is All About Parallelism
Since programming in C++ for data parallelism is all about parallelism, 

let’s start with this critical concept. The goal of parallel programming is 

to compute something faster. It turns out there are two aspects to this: 

increased throughput and reduced latency.

 Throughput
Increasing throughput of a program comes when we get more work done 

in a set amount of time. Techniques like pipelining may stretch out the 

time necessary to get a single work-item done, to allow overlapping of 
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work that leads to more work-per-unit-of-time being done. Humans 

encounter this often when working together. The very act of sharing work 

involves overhead to coordinate that often slows the time to do a single 

item. However, the power of multiple people leads to more throughput. 

Computers are no different—spreading work to more processing cores 

adds overhead to each unit of work that likely results in some delays, but 

the goal is to get more total work done because we have more processing 

cores working together.

 Latency
What if we want to get one thing done faster—for instance, analyzing 

a voice command and formulating a response? If we only cared about 

throughput, the response time might grow to be unbearable. The concept 

of latency reduction requires that we break up an item of work into 

pieces that can be tackled in parallel. For throughput, image processing 

might assign whole images to different processing units—in this case, 

our goal may be optimizing for images per second. For latency, image 

processing might assign each pixel within an image to different processing 

cores—in this case, our goal may be maximizing pixels per second from a 

single image.

 Think Parallel
Successful parallel programmers use both techniques in their 

programming. This is the beginning of our quest to Think Parallel.

We want to adjust our minds to think first about where parallelism 

can be found in our algorithms and applications. We also think about how 

different ways of expressing the parallelism affect the performance we 

ultimately achieve. That is a lot to take in all at once. The quest to Think 

Parallel becomes a lifelong journey for parallel programmers. We can learn 

a few tips here.
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10

 Amdahl and Gustafson
Amdahl’s Law, stated by the supercomputer pioneer Gene Amdahl in 

1967, is a formula to predict the theoretical maximum speed-up when 

using multiple processors. Amdahl lamented that the maximum gain from 

parallelism is limited to (1/(1-p)) where p is the fraction of the program 

that runs in parallel. If we only run two-thirds of our program in parallel, 

then the most that program can speed up is a factor of 3. We definitely 

need that concept to sink in deeply! This happens because no matter how 

fast we make that two-thirds of our program run, the other one-third still 

takes the same time to complete. Even if we add 100 GPUs, we will only get 

a factor of 3 increase in performance.

For many years, some viewed this as proof that parallel computing 

would not prove fruitful. In 1988, John Gustafson wrote an article titled 

“Reevaluating Amdahl’s Law.” He observed that parallelism was not used 

to speed up fixed workloads, but it was used to allow work to be scaled 

up. Humans experience the same thing. One delivery person cannot 

deliver a single package faster with the help of many more people and 

trucks. However, a hundred people and trucks can deliver one hundred 

packages more quickly than a single driver with a truck. Multiple drivers 

will definitely increase throughput and will also generally reduce latency 

for package deliveries. Amdahl’s Law tells us that a single driver cannot 

deliver one package faster by adding ninety-nine more drivers with their 

own trucks. Gustafson noticed the opportunity to deliver one hundred 

packages faster with these extra drivers and trucks.

This emphasizes that parallelism is most useful because the size of 

problems we tackle keep growing in size year after year. Parallelism would 

not nearly as important to study if year after year we only wanted to run the 

same size problems faster. This quest to solve larger and larger problems 

fuels our interest in exploiting data parallelism, using C++ with SYCL, for 

the future of computer (heterogeneous/accelerated systems).
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 Scaling
The word “scaling” appeared in our prior discussion. Scaling is a measure 

of how much a program speeds up (simply referred to as “speed-up”) 

when additional computing is available. Perfect speed-up happens if 

one hundred packages are delivered in the same time as one package, 

by simply having one hundred trucks with drivers instead of a single 

truck and driver. Of course, it does not reliably work that way. At some 

point, there is a bottleneck that limits speed-up. There may not be one 

hundred places for trucks to dock at the distribution center. In a computer 

program, bottlenecks often involve moving data around to where it will 

be processed. Distributing to one hundred trucks is similar to having to 

distribute data to one hundred processing cores. The act of distributing 

is not instantaneous. Chapter 3 starts our journey of exploring how to 

distribute data to where it is needed in a heterogeneous system. It is critical 

that we know that data distribution has a cost, and that cost affects how 

much scaling we can expect from our applications.

 Heterogeneous Systems
For our purposes, a heterogeneous system is any system which contains 

multiple types of computational devices. For instance, a system with both 

a central processing unit (CPU) and a graphics processing unit (GPU) is a 

heterogeneous system. The CPU is often just called a processor, although 

that can be confusing when we speak of all the processing units in a 

heterogeneous system as compute processors. To avoid this confusion, 

SYCL refers to processing units as devices. An application always runs on 

a host that in turn sends work to devices. Chapter 2 begins the discussion 

of how our main application (host code) will steer work (computations) to 

particular devices in a heterogeneous system.
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A program using C++ with SYCL runs on a host and issues kernels of 

work to devices. Although it might seem confusing, it is important to know 

that the host will often be able to serve as a device. This is valuable for two 

key reasons: (1) the host is most often a CPU that will run a kernel if no 

accelerator is present—a key promise of SYCL for application portability 

is that a kernel can always be run on any system even those without 

accelerators—and (2) CPUs often have vector, matrix, tensor, and/or 

AI processing capabilities that are accelerators that kernels map well to 

run upon.

Host code invokes code on devices. The capabilities of the host are 
very often available as a device also, to provide both a back- up 
device and to offer any acceleration capabilities the host has for 
processing kernels as well. our host is most often a Cpu, and as such 
it may be available as a CPU device. There is no guarantee by SYCL of 
a CPU device, only that there is at least one device available to be the 
default device for our application.

While heterogeneous describes the system from a technical 

standpoint, the reason to complicate our hardware and software is to 

obtain higher performance. Therefore, the term accelerated computing is 

popular for marketing heterogeneous systems or their components. We 

like to emphasize that there is no guarantee of acceleration. Programming 

of heterogeneous systems will only accelerate our applications when we do 

it right. This book helps teach us how to do it right!

GPUs have evolved to become high-performance computing (HPC) 

devices and therefore are sometimes referred to as general-purpose GPUs, 

or GPGPUs. For heterogeneous programming purposes, we can simply 

assume we are programming such powerful GPGPUs and refer to them 

as GPUs.
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Today, the collection of devices in a heterogeneous system can include 

CPUs, GPUs, FPGAs (field-programmable gate arrays), DSPs (digital signal 

processors), ASICs (application-specific integrated circuits), and AI chips 

(graph, neuromorphic, etc.).

The design of such devices will involve duplication of compute 

processors (multiprocessors) and increased connections (increased 

bandwidth) to data sources such as memory. The first of these, 

multiprocessing, is particularly useful for raising throughput. In our 

analogy, this was done by adding additional drivers and trucks. The latter 

of these, higher bandwidth for data, is particularly useful for reducing 

latency. In our analogy, this was done with more loading docks to enable 

trucks to be fully loaded in parallel.

Having multiple types of devices, each with different architectures and 

therefore different characteristics, leads to different programming and 

optimization needs for each device. That becomes the motivation for C++ 

with SYCL and the majority of what this book has to teach.

SYCL was created to address the challenges of C++ data- parallel 
programming for heterogeneous (accelerated) systems.

 Data-Parallel Programming
The phrase “data-parallel programming” has been lingering unexplained 

ever since the title of this book. Data-parallel programming focuses on 

parallelism that can be envisioned as a bunch of data to operate on in 

parallel. This shift in focus is like Gustafson vs. Amdahl. We need one 

hundred packages to deliver (effectively lots of data) in order to divide 

up the work among one hundred trucks with drivers. The key concept 

comes down to what we should divide. Should we process whole images 
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or process them in smaller tiles or process them pixel by pixel? Should 

we analyze a collection of objects as a single collection or a set of smaller 

groupings of objects or object by object?

Choosing the right division of work and mapping that work onto 

computational resources effectively is the responsibility of any parallel 

programmer using C++ with SYCL. Chapter 4 starts this discussion, and it 

continues through the rest of the book.

 Key Attributes of C++ with SYCL
Every program using SYCL is first and foremost a C++ program. SYCL does 

not rely on any language changes to C++. 

C++ compilers with SYCL support will optimize code based on built- 

in knowledge of the SYCL specification as well as implement support so 

heterogeneous compilations “just work” within traditional C++ build 

systems.

Next, we will explain the key attributes of C++ with SYCL: single-source 

style, host, devices, kernel code, and asynchronous task graphs.

 Single-Source
Programs are single-source, meaning that the same translation unit2 

contains both the code that defines the compute kernels to be executed 

on devices and also the host code that orchestrates execution of those 

compute kernels. Chapter 2 begins with a more detailed look at this 

capability. We can still divide our program source into different files and 

translation units for host and device code if we want to, but the key is that 

we don’t have to!

2 We could just say “file,” but that is not entirely correct here. A translation unit 
is the actual input to the compiler, made from the source file after it has been 
processed by the C preprocessor to inline header files and expand macros.
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 Host
Every program starts by running on a host, and most of the lines of code 

in a program are usually for the host. Thus far, hosts have always been 

CPUs. The standard does not require this, so we carefully describe it as 

a host. This seems unlikely to be anything other than a CPU because the 

host needs to fully support C++17 in order to support all C++ with SYCL 

programs. As we will see shortly, devices (accelerators) do not need to 

support all of C++17.

 Devices
Using multiple devices in a program is what makes it heterogeneous 

programming. That is why the word device has been recurring in this 

chapter since the explanation of heterogeneous systems a few pages ago. 

We already learned that the collection of devices in a heterogeneous 

system can include GPUs, FPGAs, DSPs, ASICs, CPUs, and AI chips, but is 

not limited to any fixed list.

Devices are the targets to gain acceleration. The idea of offloading 

computations is to transfer work to a device that can accelerate completion 

of the work. We have to worry about making up for time lost moving 

data—a topic that needs to constantly be on our minds.

 Sharing Devices

On a system with a device, such as a GPU, we can envision two or more 

programs running and wanting to use a single device. They do not need to 

be programs using SYCL. Programs can experience delays in processing by 

the device if another program is currently using it. This is really the same 

philosophy used in C++ programs in general for CPUs. Any system can be 

overloaded if we run too many active programs on our CPU (mail, browser, 

virus scanning, video editing, photo editing, etc.) all at once.
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On supercomputers, when nodes (CPUs + all attached devices) are 

granted exclusively to a single application, sharing is not usually a concern. 

On non-supercomputer systems, we can just note that the performance 

of a program may be impacted if there are multiple applications using the 

same devices at the same time.

Everything still works, and there is no programming we need to do 

differently.

 Kernel Code
Code for a device is specified as kernels. This is a concept that is not 

unique to C++ with SYCL: it is a core concept in other offload acceleration 

languages including OpenCL and CUDA. While it is distinct from loop- 

oriented approaches (such as commonly used with OpenMP target 

offloads), it may resemble the body of code within the innermost loop 

without requiring the programmer to write the loop nest explicitly.

Kernel code has certain restrictions to allow broader device support 

and massive parallelism. The list of features not supported in kernel code 

includes dynamic polymorphism, dynamic memory allocations (therefore 

no object management using new or delete operators), static variables, 

function pointers, runtime type information (RTTI), and exception 

handling. No virtual member functions, and no variadic functions, are 

allowed to be called from kernel code. Recursion is not allowed within 

kernel code.

ChapTer 1  InTroduCTIon



17

VIRTUAL FUNCTIONS?

While we will not discuss it further in this book, the dpC++ compiler project does 

have an experimental extension (visible in the open source project, of course) to 

implement some support for virtual functions within kernels. Thanks to the nature 

of offloading to accelerator efficiently, virtual functions cannot be supported well 

without some restrictions, but many users have expressed interest in seeing 

SYCL offer such support even with some restrictions. The beauty of open source, 

and the open SYCL specification, is the opportunity to participate in experiments 

that can inform the future of C++ and SYCL specifications. Visit the dpC++ 

project (github.com/intel/llvm) for more information.

Chapter 3 describes how memory allocations are done before and 

after kernels are invoked, thereby making sure that kernels stay focused 

on massively parallel computations. Chapter 5 describes handling of 

exceptions that arise in connection with devices.

The rest of C++ is fair game in a kernel, including functors, lambda 

expressions, operator overloading, templates, classes, and static 

polymorphism. We can also share data with the host (see Chapter 3) and 

share the read-only values of (non-global) host variables (via lambda 

expression captures).

 Kernel: Vector Addition (DAXPY)

Kernels should feel familiar to any programmer who has worked on 

computationally complex code. Consider implementing DAXPY, which 

stands for “double-precision A times X Plus Y.” A classic for decades. 

Figure 1-2 shows DAXPY implemented in modern Fortran, C/C++, and 

SYCL. Amazingly, the computation lines (line 3) are virtually identical. 

Chapters 4 and 10 explain kernels in detail. Figure 1-2 should help remove 

any concerns that kernels are difficult to understand—they should feel 

familiar even if the terminology is new to us.
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1. ! Fortran loop
2. do i = 1, n
3. z(i) = alpha * x(i) + y(i)
4. end do

1. // C/C++ loop
2. for (int i=0;i<n;i++) {
3. z[i] = alpha * x[i] + y[i];
4. }

1. // SYCL kernel
2. q.parallel_for(range{n},[=](id<1> i) {
3. z[i] = alpha * x[i] + y[i];
4. }).wait();

Figure 1-2. DAXPY computations in Fortran, C/C++, and SYCL

 Asynchronous Execution
The asynchronous nature of programming using C++ with SYCL must not 

be missed. Asynchronous programming is critical to understand for two 

reasons: (1) proper use gives us better performance (better scaling), and 

(2) mistakes lead to parallel programming errors (usually race conditions) 

that make our applications unreliable.

The asynchronous nature comes about because work is transferred to 

devices via a “queue” of requested actions. The host program submits a 

requested action into a queue, and the program continues without waiting 

for any results. This no waiting is important so that we can try to keep 

computational resources (devices and the host) busy all the time. If we had 

to wait, that would tie up the host instead of allowing the host to do useful 

work. It would also create serial bottlenecks when the device finished, until 

we queued up new work. Amdahl’s Law, as discussed earlier, penalizes us 

for time spent not doing work in parallel. We need to construct our programs 

to be moving data to and from devices while the devices are busy and keep 

all the computational power of the devices and host busy any time work is 

available. Failure to do so will bring the full curse of Amdahl’s Law upon us.

ChapTer 1  InTroduCTIon



19

Chapter 3 starts the discussion on thinking of our program as an 

asynchronous task graph, and Chapter 8 greatly expands upon this 

concept.

 Race Conditions When We Make a Mistake
In our first code example (Figure 1-1), we specifically did a “wait” on 

line 19 to prevent line 21 from writing out the value from result before it 

was available. We must keep this asynchronous behavior in mind. There 

is another subtle thing done in that same code example—line 15 uses 

std::memcpy to load the input. Since std::memcpy runs on the host, line 

17 and later do not execute until line 15 has completed. After reading 

Chapter 3, we could be tempted to change this to use q.memcpy (using 

SYCL). We have done exactly that in Figure 1-3 on line 7. Since that is a 

queue submission, there is no guarantee that it will execute before line 

9. This creates a race condition, which is a type of parallel programming 

bug. A race condition exists when two parts of a program access the same 

data without coordination. Since we expect to write data using line 7 and 

then read it in line 9, we do not want a race that might have line 9 execute 

before line 7 completes! Such a race condition would make our program 

unpredictable—our program could get different results on different runs 

and on different systems. A fix for this would be to explicitly wait for 

q.memcpy to complete before proceeding by adding .wait() to the end of 

line 7. That is not the best fix. We could have used event dependences to 

solve this (Chapter 8). Creating the queue as an ordered queue would also 

add an implicit dependence between the memcpy and the parallel_for. 

As an alternative, in Chapter 7, we will see how a buffer and accessor 

programming style can be used to have SYCL manage the dependences 

and waits automatically for us.
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1. // ...we are changing one line from Figure 1-1
2. char* result = malloc_shared<char>(sz, q);
3.
4. // Introduce potential data race!  We don't define a
5. // dependence to ensure correct ordering with later
6. // operations.
7. q.memcpy(result, secret.data(), sz);
8.
9. q.parallel_for(sz, [=](auto& i) {
10. result[i] -= 1;
11. }).wait();
12.
13. // ...

Figure 1-3. Adding a race condition to illustrate a point about being 
asynchronous

RACE CONDITIONS DO NOT ALWAYS CAUSE A PROGRAM TO FAIL

an astute reader noticed that the code in Figure 1-3 did not fail on every 

system they tried. using a Gpu with partition_max_sub_devices==0 did 

not fail because it was a small Gpu not capable of running the parallel_for 

until the memcpy had completed. regardless, the code is flawed because the 

race condition exists even if it does not universally cause a failure at runtime. 

We call it a race—sometimes we win, and sometimes we lose. Such coding 

flaws can lay dormant until the right combination of compile and runtime 

environments lead to an observable failure.

Adding a wait() forces host synchronization between the memcpy and 

the kernel, which goes against the previous advice to keep the device busy 

all the time. Much of this book covers the different options and trade-offs 

that balance program simplicity with efficient use of our systems.
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OUT-OF-ORDER QUEUES VS. IN-ORDER QUEUES

We will use out-of-order queues in this book because of their potential 

performance benefits, but it is important to know that support for in-order 

queues does exist. In-order is simply an attribute we can request when 

creating a queue. Cuda programmers will know that Cuda streams are 

unconditionally in-order. SYCL queues instead are out-of-order by default but 

may optionally be in-order by passing the in_order queue property when the 

SYCL queue is created (refer to Chapter 8). Chapter 21 provides information on 

this and other considerations for programmers coming from using Cuda.

For assistance with detecting data race conditions in a program, 

including kernels, tools such as Intel Inspector (available with the oneAPI 

tools mentioned previously in “Getting a DPC++ Compiler”) can be 

helpful. The sophisticated methods used by such tools often do not work 

on all devices. Detecting race conditions may be best done by having all 

the kernels run on a CPU, which can be done as a debugging technique 

during development work. This debugging tip is discussed as Method#2 in 

Chapter 2.

TO TEACH THE CONCEPT OF DEADLOCK, THE DINING PHILOSOPHERS 
PROBLEM IS A CLASSIC ILLUSTRATION OF A SYNCHRONIZATION  

PROBLEM IN COMPUTER SCIENCE

Imagine a group of philosophers sitting around a circular table, with a single 

chopstick placed between each philosopher. every philosopher needs two 

chopsticks to eat their meal, and they always pick up chopsticks one at a time. 

regrettably, if all philosophers first grab the chopstick to their left and then 

hold it waiting for the chopstick from their right, we have a problem if they 

all get hungry at the same time. Specifically, they will end up all waiting for a 

chopstick that will never be available.
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poor algorithm design (grab left, then wait until grab right) in this case can 

result in deadlock and all the philosophers starving to death. That is sad. 

discussing the numerous ways to design an algorithm that starves fewer 

philosophers to death, or hopefully is fair and feeds them all (none starve), is a 

topic that is fun to consider and has been written about many times.

realizing how easy it is to make such programming errors, looking for them 

when debugging, and gaining a feel for how to avoid them are all essential 

experiences on the journey to become an effective parallel programmer.

 Deadlock
Deadlocks are bad, and we will emphasize that understanding 

concurrency vs. parallelism (see last section of this chapter) is essential to 

understanding how to avoid deadlock.

Deadlock occurs when two or more actions (processes, threads, 

kernels, etc.) are blocked, each waiting for the other to release a resource 

or complete a task, resulting in a standstill. In other words, our application 

will never complete. Every time we use a wait, synchronization, or lock, we 

can create deadlocks. Lack of synchronization can lead to deadlock, but 

more often it manifests as a race condition (see prior section).

Deadlocks can be difficult to debug. We will revisit this in the 

“Concurrency vs. Parallelism” section at the end of this chapter.

Chapter 4 will tell us “lambda expressions not considered harmful.” 
We should be comfortable with lambda expressions in order to use 
dpC++, SYCL, and modern C++ well.
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 C++ Lambda Expressions
A feature of modern C++ that is heavily used by parallel programming 

techniques is the lambda expression. Kernels (the code to run on a device) 

can be expressed in multiple ways, the most common one being a lambda 

expression. Chapter 10 discusses all the various forms that a kernel can 

take, including lambda expressions. Here we have a refresher on C++ 

lambda expressions plus some notes regarding use to define kernels. 

Chapter 10 expands on the kernel aspects after we have learned more 

about SYCL in the intervening chapters.

The code in Figure 1-3 has a lambda expression. We can see it because 

it starts with the very definitive [=]. In C++, lambdas start with a square 

bracket, and information before the closing square bracket denotes how to 

capture variables that are used within the lambda but not explicitly passed 

to it as parameters. For kernels in SYCL, the capture must be by value 

which is denoted by the inclusion of an equals sign within the brackets.

Support for lambda expressions was introduced in C++11. They are 

used to create anonymous function objects (although we can assign them 

to named variables) that can capture variables from the enclosing scope. 

The basic syntax for a C++ lambda expression is

[ capture-list ] ( params ) -> ret { body }

where

• capture-list is a comma-separated list of captures. 

We capture a variable by value by listing the variable 

name in the capture-list. We capture a variable by 

reference by prefixing it with an ampersand, for 

example, &v. There are also shorthands that apply to 
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all in-scope automatic variables: [=] is used to capture 

all automatic variables used in the body by value and 

the current object by reference, [&] is used to capture 

all automatic variables used in the body as well as the 

current object by reference, and [] captures nothing. 

With SYCL, [=] is always used because no variable 

is allowed to be captured by reference for use in a 

kernel. Global variables are not captured in a lambda, 

per the C++ standard. Non-global static variables can 

be used in a kernel but only if they are const. The 

few restrictions noted here allow kernels to behave 

consistently across different device architectures and 

implementations.

• params is the list of function parameters, just like for 

a named function. SYCL provides for parameters to 

identify the element(s) the kernel is being invoked to 

process: this can be a unique id (one-dimensional) or a 

2D or 3D id. These are discussed in Chapter 4.

• ret is the return type. If ->ret is not specified, it is 

inferred from the return statements. The lack of a 

return statement, or a return with no value, implies a 

return type of void. SYCL kernels must always have a 

return type of void, so we should not bother with this 

syntax to specify a return type for kernels.

• body is the function body. For a SYCL kernel, the 

contents of this kernel have some restrictions (see 

earlier in this chapter in the “Kernel Code” section).
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Figure 1-4 shows a C++ lambda expression that captures one variable, 

i, by value and another, j, by reference. It also has a parameter k0 and 

another parameter l0 that is received by reference. Running the example 

will result in the output shown in Figure 1-5.

int i = 1, j = 10, k = 100, l = 1000; 
 
auto lambda = [i, &j](int k0, int& l0) -> int { 
  j = 2 * j; 
  k0 = 2 * k0; 
  l0 = 2 * l0; 
  return i + j + k0 + l0; 
}; 
 
print_values(i, j, k, l); 
std::cout << "First call returned " << lambda(k, l) 
          << "\n"; 
print_values(i, j, k, l); 
std::cout << "Second call returned " << lambda(k, l) 
          << "\n"; 
print_values(i, j, k, l); 

Figure 1-4. Lambda expression in C++ code

i == 1
j == 10
k == 100
l == 1000
First call returned 2221
i == 1
j == 20
k == 100
l == 2000
Second call returned 4241
i == 1
j == 40
k == 100
l == 4000

Figure 1-5. Output from the lambda expression demonstration code 
in Figure 1-4
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We can think of a lambda expression as an instance of a function 

object, but the compiler creates the class definition for us. For example, the 

lambda expression we used in the preceding example is analogous to an 

instance of a class as shown in Figure 1-6. Wherever we use a C++ lambda 

expression, we can substitute it with an instance of a function object like 

the one shown in Figure 1-6.

Whenever we define a function object, we need to assign it a name 

(Functor in Figure 1-6). Lambda expressions expressed inline (as in 

Figure 1-4) are anonymous because they do not need a name.

 Functional Portability 
and Performance Portability
Portability is a key objective for using C++ with SYCL; however, nothing 

can guarantee it. All a language and compiler can do is to make portability 

a little easier for us to achieve in our applications when we want to do so. 

It is true that higher-level (more abstract) programming—such as domain- 

specific languages, libraries, and frameworks—can offer more portability 

class Functor {
public:
Functor(int i, int &j) : my_i{i}, my_jRef{j} {}

int operator()(int k0, int &l0) {
my_jRef = 2 * my_jRef;
k0 = 2 * k0;
l0 = 2 * l0;
return my_i + my_jRef + k0 + l0;

}

private:
int my_i;
int &my_jRef;

};

Figure 1-6. Function object instead of a lambda expression (more on 
this in Chapter 10)
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in large part because they allow less prescriptive programming. Since we 

are focused on data-parallel programming in C++ in this book, we assume 

a desire to have more control and with that comes more responsibility to 

understand how our coding affects portability.

Portability is a complex topic and includes the concept of functional 

portability as well as performance portability. With functional portability, 

we expect our program to compile and run equivalently on a wide variety 

of platforms. With performance portability, we would like our program to 

get reasonable performance on a wide variety of platforms. While that is 

a pretty soft definition, the converse might be clearer—we do not want to 

write a program that runs superfast on one platform only to find that it is 

unreasonably slow on another. In fact, we would prefer that it got the most 

out of any platform upon which it is run. Given the wide variety of devices 

in a heterogeneous system, performance portability requires nontrivial 

effort from us as programmers.

Fortunately, SYCL defines a way to code that can improve performance 

portability. First of all, a generic kernel can run everywhere. In a limited 

number of cases, this may be enough. More commonly, several versions 

of important kernels may be written for different types of devices. 

Specifically, a kernel might have a generic GPU and a generic CPU version. 

Occasionally, we may want to specialize our kernels for a specific device 

such as a specific GPU. When that occurs, we can write multiple versions 

and specialize each for a different GPU model. Or we can parameterize 

one version to use attributes of a GPU to modify how our GPU kernel runs 

to adapt to the GPU that is present.

While we are responsible for devising an effective plan for performance 

portability ourselves as programmers, SYCL defines constructs to allow 

us to implement a plan. As mentioned before, capabilities can be layered 

by starting with a kernel for all devices and then gradually introducing 

additional, more specialized kernel versions as needed. This sounds great, 

but the overall flow for a program can have a profound impact as well 

because data movement and overall algorithm choice matter. Knowing 
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that gives insight into why no one should claim that C++ with SYCL (or 

other programming solution) solves performance portability. However, it 

is a tool in our toolkit to help us tackle these challenges.

 Concurrency vs. Parallelism
The terms concurrent and parallel are not necessarily equivalent, although 

they are sometimes misconstrued as such. Any discussion of these terms 

is further complicated by the fact that various sources rarely agree on the 

same definitions.

Consider these definitions from the Sun Microsystems Multithreaded 

Programming Guide:3

• Concurrency: A condition that exists when at least two 

threads are making progress

• Parallelism: A condition that exists when two threads 

are executing simultaneously

To fully appreciate the difference between these concepts, we need 

to seek an intuitive understanding of what matters here. The following 

observations can help us gain that understanding:

• Executing simultaneously can be faked: Even without 

hardware support for doing more than one thing at a 

time, software can fake doing multiple things at once 

by multiplexing. Multiplexing is a good example of 

concurrency without parallelism.

3 The authors are fans of this programming guide’s coverage of the 
fundamentals that never go away. It is online at docs.oracle.com/cd/
E19253-01/816-5137/816-5137.pdf.
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• Hardware resources are limited: Hardware is never 

infinitely “wide” because hardware always has a finite 

number of execution resources (e.g., processors, cores, 

execution units). When hardware can execute each of 

our threads using dedicated resources, we have both 

concurrency and parallelism.

When we as programmers say, “do X, Y and Z at the same time,” we 

often do not actually care whether hardware provides concurrency or 

parallelism. We probably do not want our program (with three tasks) to 

fail to launch on a machine that can only run two of them simultaneously. 

We would prefer that as many tasks as possible are processed in parallel, 

repeatedly stepping through batches of tasks until they are all complete.

But sometimes, we do care. And mistakes in our thinking can have 

disastrous effects (like “deadlock”). Imagine that our example from the 

last paragraph was modified such that the last thing a task (X, Y, or Z) 

does is “wait until all the tasks are done.” Our program will run just fine 

if the number of tasks never exceeds the limits of the hardware. But if 

we break our tasks into batches, a task in our first batch will wait forever. 

Unfortunately, that means our application never finishes.

This is a common mistake that is easy to make, which is why we are 

emphasizing these concepts. Even expert programmers must focus to try to 

avoid this—and we all find that we will need to debug issues when we miss 

something in our thinking. These concepts are not simple, and the C++ 

specification includes a lengthy section detailing the precise conditions 

in which threads are guaranteed to make progress. All we can do in this 

introductory section is highlight the importance of understanding these 

concepts as much as we can.

Developing an intuitive grasp of these concepts is important for 

effective programming of heterogeneous and accelerated systems. We all 

need to give ourselves time to gain such intuition—it does not happen all 

at once.
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 Summary
This chapter provided terminology needed for understanding C++ with 

SYCL and provided refreshers on key aspects of parallel programming and 

C++ that are critical to SYCL. Chapters 2, 3, and 4 expand on three keys to 

data-parallel programming while using C++ with SYCL: devices need to be 

given work to do (send code to run on them), be provided with data (send 

data to use on them), and have a method of writing code (kernels).

Open Access  This chapter is licensed under the terms of 

the Creative Commons Attribution 4.0 International License 

(https://creativecommons.org/licenses/by/4.0/), which permits use, 

sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and 

the source, provide a link to the Creative Commons license and indicate if 

changes were made.

The images or other third party material in this chapter are included 

in the chapter's Creative Commons license, unless indicated otherwise 

in a credit line to the material. If material is not included in the chapter's 

Creative Commons license and your intended use is not permitted by 

statutory regulation or exceeds the permitted use, you will need to obtain 

permission directly from the copyright holder.
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CHAPTER 2

Where Code Executes
Parallel programming is not really about driving in the fast lane. It is 

actually about driving fast in all the lanes. This chapter is all about 

enabling us to put our code everywhere that we can. We choose to enable 

all the compute resources in a heterogeneous system whenever it makes 

sense. Therefore, we need to know where those compute resources are 

hiding (find them) and put them to work (execute our code on them).

We can control where our code executes—in other words, we can 

control which devices are used for which kernels. C++ with SYCL provides 

a framework for heterogeneous programming in which code can execute 

on a mixture of a host CPU and devices. The mechanisms which determine 

where code executes are important for us to understand and use.

This chapter describes where code can execute, when it will execute, 

and the mechanisms used to control the locations of execution. Chapter 

3 will describe how to manage data so it arrives where we are executing 

our code, and then Chapter 4 returns to the code itself and discusses the 

writing of kernels.

 Single-Source
C++ with SYCL programs are single-source, meaning that the same 

translation unit (typically a source file and its headers) contains both the 

code that defines the compute kernels to be executed on SYCL devices and 

© Intel Corporation 2023 
J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-9691-2_2
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also the host code that orchestrates execution of those kernels. Figure 2-1 

shows these two code paths graphically, and Figure 2-2 provides an 

example application with the host and device code regions marked.

Combining both device and host code into a single-source file 

(or translation unit) can make it easier to understand and maintain a 

heterogeneous application. The combination also provides improved 

language type safety and can lead to more compiler optimizations of 

our code.

Figure 2-1. Single-source code contains both host code (runs on 
CPU) and device code (runs on SYCL devices)
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#include <array>
#include <iostream>
#include <sycl/sycl.hpp>
using namespace sycl;

int main() {
constexpr int size = 16;
std::array<int, size> data;

// Create queue on implementation-chosen default device
queue q;

// Create buffer using host allocated "data" array
buffer B{data};

q.submit([&](handler& h) {

accessor A{B, h};
h.parallel_for(size, [=](auto& idx) { 

A[idx] = idx;

});
});

// Obtain access to buffer on the host
// Will wait for device kernel to execute to generate data
host_accessor A{B};
for (int i = 0; i < size; i++)

std::cout << "data[" << i << "] = " << A[i] << "\n";

return 0;
}

Host 

code

Device 

code

Host 

code

Figure 2-2. Simple SYCL program

 Host Code
Applications contain C++ host code, which is executed by the CPU(s) on 

which the operating system has launched the application. Host code is the 

backbone of an application that defines and controls assignment of work 

to available devices. It is also the interface through which we define the 

data and dependences that should be managed by the SYCL runtime.
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Host code is standard C++ augmented with SYCL-specific constructs 

and classes that may be implementable as a C++ library. This makes 

it easier to reason about what is allowed in host code (anything that is 

allowed in C++) and can simplify integration with build systems.

The host code in an application orchestrates data movement and 

compute offload to devices but can also perform compute-intensive work 

itself and can use libraries like any C++ application.

 Device Code
Devices correspond to accelerators or processors that are conceptually 

independent from the CPU that is executing host code. An implementation 

may also expose the host processor as a device, as described later in 

this chapter, but the host processor and devices should be thought of as 

logically independent from each other. The host processor runs native 

C++ code, while devices run device code which includes some additional 

features and restrictions.

Queues are the mechanism through which work is submitted to a 

device for future execution. There are three important properties of device 

code to understand:

 1. It executes asynchronously from the host code. 
The host program submits device code to a device, 

and the runtime tracks and starts that work only 

when all dependences for execution are satisfied 

(more on this in Chapter 3). The host program 

execution carries on before the submitted work 

is started on a device, providing the property that 
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execution on devices is asynchronous to host 

program execution, unless we explicitly tie the 

two together. As a side effect of this asynchronous 

execution, work on a device isn’t guaranteed to start 

until the host program forces execution to begin 

through various mechanisms that we cover in later 

chapters, such as host accessors and blocking queue 

wait operations.

 2. There are restrictions on device code to make it 

possible to compile and achieve performance on 

accelerator devices. For example, dynamic memory 

allocation and runtime type information (RTTI) 

are not supported within device code, because 

they would lead to performance degradation on 

many accelerators. The small set of device code 

restrictions is covered in detail in Chapter 10.

 3. Some functions and queries defined by SYCL are 
available only within device code, because they 

only make sense there, for example, work-item 

identifier queries that allow an executing instance of 

device code to query its position in a larger data-

parallel range (described in Chapter 4).

In general, we will refer to work that is submitted to queues as actions. 

Actions include execution of device code on a device, but in Chapter 3 we 

will learn that actions also include memory movement commands. In this 

chapter, since we are concerned with the device code aspect of actions, we 

will be specific in mentioning device code much of the time.
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 Choosing Devices
To explore the mechanisms that let us control where device code will 

execute, we’ll look at five use cases:

Method#1: Running device code somewhere when 

we don’t care which device is used. This is often the 

first step in development because it is the simplest.

Method#2: Explicitly running device code on a CPU 

device, which is often used for debugging because 

most development systems have an accessible 

CPU. CPU debuggers are also typically very rich in 

features.

Method#3: Dispatching device code to a GPU or 

other accelerator.

Method#4: Dispatching device code to a 

heterogeneous set of devices, such as a GPU and 

an FPGA.

Method#5: Selecting specific devices from a more 

general class of devices, such as a specific type of 

FPGA from a collection of available FPGA types.

developers will typically debug their code as much as possible with 
Method#2 and only move to Methods #3–#5 when code has been 
tested as much as is practical with Method#2.
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 Method#1: Run on a Device of Any Type
When we don’t care where our device code will run, it is easy to let the 

runtime pick for us. This automatic selection is designed to make it easy to 

start writing and running code, when we don’t yet care about what device 

is chosen. This device selection does not take into account the code to be 

run, so should be considered an arbitrary choice which likely won’t be 

optimal.

Before talking about choice of a device, even one that the 

implementation has selected for us, we should first cover the mechanism 

through which a program interacts with a device: the queue.

 Queues
A queue is an abstraction to which actions are submitted for execution 

on a single device. A simplified definition of the queue class is given 

in Figures 2-3 and 2-4. Actions are usually the launch of data-parallel 

compute, although other commands are also available such as manual 

control of data motion for when we want more control than the 

automatic movement provided by the SYCL runtime. Work submitted 

to a queue can execute after prerequisites tracked by the runtime are 

met, such as availability of input data. These prerequisites are covered in 

Chapters 3 and 8.
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class queue {
public:
// Create a queue associated with a default
// (implementation chosen) device.
queue(const property_list & = {});

queue(const async_handler &, const property_list & = {});

// Create a queue using a DeviceSelector.
// A DeviceSelector is a callable that ranks
// devices numerically. There are a few SYCL-defined
// device selectors available such as 
// cpu_selector_v and gpu_selector_v.
template <typename DeviceSelector>
explicit queue(const DeviceSelector &deviceSelector,

const property_list &propList = {});

// Create a queue associated with an explicit device to
// which the program already holds a reference.
queue(const device &, const property_list & = {});

// Create a queue associated with a device in a specific
// SYCL context. A device selector may be used in place
// of a device.
queue(const context &, const device &,

const property_list & = {});
};

Figure 2-3. Simplified definition of some constructors of the 
queue class
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class queue {
public:
// Submit a command group to this queue.
// The command group may be a lambda expression or
// function object. Returns an event reflecting the status
// of the action performed in the command group.
template <typename T>
event submit(T);

// Wait for all previously submitted actions to finish
// executing.
void wait();

// Wait for all previously submitted actions to finish
// executing. Pass asynchronous exceptions to an
// async_handler function.
void wait_and_throw();

};

Figure 2-4. Simplified definition of some key member functions in 
the queue class

A queue is bound to a single device, and that binding occurs on 

construction of the queue. It is important to understand that work 

submitted to a queue is executed on the single device to which that queue 

is bound. Queues cannot be mapped to collections of devices because that 

would create ambiguity on which device should perform work. Similarly, 

a queue cannot spread the work submitted to it across multiple devices. 

Instead, there is an unambiguous mapping between a queue and the 

device on which work submitted to that queue will execute, as shown in 

Figure 2-5.
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Figure 2-5. A queue is bound to a single device. Work submitted to 
the queue executes on that device

Multiple queues may be created in a program, in any way that we 

desire for application architecture or programming style. For example, 

multiple queues may be created to each bind with a different device or to 

be used by different threads in a host program. Multiple different queues 

can be bound to a single device, such as a GPU, and submissions to those 

different queues will result in the combined work being performed on 

the device. An example of this is shown in Figure 2-6. Conversely, as we 

mentioned previously, a queue cannot be bound to more than one device 

because there must not be any ambiguity on where an action is being 

requested to execute. If we want a queue that will load balance work across 

multiple devices, for example, then we can create that abstraction in 

our code.
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Figure 2-6. Multiple queues can be bound to a single device

Because a queue is bound to a specific device, queue construction 

is the most common way in code to choose the device on which actions 

submitted to the queue will execute. Selection of the device when 

constructing a queue is achieved through a device selector abstraction.

 Binding a Queue to a Device When Any 
Device Will Do
Figure 2-7 is an example where the device that a queue should bind to 

is not specified. The default queue constructor that does not take any 

arguments (as in Figure 2-7) simply chooses some available device 

behind the scenes. SYCL guarantees that at least one device will always be 

available, so some device will always be selected by this default selection 

mechanism. In many cases the selected device may happen to be a CPU 

which is also executing the host program, although this is not guaranteed.
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#include <iostream>
#include <sycl/sycl.hpp>
using namespace sycl;

int main() {
// Create queue on whatever default device that the
// implementation chooses. Implicit use of
// default_selector_v
queue q;

std::cout << "Selected device: "
<< q.get_device().get_info<info::device::name>()
<< "\n";

return 0;
}

Sample Outputs (one line per run depending on system):
Selected device: NVIDIA GeForce RTX 3060
Selected device: AMD Radeon RX 5700 XT
Selected device: Intel(R) Data Center GPU Max 1100
Selected device: Intel(R) FPGA Emulation Device
Selected device: AMD Ryzen 5 3600 6-Core Processor
Selected device: Intel(R) UHD Graphics 770
Selected device: Intel(R) Xeon(R) Gold 6128 CPU @ 3.40GHz
Selected device: 11th Gen Intel(R) Core(TM) i9-11900KB @ 3.30GHz
many more possible… these are only examples

Figure 2-7. Implicit default device selector through default 
construction of a queue

Using the trivial queue constructor is a simple way to begin application 

development and to get device code up and running. More control over 

selection of the device bound to a queue can be added as it becomes 

relevant for our application.

 Method#2: Using a CPU Device for 
Development, Debugging, and Deployment
A CPU device can be thought of as enabling the host CPU to act as if it was 

an independent device, allowing our device code to execute regardless 

of the accelerators available in a system. We always have some processor 

running the host program, so a CPU device is therefore usually available to 
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our application (very occasionally a CPU might not be exposed as a SYCL 

device by an implementation, for a variety of reasons). Using a CPU device 

for code development has a few advantages:

 1. Development of device code on less capable 

systems that don’t have any accelerators: One 

common use is development and testing of device 

code on a local system, before deploying to an HPC 

cluster for performance testing and optimization.

 2. Debugging of device code with non-accelerator 

tooling: Accelerators are often exposed through 

lower-level APIs that may not have debug tooling as 

advanced as is available for host CPUs. With this in 

mind, a CPU device often supports debugging using 

standard tools familiar to developers.

 3. Backup if no other devices are available, to 

guarantee that device code can be executed 

functionally: A CPU device may not have 

performance as a primary goal, or may not 

match the architecture for which kernel code 

was optimized, but can often be considered as a 

functional backup to ensure that device code can 

always execute in any application.

It should not be a surprise to find that multiple CPU devices are 

available to a SYCL application, with some aimed at ease of debugging 

while others may be focused on execution performance. Device aspects 

can be used to differentiate between these different CPU devices, as 

described later in this chapter.

When considering use of a CPU device for development and debugging 

of device code, some consideration should be given to differences between 

the CPU and a target accelerator architecture (e.g., GPU). Especially 
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when optimizing code performance, and particularly when using more 

advanced features such as sub-groups, there can be some differences in 

functionality and performance across architectures. For example, the sub- 

group size may change when moving to a new device. Most development 

and debugging can typically occur on a CPU device, sometimes followed 

by final tuning and debugging on the target device architecture.

A CPU device is functionally like a hardware accelerator in that a 

queue can bind to it and it can execute device code. Figure 2-8 shows how 

the CPU device is a peer to other accelerators that might be available in a 

system. It can execute device code, in the same way that a GPU or FPGA is 

able to, and can have one or more queues constructed that bind to it.

Figure 2-8. A CPU device can execute device code like any 
accelerator

An application can choose to create a queue that is bound to a CPU 

device by explicitly passing cpu_selector_v to a queue constructor, as 

shown in Figure 2-9.
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#include <iostream>
#include <sycl/sycl.hpp>
using namespace sycl;

int main() {
// Create queue to use the CPU device explicitly
queue q{cpu_selector_v};

std::cout << "Selected device: "
<< q.get_device().get_info<info::device::name>()
<< "\n";

std::cout
<< " -> Device vendor: "
<< q.get_device().get_info<info::device::vendor>()
<< "\n";

return 0;
}

Example Output:
Selected device: Intel(R) Xeon(R) Gold 6128 CPU @ 3.40GHz
-> Device vendor: Intel(R) Corporation

Figure 2-9. Selecting the host device using the cpu_selector_v

Even when not specifically requested (e.g., using cpu_selector_v), the 

CPU device might happen to be chosen by the default selector as occurred 

in the output in Figure 2-7.

A few variants of device selectors are defined to make it easy for us 

to target a type of device. The cpu_selector_v is one example of these 

selectors, and we’ll get into others in the coming sections.

 Method#3: Using a GPU (or 
Other Accelerators)
GPUs are showcased in the next example, but any type of accelerator 

applies equally. To make it easy to target common classes of accelerators, 

devices are grouped into several broad categories, and SYCL provides 

built-in selector classes for them. To choose from a broad category of 

device type such as “any GPU available in the system,” the corresponding 

code is very brief, as described in this section.
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 Accelerator Devices
In the terminology of the SYCL specification, there are a few broad groups 

of accelerator types:

 1. CPU devices.

 2. GPU devices.

 3. Accelerators, which capture devices that don’t 

identify as either a CPU device or a GPU. This 

includes FPGA and DSP devices.

A device from any of these categories is easy to bind to a queue using 

built-in selectors, which can be passed to queue (and some other class) 

constructors.

 Device Selectors
Classes that must be bound to a specific device, such as the queue class, 

have constructors that can accept a DeviceSelector. A DeviceSelector 

is a callable taking a const reference to a device, and which ranks 

it numerically so that the runtime can choose a device with the 

highest ranking. For example, one queue constructor which accepts a 

DeviceSelector is queue(const DeviceSelector &deviceSelector, 

const property_list &propList = {});

There are four built-in selectors for the broad classes of common devices.

default_selector_v any device of the implementation’s choosing

cpu_selector_v select a device that identifies itself as a Cpu in 

device queries

gpu_selector_v select a device that identifies itself as a Gpu in 

device queries

accelerator_selector_v select a device that identifies itself as an 

“accelerator,” which includes FpGas
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One additional selector included in DPC++ (not available in 

SYCL) is available by including the header "sycl/ext/intel/fpga_

extensions.hpp".

ext::intel::fpga_selector_v select a device that identifies itself as an FpGa

A queue can be constructed using one of the built-in selectors, such as

queue myQueue{ gpu_selector_v{} };

Figure 2-10 shows a complete example using the GPU selector, and 

Figure 2-11 shows the corresponding binding of a queue with an available 

GPU device.

Figure 2-12 shows an example using a variety of built-in selectors and 

demonstrates use of device selectors with another class (device) that 

accepts a device selector on construction.

#include <iostream>
#include <sycl/sycl.hpp>
using namespace sycl;

int main() {
// Create queue bound to an available GPU device
queue q{gpu_selector_v};

std::cout << "Selected device: "
<< q.get_device().get_info<info::device::name>()
<< "\n";

std::cout
<< " -> Device vendor: "
<< q.get_device().get_info<info::device::vendor>()
<< "\n";

return 0;
}

Example Output:
Selected device: AMD Radeon RX 5700 XT
-> Device vendor: AMD Corporation

Figure 2-10. GPU device selector example
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Figure 2-11. Queue bound to a GPU device available to the 
application
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#include <iostream>
#include <string>
#include <sycl/ext/intel/fpga_extensions.hpp> // For fpga_selector_v
#include <sycl/sycl.hpp>
using namespace sycl;

void output_dev_info(const device& dev,
const std::string& selector_name) {

std::cout << selector_name << ": Selected device: "
<< dev.get_info<info::device::name>() << "\n";

std::cout << " -> Device vendor: "
<< dev.get_info<info::device::vendor>() << "\n";

}

int main() {
output_dev_info(device{default_selector_v},

"default_selector_v");
output_dev_info(device{cpu_selector_v}, "cpu_selector_v");
output_dev_info(device{gpu_selector_v}, "gpu_selector_v");
output_dev_info(device{accelerator_selector_v},

"accelerator_selector_v");
output_dev_info(device{ext::intel::fpga_selector_v},

"fpga_selector_v");

return 0;
}

Example Output:
default_selector_v: Selected device: Intel(R) UHD Graphics [0x9a60]

-> Device vendor: Intel(R) Corporation
cpu_selector_v: Selected device: 11th Gen Intel(R) Core(TM) i9-11900KB @ 3.30GHz

-> Device vendor: Intel(R) Corporation
gpu_selector_v: Selected device: Intel(R) UHD Graphics [0x9a60]

-> Device vendor: Intel(R) Corporation
accelerator_selector_v: Selected device: Intel(R) FPGA Emulation Device

-> Device vendor: Intel(R) Corporation
fpga_selector_v: Selected device: pac_a10 : Intel PAC Platform (pac_ee00000)

-> Device vendor: Intel Corp

Figure 2-12. Example device identification output from various 
classes of device selectors and demonstration that device selectors 
can be used for construction of more than just a queue (in this case, 
construction of a device class instance)

 When Device Selection Fails

If a GPU selector is used when creating an object such as a queue and if 

there are no GPU devices available to the runtime, then the selector throws 

a runtime_error exception. This is true for all device selector classes in 

that if no device of the required class is available, then a runtime_error 
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exception is thrown. It is reasonable for complex applications to catch that 

error and instead acquire a less desirable (for the application/algorithm) 

device class as an alternative. Exceptions and error handling are discussed 

in more detail in Chapter 5.

 Method#4: Using Multiple Devices
As shown in Figures 2-5 and 2-6, we can construct multiple queues in an 

application. We can bind these queues to a single device (the sum of work 

to the queues is funneled into the single device), to multiple devices, or to 

some combination of these. Figure 2-13 provides an example that creates 

one queue bound to a GPU and another queue bound to an FPGA. The 

corresponding mapping is shown graphically in Figure 2-14.

#include <iostream>
#include <sycl/ext/intel/fpga_extensions.hpp> // For fpga_selector_v
#include <sycl/sycl.hpp>
using namespace sycl;

int main() {
queue my_gpu_queue(gpu_selector_v);
queue my_fpga_queue(ext::intel::fpga_selector_v);

std::cout << "Selected device 1: "
<< my_gpu_queue.get_device()

.get_info<info::device::name>()
<< "\n";

std::cout << "Selected device 2: "
<< my_fpga_queue.get_device()

.get_info<info::device::name>()
<< "\n";

return 0;
}

Example Output:
Selected device 1: Intel(R) UHD Graphics [0x9a60]
Selected device 2: pac_a10 : Intel PAC Platform (pac_ee00000)

Figure 2-13. Creating queues to both GPU and FPGA devices
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Figure 2-14. GPU + FPGA device selector example: One queue is 
bound to a GPU and another to an FPGA

 Method#5: Custom (Very Specific) 
Device Selection
We will now look at how to write a custom selector. In addition to examples 

in this chapter, there are a few more examples shown in Chapter 12. The 

built-in device selectors are intended to let us get code up and running 

quickly. Real applications usually require specialized selection of a device, 

such as picking a desired GPU from a set of GPU types available in a 

system. The device selection mechanism is easily extended to arbitrarily 

complex logic, so we can write whatever code is required to choose the 

device that we prefer.

 Selection Based on Device Aspects
SYCL defines properties of devices known as aspects. For example, some 

aspects that a device might exhibit (return true on aspect queries) are gpu, 

host_debuggable, fp64, and online_compiler. Please refer to the “Device 
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Aspects” section of the SYCL specification for a full list of standard aspects, 

and their definitions.

To select a device using aspects defined in SYCL, the aspect_selector 

can be used as shown in Figure 2-15. In the form of aspect_selector 

taking a comma-delimited group of aspects, all aspects must be exhibited 

by a device for the device to be selected. An alternate form of aspect_

selector takes two std::vectors. The first vector contains aspects that 

must be present in a device, and the second vector contains aspects that 

must not be present in a device (lists negative aspects). Figure 2-15 shows 

an example of using both of these forms of aspect_selector.

#include <iostream>
#include <sycl/sycl.hpp>
using namespace sycl;

int main() {
// In the aspect_selector form taking a comma seperated
// group of aspects, all aspects must be present for a
// device to be selected.
queue q1{aspect_selector(aspect::fp16, aspect::gpu)};

// In the aspect_selector form that takes two vectors, the
// first vector contains aspects that a device must
// exhibit, and the second contains aspects that must NOT
// be exhibited.
queue q2{aspect_selector(

std::vector{aspect::fp64, aspect::fp16},
std::vector{aspect::gpu, aspect::accelerator})};

std::cout
<< "First selected device is: "
<< q1.get_device().get_info<info::device::name>()
<< "\n";

std::cout
<< "Second selected device is: "
<< q2.get_device().get_info<info::device::name>()
<< "\n";

return 0;
}

Example Output:
First selected device is: Intel(R) UHD Graphics [0x9a60]
Second selected device is: 11th Gen Intel(R) Core(TM) i9-11900KB @ 3.30GHz

Figure 2-15. Aspect selector
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Some aspects may be used to infer performance characteristics of a 

device. For example, any device with the emulated aspect may not perform 

as well as a device of the same type, which is not emulated, but may 

instead exhibit other aspects related to improved debuggability.

 Selection Through a Custom Selector
When existing aspects aren’t sufficient for selection of a specific device, 

a custom device selector may be defined. Such a selector is simply a 

C++ callable (e.g., a function or lambda) that takes a const Device& as a 

parameter and that returns an integer score for the specific device. The 

SYCL runtime invokes the selector on all available root devices that can be 

found and chooses the device for which the selector returned the highest 

score (which must be nonnegative for selection to occur).

In cases where there is a tie for the highest score, the SYCL runtime will 

choose one of the tied devices. No device for which the selector returned 

a negative number will be chosen by the runtime, so returning a negative 

number from a selector guarantees that the device will not be selected.

 Mechanisms to Score a Device

We have many options to create an integer score corresponding to a 

specific device, such as the following:

 1. Return a positive value for a specific device class.

 2. String match on a device name and/or device 

vendor strings.

 3. Compute anything that we can imagine leading 

to an integer value, based on device or platform 

queries.

For example, one possible approach to select a specific Intel Arria 

FPGA accelerator board is shown in Figure 2-16.
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int my_selector(const device &dev) {
if (dev.get_info<info::device::name>().find("pac_a10") !=

std::string::npos &&
dev.get_info<info::device::vendor>().find("Intel") !=

std::string::npos) {
return 1;

}
return -1;

}

Example Output:
Selected device is: pac_a10 : Intel PAC Platform (pac_ee00000)

Figure 2-16. Custom selector for a specific Intel Arria FPGA 
accelerator board

Chapter 12 has more discussion and examples for device selection and 

discusses the get_info method in more depth.

 Creating Work on a Device
Applications usually contain a combination of both host code and device 

code. There are a few class members that allow us to submit device code 

for execution, and because these work dispatch constructs are the only 

way to submit device code, they allow us to easily distinguish device code 

from host code.

The remainder of this chapter introduces some of the work dispatch 

constructs, with the goal to help us understand and identify the division 

between device code and host code that executes natively on the host 

processor.

 Introducing the Task Graph
A fundamental concept in the SYCL execution model is a graph of nodes. 

Each node (unit of work) in this graph contains an action to be performed 
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on a device, with the most common action being a data-parallel device 

kernel invocation. Figure 2-17 shows an example graph with four nodes, 

where each node can be thought of as a device kernel invocation.

Figure 2-17. The task graph defines actions to perform 
(asynchronously from the host program) on one or more devices and 
also dependences that determine when an action is safe to execute

The nodes in Figure 2-17 have dependence edges defining when it is 

legal for a node’s work to begin execution. The dependence edges are most 

commonly generated automatically from data dependences, although 

there are ways for us to manually add additional custom dependences 

when we want to. Node B in the graph, for example, has a dependence 

edge from node A. This edge means that node A must complete execution, 

and most likely (depending on specifics of the dependence) make 

generated data available on the device where node B will execute before 

node B’s action is started. The runtime controls resolution of dependences 

and triggering of node executions completely asynchronously from the 
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host program’s execution. The graph of nodes defining an application will 

be referred to in this book as the task graph and is covered in more detail 

in Chapter 3.

 Where Is the Device Code?
There are multiple mechanisms that can be used to define code that will 

be executed on a device, but a simple example shows how to identify such 

code. Even if the pattern in the example appears complex at first glance, 

the pattern remains the same across all device code definitions so quickly 

becomes second nature.

The code passed as the final argument to the parallel_for, defined 

as a lambda expression in Figure 2-18, is the device code to be executed 

on a device. The parallel_for in this case is the construct that lets us 

distinguish device code from host code. The parallel_for is one of a 

small set of device dispatch mechanisms, all members of the handler 

class, that define the code to be executed on a device. A simplified 

definition of the handler class is given in Figure 2-19.

q.submit([&](handler& h) {
accessor acc{B, h};

h.parallel_for(size,
[=](auto& idx) { acc[idx] = idx; });

});

Device 

code

Command 

group

Figure 2-18. Submission of device code
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class handler {
public:
// Specify event(s) that must be complete before the action
// defined in this command group executes.
void depends_on(std::vector<event> & events);

// Guarantee that the memory object accessed by the accessor
// is updated on the host after this action executes.
template <typename AccessorT>
void update_host(AccessorT acc);

// Submit a memset operation writing
// to the specified pointer.
// Return an event representing this operation.
event memset(void *ptr, int value, size_t count);

// Submit a memcpy operation copying from src to dest.
// Return an event representing this operation.
event memcpy(void *dest, const void *src, size_t count);

// Copy to/from an accessor and host memory.
// Accessors are required to have appropriate correct
// permissions. Pointer can be a raw pointer or
// shared_ptr.
template <typename SrcAccessorT, typename DestPointerT>
void copy(SrcAccessorT src, DestPointerT dest);

template <typename SrcPointerT, typename DestAccessorT>
void copy(SrcPointerT src, DestAccessorT dest);

// Copy between accessors.
// Accessors are required to have appropriate correct
// permissions.
template <typename SrcAccessorT, typename DestAccessorT>
void copy(SrcAccessorT src, DestAccessorT dest);

// Submit different forms of kernel for execution.
template <typename KernelName, typename KernelType>
void single_task(KernelType kernel);

template <typename KernelName, typename KernelType,
int Dims>

void parallel_for(range<Dims> num_work_items,
KernelType kernel);

template <typename KernelName, typename KernelType,int Dims>
void parallel_for(nd_range<Dims> execution_range,

KernelType kernel);

template <typename KernelName, typename KernelType, int Dims>
void parallel_for_work_group(range<Dims> num_groups,

KernelType kernel);

template <typename KernelName, typename KernelType, int Dims>
void parallel_for_work_group(range<Dims> num_groups,

range<Dims> group_size,
KernelType kernel);

};

Figure 2-19. Simplified definition of member functions in the 
handler class
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In addition to calling members of the handler class to submit device 

code, there are also members of the queue class that allow work to be 

submitted. The queue class members shown in Figure 2-20 are shortcuts 

that simplify certain patterns, and we will see these shortcuts used in 

future chapters.
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class queue {
public:
// Submit a memset operation writing to the specified
// pointer. Return an event representing this operation.
event memset(void* ptr, int value, size_t count);

// Submit a memcpy operation copying from src to dest.
// Return an event representing this operation.
event memcpy(void* dest, const void* src, size_t count);

// Submit different forms of kernel for execution.
// Return an event representing the kernel operation.
template <typename KernelName, typename KernelType>
event single_task(KernelType kernel);

template <typename KernelName, typename KernelType,
int Dims>

event parallel_for(range<Dims> num_work_items,
KernelType kernel);

template <typename KernelName, typename KernelType,
int Dims>

event parallel_for(nd_range<Dims> execution_range,
KernelType kernel);

// Submit different forms of kernel for execution.
// Wait for the specified event(s) to complete
// before executing the kernel.
// Return an event representing the kernel operation.
template <typename KernelName, typename KernelType>
event single_task(const std::vector<event>& events,

KernelType kernel);

template <typename KernelName, typename KernelType,
int Dims>

event parallel_for(range<Dims> num_work_items,
const std::vector<event>& events,
KernelType kernel);

template <typename KernelName, typename KernelType,
int Dims>

event parallel_for(nd_range<Dims> execution_range,
const std::vector<event>& events,
KernelType kernel);

};

Figure 2-20. Simplified definition of member functions in the queue 
class that act as shorthand notation for equivalent functions in the 
handler class
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 Actions
The code in Figure 2-18 contains a parallel_for, which defines work to be 

performed on a device. The parallel_for is within a command group (CG) 

submitted to a queue, and the queue defines the device on which the work is to 

be performed. Within the command group, there are two categories of code:

 1. Host code that sets up dependences defining when 

it is safe for the runtime to start execution of the 

work defined in (2), such as creation of accessors to 

buffers (described in Chapter 3)

 2. At most one call to an action that either queues 

device code for execution or performs a manual 

memory operation such as copy

The handler class contains a small set of member functions that 

define the action to be performed when a task graph node is executed. 

Figure 2-21 summarizes these actions.

Work Type Actions
(handler class methods)

Summary

Device code 
execution

single_task Execute a single instance of a 
device function.

parallel_for
Multiple forms are available to 
launch device code with different 
combinations of work sizes.

Explicit 
memory 

operation

copy

Copy data between locations 
specified by accessor, pointer, 
and/or shared_ptr.  The copy 
occurs as part of the SYCL task 
graph (described later), including 
dependence tracking.

update_host Trigger update of host data 
backing of a buffer object.

fill Initialize data in a buffer to a 
specified value.

Figure 2-21. Actions that invoke device code or perform explicit 
memory operations
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At most one action from Figure 2-21 may be called within a command 

group (it is an error to call more than one), and only a single command 

group can be submitted to a queue per submit call. The result of this is 

that a single (or potentially no) operation from Figure 2-21 exists per task 

graph node, to be executed when the node dependences are met and the 

runtime determines that it is safe to execute.

a command group must have at most one action within it, such as a 
kernel launch or explicit memory operation.

The idea that code is executed asynchronously in the future is the 

critical difference between code that runs on the CPU as part of the host 

program and device code that will run in the future when dependences 

are satisfied. A command group usually contains code from each category, 

with the code that defines dependences running as part of the host 

program (so that the runtime knows what the dependences are) and 

device code running in the future once the dependences are satisfied.

There are three classes of code in Figure 2-22:

 1. Host code: Drives the application, including 

creating and managing data buffers and submitting 

work to queues to form new nodes in the task graph 

for asynchronous execution.

 2. Host code within a command group: This code is 

run on the processor that the host code is executing 

on and executes immediately, before the submit call 

returns. This code sets up the node dependences by 

creating accessors, for example. Any arbitrary CPU 

code can execute here, but best practice is to restrict 

it to code that configures the node dependences.
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 3. An action: Any action listed in Figure 2-21 can be 

included in a command group, and it defines the 

work to be performed asynchronously in the future 

when node requirements are met (set up by (2)).

#include <array>
#include <iostream>
#include <sycl/sycl.hpp>
using namespace sycl;

int main() {
constexpr int size = 16;
std::array<int, size> data;
buffer B{data};

queue q{}; // Select any device for this queue

std::cout << "Selected device is: "
<< q.get_device().get_info<info::device::name>()
<< "\n";

q.submit([&](handler& h) {
accessor acc{B, h};
h.parallel_for(size,

[=](auto& idx) { acc[idx] = idx; });
});

return 0;
}

Device code runs in the future 

when dependences are met.

Host code

Host code

Immediate code to set 

up task graph node.

Figure 2-22. Submission of device code

To understand when code in an application will run, note that 

anything passed to an action listed in Figure 2-21 that initiates device 

code execution, or an explicit memory operation listed in Figure 2-21, will 

execute asynchronously in the future when the SYCL task graph (described 

later) node dependences have been satisfied. All other code runs as part of 

the host program immediately, as expected in typical C++ code.

It is important to note that although device code can start running 

(asynchronously) when task graph node dependences have been met, 

device code is not guaranteed to start running at that point. The only way 

to be sure that device code will start executing is to have the host program 

wait for (block on) results from the device code execution, through 

mechanisms such as host accessors or queue wait operations, which we 
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cover in later chapters. Without such host blocking operations, the SYCL 

and lower-level runtimes make decisions on when to start execution of 

device code, possibly optimizing for objectives other than “run as soon as 

possible” such as optimizing for power or congestion.

 Host tasks
In general, the code executed by an action submitted to a queue (such 

as through parallel_for) is device code, following a few language 

restrictions that allow it to run efficiently on many architectures. There is 

one important deviation, though, which is accessed through a handler 

method named host_task. This method allows arbitrary C++ code to be 

submitted as an action in the task graph, to be executed on the host once 

any task graph dependences have been satisfied.

Host tasks are important in some programs for two reasons:

 1. Arbitrary C++ can be included, even std::cout or 

printf. This can be important for easy debugging, 

interoperability with lower-level APIs such as 

OpenCL, or for incrementally enabling the use of 

accelerators in existing code.

 2. Host tasks execute asynchronously as part of 

the task graph, instead of synchronously with 

the host program. Although a host program 

can launch additional threads or use other task 

parallelism approaches, host tasks integrate with 

the dependence tracking mechanisms of the SYCL 

runtime. This can be very convenient and may result 

in higher performance when device and host code 

need to be interspersed.
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#include <array>
#include <iostream>
#include <sycl/sycl.hpp>
using namespace sycl;
constexpr int N = 4;

int main() {
queue q ;
int* A = malloc_shared<int>(N, q);

std::cout << "Selected device: "
<< q.get_device().get_info<info::device::name>()
<< "\n";

// Initialize values in the shared allocation
auto eA = q.submit([&](handler& h) {
h.parallel_for(N, [=](auto& idx) { A[idx] = idx; });

});

// Use a host task to output values on the host as part of
// task graph. depends_on is used to define a dependence
// on previous device code having completed. Here the host
// task is defined as a lambda expression.
q.submit([&](handler& h) {
h.depends_on(eA);
h.host_task([=]() {
for (int i = 0; i < N; i++)

std::cout << "host_task @ " << i << " = " << A[i]
<< "\n";

});
});

// Wait for work to be completed in the queue before
// accessing the shared data in the host program.
q.wait();

for (int i = 0; i < N; i++)
std::cout << "main @ " << i << " = " << A[i] << "\n";

free(A, q);

return 0;
}

Example Output:
Selected device: NVIDIA GeForce RTX 3060
host_task @ 0 = 0
host_task @ 1 = 1
host_task @ 2 = 2
host_task @ 3 = 3
main @ 0 = 0
main @ 1 = 1
main @ 2 = 2
main @ 3 = 3

Figure 2-23. A simple host_task
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Figure 2-23 demonstrates a simple host task, which outputs text using 

std::cout when the task graph dependences have been met. Remember 

that the host task is executed asynchronously from the rest of the host 

program. This is a powerful part of the task graph mechanism in which the 

SYCL runtime schedules work when it is safe to do so, without interaction 

from the host program which may instead continue with other work. 

Also note that the code body of the host task does not need to follow any 

restrictions that are imposed on device code (described in Chapter 10).

The example in Figure 2-23 is based on events (described in Chapter 

3) to create a dependence between the device code submission and a later 

host task, but host tasks can also be used with accessors (also covered 

in Chapter 3) through a special accessor template parameterization of 

target::host_task (Chapter 7).

 Summary
In this chapter we provided an overview of queues, selection of the 

device with which a queue will be associated, and how to create custom 

device selectors. We also overviewed the code that executes on a device 

asynchronously when dependences are met vs. the code that executes as 

part of the C++ application host code. Chapter 3 describes how to control 

data movement.

Chapter 2  Where Code exeCutes



66

Open Access  This chapter is licensed under the terms of 

the Creative Commons Attribution 4.0 International License 

(https://creativecommons.org/licenses/by/4.0/), which permits use, 

sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and 

the source, provide a link to the Creative Commons license and indicate if 

changes were made.

The images or other third party material in this chapter are included 

in the chapter's Creative Commons license, unless indicated otherwise 

in a credit line to the material. If material is not included in the chapter's 

Creative Commons license and your intended use is not permitted by 

statutory regulation or exceeds the permitted use, you will need to obtain 

permission directly from the copyright holder.
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CHAPTER 3

Data Management
Supercomputer architects often lament the need to “feed the beast.” The 

phrase “feed the beast” refers to the “beast” of a computer we create when 

we use lots of parallelism and feeding data to it becomes a key challenge 

to solve.

Feeding a SYCL program on a heterogeneous machine requires 

some care to ensure data is where it needs to be when it needs to be 

there. In a large program, that can be a lot of work. In a preexisting C++ 

program, it can be a nightmare just to sort out how to manage all the data 

movements needed.

We will carefully explain the two ways to manage data: Unified Shared 

Memory (USM) and buffers. USM is pointer based, which is familiar to C++ 

programmers. Buffers offer a higher-level abstraction. Choice is good.

We need to control the movement of data, and this chapter covers 

options to do exactly that.

In Chapter 2, we studied how to control where code executes. Our 

code needs data as input and produces data as output. Since our code 

may run on multiple devices and those devices do not necessarily share 

memory, we need to manage data movement. Even when data is shared, 

such as with USM, synchronization and coherency are concepts we need 

to understand and manage.

A logical question might be “Why doesn’t the compiler just do 

everything automatically for us?” While a great deal can be handled for 

us automatically, performance is usually suboptimal if we do not assert 
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ourselves as programmers. In practice, for best performance, we will need 

to concern ourselves with code placement (Chapter 2) and data movement 

(this chapter) when writing heterogeneous programs.

This chapter provides an overview of managing data, including 

controlling the ordering of data usage. It complements the prior chapter, 

which showed us how to control where code runs. This chapter helps us 

efficiently make our data appear where we have asked the code to run, 

which is important not only for correct execution of our application but 

also to minimize execution time and power consumption.

 Introduction
Compute is nothing without data. The whole point of accelerating a 

computation is to produce an answer more quickly. This means that 

one of the most important aspects of data-parallel computations is how 

they access data and introducing accelerator devices into a machine 

further complicates the picture. In traditional single-socket CPU-based 

systems, we have a single memory. Accelerator devices often have their 

own attached memories that cannot be directly accessed from the host. 

Consequently, parallel programming models that support discrete devices 

must provide mechanisms to manage these multiple memories and move 

data between them.

In this chapter, we present an overview of the various mechanisms for 

data management. We introduce Unified Shared Memory and the buffer 

abstractions for data management and describe the relationship between 

kernel execution and data movement.
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 The Data Management Problem
Historically, one of the advantages of shared memory models for parallel 

programming is that they provide a single, shared view of memory. Having 

this single view of memory simplifies life. We are not required to do 

anything special to access memory from parallel tasks (aside from proper 

synchronization to avoid data races). While some types of accelerator 

devices (e.g., integrated GPUs) share memory with a host CPU, many 

discrete accelerators have their own local memories separate from that of 

the CPU as seen in Figure 3-1.

Figure 3-1. Multiple discrete memories

 Device Local vs. Device Remote
Programs running on a device generally perform better when reading 

and writing data using memory attached directly to the device rather than 

remote memories. We refer to accesses to a directly attached memory as 

local accesses. Accesses to another device’s memory are remote accesses. 

Remote accesses tend to be slower than local accesses because they must 

travel over data links with lower bandwidth and/or higher latency. This 

means that it is often advantageous to colocate both a computation and 

the data that it will use. To accomplish this, we must somehow ensure that 

data is copied or migrated between different memories in order to move it 

closer to where computation occurs.
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Figure 3-2. Data movement and kernel execution

 Managing Multiple Memories
Managing multiple memories can be accomplished, broadly, in two ways: 

explicitly through our program or implicitly by the SYCL runtime library. 

Each method has its advantages and drawbacks, and we may choose one 

or the other depending on circumstances or personal preference.

 Explicit Data Movement
One option for managing multiple memories is to explicitly copy data 

between different memories. Figure 3-2 shows a system with a discrete 

accelerator where we must first copy any data that a kernel will require 

from the host memory to accelerator memory. After the kernel computes 

results, we must copy these results back to the host before the host 

program can use that data.

The primary advantage of explicit data movement is that we have full 

control over when data is transferred between different memories. This 

is important because overlapping computation with data transfer can be 

essential to obtain the best performance on some hardware.

The drawback of explicit data movement is that specifying all data 

movements can be tedious and error prone. Transferring an incorrect 

amount of data or not ensuring that all data has been transferred before 
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a kernel begins computing can lead to incorrect results. Getting all of 

the data movement correct from the beginning can be a very time- 

consuming task.

 Implicit Data Movement
The alternative to program-controlled explicit data movements are 

implicit data movements controlled by a parallel runtime or driver. In this 

case, instead of requiring explicit copies between different memories, the 

parallel runtime is responsible for ensuring that data is transferred to the 

appropriate memory before it is used.

The advantage of implicit data movement is that it requires less effort 

to get an application to take advantage of faster memory attached directly 

to the device. All the heavy lifting is done automatically by the runtime. 

This also reduces the opportunity to introduce errors into the program 

since the runtime will automatically identify both when data transfers 

must be performed and how much data must be transferred.

The drawback of implicit data movement is that we have less or no 

control over the behavior of the runtime’s implicit mechanisms. The 

runtime will provide functional correctness but may not move data in an 

optimal fashion that ensures maximal overlap of computation with data 

transfer, and this could have a negative impact on program performance.

 Selecting the Right Strategy
Picking the best strategy for a program can depend on many different 

factors. Different strategies might be appropriate for different phases of 

program development. We could even decide that the best solution is to 

mix and match the explicit and implicit methods for different pieces of 

the program. We might choose to begin using implicit data movement 

to simplify porting an application to a new device. As we begin tuning 

the application for performance, we might start replacing implicit 
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data movement with explicit in performance-critical parts of the code. 

Future chapters will cover how data transfers can be overlapped with 

computation in order to optimize performance.

 USM, Buffers, and Images
There are three abstractions for managing memory: Unified Shared 

Memory (USM), buffers, and images. USM is a pointer-based approach 

that should be familiar to C/C++ programmers. One advantage of USM is 

easier integration with existing C++ code that operates on pointers. Buffers, 

as represented by the buffer template class, describe one-, two-, or three- 

dimensional arrays. They provide an abstract view of memory that can be 

accessed on either the host or a device. Buffers are not directly accessed by 

the program and are instead used through accessor objects. Images act as 

a special type of buffer that provides extra functionality specific to image 

processing. This functionality includes support for special image formats, 

reading of images using sampler objects, and more. Buffers and images are 

powerful abstractions that solve many problems but rewriting all interfaces 

in existing code to accept buffers or accessors can be time-consuming. 

Since the interface for buffers and images is largely the same, the rest of 

this chapter will only focus on USM and buffers.

 Unified Shared Memory
USM is one tool available to us for data management. USM is a pointer- 

based approach that should be familiar to C and C++ programmers who 

use malloc or new to allocate data. USM simplifies life when porting 

existing C/C++ code that makes heavy use of pointers. Devices that 

support USM support a unified virtual address space. Having a unified 

virtual address space means that any pointer value returned by a USM 

Chapter 3  Data ManageMent



73

allocation routine on the host will be a valid pointer value on the device. 

We do not have to manually translate a host pointer to obtain the “device 

version”—we see the same pointer value on both the host and device.

A more detailed description of USM can be found in Chapter 6.

 Accessing Memory Through Pointers
Since not all memories are created equal when a system contains both 

host memory and some number of device-attached local memories, USM 

defines three different types of allocations: device, host, and shared. All 

types of allocations are performed on the host. Figure 3-3 summarizes the 

characteristics of each allocation type.

Figure 3-3. USM allocation types

A device allocation occurs in device-attached memory. Such an 

allocation can be read from and written to on a device but is not directly 

accessible from the host. We must use explicit copy operations to move 

data between regular allocations in host memory and device allocations.

A host allocation occurs in host memory that is accessible both on the 

host and on a device. This means the same pointer value is valid both in 

host code and in device kernels. However, when such a pointer is accessed, 

the data always comes from host memory. If it is accessed on a device, the 
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data does not migrate from the host to device-local memory. Instead, data 

is typically sent over a bus, such as PCI Express (PCI-E), that connects the 

device to the host.

A shared allocation is accessible on both the host and the device. In 

this regard, it is very similar to a host allocation, but it differs in that data 

can now migrate between host memory and device-local memory. This 

means that accesses on a device, after the migration has occurred, happen 

from much faster device-local memory instead of remotely accessing 

host memory though a higher-latency connection. Typically, this is 

accomplished through mechanisms inside the runtime and lower-level 

drivers that are hidden from us.

 USM and Data Movement
USM supports both explicit and implicit data movement strategies, and 

different allocation types map to different strategies. Device allocations 

require us to explicitly move data between host and device, while host and 

shared allocations provide implicit data movement.

 Explicit Data Movement in USM

Explicit data movement with USM is accomplished with device allocations 

and a special memcpy() found in the queue and handler classes. We 

enqueue memcpy() operations (actions) to transfer data either from the 

host to the device or from the device to the host.

Figure 3-4 contains one kernel that operates on a device allocation. 

Data is copied between host_array and device_array before and after 

the kernel executes using memcpy() operations. Calls to wait() on the 

queue ensure that the copy to the device has completed before the kernel 

executes and ensure that the kernel has completed before the data is 

copied back to the host. We will learn how we can eliminate these calls 

later in this chapter.
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#include <array>
#include <sycl/sycl.hpp>
using namespace sycl;
constexpr int N = 42;

int main() {
queue q;

std::array<int, N> host_array;
int *device_array = malloc_device<int>(N, q);

for (int i = 0; i < N; i++) host_array[i] = N;

// We will learn how to simplify this example later
q.submit([&](handler &h) {

// copy host_array to device_array
h.memcpy(device_array, &host_array[0], N * sizeof(int));

});
q.wait();

q.submit([&](handler &h) {
h.parallel_for(N, [=](id<1> i) { device_array[i]++; });

});
q.wait();

q.submit([&](handler &h) {
// copy device_array back to host_array
h.memcpy(&host_array[0], device_array, N * sizeof(int));

});
q.wait();

free(device_array, q);
return 0;

}

Figure 3-4. USM explicit data movement

 Implicit Data Movement in USM

Implicit data movement with USM is accomplished with host and shared 

allocations. With these types of allocations, we do not need to explicitly 

insert copy operations to move data between host and device. Instead, 

we simply access the pointers inside a kernel, and any required data 

movement is performed automatically without programmer intervention 
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(as long as your device supports these allocations). This greatly simplifies 

porting of existing codes: at most we need to simply replace any malloc or 

new with the appropriate USM allocation functions (as well as the calls to 

free to deallocate memory), and everything should just work.

In Figure 3-5, we create two arrays, host_array and shared_array, 

that are host and shared allocations, respectively. While both host and 

shared allocations are directly accessible in host code, we only initialize 

#include <sycl/sycl.hpp>
using namespace sycl;
constexpr int N = 42;

int main() {
queue q;
int *host_array = malloc_host<int>(N, q);
int *shared_array = malloc_shared<int>(N, q);

for (int i = 0; i < N; i++) {
// Initialize host_array on host
host_array[i] = i;

}

// We will learn how to simplify this example later
q.submit([&](handler &h) {

h.parallel_for(N, [=](id<1> i) {
// access shared_array and host_array on device
shared_array[i] = host_array[i] + 1;

});
});
q.wait();

for (int i = 0; i < N; i++) {
// access shared_array on host
host_array[i] = shared_array[i];

}

free(shared_array, q);
free(host_array, q);
return 0;

}

Figure 3-5. USM implicit data movement
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host_array here. Similarly, it can be directly accessed inside the kernel, 

performing remote reads of the data. The runtime ensures that shared_

array is available on the device before the kernel accesses it and that it is 

moved back when it is later read by the host code, all without programmer 

intervention.

 Buffers
The other abstraction provided for data management is the buffer object. 

Buffers are a data abstraction that represent one or more objects of a given 

C++ type. Elements of a buffer object can be a scalar data type (such as an 

int, float, or double), a vector data type (Chapter 11), or a user-defined 

class or structure. SYCL 2020 defines a new notion, device copyable, that 

expands upon the notion of trivially copyable with additions to the set of 

permissible types. In particular, if the templated types in common C++ 

classes such as std::array, std::pair, std::tuple, or std::span are 

themselves device copyable, then those C++ class specializations built 

using those types are also device copyable. Take care that your data types 

are device copyable before using them with buffers!

While a buffer itself is a single object, the C++ type encapsulated by the 

buffer could be an array that contains multiple objects. Buffers represent 

data objects rather than specific memory addresses, so they cannot be 

directly accessed like regular C++ arrays. Indeed, a buffer object might 

map to multiple different memory locations on several different devices, 

or even on the same device, for performance reasons. Instead, we use 

accessor objects to read and write to buffers.

A more detailed description of buffers can be found in Chapter 7.
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 Creating Buffers
Buffers can be created in a variety of ways. The simplest method is to 

simply construct a new buffer with a range that specifies the size of the 

buffer. However, creating a buffer in this fashion does not initialize its data, 

meaning that we must first initialize the buffer through other means before 

attempting to read useful data from it.

Buffers can also be created from existing data on the host. This is done 

by invoking one of the several constructors that take either a pointer to 

an existing host allocation, a set of InputIterators, or a container that 

has certain properties. Data is copied during buffer construction from the 

existing host allocation into the buffer object’s host memory. A buffer may 

also be created from a backend-specific object using SYCL interoperability 

features (e.g., from an OpenCL cl_mem object). See the chapter on 

interoperability for more details on how to do this.

 Accessing Buffers
Buffers may not be directly accessed by the host and device (except 

through advanced and infrequently used mechanisms not described here). 

Instead, we must create accessors in order to read and write to buffers. 

Accessors provide the runtime with information about how we plan to use 

the data in buffers, allowing it to correctly schedule data movement.
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#include <array>
#include <sycl/sycl.hpp>
using namespace sycl;
constexpr int N = 42;

int main() {
std::array<int, N> my_data;
for (int i = 0; i < N; i++) my_data[i] = 0;

{
queue q;
buffer my_buffer(my_data);

q.submit([&](handler &h) {
// create an accessor to update
// the buffer on the device
accessor my_accessor(my_buffer, h);

h.parallel_for(N, [=](id<1> i) { my_accessor[i]++; });
});

// create host accessor
host_accessor host_accessor(my_buffer);

for (int i = 0; i < N; i++) {
// access myBuffer on host
std::cout << host_accessor[i] << " ";

}
std::cout << "\n";

}

// myData is updated when myBuffer is
// destroyed upon exiting scope
for (int i = 0; i < N; i++) {
std::cout << my_data[i] << " ";

}
std::cout << "\n";

}

Figure 3-6. Buffers and accessors

Access Mode Description
read Read-only access.

write Write-only access. 

Previous contents are not 

discarded in case of 

Figure 3-7. Buffer access modes
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 Access Modes
When creating an accessor, we can inform the runtime how we are going 

to use it to provide more information for optimizations. We do this by 

specifying an access mode. Access modes are defined in the access_mode 

enum class described in Figure 3-7. In the code example shown in 

Figure 3-6, the accessor my_accessor is created with the default access 

mode, access_mode::read_write. This lets the runtime know that we 

intend to both read and write to the buffer through my_accessor. Access 

modes are how the runtime is able to optimize implicit data movement. 

For example, access_mode::read tells the runtime that the data needs 

to be available on the device before this kernel can begin executing. If a 

kernel only reads data through an accessor, there is no need to copy data 

back to the host after the kernel has completed as we haven’t modified 

it. Likewise, access_mode::write lets the runtime know that we will 

modify the contents of a buffer and may need to copy the results back after 

computation has ended.

Creating accessors with the proper modes gives the runtime more 

information about how we use data in our program. The runtime uses 

accessors to order the uses of data, but it can also use this data to optimize 

scheduling of kernels and data movement. The access modes and 

optimization tags are described in greater detail in Chapter 7.

 Ordering the Uses of Data
Kernels can be viewed as asynchronous tasks that are submitted for 

execution. These tasks must be submitted to a queue where they are 

scheduled for execution on a device. In many cases, kernels must execute 
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in a specific order so that the correct result is computed. If obtaining 

the correct result requires task A to execute before task B, we say that a 

dependence1 exists between tasks A and B.

However, kernels are not the only form of task that must be scheduled. 

Any data that is accessed by a kernel needs to be available on the device 

before the kernel can start executing. These data dependences can create 

additional tasks in the form of data transfers from one device to another. 

Data transfer tasks may be either explicitly coded copy operations or more 

commonly implicit data movements performed by the runtime.

If we take all the tasks in a program and the dependences that exist 

between them, we can use this to visualize the information as a graph. This 

task graph is specifically a directed acyclic graph (DAG) where the nodes 

are the tasks and the edges are the dependences. The graph is directed 

because dependences are one-way: task A must happen before task B. The 

graph is acyclic because it cannot contain any cycles or paths from a node 

that lead back to itself.

In Figure 3-8, task A must execute before tasks B and C. Likewise, B 

and C must execute before task D. Since B and C do not have a dependence 

between each other, the runtime is free to execute them in any order (or 

even in parallel) as long as task A has already executed. Therefore, the 

possible legal orderings of this graph are A ⇒ B ⇒ C ⇒ D, A ⇒ C ⇒ B ⇒ D, 

and even A ⇒ {B,C} ⇒ D if B and C can concurrently execute.

1 Note that you may see “dependence” and “dependences” sometimes spelled 
“dependency” and “dependencies” in other texts. They mean the same thing, 
but we are favoring the spelling used in several important papers on data flow 
analysis. See https://dl.acm.org/doi/pdf/10.1145/75277.75280 and https://
dl.acm.org/doi/pdf/10.1145/113446.113449.
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Figure 3-8. Simple task graph

Tasks may have a dependence with a subset of all tasks. In these cases, 

we only want to specify the dependences that matter for correctness. This 

flexibility gives the runtime latitude to optimize the execution order of the 

task graph. In Figure 3-9, we extend the earlier task graph from Figure 3-8 

to add tasks E and F where E must execute before F. However, tasks E and F 

have no dependences with nodes A, B, C, and D. This allows the runtime to 

choose from many possible legal orderings to execute all the tasks.

Figure 3-9. Task graph with disjoint dependences
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There are two different ways to model the execution of tasks, such as 

a launch of a kernel, in a queue: the queue could either execute tasks in 

the order of submission, or it could execute tasks in any order subject to 

any dependences that we define. There are several mechanisms for us to 

define the dependences needed for correct ordering.

 In-order Queues
The simplest option to order tasks is to submit them to an in-order queue 

object. An in-order queue executes tasks in the order in which they were 

submitted as seen in Figure 3-10. Their intuitive task ordering means 

that in-order queues an advantage of simplicity but a disadvantage of 

serializing tasks even if no dependences exist between independent tasks. 

In-order queues are useful when bringing up applications because they 

are simple, intuitive, deterministic on execution ordering, and suitable for 

many codes.

#include <sycl/sycl.hpp>
using namespace sycl;
constexpr int N = 4;

int main() {
queue q{property::queue::in_order()};

q.submit([&](handler& h) {
h.parallel_for(N, [=](id<1> i) { /*...*/ }); // Task A

});
q.submit([&](handler& h) {
h.parallel_for(N, [=](id<1> i) { /*...*/ }); // Task B

});
q.submit([&](handler& h) {
h.parallel_for(N, [=](id<1> i) { /*...*/ }); // Task C

});

return 0;
}

Figure 3-10. In-order queue usage
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 Out-of-Order Queues
Since queue objects are out-of-order queues (unless created with the in- 

order queue property), they must provide ways to order tasks submitted to 

them. Queues order tasks by letting us inform the runtime of dependences 

between them. These dependences can be specified, either explicitly or 

implicitly, using command groups. We will consider them separately in the 

following sections.

A command group is an object that specifies a task and its 

dependences. Command groups are typically written as C++ lambda 

expressions passed as an argument to the submit() method of a queue 

object. This lambda’s only parameter is a reference to a handler object. 

The handler object is used inside the command group to specify actions, 

create accessors, and specify dependences.

 Explicit Dependences with Events

Explicit dependences between tasks look like the examples we have 

seen (Figure 3-8) where task A must execute before task B. Expressing 

dependences in this way focuses on explicit ordering based on the 

computations that occur rather than on the data accessed by the 

computations. Note that expressing dependences between computations 

is primarily relevant for codes that use USM since codes that use buffers 

express most dependences via accessors. In Figures 3-4 and 3-5, we simply 

tell the queue to wait for all previously submitted tasks to finish before we 

continue. Instead, we can express task dependences through event objects. 

When submitting a command group to a queue, the submit() method 

returns an event object. These events can then be used in two ways.

First, we can synchronize through the host by explicitly calling the 

wait() method on an event. This forces the runtime to wait for the 

task that generated the event to finish executing before host program 

execution may continue. Explicitly waiting on events can be very 
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useful for debugging an application but wait() can overly constrain 

the asynchronous execution of tasks since it halts all execution on the 

host thread. Similarly, one could also call wait() on a queue object, 

which would block execution on the host until all enqueued tasks have 

completed. This can be a useful tool if we do not want to keep track of all 

the events returned by enqueued tasks.

This brings us to the second way that events can be used. The handler 

class contains a method named depends_on(). This method accepts 

either a single event or a vector of events and informs the runtime that 

the command group being submitted requires the specified events to 

complete before the action within the command group may execute. 

Figure 3-11 shows an example of how depends_on() may be used to 

order tasks.

#include <sycl/sycl.hpp>
using namespace sycl;
constexpr int N = 4;

int main() {
queue q;

auto eA = q.submit([&](handler &h) {
h.parallel_for(N, [=](id<1> i) { /*...*/ }); // Task A

});
eA.wait();
auto eB = q.submit([&](handler &h) {
h.parallel_for(N, [=](id<1> i) { /*...*/ }); // Task B

});
auto eC = q.submit([&](handler &h) {
h.depends_on(eB);
h.parallel_for(N, [=](id<1> i) { /*...*/ }); // Task C

});
auto eD = q.submit([&](handler &h) {
h.depends_on({eB, eC});
h.parallel_for(N, [=](id<1> i) { /*...*/ }); // Task D

});

return 0;
}

Figure 3-11. Using events and depends_on

Chapter 3  Data ManageMent



86

 Implicit Dependences with Accessors

Implicit dependences between tasks are created from data dependences. 

Data dependences between tasks take three forms, shown in Figure 3-12.

Figure 3-12. Three forms of data dependences

Data dependences are expressed to the runtime in two ways: accessors 

and program order. Both must be used for the runtime to properly 

compute data dependences. This is illustrated in Figures 3-13 and 3-14.
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#include <array>
#include <sycl/sycl.hpp>
using namespace sycl;
constexpr int N = 42;

int main() {
std::array<int, N> a, b, c;
for (int i = 0; i < N; i++) {
a[i] = b[i] = c[i] = 0;

}

queue q;

// We will learn how to simplify this example later
buffer a_buf{a};
buffer b_buf{b};
buffer c_buf{c};

q.submit([&](handler &h) {
accessor a(a_buf, h, read_only);
accessor b(b_buf, h, write_only);
h.parallel_for( // computeB

N, [=](id<1> i) { b[i] = a[i] + 1; });
});

q.submit([&](handler &h) {
accessor a(a_buf, h, read_only);
h.parallel_for( // readA

N, [=](id<1> i) {
// Useful only as an example
int data = a[i];

});
});

q.submit([&](handler &h) {
// RAW of buffer B
accessor b(b_buf, h, read_only);
accessor c(c_buf, h, write_only);
h.parallel_for( // computeC

N, [=](id<1> i) { c[i] = b[i] + 2; });
});

// read C on host
host_accessor host_acc_c(c_buf, read_only);
for (int i = 0; i < N; i++) {
std::cout << host_acc_c[i] << " ";

}
std::cout << "\n";
return 0;

}

Figure 3-13. Read-after-Write
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Figure 3-14. RAW task graph

In Figures 3-13 and 3-14, we execute three kernels—computeB, readA, 

and computeC—and then read the final result back on the host. The 

command group for kernel computeB creates two accessors, a and b. These 

accessors use access tags read_only and write_only for optimization to 

specify that we do not use the default access mode, access_mode::read_

write. We will learn more about access tags in Chapter 7. Kernel computeB 

reads buffer a_buf and writes to buffer b_buf. Buffer a_buf must be copied 

from the host to the device before the kernel begins execution.

Kernel readA also creates a read-only accessor for buffer a_buf. Since 

kernel readA is submitted after kernel computeB, this creates a Read-after- 

Read (RAR) scenario. However, RARs do not place extra restrictions on the 

runtime, and the kernels are free to execute in any order. Indeed, a runtime 

might prefer to execute kernel readA before kernel computeB or even 

execute both at the same time. Both require buffer a_buf to be copied to 

the device, but kernel computeB also requires buffer b_buf to be copied in 

case any existing values are not overwritten by computeB and which might 

be used by later kernels. This means that the runtime could execute kernel 

readA while the data transfer for buffer b_buf occurs and also shows that 
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even if a kernel will only write to a buffer, the original content of the buffer 

may still be moved to the device because there is no guarantee that all 

values in the buffer will be written by a kernel (see Chapter 7 for tags that 

let us optimize in these cases).

Kernel computeC reads buffer b_buf, which we computed in kernel 

computeB. Since we submitted kernel computeC after we submitted kernel 

computeB, this means that kernel computeC has a RAW data dependence 

on buffer b_buf. RAW dependences are also called true dependences 

or flow dependences, as data needs to flow from one computation to 

another in order to compute the correct result. Finally, we also create a 

RAW dependence on buffer c_buf between kernel computeC and the host 

since the host wants to read C after the kernel has finished. This forces the 

runtime to copy buffer c_buf back to the host. Since there were no writes 

to buffer a_buf on devices, the runtime does not need to copy that buffer 

back to the host because the host has an up-to-date copy already.
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#include <array>
#include <sycl/sycl.hpp>
using namespace sycl;
constexpr int N = 42;

int main() {
std::array<int, N> a, b;
for (int i = 0; i < N; i++) {

a[i] = b[i] = 0;
}

queue q;
buffer a_buf{a};
buffer b_buf{b};

q.submit([&](handler &h) {
accessor a(a_buf, h, read_only);
accessor b(b_buf, h, write_only);
h.parallel_for( // computeB

N, [=](id<1> i) { b[i] = a[i] + 1; });
});

q.submit([&](handler &h) {
// WAR of buffer A
accessor a(a_buf, h, write_only);
h.parallel_for( // rewriteA

N, [=](id<1> i) { a[i] = 21 + 21; });
});

q.submit([&](handler &h) {
// WAW of buffer B
accessor b(b_buf, h, write_only);
h.parallel_for( // rewriteB

N, [=](id<1> i) { b[i] = 30 + 12; });
});

host_accessor host_acc_a(a_buf, read_only);
host_accessor host_acc_b(b_buf, read_only);
for (int i = 0; i < N; i++) {
std::cout << host_acc_a[i] << " " << host_acc_b[i]

<< " ";
}
std::cout << "\n";
return 0;

}

Figure 3-15. Write-after-Read and Write-after-Write
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Figure 3-16. WAR and WAW task graph

In Figures 3-15 and 3-16, we again execute three kernels: computeB, 

rewriteA, and rewriteB. Kernel computeB once again reads buffer 

a_buf and writes to buffer b_buf, kernel rewriteA writes to buffer a_buf, 

and kernel rewriteB writes to buffer b_buf. Kernel rewriteA could 

theoretically execute earlier than kernel computeB since less data needs to 

be transferred before the kernel is ready, but it must wait until after kernel 

computeB finishes since there is a WAR dependence on buffer a_buf.

 In this example, kernel computeB requires the original value of A 

from the host, and it would read the wrong values if kernel rewriteA 

executed before kernel computeB. WAR dependences are also called anti- 

dependences. RAW dependences ensure that data properly flows in the 

correct direction, while WAR dependences ensure existing values are not 

overwritten before they are read. The WAW dependence on buffer b_buf 

found in kernel rewrite functions similarly. If there were any reads of buffer 

b_buf submitted in between kernels computeB and rewriteB, they would 

result in RAW and WAR dependences that would properly order the tasks. 

However, there is an implicit dependence between kernel rewriteB and 

the host in this example since the final data must be written back to the 

host. We will learn more about what causes this writeback in Chapter 7. 

The WAW dependence, also called an output dependence, ensures that the 

final output will be correct on the host.
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 Choosing a Data Management Strategy
Selecting the right data management strategy for our applications is largely 

a matter of personal preference. Indeed, we may begin with one strategy 

and switch to another as our program matures. However, there are a few 

useful guidelines to help us to pick a strategy that will serve our needs.

The first decision to make is whether we want to use explicit or 

implicit data movement since this greatly affects what we need to do 

to our program. Implicit data movement is generally an easier place to 

start because all the data movement is handled for us, letting us focus on 

expression of the computation.

If we decide that we’d rather have full control over all data movement 

from the beginning, then explicit data movement using USM device 

allocations is where we want to start. We just need to be sure to add all the 

necessary copies between host and devices!

When selecting an implicit data movement strategy, we still have a 

choice of whether to use buffers or USM host or shared pointers. Again, 

this choice is a matter of personal preference, but there are a few questions 

that could help guide us to one over the other. If we’re porting an existing 

C/C++ program that uses pointers, USM might be an easier path since 

most code won’t need to change. If data representation hasn’t guided 

us to a preference, another question we can ask is how we would like to 

express our dependences between kernels. If we prefer to think about data 

dependences between kernels, choose buffers. If we prefer to think about 

dependences as performing one computation before another and want 

to express that using an in-order queue or with explicit events or waiting 

between kernels, choose USM.

When using USM pointers (with either explicit or implicit data 

movement), we have a choice of which type of queue we want to use. In- 

order queues are simple and intuitive, but they constrain the runtime and 

may limit performance. Out-of-order queues are more complex, but they 
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give the runtime more freedom to reorder and overlap execution. The out- 

of- order queue class is the right choice if our program will have complex 

dependences between kernels. If our program simply runs many kernels 

one after another, then an in-order queue will be a better option for us.

 Handler Class: Key Members
We have shown a number of ways to use the handler class. Figures 3-17 

and 3-18 provide a more detailed explanation of the key members of this 

very important class. We have not yet used all these members, but they will 

be used later in the book. This is as good a place as any to lay them out.

A closely related class, the queue class, is similarly explained at the end 

of Chapter 2.
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class handler {
...

// Specifies event(s) that must be complete before the
// action defined in this command group executes.
void depends_on({event / std::vector<event> & });

// Enqueues a memcpy from Src to Dest.
// Count bytes are copied.
void memcpy(void* Dest, const void* Src, size_t Count);

// Enqueues a memcpy from Src to Dest.
// Count elements are copied.
template <typename T>
void copy(const T* Src, T* Dest, size_t Count);

// Enqueues a memset operation on the specified pointer.
// Writes the first byte of Value into Count bytes.
void memset(void* Ptr, int Value, size_t Count)

// Enques a fill operation on the specified pointer.
// Fills Pattern into Ptr Count times.
template <typename T>
void fill(void* Ptr, const T& Pattern, size_t Count);

// Submits a kernel of one work-item for execution.
template <typename KernelName, typename KernelType>
void single_task(KernelType KernelFunc);

// Submits a kernel with NumWork-items work-items for
// execution.
template <typename KernelName, typename KernelType,

int Dims>
void parallel_for(range<Dims> NumWork - items,

KernelType KernelFunc);

// Submits a kernel for execution over the supplied
// nd_range.
template <typename KernelName, typename KernelType,

int Dims>
void parallel_for(nd_range<Dims> ExecutionRange,

KernelType KernelFunc);
...

};

Figure 3-17. Simplified definition of the non-accessor members of the 
handler class
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class handler {
...
// Specifies event(s) that must be complete before the
// action. Copy to/from an accessor.
// Valid combinations:
// Src: accessor, Dest: shared_ptr
// Src: accessor, Dest: pointer
// Src: shared_ptr Dest: accessor
// Src: pointer Dest: accessor
// Src: accesssor Dest: accessor
template <typename T_Src, typename T_Dst, int Dims,

access::mode AccessMode,
access::target AccessTarget,
access::placeholder IsPlaceholder =

access::placeholder::false_t>
void copy(accessor<T_Src, Dims, AccessMode,

AccessTarget, IsPlaceholder> Src,
shared_ptr_class<T_Dst> Dst);

void copy(shared_ptr_class<T_Src> Src,
accessor<T_Dst, Dims, AccessMode, AccessTarget,

IsPlaceholder>
Dst);

void copy(accessor<T_Src, Dims, AccessMode, AccessTarget,
IsPlaceholder> Src,

T_Dst *Dst);
void copy(const T_Src *Src,

accessor<T_Dst, Dims, AccessMode, AccessTarget,
IsPlaceholder> Dst);

template <typename T_Src, int Dims_Src,
access::mode AccessMode_Src,
access::target AccessTarget_Src, typename T_Dst,
int Dims_Dst, access::mode AccessMode_Dst,
access::target AccessTarget_Dst,
access::placeholder IsPlaceholder_Src =

access::placeholder::false_t,
access::placeholder IsPlaceholder_Dst =

access::placeholder::false_t>
void copy(accessor<T_Src, Dims_Src, AccessMode_Src,

AccessTarget_Src, IsPlaceholder_Src> Src,
accessor<T_Dst, Dims_Dst, AccessMode_Dst,

AccessTarget_Dst, IsPlaceholder_Dst> Dst);

// Provides a guarantee that the memory object accessed by
// the accessor is updated on the host after this action
// executes.
template <typename T, int Dims, access::mode AccessMode,

access::target AccessTarget,
access::placeholder IsPlaceholder =

access::placeholder::false_t>
void update_host(accessor<T, Dims, AccessMode,

AccessTarget, IsPlaceholder> Acc);
...

};

Figure 3-18. Simplified definition of the accessor members of the 
handler class
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 Summary
In this chapter, we have introduced the mechanisms that address the 

problems of data management and how to order the uses of data. 

Managing access to different memories is a key challenge when using 

accelerator devices, and we have different options to suit our needs.

We provided an overview of the different types of dependences that can 

exist between the uses of data, and we described how to provide information 

about these dependences to queues so that they properly order tasks.

This chapter provided an overview of Unified Shared Memory and 

buffers. We explore all the modes and behaviors of USM in greater detail 

in Chapter 6. Chapter 7 explores buffers more deeply, including all the 

different ways to create buffers and control their behavior. Chapter 8 

revisits the scheduling mechanisms for queues that control the ordering of 

kernel executions and data movements.

Open Access  This chapter is licensed under the terms of 

the Creative Commons Attribution 4.0 International License 

(https://creativecommons.org/licenses/by/4.0/), which permits use, 

sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and 

the source, provide a link to the Creative Commons license and indicate if 

changes were made.

The images or other third party material in this chapter are included 

in the chapter’s Creative Commons license, unless indicated otherwise 

in a credit line to the material. If material is not included in the chapter’s 

Creative Commons license and your intended use is not permitted by 

statutory regulation or exceeds the permitted use, you will need to obtain 

permission directly from the copyright holder.
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CHAPTER 4

Expressing 
Parallelism
We already know how to place code (Chapter 2) and data (Chapter 3) on a 

device—all we must do now is engage in the art of deciding what to do with 

it. To that end, we now shift to fill in a few things that we have conveniently 

left out or glossed over so far. This chapter marks the transition from 

simple teaching examples toward real-world parallel code and expands 

upon details of the code samples we have casually shown in prior chapters.

Writing our first program in a new parallel language may seem like a 

daunting task, especially if we are new to parallel programming. Language 

specifications are not written for application developers and often assume 

some familiarity with terminology; they do not contain answers to 

questions like these:

• Why is there more than one way to express parallelism?

• Which method of expressing parallelism should I use?

• How much do I really need to know about the 

execution model?

This chapter seeks to address these questions and more. We introduce 

the concept of a data-parallel kernel, discuss the strengths and weaknesses 

of the different kernel forms using working code examples, and highlight 

the most important aspects of the kernel execution model.

© Intel Corporation 2023 
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 Parallelism Within Kernels
Parallel kernels have emerged in recent years as a powerful means 

of expressing data parallelism. The primary design goals of a kernel- 

based approach are portability across a wide range of devices and high 

programmer productivity. As such, kernels are typically not hard-coded 

to work with a specific number or configuration of hardware resources 

(e.g., cores, hardware threads, SIMD [single instruction, multiple data] 

instructions). Instead, kernels describe parallelism in terms of abstract 

concepts that an implementation (i.e., the combination of compiler and 

runtime) can then map to the hardware parallelism available on a specific 

target device. Although this mapping is implementation-defined, we can 

(and should) trust implementations to select a mapping that is sensible 

and capable of effectively exploiting hardware parallelism.

Exposing a great deal of parallelism in a hardware-agnostic way 

ensures that applications can scale up (or down) to fit the capabilities of 

different platforms, but…

Guaranteeing functional portability is not the same as guaranteeing 
high performance!

There is a significant amount of diversity in the devices supported, 

and we must remember that different architectures are designed and 

optimized for different use cases. Whenever we hope to achieve the 

highest levels of performance on a specific device, we should always 

expect that some additional manual optimization work will be required—

regardless of the programming language we are using! Examples of such 

device-specific optimizations include blocking for a particular cache size, 

choosing a work grain size that amortizes scheduling overheads, making 

use of specialized instructions or hardware units, and, most importantly, 

choosing an appropriate algorithm. Some of these examples will be 

revisited in Chapters 15, 16, and 17.
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Striking the right balance between performance, portability, and 

productivity during application development is a challenge that we must 

all face—and a challenge that this book cannot address in its entirety. 

However, we hope to show that C++ with SYCL provides all the tools 

required to maintain both generic portable code and optimized target- 

specific code using a single high-level programming language. The rest is 

left as an exercise to the reader!

 Loops vs. Kernels
An iterative loop is an inherently serial construct: each iteration of the 

loop is executed sequentially (i.e., in order). An optimizing compiler may 

be able to determine that some or all iterations of a loop can execute in 

parallel, but it must be conservative—if the compiler is not smart enough 

or does not have enough information to prove that parallel execution 

is always safe, it must preserve the loop’s sequential semantics for 

correctness.

for (int i = 0; i < N; ++i) {
c[i] = a[i] + b[i];

}

Figure 4-1. Expressing a vector addition as a serial loop

Consider the loop in Figure 4-1, which describes a simple vector 

addition. Even in a simple case like this, proving that the loop can be 

executed in parallel is not trivial: parallel execution is only safe if c does 

not overlap a or b, which in the general case cannot be proven without 

a runtime check! In order to address situations like this, languages have 

added features enabling us to provide compilers with extra information 

that may simplify analysis (e.g., asserting that pointers do not overlap 
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with restrict) or to override all analysis altogether (e.g., declaring that 

all iterations of a loop are independent or defining exactly how the loop 

should be scheduled to parallel resources).

The exact meaning of a parallel loop is somewhat ambiguous—due to 

overloading of the term by different parallel programming languages and 

runtimes—but many common parallel loop constructs represent compiler 

transformations applied to sequential loops. Such programming models 

enable us to write sequential loops and only later provide information 

about how different iterations can be executed safely in parallel. These 

models are very powerful, integrate well with other state-of-the-art 

compiler optimizations, and greatly simplify parallel programming, but 

do not always encourage us to think about parallelism at an early stage of 

development.

A parallel kernel is not a loop and does not have iterations. Rather, a 

kernel describes a single operation, which can be instantiated many times 

and applied to different input data; when a kernel is launched in parallel, 

multiple instances of that operation may be executed simultaneously.

launch N kernel instances {
int id =

get_instance_id(); // unique identifier in [0, N)
c[id] = a[id] + b[id];

}

Figure 4-2. Loop rewritten (in pseudocode) as a parallel kernel

Figure 4-2 shows our simple loop example rewritten as a kernel using 

pseudocode. The opportunity for parallelism in this kernel is clear and 

explicit: the kernel can be executed in parallel by any number of instances, 

and each instance independently applies to a separate piece of data. By 

writing this operation as a kernel, we are asserting that it is safe to run in 

parallel (and that it ideally should be run in parallel).
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In short, kernel-based programming is not a way to retrofit parallelism 

into existing sequential codes, but a methodology for writing explicitly 

parallel applications.

the sooner that we can shift our thinking from parallel loops to 
kernels, the easier it will be to write effective parallel programs using 
C++ with sYCl.

 Multidimensional Kernels
The parallel constructs of many other languages are one-dimensional, 

mapping work directly to a corresponding one-dimensional hardware 

resource (e.g., number of hardware threads). Parallel kernels in SYCL are a 

higher-level concept than this, and their dimensionality is more reflective 

of the problems that our codes are typically trying to solve (in a one-, two-, 

or three-dimensional space).

However, we must remember that the multidimensional indexing 

provided by parallel kernels is a programmer convenience that may 

be implemented on top of an underlying one-dimensional space. 

Understanding how this mapping behaves can be an important part of 

certain optimizations (e.g., tuning memory access patterns).

One important consideration is which dimension is contiguous or unit- 

stride (i.e., which locations in the multidimensional space are next to each 

other in a one-dimensional mapping). All multidimensional quantities 

related to parallelism in SYCL use the same convention: dimensions are 

numbered from 0 to N-1, where dimension N-1 corresponds to the contiguous 

dimension. Wherever a multidimensional quantity is written as a list (e.g., in 

constructors) or a class supports multiple subscript operators, this numbering 

applies left to right (starting with dimension 0 on the left). This convention is 

consistent with the behavior of multidimensional arrays in standard C++.
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An example of mapping a two-dimensional space to a linear index 

using the SYCL convention is shown in Figure 4-3. We are of course free 

to break from this convention and adopt our own methods of linearizing 

indices, but must do so carefully—breaking from the SYCL convention may 

have a negative performance impact on devices that benefit from stride- 

one accesses.

Figure 4-3. Two-dimensional range of size (2, 8) mapped to 
linear indices

If an application requires more than three dimensions, we must take 

responsibility for mapping between multidimensional and linear indices 

manually, using modulo arithmetic or other techniques.

 Overview of Language Features
Once we have decided to write a parallel kernel, we must decide what 

type of kernel we want to launch and how to represent it in our program. 

There are a multitude of ways to express parallel kernels, and we need to 

familiarize ourselves with each of these options if we want to master the 

language.

 Separating Kernels from Host Code
We have several alternative ways to separate host and device code, which 

we can mix and match within an application: C++ lambda expressions or 

function objects, kernels defined via an interoperability interface  
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(e.g., OpenCL C source strings), or binaries. Some of these options were 

already covered in Chapter 2, and the others will be covered in detail in 

Chapters 10 and 20.

The fundamental concepts of expressing parallelism are shared by all 

these options. For consistency and brevity, all the code examples in this 

chapter express kernels using C++ lambda expressions.

LAMBDA EXPRESSIONS NOT CONSIDERED HARMFUL

there is no need to fully understand everything that the C++ specification 

says about lambda expressions in order to get started with sYCl—all we need 

to know is that the body of the lambda expression represents the kernel and 

that variables captured (by value) will be passed to the kernel as arguments.

there is no performance impact arising from the use of lambda expressions 

instead of more verbose mechanisms for defining kernels. a C++ compiler 

with sYCl support always understands when a lambda expression represents 

the body of a parallel kernel and can optimize for parallel execution 

accordingly.

For a refresher on C++ lambda expressions, with notes about their use in 

sYCl, see Chapter 1. For more specific details on using lambda expressions to 

define kernels, see Chapter 10.

 Different Forms of Parallel Kernels
There are three different kernel forms in SYCL, supporting different 

execution models and syntax. It is possible to write portable kernels using 

any of the kernel forms, and kernels written in any form can be tuned to 

achieve high performance on a wide variety of device types. However, 

Chapter 4  expressinG parallelism



104

there will be times when we may want to use a specific form to make a 

specific parallel algorithm easier to express or to make use of an otherwise 

inaccessible language feature.

The first form is used for basic data-parallel kernels and offers 

the gentlest introduction to writing kernels. With basic kernels, we 

sacrifice control over low-level features like scheduling to make the 

expression of the kernel as simple as possible. How the individual kernel 

instances are mapped to hardware resources is controlled entirely by the 

implementation, and so as basic kernels grow in complexity, it becomes 

harder and harder to reason about their performance.

The second form extends basic kernels to provide access to low-level 

performance-tuning features. This second form is known as ND-range 

(N-dimensional range) data parallel for historical reasons, and the most 

important thing to remember is that it enables certain kernel instances to 

be grouped together, allowing us to exert some control over data locality 

and the mapping between individual kernel instances and the hardware 

resources that will be used to execute them.

The third form offers an experimental alternative syntax for expressing 

ND-range kernels using syntax similar to nested parallel loops. This third 

form is referred to as hierarchical data parallel, referring to the hierarchy of 

the nested constructs that appear in user source code. Compiler support 

for this syntax is still immature, and many SYCL implementations do not 

implement hierarchical data-parallel kernels as efficiently as the other 

two forms. The syntax is also incomplete, in the sense that there are many 

performance-enabling features of SYCL that are incompatible with or 

inaccessible from hierarchical kernels. Hierarchical parallelism in SYCL 

is in the process of being updated, and the SYCL specification includes 

a note recommending that new codes refrain from using hierarchical 

parallelism until the feature is ready; in keeping with the spirit of this note, 

the remainder of this book teaches only basic and ND-range parallelism.
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We will revisit how to choose between the different kernel forms 

again at the end of this chapter once we have discussed their features in 

more detail.

 Basic Data-Parallel Kernels
The most basic form of parallel kernel is appropriate for operations that 

are embarrassingly parallel (i.e., operations that can be applied to every 

piece of data completely independently and in any order). By using this 

form, we give an implementation complete control over the scheduling of 

work. It is thus an example of a descriptive programming construct—we 

describe that the operation is embarrassingly parallel, and all scheduling 

decisions are made by the implementation.

Basic data-parallel kernels are written in a single program, multiple 

data (SPMD) style—a single “program” (the kernel) is applied to multiple 

pieces of data. Note that this programming model still permits each 

instance of the kernel to take different paths through the code, because of 

data-dependent branches.

One of the greatest strengths of a SPMD programming model is that it 

allows the same “program” to be mapped to multiple levels and types of 

parallelism, without any explicit direction from us. Instances of the same 

program could be pipelined, packed together and executed with SIMD 

instructions, distributed across multiple hardware threads, or a mix of 

all three.

 Understanding Basic Data-Parallel Kernels
The execution space of a basic parallel kernel is referred to as its execution 

range, and each instance of the kernel is referred to as an item. This is 

represented diagrammatically in Figure 4-4.
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Figure 4-4. Execution space of a basic parallel kernel, shown for a 2D 
range of 64 items

The execution model of basic data-parallel kernels is very simple: it 

allows for completely parallel execution but does not guarantee or require 

it. Items can be executed in any order, including sequentially on a single 

hardware thread (i.e., without any parallelism)! Kernels that assume that 

all items will be executed in parallel (e.g., by attempting to synchronize 

items) could therefore very easily cause programs to hang on some 

devices.

However, to guarantee correctness, we must always write our kernels 

under the assumption that they could be executed in parallel. For example, 

it is our responsibility to ensure that concurrent accesses to memory are 

appropriately guarded by atomic memory operations (see Chapter 19) to 

prevent race conditions.

Chapter 4  expressinG parallelism



107

 Writing Basic Data-Parallel Kernels
Basic data-parallel kernels are expressed using the parallel_for function. 

Figure 4-5 shows how to use this function to express a vector addition, 

which is our take on “Hello, world!” for parallel accelerator programming.

h.parallel_for(range{N}, [=](id<1> idx) {
c[idx] = a[idx] + b[idx];

});

Figure 4-5. Expressing a vector addition kernel with parallel_for

The function only takes two arguments: the first is a range (or integer) 

specifying the number of items to launch in each dimension, and the 

second is a kernel function to be executed for each index in the range. 

There are several different classes that can be accepted as arguments to 

a kernel function, and which should be used depends on which class 

exposes the functionality required—we’ll revisit this later.

Figure 4-6 shows a very similar use of this function to express a matrix 

addition, which is (mathematically) identical to vector addition except 

with two-dimensional data. This is reflected by the kernel—the only 

difference between the two code snippets is the dimensionality of the 

range and id classes used! It is possible to write the code this way because 

a SYCL accessor can be indexed by a multidimensional id. As strange 

as it looks, this can be very powerful, enabling us to write generic kernels 

templated on the dimensionality of our data.

h.parallel_for(range{N, M}, [=](id<2> idx) {
c[idx] = a[idx] + b[idx];

});

Figure 4-6. Expressing a matrix addition kernel with parallel_for

It is more common in C/C++ to use multiple indices and multiple 

subscript operators to index multidimensional data structures, and this 

explicit indexing is also supported by accessors. Using multiple indices 
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in this way can improve readability when a kernel operates on data of 

different dimensionalities simultaneously or when the memory access 

patterns of a kernel are more complicated than can be described by using 

an item’s id directly.

For example, the matrix multiplication kernel in Figure 4-7 must 

extract the two individual components of the index in order to be able to 

describe the dot product between rows and columns of the two matrices. 

In the authors’ opinion, consistently using multiple subscript operators 

(e.g., [j][k]) is more readable than mixing multiple indexing modes and 

constructing two-dimensional id objects (e.g., id(j,k)), but this is simply 

a matter of personal preference.

The examples in the remainder of this chapter all use multiple 

subscript operators, to ensure that there is no ambiguity in the 

dimensionality of the buffers being accessed.

h.parallel_for(range{N, N}, [=](id<2> idx) {
int j = idx[0];
int i = idx[1];
for (int k = 0; k < N; ++k) {

c[j][i] +=
a[j][k] * b[k][i]; // or c[idx] += a[id(j,k)]

// * b[id(k,i)];
}

});

Figure 4-7. Expressing a naïve matrix multiplication kernel for 
square matrices, with parallel_for
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Figure 4-8. Mapping matrix multiplication work to items in the 
execution range

The diagram in Figure 4-8 shows how the work in our matrix 

multiplication kernel is mapped to individual items. Note that the number 

of items is derived from the size of the output range and that the same 

input values may be read by multiple items: each item computes a single 

value of the C matrix, by iterating sequentially over a (contiguous) row of 

the A matrix and a (noncontiguous) column of the B matrix.

 Details of Basic Data-Parallel Kernels
The functionality of basic data-parallel kernels is exposed via three C++ 

classes: range, id, and item. We have already seen the range and id 

classes a few times in previous chapters, but we revisit them here with a 

different focus.

 The range Class

A range represents a one-, two-, or three-dimensional range. The 

dimensionality of a range is a template argument and must therefore be 

known at compile time, but its size in each dimension is dynamic and is 

passed to the constructor at runtime. Instances of the range class are used 

to describe both the execution ranges of parallel constructs and the sizes of 

buffers.
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A simplified definition of the range class, showing the constructors and 

various methods for querying its extent, is shown in Figure 4-9.

template <int Dimensions = 1>
class range {
public:
// Construct a range with one, two or three dimensions
range(size_t dim0);
range(size_t dim0, size_t dim1);
range(size_t dim0, size_t dim1, size_t dim2);

// Return the size of the range in a specific dimension
size_t get(int dimension) const;
size_t &operator[](int dimension);
size_t operator[](int dimension) const;

// Return the product of the size of each dimension
size_t size() const;

// Arithmetic operations on ranges are also supported
};

Figure 4-9. Simplified definition of the range class

 The id Class

An id represents an index into a one-, two-, or three-dimensional range. 

The definition of id is similar in many respects to range: its dimensionality 

must also be known at compile time, and it may be used to index an 

individual instance of a kernel in a parallel construct or an offset into 

a buffer.

As shown by the simplified definition of the id class in Figure 4-10, 

an id is conceptually nothing more than a container of one, two, or three 

integers. The operations available to us are also very simple: we can query 

the component of an index in each dimension, and we can perform simple 

arithmetic to compute new indices.
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Although we can construct an id to represent an arbitrary index, to 

obtain the id associated with a specific kernel instance, we must accept 

it (or an item containing it) as an argument to a kernel function. This id 

(or values returned by its member functions) must be forwarded to any 

function in which we want to query the index—there are not currently any 

free functions for querying the index at arbitrary points in a program, but 

this may be simplified in a future version of SYCL.

Each instance of a kernel accepting an id knows only the index in the 

range that it has been assigned to compute and knows nothing about the 

range itself. If we want our kernel instances to know about their own index 

and the range, we need to use the item class instead.

template <int Dimensions = 1>
class id {
public:
// Construct an id with one, two or three dimensions
id(size_t dim0);
id(size_t dim0, size_t dim1);
id(size_t dim0, size_t dim1, size_t dim2);

// Return the component of the id in a specific dimension
size_t get(int dimension) const;
size_t &operator[](int dimension);
size_t operator[](int dimension) const;

// Arithmetic operations on ids are also supported
};

Figure 4-10. Simplified definition of the id class

 The item Class

An item represents an individual instance of a kernel function, 

encapsulating both the execution range of the kernel and the instance’s 

index within that range (using a range and an id, respectively). Like range 

and id, its dimensionality must be known at compile time.
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A simplified definition of the item class is given in Figure 4-11. The 

main difference between item and id is that item exposes additional 

functions to query properties of the execution range (e.g., its size) and a 

convenience function to compute a linearized index. As with id, the only 

way to obtain the item associated with a specific kernel instance is to 

accept it as an argument to a kernel function.

template <int Dimensions = 1, bool WithOffset = true>
class item {
public:
// Return the index of this item in the kernel's execution
// range
id<Dimensions> get_id() const;
size_t get_id(int dimension) const;
size_t operator[](int dimension) const;

// Return the execution range of the kernel executed by
// this item
range<Dimensions> get_range() const;
size_t get_range(int dimension) const;

// Return the offset of this item (if WithOffset == true)
id<Dimensions> get_offset() const;

// Return the linear index of this item
// e.g. id(0) * range(1) * range(2) + id(1) * range(2) +
// id(2)
size_t get_linear_id() const;

};

Figure 4-11. Simplified definition of the item class

 Explicit ND-Range Kernels
The second form of parallel kernel replaces the flat execution range of 

basic data-parallel kernels with an execution range where items belong 

to groups. This form is most appropriate for cases where we would like 

to express some notion of locality within our kernels. Different behaviors 
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are defined and guaranteed for different types of groups, giving us more 

insight into and/or control over how work is mapped to specific hardware 

platforms.

These explicit ND-range kernels are thus an example of a more 

prescriptive parallel construct—we prescribe a mapping of work to each 

type of group, and the implementation must obey that mapping. However, 

it is not completely prescriptive, as the groups themselves may execute in 

any order and an implementation retains some freedom over how each 

type of group is mapped to hardware resources. This combination of 

prescriptive and descriptive programming enables us to design and tune 

our kernels for locality without destroying their portability.

Like basic data-parallel kernels, ND-range kernels are written in a 

SPMD style where all work-items execute the same kernel “program” 

applied to multiple pieces of data. The key difference is that each program 

instance can query its position within the groups that contain it and 

can access additional functionality specific to each type of group (see 

Chapter 9).

 Understanding Explicit ND-Range 
Parallel Kernels
The execution range of an ND-range kernel is divided into work-groups, 

sub-groups, and work-items. The ND-range represents the total execution 

range, which is divided into work-groups of uniform size (i.e., the work- 

group size must divide the ND-range size exactly in each dimension). Each 

work-group can be further divided by the implementation into sub-groups. 

Understanding the execution model defined for work-items and each type 

of group is an important part of writing correct and portable programs.

Figure 4-12 shows an example of an ND-range of size (8, 8, 8) divided 

into 8 work-groups of size (4, 4, 4). Each work-group contains 16 one- 

dimensional sub-groups of 4 work-items. Pay careful attention to the 

Chapter 4  expressinG parallelism



114

numbering of the dimensions: sub-groups are always one-dimensional, 

and so dimension 2 of the ND-range and work-group becomes dimension 

0 of the sub-group.

Figure 4-12. Three-dimensional ND-range divided into work-groups, 
sub-groups, and work-items

The exact mapping from each type of group to hardware resources 

is implementation-defined, and it is this flexibility that enables programs 

to execute on a wide variety of hardware. For example, work-items could 

be executed completely sequentially, executed in parallel by hardware 

threads and/or SIMD instructions, or even executed by a hardware 

pipeline specifically configured for a kernel.

In this chapter, we are focused only on the semantic guarantees of the 

ND-range execution model in terms of a generic target platform, and we 

will not cover its mapping to any one platform. See Chapters 15, 16, and 17 

for details of the hardware mapping and performance recommendations 

for GPUs, CPUs, and FPGAs, respectively.
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 Work-Items

Work-items represent the individual instances of a kernel function. In the 

absence of other groupings, work-items can be executed in any order and 

cannot communicate or synchronize with each other except by way of 

atomic memory operations to global memory (see Chapter 19).

 Work-Groups

The work-items in an ND-range are organized into work-groups. Work- 

groups can execute in any order, and work-items in different work-groups 

cannot communicate with each other except by way of atomic memory 

operations to global memory (see Chapter 19). However, the work-items 

within a work-group have some scheduling guarantees when certain 

constructs are used, and this locality provides some additional capabilities:

 1. Work-items in a work-group have access to work-

group local memory, which may be mapped to 

a dedicated fast memory on some devices (see 

Chapter 9).

 2. Work-items in a work-group can synchronize 

using work-group barriers and guarantee memory 

consistency using work-group memory fences (see 

Chapter 9).

 3. Work-items in a work-group have access to group 

functions, providing implementations of common 

communication routines (see Chapter 9) and group 

algorithms, providing implementations of common 

parallel patterns such as reductions and scans (see 

Chapter 14).
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The number of work-items in a work-group is typically configured 

for each kernel at runtime, as the best grouping will depend upon both 

the amount of parallelism available (i.e., the size of the ND-range) and 

properties of the target device. We can determine the maximum number of 

work-items per work-group supported by a specific device using the query 

functions of the device class (see Chapter 12), and it is our responsibility 

to ensure that the work-group size requested for each kernel is valid.

There are some subtleties in the work-group execution model that are 

worth emphasizing.

First, although the work-items in a work-group are scheduled to a 

single compute unit, there need not be any relationship between the 

number of work-groups and the number of compute units. In fact, the 

number of work-groups in an ND-range can be many times larger than the 

number of work-groups that a given device can execute simultaneously! 

We may be tempted to try and write kernels that synchronize across 

work-groups by relying on very clever device-specific scheduling, but we 

strongly recommend against doing this—such kernels may appear to work 

today, but they are not guaranteed to work with future implementations 

and are highly likely to break when moved to a different device.

Second, although the work-items in a work-group are scheduled 

such that they can cooperate with one another, they are not required to 

provide any specific forward progress guarantees—executing the work- 

items within a work-group sequentially between barriers and collectives 

is a valid implementation. Communication and synchronization between 

work-items in the same work-group is only guaranteed to be safe when 

performed using the barrier and collective functions provided, and hand- 

coded synchronization routines may deadlock.

Chapter 4  expressinG parallelism



117

THINKING IN WORK-GROUPS

Work-groups are similar in many respects to the concept of a task in other 

programming models (e.g., threading Building Blocks): tasks can execute 

in any order (controlled by a scheduler); it’s possible (and even desirable) to 

oversubscribe a machine with tasks; and it’s often not a good idea to try and 

implement a barrier across a group of tasks (as it may be very expensive or 

incompatible with the scheduler). if we’re already familiar with a task-based 

programming model, we may find it useful to think of work-groups as though 

they are data-parallel tasks.

 Sub-Groups

On many modern hardware platforms, subsets of the work-items in a 

work-group known as sub-groups are executed with additional scheduling 

guarantees. For example, the work-items in a sub-group could be 

executed simultaneously as a result of compiler vectorization, and/or the 

sub-groups themselves could be executed with strong forward progress 

guarantees because they are mapped to independent hardware threads.

When working with a single platform, it is tempting to bake 

assumptions about these execution models into our codes, but this makes 

them inherently unsafe and non-portable—they may break when moving 

between different compilers or even when moving between different 

generations of hardware from the same vendor!

Defining sub-groups as a core part of the language gives us a safe 

alternative to making assumptions that may later prove to be device- 

specific. Leveraging sub-group functionality also allows us to reason about 

the execution of work-items at a low level (i.e., close to hardware) and is 

key to achieving very high levels of performance across many platforms.
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As with work-groups, the work-items within a sub-group can 

synchronize, guarantee memory consistency, or execute common parallel 

patterns via group functions and group algorithms. However, there is no 

equivalent of work-group local memory for sub-groups (i.e., there is no 

sub-group local memory). Instead, the work-items in a sub-group can 

exchange data directly—without explicit memory operations—using a 

subset of the group algorithms colloquially known as “shuffle” operations 

(Chapter 9).

WHY “SHUFFLE”?

the “shuffle” operations in languages like OpenCl, CUDa, and spir-V all 

include “shuffle” in their name (e.g., sub_group_shuffle, __shfl, and 

OpGroupNonUniformShuffle). sYCl adopts a different naming convention 

to avoid confusion with the std::shuffle function defined in C++ (which 

randomly reorders the contents of a range).

Some aspects of sub-groups are implementation-defined and outside 

of our control. However, a sub-group has a fixed (one-dimensional) size for 

a given combination of device, kernel, and ND-range, and we can query 

this size using the query functions of the kernel class (see Chapters 10 and 

12). By default, the number of work-items per sub-group is also chosen 

by the implementation—we can override this behavior by requesting a 

particular sub-group size at compile time but must ensure that the sub- 

group size we request is compatible with the device.

Like work-groups, the work-items in a sub-group are not required to 

provide any specific forward progress guarantees—an implementation is 

free to execute each work-item in a sub-group sequentially and only switch 

between work-items when a sub-group collective function is encountered. 

However, on some devices, all sub-groups within a work-group are 

guaranteed to execute (make progress) eventually, which is a cornerstone 
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of several producer–consumer patterns. This is currently implementation- 

defined behavior, and so we cannot rely on sub-groups to make progress 

if we want our kernels to remain portable. We expect a future version of 

SYCL to provide device queries describing the progress guarantees of 

sub-groups.

When writing kernels for a specific device, the mapping of work- 

items to sub-groups is known, and our codes can often take advantage of 

properties of this mapping to improve performance. However, a common 

mistake is to assume that because our code works on one device, it will 

work on all devices. Figures 4-13 and 4-14 show just two of the possibilities 

when mapping work-items in a multidimensional kernel with a range of 

{4, 4} to sub-groups, for a maximum sub-group size of 8. The mapping 

in Figure 4-13 produces two sub-groups of eight work-items, while the 

mapping in Figure 4-14 produces four sub-groups of four work-items!

Figure 4-13. One possible sub-group mapping, where the sub-group 
size is permitted to be larger than the extent of the highest-numbered 
(contiguous) dimension of the work-group, and so the sub-group 
appears to “wrap around”
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Figure 4-14. Another possible sub-group mapping, where the sub- 
group size is not permitted to be larger than the extent of the highest- 
numbered (contiguous) dimension of the work-group

SYCL does not currently provide a way to query how work-items are 

mapped to sub-groups nor a mechanism to request a specific mapping. 

The best ways to write portable code using sub-groups are using one- 

dimensional work-groups or using multidimensional work-groups where 

the highest-numbered dimension is divisible by the kernel’s required sub- 

group size.

THINKING IN SUB-GROUPS

if we are coming from a programming model that requires us to think about 

explicit vectorization, it may be useful to think of each sub-group as a set of 

work-items packed into a simD register, where each work-item in the sub- 

group corresponds to a simD lane. When multiple sub-groups are in flight 

simultaneously and a device guarantees they will make forward progress, this 

mental model extends to treating each sub-group as though it were a separate 

stream of vector instructions executing in parallel.
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 Writing Explicit ND-Range Data-Parallel Kernels

Figure 4-15 reimplements the matrix multiplication kernel that we saw 

previously using the ND-range parallel kernel syntax, and the diagram in 

Figure 4-16 shows how the work in this kernel is mapped to the work-items 

in each work-group. Grouping our work-items in this way ensures locality 

of access and hopefully improves cache hit rates: for example, the work- 

group in Figure 4-16 has a local range of (4, 4) and contains 16 work-items, 

but only accesses four times as much data as a single work-item—in other 

words, each value we load from memory can be reused four times.

Figure 4-16. Mapping matrix multiplication to work-groups and 
work-items

range global{N, N};
range local{B, B};
h.parallel_for(nd_range{global, local},

[=](nd_item<2> it) {
int j = it.get_global_id(0);
int i = it.get_global_id(1);

for (int k = 0; k < N; ++k) {
c[j][i] += a[j][k] * b[k][i];

}
});

Figure 4-15. Expressing a naïve matrix multiplication kernel with 
ND-range parallel_for
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So far, our matrix multiplication example has relied on a hardware 

cache to optimize repeated accesses to the A and B matrices from work- 

items in the same work-group. Such hardware caches are commonplace 

on traditional CPU architectures and are becoming increasingly common 

on GPU architectures, but several architectures have explicitly managed 

“scratchpad” memories that can deliver higher performance (e.g., via 

lower latency). ND-range kernels can use local accessors to describe 

allocations that should be placed in work-group local memory, and an 

implementation is then free to map these allocations to special memory 

(where it exists). Usage of this work-group local memory will be covered in 

Chapter 9.

 Details of Explicit ND-Range 
Data- Parallel Kernels
ND-range data-parallel kernels use different classes compared to basic 

data-parallel kernels: range is replaced by nd_range, and item is replaced 

by nd_item. There are also two new classes, representing the different 

types of groups to which a work-item may belong: functionality tied to 

work-groups is encapsulated in the group class, and functionality tied to 

sub-groups is encapsulated in the sub_group class.

 The nd_range Class

An nd_range represents a grouped execution range using two instances 

of the range class: one denoting the global execution range and another 

denoting the local execution range of each work-group. A simplified 

definition of the nd_range class is given in Figure 4-17.

It may be a little surprising that the nd_range class does not mention 

sub-groups at all: the sub-group range is not specified during construction 

and cannot be queried. There are two reasons for this omission. First, sub- 

groups are a low-level implementation detail that can be ignored for many 
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kernels. Second, there are several devices supporting exactly one valid 

sub-group size and specifying this size everywhere would be unnecessarily 

verbose. All functionality related to sub-groups is encapsulated in a 

dedicated class that will be discussed shortly.

template <int Dimensions = 1>
class nd_range {
public:
// Construct an nd_range from global and work-group local
// ranges
nd_range(range<Dimensions> global,

range<Dimensions> local);

// Return the global and work-group local ranges
range<Dimensions> get_global_range() const;
range<Dimensions> get_local_range() const;

// Return the number of work-groups in the global range
range<Dimensions> get_group_range() const;

};

Figure 4-17. Simplified definition of the nd_range class

 The nd_item Class

An nd_item is the ND-range form of an item, again encapsulating the 

execution range of the kernel and the item’s index within that range. Where 

nd_item differs from item is in how its position in the range is queried and 

represented, as shown by the simplified class definition in Figure 4-18. For 

example, we can query the item’s index in the (global) ND-range using the 

get_global_id() function or the item’s index in its (local) parent work- 

group using the get_local_id() function.

The nd_item class also provides functions for obtaining handles to 

classes describing the group and sub-group that an item belongs to. These 

classes provide an alternative interface for querying an item’s index in an 

ND-range.
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template <int Dimensions = 1>
class nd_item {
public:
// Return the index of this item in the kernel's execution
// range
id<Dimensions> get_global_id() const;
size_t get_global_id(int dimension) const;
size_t get_global_linear_id() const;

// Return the execution range of the kernel executed by
// this item
range<Dimensions> get_global_range() const;
size_t get_global_range(int dimension) const;

// Return the index of this item within its parent
// work-group
id<Dimensions> get_local_id() const;
size_t get_local_id(int dimension) const;
size_t get_local_linear_id() const;

// Return the execution range of this item's parent
// work-group
range<Dimensions> get_local_range() const;
size_t get_local_range(int dimension) const;

// Return a handle to the work-group
// or sub-group containing this item
group<Dimensions> get_group() const;
sub_group get_sub_group() const;

};

Figure 4-18. Simplified definition of the nd_item class

 The group Class

The group class encapsulates all functionality related to work-groups, and 

a simplified definition is shown in Figure 4-19.
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template <int Dimensions = 1>
class group {
public:
// Return the index of this group in the kernel's
// execution range
id<Dimensions> get_id() const;
size_t get_id(int dimension) const;
size_t get_linear_id() const;

// Return the number of groups in the kernel's execution
// range
range<Dimensions> get_group_range() const;
size_t get_group_range(int dimension) const;

// Return the number of work-items in this group
range<Dimensions> get_local_range() const;
size_t get_local_range(int dimension) const;

};

Figure 4-19. Simplified definition of the group class

Many of the functions that the group class provides each have 

equivalent functions in the nd_item class: for example, calling group.

get_group_id() is equivalent to calling item.get_group_id(), and calling 

group.get_local_range() is equivalent to calling item.get_local_

range(). If we are not using any group functions or algorithms, should 

we still use the group class? Wouldn’t it be simpler to use the functions in 

nd_item directly, instead of creating an intermediate group object? There 

is a trade-off here: using group requires us to write slightly more code, but 

that code may be easier to read. For example, consider the code snippet in 

Figure 4-20: it is clear that body expects to be called by all work-items in the 

group, and it is clear that the range returned by get_local_range() in the 

body of the parallel_for is the range of the group. The same code could 

very easily be written using only nd_item, but it would likely be harder for 

readers to follow.
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void body(group& g);

h.parallel_for(nd_range{global, local}, [=](nd_item<1> it) {
group<1> g = it.get_group();
range<1> r = g.get_local_range();
... 
body(g);

});

Figure 4-20. Using the group class to improve readability

Another powerful option enabled by the group class is the ability to 

write generic group functions that accept any type of group via a template 

argument. Although SYCL does not (yet) define an official Group “concept” 

(in the C++20 sense), the group and sub_group classes expose a common 

interface, allowing templated SYCL functions to be constrained using traits 

like sycl::is_group_v. Today, the primary advantages of this generic 

form of coding are the ability to support work-groups with an arbitrary 

number of dimensions, and the ability to allow the caller of a function to 

decide whether the function should divide work across the work-items 

in a work-group or the work-items in a sub-group. However, the SYCL 

group interface has been designed to be extensible, and we expect a 

larger number of classes representing different groupings of work-items to 

appear in future versions of SYCL.

 The sub_group Class

The sub_group class encapsulates all functionality related to sub- 

groups, and a simplified definition is shown in Figure 4-21. Unlike with 

work-groups, the sub_group class is the only way to access sub-group 

functionality; none of its functions are duplicated in nd_item.
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class sub_group {
public:
// Return the index of the sub-group
id<1> get_group_id() const;

// Return the number of sub-groups in this item's parent
// work-group
range<1> get_group_range() const;

// Return the index of the work-item in this sub-group
id<1> get_local_id() const;

// Return the number of work-items in this sub-group
range<1> get_local_range() const;

// Return the maximum number of work-items in any
// sub-group in this item's parent work-group
range<1> get_max_local_range() const;

};

Figure 4-21. Simplified definition of the sub_group class

Note that there are separate functions for querying the number of 

work-items in the current sub-group and the maximum number of work- 

items in any sub-group within the work-group. Whether and how these 

differ depends on exactly how sub-groups are implemented for a specific 

device, but the intent is to reflect any differences between the sub-group 

size targeted by the compiler and the runtime sub-group size. For example, 

very small work-groups may contain fewer work-items than the compile- 

time sub-group size, or sub-groups of different sizes may be used to handle 

work-groups and dimensions that are not divisible by the sub-group size.

 Mapping Computation to Work-Items
Most of the code examples so far have assumed that each instance of a 

kernel function corresponds to a single operation on a single piece of 

data. This is a straightforward way to write kernels, but such a one-to-one 

mapping is not dictated by SYCL or any of the kernel forms—we always 
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have complete control over the assignment of data (and computation) to 

individual work-items and making this assignment parameterizable can be 

a good way to improve performance portability.

 One-to-One Mapping
When we write kernels such that there is a one-to-one mapping of work 

to work-items, those kernels must always be launched with a range or 

nd_range with a size exactly matching the amount of work that needs to 

be done. This is the most obvious way to write kernels, and in many cases, 

it works very well—we can trust an implementation to map work-items to 

hardware efficiently.

However, when tuning for performance on a specific combination of 

system and implementation, it may be necessary to pay closer attention 

to low-level scheduling behaviors. The scheduling of work-groups to 

compute resources is implementation-defined and could potentially be 

dynamic (i.e., when a compute resource completes one work-group, the 

next work-group it executes may come from a shared queue). The impact 

of dynamic scheduling on performance is not fixed, and its significance 

depends upon factors including the execution time of each instance of the 

kernel function and whether the scheduling is implemented in software 

(e.g., on a CPU) or hardware (e.g., on a GPU).

 Many-to-One Mapping
The alternative is to write kernels with a many-to-one mapping of work 

to work-items. The meaning of the range changes subtly in this case: the 

range no longer describes the amount of work to be done, but rather 

the number of workers to use. By changing the number of workers and 

the amount of work assigned to each worker, we can fine-tune work 

distribution to maximize performance.
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Writing a kernel of this form requires two changes:

 1. The kernel must accept a parameter describing the 

total amount of work.

 2. The kernel must contain a loop assigning work to 

work-items.

A simple example of such a kernel is given in Figure 4-22. Note that 

the loop inside the kernel has a slightly unusual form—the starting index 

is the work-item’s index in the global range, and the stride is the total 

number of work-items. This round-robin scheduling of data to work-items 

ensures that all N iterations of the loop will be executed by a work-item, 

but also that linear work-items access contiguous memory locations (to 

improve cache locality and vectorization behavior). Work can be similarly 

distributed across groups or the work-items in individual groups to further 

improve locality.

size_t N = ...; // amount of work
size_t W = ...; // number of workers
h.parallel_for(range{W}, [=](item<1> it) {
for (int i = it.get_id()[0]; i < N;

i += it.get_range()[0]) {
output[i] = function(input[i]);

}
});

Figure 4-22. Kernel with separate data and execution ranges

These work distribution patterns are common, and we expect that 

future versions of SYCL will introduce syntactic sugar to simplify the 

expression of work distribution in ND-range kernels.
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 Choosing a Kernel Form
Choosing between the different kernel forms is largely a matter of personal 

preference and heavily influenced by prior experience with other parallel 

programming models and languages.

The other main reason to choose a specific kernel form is that it 

is the only form to expose certain functionality required by a kernel. 

Unfortunately, it can be difficult to identify which functionality will 

be required before development begins—especially while we are still 

unfamiliar with the different kernel forms and their interaction with 

various classes.

We have constructed two guides based on our own experience to 

help us navigate this complex space. These guides should be considered 

initial suggestions and are definitely not intended to replace our own 

experimentation—the best way to choose between the different kernel 

forms will always be to spend some time writing in each of them, 

in order to learn which form is the best fit for our application and 

development style.

The first guide is the flowchart in Figure 4-23, which selects a kernel 

form based on

 1. Whether we have previous experience with parallel 

programming

 2. Whether we are writing a new code from scratch or 

are porting an existing parallel program written in a 

different language

 3. Whether our kernel is embarrassingly parallel or 

reuses data between different instances of the kernel 

function
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 4. Whether we are writing a new kernel in SYCL to 

maximize performance, to improve the portability of 

our code, or because it provides a more productive 

means of expressing parallelism than lower-level 

languages

Figure 4-23. Helping choose the right form for our kernel
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The second guide is the set of features exposed to each of the kernel 

forms. Work-groups, sub-groups, group barriers, group-local memory, 

group functions (e.g., broadcast), and group algorithms (e.g., scan, reduce) 

are only available to ND-range kernels, and so we should prefer ND- 

range kernels in situations where we are interested in expressing complex 

algorithms or fine-tuning for performance.

The features available to each kernel form should be expected to 

change as the language evolves, but we expect the basic trend to remain 

the same: basic data-parallel kernels will not expose locality-aware 

features and explicit ND-range kernels will expose all performance- 

enabling features.

 Summary
This chapter introduced the basics of expressing parallelism in C++ with 

SYCL and discussed the strengths and weaknesses of each approach to 

writing data-parallel kernels.

SYCL provides support for many forms of parallelism, and we hope 

that we have provided enough information to prepare readers to dive in 

and start coding!

We have only scratched the surface, and a deeper dive into many of 

the concepts and classes introduced in this chapter is forthcoming: the 

usage of local memory, barriers, and communication routines are covered 

in Chapter 9; different ways of defining kernels besides using lambda 

expressions are discussed in Chapters 10 and 20; detailed mappings of the 

ND-range execution model to specific hardware are explored in Chapters 

15, 16, and 17; and best practices for expressing common parallel patterns 

using SYCL are presented in Chapter 14.
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Open Access  This chapter is licensed under the terms of 

the Creative Commons Attribution 4.0 International License 

(https://creativecommons.org/licenses/by/4.0/), which permits use, 

sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and 

the source, provide a link to the Creative Commons license and indicate if 

changes were made.

The images or other third party material in this chapter are included 

in the chapter’s Creative Commons license, unless indicated otherwise 

in a credit line to the material. If material is not included in the chapter’s 

Creative Commons license and your intended use is not permitted by 

statutory regulation or exceeds the permitted use, you will need to obtain 

permission directly from the copyright holder.
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CHAPTER 5

Error Handling
Error handling is a key capability of C++. This chapter discusses the unique 

error handling challenges when offloading work to a device (accelerator) 

and how these challenges are made fully manageable to us by SYCL.

Detecting and dealing with unexpected conditions and errors can be 

helpful during application development (think: the other programmer who 

works on the project who does make mistakes), but more importantly play 

a critical role in stable and safe production applications and libraries. We 

devote this chapter to describing the error handling mechanisms available 

in C++ with SYCL so that we can understand what our options are and how 

to architect applications if we care about detecting and managing errors.

This chapter overviews synchronous and asynchronous errors in SYCL, 

describes the behavior of an application if we do nothing in our code to 

handle errors, and dives into the SYCL-specific mechanisms that allow us 

to handle asynchronous errors.

 Safety First
A core aspect of C++ error handling is that if we do nothing to handle an 

error that has been detected (thrown), then the application will terminate 

and indicate that something went wrong. This behavior allows us to write 

applications without focusing on error management and still be confident 

that errors will somehow be signaled to a developer or user. We’re not 

suggesting that we should ignore error handling, of course! Production 

applications should be written with error management as a core part of 
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the architecture, but applications often start development without such 

a focus. C++ aims to make code which doesn’t handle errors still able to 

observe many errors, even when they are not dealt with explicitly.

Since SYCL is data parallel C++, the same philosophy holds: if we 

do nothing in our code to manage errors and an error is detected, an 

abnormal termination of the program will occur to let us know that 

something bad happened. Production applications should of course 

consider error management as a core part of the software architecture, not 

only reporting but often also recovering from error conditions.

If we don’t add any error management code and an error occurs, we 
will still see an abnormal program termination which is an indication 
to dig deeper.

 Types of Errors
C++ provides a framework for notification and handling of errors through 

its exception mechanism. Heterogeneous programming requires an 

additional level of error management beyond this because some errors 

occur on a device or when trying to launch work on a device. These errors 

are typically decoupled in time from the host program’s execution, and 

as such they don’t integrate cleanly with regular C++ exception handling 

mechanisms. To solve this, there are additional mechanisms to make 

asynchronous errors as manageable and controllable as typical C++ 

exceptions.

Figure 5-1 shows two components of a typical application: (1) the host 

code that runs sequentially and submits work to the task graph for future 

execution and (2) the task graph which runs asynchronously from the 

host program and executes kernels or other actions on devices when the 
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necessary dependences are met. The example shows a parallel_for as 

the operation that executes asynchronously as part of the task graph, but 

other operations are possible as well as discussed in Chapters 3, 4, and 8.

#include <iostream>
#include <sycl/sycl.hpp>
using namespace sycl;

int main() {
constexpr int size = 16;
buffer<int> b{range{size}};

// Create queue on any available device
queue q;

q.submit([&](handler& h) {
accessor a{b, h};

h.parallel_for(size, [=](auto& idx) {
a[idx] = idx;

});
});

// Obtain access to buffer on the host
// Will wait for device kernel to execute to generate data
host_accessor a{b};
for (int i = 0; i < size; i++)
std::cout << "data[" << i << "] = " << a[i] << "\n";

return 0;
}

Figure 5-1. Separation of host program and task graph executions

The distinction between the left and right (host and task graph) 

sides of Figure 5-1 is the key to understanding the differences between 

synchronous and asynchronous errors.

Synchronous errors occur when an error condition can be detected 

as the host program executes an operation, such as an API call or object 

construction. They can be detected before an instruction on the left side 

of the figure completes, and the error can be thrown immediately by the 

operation that caused the error. We can wrap specific instructions on the 

left side of the diagram with a try-catch construct, expecting that errors 
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occurring as a result of operations within the try will be detected before 

the try block ends (and therefore caught). The C++ exception mechanism 

is designed to handle exactly these types of errors.

Asynchronous errors occur as part of the right side of Figure 5-1, 

where an error is only detected when an operation in the task graph is 

executed. By the time that an asynchronous error is detected as part of task 

graph execution, the host program has typically already moved on with 

its execution, so there is no code to wrap with a try-catch construct to 

catch these errors. There is instead an asynchronous exception handling 

framework in SYCL to handle these errors that occur at seemingly random 

and uncontrolled times relative to host program execution.

 Let’s Create Some Errors!
As examples for the remainder of this chapter and to allow us to 

experiment, we’ll create both synchronous and asynchronous errors in the 

following examples.

#include <sycl/sycl.hpp>
using namespace sycl;

int main() {
buffer<int> b{range{16}};

// ERROR: Create sub-buffer larger than size of parent
// buffer. An exception is thrown from within the buffer
// constructor.
buffer<int> b2(b, id{8}, range{16});

return 0;
}

Example Output:
terminate called after throwing an instance of 'sycl::_V1::invalid_object_error'
what():  Requested sub-buffer size exceeds the size of the parent buffer -30 

(PI_ERROR_INVALID_VALUE)
Aborted

Figure 5-2. Creating a synchronous error
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 Synchronous Error
In Figure 5-2, a sub-buffer is created from a buffer but with an illegal size 

(larger than the original buffer). The constructor of the sub-buffer detects 

this error and throws an exception before the constructor’s execution 

completes. This is a synchronous error because it occurs as part of 

(synchronously with) the host program’s execution. The error is detectable 

before the constructor returns, so the error may be handled immediately at 

its point of origin or detection in the host program.

Our code example doesn’t do anything to catch and handle C++ 

exceptions, so the default C++ uncaught exception handler calls 

std::terminate for us, signaling that something went wrong.

 Asynchronous Error
Generating an asynchronous error is a bit trickier because 

implementations work hard to detect and report errors synchronously 

whenever possible. Synchronous errors are easier to debug because 

they occur at a specific point of origin in the host program, so are 

preferred by implementations whenever possible. One way to generate 

an asynchronous error for our demonstration purpose is to throw an 

exception inside a host task, which executes asynchronously as part of 

the task graph. Figure 5-3 demonstrates such an exception. Asynchronous 

errors can occur and be reported in many situations, so note that this host 

task example shown in Figure 5-3 is only one possibility and in no way a 

requirement for asynchronous errors.
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#include <sycl/sycl.hpp>
using namespace sycl;

// Our example asynchronous handler function
auto handle_async_error = [](exception_list elist) {
for (auto &e : elist) {
try {
std::rethrow_exception(e);

} catch (...) {
std::cout << "Caught SYCL ASYNC exception!!\n";

}
}

};

void say_device(const queue &Q) {
std::cout << "Device : "

<< Q.get_device().get_info<info::device::name>()
<< "\n";

}

class something_went_wrong {}; // Example exception type

int main() {
queue q{cpu_selector_v, handle_async_error};
say_device(q);

q.submit([&](handler &h) {
h.host_task([]() { throw(something_went_wrong{}); });

}).wait();

return 0;
}

Example output:
Device : Intel(R) Xeon(R) Gold 6128 CPU @ 3.40GHz
Caught SYCL ASYNC exception!!

Figure 5-3. Creating an asynchronous error

 Application Error Handling Strategy
The C++ exception features are designed to cleanly separate the point 

in a program where an error is detected from the point where it may 

be handled, and this concept fits very well with both synchronous and 
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asynchronous errors in SYCL. Through the throw and catch mechanisms, 

a hierarchy of handlers can be defined which can be important in 

production applications.

Building an application that can handle errors in a consistent 

and reliable way requires a strategy up front and a resulting software 

architecture built for error management. C++ provides flexible tools to 

implement many alternative strategies, but such architecture is beyond the 

scope of this chapter. There are many books and other references devoted 

to this topic, so we encourage looking to them for full coverage of C++ error 

management strategies.

This said, error detection and reporting doesn’t always need to 

be production-scale. Errors in a program can be reliably detected and 

reported through minimal code if the goal is simply to detect errors 

during execution and to report them (but not necessarily to recover from 

them). The following sections cover first what happens if we ignore error 

handling and do nothing (the default behavior isn’t all that bad!), followed 

by recommended error reporting that is simple to implement in basic 

applications.

 Ignoring Error Handling
C++ and SYCL are designed to tell us that something went wrong even 

when we don’t handle errors explicitly. The default result of unhandled 

synchronous or asynchronous errors is abnormal program termination 

which an operating system should tell us about. The following two 

examples mimic the behavior that will occur if we do not handle a 

synchronous and an asynchronous error, respectively.

Figure 5-4 shows the result of an unhandled C++ exception, which 

could be an unhandled SYCL synchronous error, for example. We can 

use this code to test what a particular operating system will report in 

such a case.
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#include <iostream>

class something_went_wrong {};

int main() {
std::cout << "Hello\n";

throw(something_went_wrong{});
}

Example output:
Hello
terminate called after throwing an instance of 'something_went_wrong'
Aborted

Figure 5-4. Unhandled exception in C++

Figure 5-5 shows example output from std::terminate being called, 

which will be the result of an unhandled SYCL asynchronous error in 

our application. We can use this code to test what a particular operating 

system will report in such a case.

#include <iostream>

int main() {
std::cout << "Hello\n";

std::terminate();
}

Example output:
Hello
terminate called without an active exception
Aborted

Figure 5-5. std::terminate is called when a SYCL asynchronous 
exception isn’t handled

Although we should probably handle errors in our programs, uncaught 

exceptions will eventually be caught and the program terminated, which is 

better than exceptions being silently lost!
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 Synchronous Error Handling
We keep this section very short because SYCL synchronous errors are just 

C++ exceptions. Most of the additional error mechanisms added in SYCL 

relate to asynchronous errors which we cover in the next section, but 

synchronous errors are important because implementations try to detect 

and report as many errors synchronously as possible, since they are easier 

to reason about and handle.

Synchronous errors defined by SYCL are of type sycl::exception, a 

class derived from std::exception, which allows us to catch the SYCL 

errors specifically though a try-catch structure such as what we see in 

Figure 5-6.

try {
// Do some SYCL work

} catch (sycl::exception &e) {
// Do something to output or handle the exception
std::cout << "Caught sync SYCL exception: " << e.what()

<< "\n";
return 1;

}

Figure 5-6. Pattern to catch sycl::exception specifically

On top of the C++ error handling mechanisms, SYCL adds a 

sycl::exception type for the exceptions thrown by the runtime. 

Everything else is standard C++ exception handling, so will be familiar to 

most developers.

A slightly more complete example is provided in Figure 5-7, where 

additional classes of exception are handled.
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#include <sycl/sycl.hpp>
using namespace sycl;

int main() {
try {

buffer<int> b{range{16}};

// ERROR: Create sub-buffer larger than size of parent
// buffer. An exception is thrown from within the buffer
// constructor.
buffer<int> b2(b, id{8}, range{16});

} catch (sycl::exception &e) {
// Do something to output or handle the exception
std::cout << "Caught synchronous SYCL exception: "

<< e.what() << "\n";
return 1;

} catch (std::exception &e) {
std::cout << "Caught std exception: " << e.what()

<< "\n";
return 2;

} catch (...) {
std::cout << "Caught unknown exception\n";
return 3;

}

return 0;
}

Example output:
Caught synchronous SYCL exception: Requested sub-buffer
size exceedsthe size of the parent buffer -30
(PI_ERROR_INVALID_VALUE)

Figure 5-7. Pattern to catch exceptions from a block of code

 Asynchronous Error Handling
Asynchronous errors are detected by the SYCL runtime (or an underlying 

backend), and the errors occur independently of execution of commands 

in the host program. The errors are stored in lists internal to the SYCL 
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runtime and only released for processing at specific points that the 

programmer can control. There are two topics that we need to discuss to 

cover handling of asynchronous errors:

 1. What the handler should do, when invoked on 

outstanding asynchronous errors to process

 2. When the asynchronous handler is invoked

 The Asynchronous Handler
The asynchronous handler is a function that the application defines, which 

is registered with SYCL contexts and/or queues. At the times defined by the 

next section, if there are any unprocessed asynchronous exceptions that 

are available to be handled, then the asynchronous handler is invoked by 

the SYCL runtime and passed a list of these exceptions.

The asynchronous handler is passed to a context or queue constructor 

as a std::function and can be defined in ways such as a regular function, 

lambda expression, or function object, depending on our preference. The 

handler must accept a sycl::exception_list argument, such as in the 

example handler shown in Figure 5-8.

// Our simple asynchronous handler function
auto handle_async_error = [](exception_list elist) {
for (auto& e : elist) {

try {
std::rethrow_exception(e);

} catch (sycl::exception& e) {
std::cout << "ASYNC EXCEPTION!!\n";
std::cout << e.what() << "\n";

}
}

};

Figure 5-8. Example asynchronous handler implementation defined 
as a lambda
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In Figure 5-8, the std::rethrow_exception followed by catch of 

a specific exception type provides filtering of the type of exception, in 

this case to only sycl::exception. We can also use alternative filtering 

approaches in C++ or just choose to handle all exceptions regardless of 

the type.

The handler is associated with a queue or context (low-level detail 

covered more in Chapter 6) at construction time. For example, to register 

the handler defined in Figure 5-8 with a queue that we are creating, we 

could write

queue my_queue{ gpu_selector_v, handle_async_error };

Likewise, to register the handler defined in Figure 5-8 with a context 

that we are creating, we could write

context my_context{ handle_async_error };

Most applications do not need contexts to be explicitly created or 

managed (they are created behind the scenes for us automatically), so 

if an asynchronous handler is going to be used, most developers should 

associate such handlers with queues that are being constructed for specific 

devices (and not explicit contexts).

In defining asynchronous handlers, most developers should define 
them on queues unless already explicitly managing contexts for other 
reasons.

If an asynchronous handler is not defined for a queue or the queue’s 

parent context and an asynchronous error occurs on that queue (or in the 

context) that must be processed, then the default asynchronous handler 

is invoked. The default handler operates as if it was coded as shown in 

Figure 5-9.
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// Our simple asynchronous handler function
auto handle_async_error = [](exception_list elist) {
for (auto& e : elist) {

try {
std::rethrow_exception(e);

} catch (sycl::exception& e) {
// Print information about the asynchronous exception

} catch (...) {
// Print information about non-sycl::exception

}
}

// Terminate abnormally to make clear to user that
// something unhandled happened
std::terminate();

};

Example output:
Device : Intel(R) Xeon(R) Gold 6128 CPU @ 3.40GHz
terminate called without an active exception
Aborted

Figure 5-9. Example of how the default asynchronous 
handler behaves

The default handler should display some information to the user on 

any errors in the exception list and then will end the application through 

std::terminate, which should cause the operating system to report that 

termination was abnormal.

What we put within an asynchronous handler is up to us. It can range 

from logging of an error to application termination to recovery of the 

error condition so that an application can continue executing normally. 

The common case is to report any details of the error available by calling 

sycl::exception::what(), followed by termination of the application.

Although it’s up to us to decide what an asynchronous handler does 

internally, a common mistake is to print an error message (that may be 

missed in the noise of other messages from the program), followed by 

completion of the handler function. Unless we have error management 

principles in place that allow us to recover a known program state and 
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to be confident that it’s safe to continue execution, we should consider 

terminating the application within our asynchronous handler function(s). 

This reduces the chance that incorrect results will appear from a program 

where an error was detected, but where the application was inadvertently 

allowed to continue with execution regardless. In many programs, 

abnormal termination is the preferred result once we have detected an 

asynchronous exception.

Consider terminating applications within an asynchronous handler, 
after outputting information about the error, if comprehensive error 
recovery and management mechanisms are not in place.

 Invocation of the Handler
The asynchronous handler is called by the runtime at specific times. Errors 

aren’t reported immediately as they occur because management of errors 

and safe application programming (particularly multithreaded) would 

become more difficult and expensive (e.g., additional synchronizations 

between host and device) if that was the case. The asynchronous handler 

is instead called at the following very specific times:

 1. When the host program calls queue::throw_

asynchronous() on a specific queue

 2. When the host program calls queue::wait_and_

throw() on a specific queue

 3. When the host program calls event::wait_and_

throw() on a specific event

 4. When a queue is destroyed

 5. When a context is destroyed
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Methods 1–3 provide a mechanism for a host program to control 

when asynchronous exceptions are handled, so that thread safety and 

other details specific to an application can be managed. They effectively 

provide controlled points at which asynchronous exceptions enter the 

host program control flow and can be processed almost as if they were 

synchronous errors.

If a user doesn’t explicitly call one of the methods 1–3, then 

asynchronous errors are commonly reported during program teardown 

when queues and contexts are destroyed. This is often enough to signal to 

a user that something went wrong and that program results shouldn’t be 

trusted.

Relying on error detection during program teardown doesn’t work 

in all cases, though. For example, if a program will only terminate when 

some algorithm convergence criteria are achieved and if those criteria 

are only achievable by successful execution of device kernels, then an 

asynchronous exception may signal that the algorithm will never converge 

and begin the teardown (where the error would be noticed). In these cases, 

and also in production applications where more complete error handling 

strategies are in place, it makes sense to invoke throw_asynchronous() or 

wait_and_throw() at regular and controlled points in the program (e.g., 

before checking whether algorithm convergence has occurred).

 Errors on a Device
The error detection and handling mechanisms discussed in this chapter 

have been host-based. They are mechanisms through which the host 

program can detect and deal with something that may have gone wrong 

either in the host program or potentially during execution of kernels on 

devices. What we have not covered is how to signal, from within the device 

code that we write, that something has gone wrong. This omission is not a 

mistake, but quite intentional.
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SYCL explicitly disallows C++ exception handling mechanisms (such 

as throw) within device code, because there are performance costs for 

some types of devices that we usually don’t want to pay. If we detect that 

something has gone wrong within our device code, we should signal the 

error using existing non-exception-based techniques. For example, we 

could write to a buffer that logs errors or returns some invalid result from 

our numeric calculation that we define to mean that an error occurred. 

The right strategy in these cases is very application specific.

 Summary
In this chapter, we introduced synchronous and asynchronous errors, 

covered the default behavior to expect if we do nothing to manage 

errors that might occur, and covered the mechanisms used to handle 

asynchronous errors at controlled points in our application. Error 

management strategies are a major topic in software engineering and a 

significant percentage of the code written in many applications. SYCL 

integrates with the C++ knowledge that we already have when it comes 

to error handling and provides flexible mechanisms to integrate with 

whatever our preferred error management strategy is.
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Open Access  This chapter is licensed under the terms of 

the Creative Commons Attribution 4.0 International License 

(https://creativecommons.org/licenses/by/4.0/), which permits use, 

sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and 

the source, provide a link to the Creative Commons license and indicate if 

changes were made.

The images or other third party material in this chapter are included 

in the chapter’s Creative Commons license, unless indicated otherwise 

in a credit line to the material. If material is not included in the chapter’s 

Creative Commons license and your intended use is not permitted by 

statutory regulation or exceeds the permitted use, you will need to obtain 

permission directly from the copyright holder.
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CHAPTER 6

Unified Shared 
Memory
The next two chapters provide a deeper look into how to manage data. 

There are two different approaches that complement each other: Unified 

Shared Memory (USM) and buffers. USM exposes a different level of 

abstraction for memory than buffers—USM uses pointers, and buffers are 

a higher-level interface. This chapter focuses on USM. The next chapter 

will focus on buffers.

Unless we specifically know that we want to use buffers, USM is a good 

place to start. USM is a pointer-based model that allows memory to be 

read and written through regular C++ pointers.

 Why Should We Use USM?
Since USM is based on C++ pointers, it is a natural place to start for 

existing pointer-based C++ codes. Existing functions that take pointers 

as parameters continue to work without modification. In the majority of 

cases, the only changes required are to replace existing calls to malloc or 

new with USM-specific allocation routines that we will discuss later in this 

chapter.
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 Allocation Types
While USM is based on C++ pointers, not all pointers are created equal. USM 

defines three different types of allocations, each with unique semantics. 

A device may not support all types (or even any type) of USM allocation. 

We will learn how to query what a device supports later. The three types of 

allocations and their characteristics are summarized in Figure 6-1.

Figure 6-1. USM allocation types

 Device Allocations
This first type of allocation is what we need in order to have a pointer into 

a device’s attached memory, such as (G)DDR or HBM. Device allocations 

can be read from or written to by kernels running on a specific device, 

but they cannot be directly accessed from code executing on the host 

(and usually not by devices either). Trying to access a device allocation 

on the host can result in either incorrect data or a program crashing due 

to an error. We must copy data between host and device using the explicit 

USM memcpy mechanisms, which specify how much data must be copied 

between two places, that will be covered later in this chapter.
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 Host Allocations
This second type of allocation is easier to use than device allocations since 

we do not have to manually copy data between the host and the device. 

Host allocations are allocations in host memory that are accessible on both 

the host and the device. These allocations, while accessible on the device, 

cannot migrate to the device’s attached memory. Instead, kernels may 

remotely read from or write to this memory, often over a slower bus such as 

PCI Express (or really not differently at all if it’s a CPU device or integrated 

GPU device). This trade-off between convenience and performance is 

something that we must take into consideration. Despite the higher access 

costs that host allocations can incur, there are still valid reasons to use 

them. Examples include rarely accessed data, large data sets that cannot 

fit inside device-attached memory, or that a device may not support 

alternatives like shared allocations which are described next.

 Shared Allocations
The final type of allocation combines attributes of both device and host 

allocations, combining the programmer convenience of host allocations 

with the greater performance afforded by device allocations. Like host 

allocations, shared allocations are accessible on both the host and device. 

The difference between them is that shared allocations are free to migrate 

between host memory and device-attached memory, automatically, 

without our intervention. If an allocation has migrated to the device, 

any kernel executing on that device accessing it will do so with greater 

performance than remotely accessing it from the host. However, shared 

allocations do not give us all the benefits without any drawbacks.

Automatic migration can be implemented in a variety of ways. No 

matter which way the runtime chooses to implement shared allocations, 

they usually pay a price of increased latency. With device allocations, we 

know exactly how much memory needs to be copied and can schedule the 
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copy to begin as early as possible. The automatic migration mechanisms 

cannot see the future and, in some cases, do not begin moving data until a 

kernel tries to access it. The kernel must then wait, or block, until the data 

movement has completed before it can continue executing. In other cases, 

the runtime may not know exactly how much data the kernel will access 

and might conservatively move a larger amount of data than is required, 

also increasing latency for the kernel.

We should also note that while shared allocations can migrate, it does 

not necessarily mean that all implementations of SYCL will migrate them. 

We expect most implementations to implement shared allocations with 

migration, but some devices may prefer to implement them identically to 

host allocations. In such an implementation, the allocation is still visible 

on both host and device, but we may not see the performance gains that a 

migrating implementation could provide.

 Allocating Memory
USM allows us to allocate memory in a variety of different ways that cater 

to different needs and preferences. However, before we go over all the 

methods in greater detail, we should discuss how USM allocations differ 

from regular C++ allocations.

 What Do We Need to Know?
Regular C++ programs can allocate memory in multiple ways: new, malloc, 

or allocators. No matter which syntax we prefer, memory allocation is 

ultimately performed by the system allocator in the host operating system. 

When we allocate memory in C++, the only concerns are “How much 

memory do we need?” and “How much memory is available to allocate?” 

However, USM requires extra information before an allocation can be 

performed.

Chapter 6  Unified Shared MeMory



157

First, USM allocation needs to specify which type of allocation is 

desired: device, host, or shared. It is important to request the right type 

of allocation in order to obtain the desired behavior. Next, every USM 

allocation must specify a context object against which the allocation will 

be made. Most of the examples in the book instead pass a queue object 

(which then provides the context). The context object hasn’t had a lot of 

discussion in this book up to this point, so it’s worth saying a little about 

it here. A context represents a device or set of devices on which we can 

execute kernels. We can think of a context as a convenient place for the 

runtime to stash some state about what it’s doing. Programmers are not 

likely to directly interact with contexts outside of passing them around 

in most SYCL programs. We do offer a few tips regarding contexts in 

Chapter 13.

USM allocations are not guaranteed to be usable across different 

contexts—it is important that all USM allocations, queues, and kernels 

share the same context object. Typically, we can obtain this context from 

the queue being used to submit work to a device.

Finally, device allocations (and some shared allocations) also require 

that we specify which device will provide the memory for the allocation. 

This is important since we do not want to oversubscribe the memory of 

our devices (unless the device is able to support this—we will say more 

about that later in the chapter when we discuss migration of data). USM 

allocation routines can be distinguished from their C++ analogues by the 

addition of these extra parameters.

 Multiple Styles
Sometimes, trying to please everyone with a single option proves to be an 

impossible task, just as some people prefer coffee over tea, or emacs over 

vi. If we ask programmers what an allocation interface should look like, 

we will get several different answers back. USM embraces this diversity of 

Chapter 6  Unified Shared MeMory



158

choice and provides several different flavors of allocation interfaces. These 

different flavors are C-style, C++-style, and C++ allocator–style. We will now 

discuss each and point out their similarities and differences.

 Allocations à la C

The first style of allocation functions (listed in Figure 6-2, later used 

in examples shown in Figures 6-6 and 6-7) is modeled after memory 

allocation in C: malloc functions that take a number of bytes to allocate 

and return a void * pointer. This style of function is type agnostic. We 

must specify the total number of bytes to allocate, which means if we want 

to allocate N objects of type X, one must ask for N * sizeof(X) total bytes. 

The returned pointer is of type void *, which means that we must then 

cast it to an appropriate pointer to type X. This style is very simple but can 

be verbose due to the size calculations and typecasting required.

We can further divide this style of allocation into two categories: 

named functions and single function. The distinction between these two 

flavors is how we specify the desired type of USM allocation. With the 

named functions (malloc_device, malloc_host, and malloc_shared), 

the type of USM allocation is encoded in the function name. The single 

function malloc requires the type of USM allocation to be specified as an 

additional parameter. Neither flavor is better than the other, and the choice 

of which to use is governed by our preference.

We cannot move on without briefly mentioning alignment. Each 

version of malloc also has an aligned_alloc counterpart. The malloc 

functions return memory aligned to the default behavior of our device. On 

success it will return a legal pointer with a valid alignment, but there may 

be cases where we would prefer to manually specify an alignment. In these 

cases, we should use one of the aligned_alloc variants that also require 

us to specify the desired alignment for the allocation. Legal alignments 

are powers of two. It’s worth noting that on many devices, allocations are 
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maximally aligned to correspond to features of the hardware, so while we 

may ask for allocations to be 4-, 8-, 16-, or 32-byte aligned, we might in 

practice see larger alignments that give us what we ask for and then some.

// Named Functions
void *malloc_device(size_t size, const device &dev, 

const context &ctxt);
void *malloc_device(size_t size, const queue &q);
void *aligned_alloc_device(size_t alignment, size_t size, 

const device &dev, 
const context &ctxt);

void *aligned_alloc_device(size_t alignment, size_t size, 
const queue &q);

void *malloc_host(size_t size, const context &ctxt);
void *malloc_host(size_t size, const queue &q);
void *aligned_alloc_host(size_t alignment, size_t size, 

const context &ctxt);
void *aligned_alloc_host(size_t alignment, size_t size, 

const queue &q);

void *malloc_shared(size_t size, const device &dev, 
const context &ctxt);

void *malloc_shared(size_t size, const queue &q);
void *aligned_alloc_shared(size_t alignment, size_t size, 

const device &dev, 
const context &ctxt);

void *aligned_alloc_shared(size_t alignment, size_t size, 
const queue &q);

// Single Function
void *malloc(size_t size, const device &dev, 

const context &ctxt, usm::alloc kind);
void *malloc(size_t size, const queue &q, usm::alloc kind);
void *aligned_alloc(size_t alignment, size_t size, 

const device &dev, const context &ctxt, 
usm::alloc kind);

void *aligned_alloc(size_t alignment, size_t size, 
const queue &q, usm::alloc kind);

Figure 6-2. C-style USM allocation functions
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 Allocations à la C++

The next flavor of USM allocation functions (listed in Figure 6-3) is very 

similar to the first but with more of a C++ look and feel. We once again 

have both named and single function versions of the allocation routines as 

well as our default and user-specified alignment versions. The difference 

is that now our functions are C++ templated functions that allocate Count 

objects of type T and return a pointer of type T *. Taking advantage of 

modern C++ simplifies things, since we no longer need to manually 

calculate the total size of the allocation in bytes or cast the returned 

pointer to the appropriate type. This also tends to yield a more compact 

and less error-prone expression in code. However, we should note that 

unlike “new” in C++, malloc-style interfaces do not invoke constructors for 

the objects being allocated—we are simply allocating enough bytes to fit 

that type.

This flavor of allocation is a good place to start for new codes written 

with USM in mind. The previous C-style is a good starting point for existing 

C++ codes that already make heavy use of C or C++ malloc, to which we 

will add the use of USM.
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// Named Functions
template <typename T> 
T *malloc_device(size_t Count, const device &Dev, 

const context &Ctxt);
template <typename T> 
T *malloc_device(size_t Count, const queue &Q);
template <typename T> 
T *aligned_alloc_device(size_t Alignment, size_t Count, 

const device &Dev, 
const context &Ctxt);

template <typename T> 
T *aligned_alloc_device(size_t Alignment, size_t Count, 

const queue &Q);

template <typename T> 
T *malloc_host(size_t Count, const context &Ctxt);
template <typename T> 
T *malloc_host(size_t Count, const queue &Q);
template <typename T> 
T *aligned_alloc_host(size_t Alignment, size_t Count, 

const context &Ctxt);
template <typename T> 
T *aligned_alloc_host(size_t Alignment, size_t Count, 

const queue &Q);

template <typename T> 
T *malloc_shared(size_t Count, const device &Dev, 

const context &Ctxt);
template <typename T> 
T *malloc_shared(size_t Count, const queue &Q);
template <typename T> 
T *aligned_alloc_shared(size_t Alignment, size_t Count, 

const device &Dev, 
const context &Ctxt);

template <typename T> 
T *aligned_alloc_shared(size_t Alignment, size_t Count, 

const queue &Q);

// Single Function
template <typename T> 
T *malloc(size_t Count, const device &Dev, 

const context &Ctxt, usm::alloc Kind);
template <typename T> 
T *malloc(size_t Count, const queue &Q, usm::alloc Kind);
template <typename T> 
T *aligned_alloc(size_t Alignment, size_t Count, 

const device &Dev, const context &Ctxt, 
usm::alloc Kind);

template <typename T> 
T *aligned_alloc(size_t Alignment, size_t Count, 

const queue &Q, usm::alloc Kind);

Figure 6-3. C++-style USM allocation functions
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 C++ Allocators

The final flavor of USM allocation (Figure 6-4) embraces modern C++ 

even more than the previous flavor. This flavor is based on the C++ 

allocator interface, which defines objects that are used to perform 

memory allocations either directly or indirectly inside a container such as 

std::vector. This allocator flavor is most useful if our code makes heavy 

use of container objects that can hide the details of memory allocation and 

deallocation from the user, simplifying code and reducing the opportunity 

for bugs.
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template <typename T, usm::alloc AllocKind, 
size_t Alignment = 0> 

class usm_allocator { 
public:
using value_type = T; 
using propagate_on_container_copy_assignment = 

std::true_type;
using propagate_on_container_move_assignment = 

std::true_type;
using propagate_on_container_swap = std::true_type; 

public:
template <typename U> 
struct rebind { 
typedef usm_allocator<U, AllocKind, Alignment> other;

};

usm_allocator() = delete; 
usm_allocator(const context& syclContext, 

const device& syclDevice, 
const property_list& propList = {});

usm_allocator(const queue& syclQueue, 
const property_list& propList = {});

usm_allocator(const usm_allocator& other);
usm_allocator(usm_allocator&&) noexcept; 
usm_allocator& operator=(const usm_allocator&);
usm_allocator& operator=(usm_allocator&&);

template <class U> 
usm_allocator(usm_allocator<U, AllocKind, 

Alignment> const&) noexcept; 

/// Allocate memory
T* allocate(size_t count);

/// Deallocate memory
void deallocate(T* Ptr, size_t count);

/// Equality Comparison
///
/// Allocators only compare equal if they are of the same
/// USM kind, alignment, context, and device
template <class U, usm::alloc AllocKindU, 

size_t AlignmentU> 
friend bool operator==( 

const usm_allocator<T, AllocKind, Alignment>&, 
const usm_allocator<U, AllocKindU, AlignmentU>&);

/// Inequality Comparison
/// Allocators only compare unequal if they are not of the
/// same USM kind, alignment, context, or device
template <class U, usm::alloc AllocKindU, 

size_t AlignmentU> 
friend bool operator!=( 

const usm_allocator<T, AllocKind, Alignment>&, 
const usm_allocator<U, AllocKindU, AlignmentU>&);

};

Figure 6-4. C++ allocator–style USM allocation functions
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 Deallocating Memory
Whatever a program allocates must eventually be deallocated. USM 

defines a free method to deallocate memory allocated by one of the 

malloc or aligned_malloc functions. This free method also takes the 

context in which the memory was allocated as an extra parameter. The 

queue can also be substituted for the context. If memory was allocated 

with a C++ allocator object, it should also be deallocated using that object.

#include <sycl/sycl.hpp>
using namespace sycl; 
constexpr int N = 42; 

int main() {
queue q;

// Allocate N floats

// C-style
float *f1 = static_cast<float *>(malloc_shared( 

N * sizeof(float), q.get_device(), q.get_context()));

// C++-style
float *f2 = malloc_shared<float>(N, q);

// C++-allocator-style
usm_allocator<float, usm::alloc::shared> alloc(q);
float *f3 = alloc.allocate(N);

// Free our allocations
free(f1, q.get_context());
free(f2, q);
alloc.deallocate(f3, N);

return 0; 
} 

Figure 6-5. Three styles for allocation
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 Allocation Example
In Figure 6-5, we show how to perform the same allocation using the 

three styles just described. In this example, we allocate N single-precision 

floating-point numbers as shared allocations. The first allocation f1 uses 

the C-style void * returning malloc routines. For this allocation, we 

explicitly pass the device and context that we obtain from the queue. We 

must also cast the result back to a float *. The second allocation f2 does 

the same thing but using the C++-style templated malloc. Since we pass 

the type of our elements, float, to the allocation routine, we only need to 

specify how many floats we want to allocate, and we do not need to cast 

the result. We also use the form that takes the queue instead of the device 

and context, yielding a very simple and compact statement. The third 

allocation f3 uses the USM C++ allocator class. We instantiate an allocator 

object of the proper type and then perform the allocation using that object. 

Finally, we show how to properly deallocate each allocation.

 Data Management
Now that we understand how to allocate memory using USM, we will 

discuss how data is managed. We can look at this in two pieces: data 

initialization and data movement.

 Initialization
Data initialization concerns filling our memory with values before we 

perform computations on it. One example of a common initialization 

pattern is to fill an allocation with zeroes before it is used. If we were to do 

this using USM allocations, we could do it in a variety of ways. First, we 

could write a kernel to do this. If our data set is particularly large or the 

initialization requires complex calculations, this is a reasonable way to 
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go since the initialization can be performed in parallel (and it makes the 

initialized data ready to go on the device). Second, we could implement 

this as a loop in host code over all the elements of an allocation that sets 

each to zero. However, there is potentially a problem with this approach. 

A loop would work fine for host and shared allocations since these are 

accessible on the host. However, since device allocations are not accessible 

on the host, a loop in host code would not be able to write to them. This 

brings us to the third option.

The memset function is designed to efficiently implement this 

initialization pattern. USM provides a version of memset that is a member 

function of both the handler and queue classes. It takes three arguments: 

the pointer representing the base address of the memory we want to set, a 

byte value representing the byte pattern to set, and the number of bytes to 

set to that pattern. Unlike a loop on the host, memset happens in parallel 

and also works with device allocations.

While memset is a useful operation, the fact that it only allows us to 

specify a byte pattern to fill into an allocation is rather limiting. USM also 

provides a fill method (as a member of the handler and queue classes) 

that lets us fill memory with an arbitrary pattern. The fill method is a 

function templated on the type of the pattern we want to write into the 

allocation. Template it with an int, and we can fill an allocation with the 

32-bit integer number “42”. Similar to memset, fill takes three arguments: 

the pointer to the base address of the allocation to fill, the value to fill, and 

the number of times we want to write that value into the allocation.

 Data Movement
Data movement is probably the most important aspect of USM to 

understand. If the right data is not in the right place at the right time, our 

program will produce incorrect results. USM defines two strategies that we 
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can use to manage data: explicit and implicit. The choice of which strategy 

we want to use is related to the types of USM allocations our hardware 

supports or that we want to use.

 Explicit

The first strategy USM offers is explicit data movement (Figure 6-6). 

Here, we must explicitly copy data between the host and device. We can 

do this by invoking the memcpy method, found on both the handler and 

queue classes. The memcpy method takes three arguments: a pointer to the 

destination memory, a pointer to the source memory, and the number of 

bytes to copy between host and device. We do not need to specify in which 

direction the copy is meant to happen—this is implicit in the source and 

destination pointers.

The most common usage of explicit data movement is copying to 

or from device allocations in USM since they are not accessible on the 

host. Having to insert explicit copying of data does require effort on our 

part. Additionally, it can be a source of bugs: copies could be accidentally 

omitted, an incorrect amount of data could be copied, or the source or 

destination pointer could be incorrect.

However, explicit data movement does not only come with 

disadvantages. It gives us large advantage: total control over data 

movement. Control over both how much data is copied and when the data 

gets copied is very important for achieving the best performance in some 

applications. Ideally, we can overlap computation with data movement 

whenever possible, ensuring that the hardware runs with high utilization.

The other types of USM allocations, host and shared, are both 

accessible on host and device and do not need to be explicitly copied to 

the device. This leads us to the other strategy for data movement in USM.
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#include <array>
#include <sycl/sycl.hpp>
using namespace sycl; 
constexpr int N = 42; 

int main() {
queue q;

std::array<int, N> host_array;
int* device_array = malloc_device<int>(N, q);
for (int i = 0; i < N; i++) host_array[i] = N;

q.submit([&](handler& h) {
// copy host_array to device_array
h.memcpy(device_array, &host_array[0], N * sizeof(int));

});
q.wait(); // needed for now (we learn a better way later)

q.submit([&](handler& h) {
h.parallel_for(N, [=](id<1> i) { device_array[i]++; });

});
q.wait(); // needed for now (we learn a better way later)

q.submit([&](handler& h) {
// copy device_array back to host_array
h.memcpy(&host_array[0], device_array, N * sizeof(int));

});
q.wait(); // needed for now (we learn a better way later)

free(device_array, q);
return 0; 

} 

Figure 6-6. USM explicit data movement example
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 Implicit

The second strategy that USM provides is implicit data movement 

(example usage shown in Figure 6-7). In this strategy, data movement 

happens implicitly, that is, without requiring input from us. With implicit 

data movement, we do not need to insert calls to memcpy since we can 

directly access the data through the USM pointers wherever we want to use 

it. Instead, it becomes the job of the system to ensure that the data will be 

available in the correct location when it is being used.

With host allocations, one could argue whether they really cause 

data movement. Since, by definition, they always remain pointers to host 

memory, the memory represented by a given host pointer cannot be stored 

on the device. However, data movement does occur as host allocations 

are accessed on the device. Instead of the memory being migrated to the 

device, the values we read or write are transferred over the appropriate 

interface to or from the kernel. This can be useful for streaming kernels 

where the data does not need to remain resident on the device.

Implicit data movement mostly concerns USM shared allocations. 

This type of allocation is accessible on both host and device and, more 

importantly, can migrate between host and device. The key point is that 

this migration happens automatically, or implicitly, simply by accessing 

the data in a different location. Next, we will discuss several things to think 

about when it comes to data migration for shared allocations.
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Migration

With explicit data movement, we control how much data movement 

occurs. With implicit data movement, the system handles this for us, but it 

might not do it as efficiently. The SYCL runtime is not an oracle—it cannot 

predict what data an application will access before it does it. Additionally, 

pointer analysis remains a very difficult problem for compilers, which 

may not be able to accurately analyze and identify every allocation that 

might be used inside a kernel. Consequently, implementations of the 

mechanisms for implicit data movement may make different decisions 

based on the capabilities of the device that supports USM, which affects 

both how shared allocations can be used and how they perform.

If a device is very capable, it might be able to migrate memory on 

demand. In this case, data movement would occur after the host or 

#include <sycl/sycl.hpp>
using namespace sycl; 
constexpr int N = 42; 

int main() {
queue q;

int* host_array = malloc_host<int>(N, q);
int* shared_array = malloc_shared<int>(N, q);
for (int i = 0; i < N; i++) host_array[i] = i;

q.submit([&](handler& h) {
h.parallel_for(N, [=](id<1> i) {

// access shared_array and host_array on device
shared_array[i] = host_array[i] + 1; 

});
});
q.wait();

free(shared_array, q);
free(host_array, q);
return 0; 

} 

Figure 6-7. USM implicit data movement example
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device attempts to access an allocation that is not currently in the desired 

location. On-demand data greatly simplifies programming as it provides 

the desired semantic that a USM shared pointer can be accessed anywhere 

and just work. If a device cannot support on-demand migration  

(Chapter 12 explains how to query a device for capabilities), it might still 

be able to guarantee the same semantics with extra restrictions on how 

shared pointers can be used.

The restricted form of USM shared allocations governs when and 

where shared pointers may be accessed and how large shared allocations 

can be. If a device cannot migrate memory on demand, that means the 

runtime must be conservative and assume that a kernel might access 

any allocation in its device-attached memory. This brings a couple of 

consequences.

First, it means that the host and device should not try to access a 

shared allocation at the same time. Applications should instead alternate 

access in phases. The host can access an allocation, then a kernel can 

compute using that data, and finally the host can read the results. Without 

this restriction, the host is free to access different parts of an allocation 

than a kernel is currently touching. Such concurrent access typically 

happens at the granularity of a device memory page. The host could access 

one page, while the device accesses another. Atomically accessing the 

same piece of data will be covered in Chapter 19. Programmers may query 

whether a device is limited by this restriction, and we will learn more 

about the device query mechanism later.

The next consequence of this restricted form of shared allocations is 

that allocations are limited by the total amount of memory attached to a 

device. If a device cannot migrate memory on demand, it cannot migrate 

data to the host to make room to bring in different data. If a device does 

support on-demand migration, it is possible to oversubscribe its attached 

memory, allowing a kernel to compute on more data than the device’s 

memory could normally contain, although this flexibility may come with a 

performance penalty due to extra data movement.
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Fine-Grained Control

When a device supports on-demand migration of shared allocations, data 

movement occurs after memory is accessed in a location where it is not 

currently resident. However, a kernel can stall while waiting for the data 

movement to complete. The next statement it executes may even cause 

more data movement to occur and introduce additional latency to the 

kernel execution.

SYCL gives us a way to modify the performance of the automatic 

migration mechanisms. It does this by defining two functions: prefetch 

and mem_advise. Figure 6-8 shows a simple utilization of each. These 

functions let us give hints to the runtime about how kernels will access 

data so that the runtime can choose to start moving data before a kernel 

tries to access it. Note that this example uses the queue shortcut methods 

that directly invoke parallel_for on the queue object instead of inside a 

lambda passed to the submit method (a command group).
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#include <sycl/sycl.hpp>
using namespace sycl; 

// Appropriate values depend on your HW
constexpr int BLOCK_SIZE = 42; 
constexpr int NUM_BLOCKS = 2500; 
constexpr int N = NUM_BLOCKS * BLOCK_SIZE;

int main() {
queue q;
int *data = malloc_shared<int>(N, q);
int *read_only_data = malloc_shared<int>(BLOCK_SIZE, q);

for (int i = 0; i < N; i++) {
data[i] = -i;

  } 

// Never updated after initialization
for (int i = 0; i < BLOCK_SIZE; i++) {

read_only_data[i] = i;
  } 

// Mark this data as "read only" so the runtime can copy
// it to the device instead of migrating it from the host.
// Real values will be documented by your backend.
int HW_SPECIFIC_ADVICE_RO = 0; 
q.mem_advise(read_only_data, BLOCK_SIZE,

HW_SPECIFIC_ADVICE_RO);
event e = q.prefetch(data, BLOCK_SIZE * sizeof(int));

for (int b = 0; b < NUM_BLOCKS; b++) {
q.parallel_for(range{BLOCK_SIZE}, e, [=](id<1> i) {

data[b * BLOCK_SIZE + i] += read_only_data[i];
});
if ((b + 1) < NUM_BLOCKS) {

// Prefetch next block
e = q.prefetch(data + (b + 1) * BLOCK_SIZE,

BLOCK_SIZE * sizeof(int));
    } 
  } 
q.wait();

free(data, q);
free(read_only_data, q);
return 0; 

} 

Figure 6-8. Fine-grained control via prefetch and mem_advise
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The simplest way for us to do this is by invoking prefetch. This 

function is invoked as a member function of the handler or queue class 

and takes a base pointer and number of bytes. This lets us inform the 

runtime that certain data is about to be used on a device so that it can 

eagerly start migrating it. Ideally, we would issue these prefetch hints early 

enough such that by the time the kernel touches the data, it is already 

resident on the device, eliminating the latency we previously described.

The other function provided by SYCL is mem_advise. This function 

allows us to provide device-specific hints about how memory will be used 

in kernels. An example of such possible advice that we could specify is that 

the data will only be read in a kernel, not written. In that case, the system 

could realize it could copy, or duplicate, the data on the device, so that the 

host’s version does not need to be updated after the kernel is complete. 

However, the advice passed to mem_advise is specific to a particular device, 

so be sure to check the documentation for hardware before using this 

function.

 Queries
Finally, not all devices support every feature of USM. We should not 

assume that all USM features are available if we want our programs to 

be portable across different devices. USM defines several things that we 

can query. These queries can be separated into two categories: pointer 

queries and device capability queries. Figure 6-9 shows a simple utilization 

of each.

The pointer queries in USM answer two questions. The first question 

is “What type of USM allocation does this pointer point to?” The get_

pointer_type function takes a pointer and SYCL context and returns 

a result of type usm::alloc, which can have four possible values: host, 

device, shared, or unknown. The second question is “What device was this 

USM pointer allocated against?” We can pass a pointer and a context to the 
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function get_pointer_device and get back a device object. This is mostly 

used with device or shared USM allocations since it does not make much 

sense with host allocations. The SYCL specification states that when used 

with host allocations, the first device in the context is returned—this is 

not for any particular reason other than to avoid throwing an exception, 

which would seem a bit odd for code that may be templated on USM 

allocation type.

The second type of query provided by USM concerns the capabilities 

of a device. USM has its own list of device aspects that can be queried by 

calling has on a device object. These queries can be used to test which 

types of USM allocations are supported by a device. Additionally, we can 

query if shared allocations may be concurrently accessed by the host and 

device. The full list of queries is shown in Figure 6-10. In Chapter 12, we 

will look at the query mechanism in more detail.
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#include <sycl/sycl.hpp>
using namespace sycl; 
namespace dinfo = info::device; 
constexpr int N = 42; 

template <typename T> 
void foo(T data, id<1> i) {
data[i] = N;

} 

int main() {
queue q;
auto dev = q.get_device();
auto ctxt = q.get_context();
bool usm_shared = dev.has(aspect::usm_shared_allocations);
bool usm_device = dev.has(aspect::usm_device_allocations);
bool use_USM = usm_shared || usm_device;

if (use_USM) {
int *data;
if (usm_shared) {
data = malloc_shared<int>(N, q);

} else /* use device allocations */ { 
data = malloc_device<int>(N, q);

   } 
std::cout << "Using USM with "

<< ((get_pointer_type(data, ctxt) ==
usm::alloc::shared)

? "shared"
: "device") 

<< " allocations on "
<< get_pointer_device(data, ctxt)

                    .get_info<dinfo::name>()
<< "\n"; 

q.parallel_for(N, [=](id<1> i) { foo(data, i); });
q.wait();
free(data, q);

} else /* use buffers */ { 
buffer<int, 1> data{range{N}};
q.submit([&](handler &h) {

accessor a(data, h);
h.parallel_for(N, [=](id<1> i) { foo(a, i); });

});
q.wait();

 } 
return 0; 

} 

Figure 6-9. Queries on USM pointers and devices
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Aspect Description
aspect::usm_device_allocations This device supports device allocations

aspect::usm_host_allocations This device supports host allocations

aspect::usm_atomic_host_allocations This device supports host allocations 

that may be modi�ied atomically by the 

device

aspect::shared_allocations This device supports shared allocations

aspect::atomic_shared_allocations This device supports shared allocations 

and the host and device may 

concurrently access and atomically 

modify shared allocations

aspect::usm_system_allocations This device supports using allocations 

Figure 6-10. USM device aspects

 One More Thing
There is one more form of USM that we haven’t covered. The forms of 

USM we have described in this chapter all require the use of special 

allocation functions. While not a huge burden, this represents a change 

from traditional C++ code that uses the system allocator in the form of 

malloc or the new operator. While some devices today, such as CPUs, may 

not need this requirement, most accelerator devices still need it. Thus, 

we have described how to use the USM allocation functions in the name 

of greater portability. However, we believe that we will soon see more 

accelerator designs that support use of the system allocator. Such devices 

will greatly simplify programs by freeing the programmer from worrying 

about allocating the right type of USM memory or copying the correct 

data at the appropriate time. In some sense, one can view eventual system 

allocator support as the final evolution of USM—it would provide the 

benefits of shared USM allocations without requiring the use of special 

allocation functions.
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 Summary
In this chapter, we’ve described Unified Shared Memory, a pointer-based 

strategy for data management. We covered the three types of allocations 

that USM defines. We discussed all the different ways that we can allocate 

and deallocate memory with USM and how data movement can be either 

explicitly controlled by us (the programmers) for device allocations or 

implicitly controlled by the system for host or shared allocations. Finally, 

we discussed how to query the different USM capabilities that a device 

supports and how to query information about USM pointers in a program.

Since we have not discussed synchronization in this book in detail 

yet, there is more on USM in later chapters when we discuss scheduling, 

communications, and synchronization. Specifically, we cover these 

additional considerations for USM in Chapters 8, 9, and 19.

In the next chapter, we will cover the second strategy for data 

management: buffers.

Open Access  This chapter is licensed under the terms of 

the Creative Commons Attribution 4.0 International License 

(https://creativecommons.org/licenses/by/4.0/), which permits use, 

sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and 

the source, provide a link to the Creative Commons license and indicate if 

changes were made.

The images or other third party material in this chapter are included 

in the chapter’s Creative Commons license, unless indicated otherwise 

in a credit line to the material. If material is not included in the chapter’s 

Creative Commons license and your intended use is not permitted by 

statutory regulation or exceeds the permitted use, you will need to obtain 

permission directly from the copyright holder.
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CHAPTER 7

Buffers
In this chapter, we will learn about the buffer abstraction. We learned 

about Unified Shared Memory (USM), the pointer-based strategy for data 

management, in the previous chapter. USM forces us to think about where 

memory lives and what should be accessible where. The buffer abstraction 

is a higher-level model that hides this from the programmer. Buffers simply 

represent data, and it becomes the job of the runtime to manage how the 

data is stored and moved in memory.

This chapter presents an alternative approach to managing our data. 

The choice between buffers and USM often comes down to personal 

preference and the style of existing code, and applications are free to mix 

and match the two styles in representation of different data within the 

application.

USM simply exposes different abstractions for memory. USM has 

pointers, and buffers are a higher-level abstraction. The abstraction level 

of buffers allows the data contained within to be used on any device within 

the application, where the runtime manages whatever is needed to make 

that data available. The pointer-based model of USM is probably a better 

fit for applications that use pointer-based data structures such as linked 

lists, trees, or others. Buffers can also be trickier to retrofit into existing 

codes that already use pointers. However, buffers are guaranteed to work 

on every device in the system, while some devices may not support specific 

(or any) modes of USM. Choices are good, so let’s dive into buffers.
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We will look more closely at how buffers are created and used. A 

discussion of buffers would not be complete without also discussing the 

accessor. While buffers abstract how we represent and store data in a 

program, we do not directly access the data using the buffer. Instead, we 

use accessor objects that inform the runtime how we intend to use the 

data we are accessing, and accessors are tightly coupled to the powerful 

data dependence mechanisms within task graphs. After we cover all the 

things we can do with buffers, we will also explore how to create and use 

accessors in our programs.

 Buffers
A buffer is a high-level abstraction for data. Buffers are not necessarily 

tied to a single location or virtual memory address. Indeed, the runtime 

is free to use many different locations in memory (even across different 

devices) to represent a buffer, but the runtime must be sure to always give 

us a consistent view of the data. A buffer is accessible on the host and on 

any device.

The buffer class is a template class with three template arguments, 

as shown in Figure 7-1. The first template argument is the type of the 

object that the buffer will contain. This type must be device copyable, 

which extends the notion of trivially copyable as defined by C++. Types 

that are trivially copyable are safe to copy byte by byte without using any 

special copy or move constructors. Device copyable types extend this 

notion recursively to certain C++ types like std::pair or std::tuple. 

The next template argument is an integer describing the dimensionality 

of the buffer. The final template argument is optional, and the default 

template <typename T, int Dimensions, AllocatorT allocator>
class buffer;

Figure 7-1. Buffer class definition
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value is usually what is used. This argument specifies a C++-style allocator 

class that is used to perform any memory allocations on the host that are 

needed for the buffer. First, we will examine the many ways that buffer 

objects can be created.

 Buffer Creation
In the following figures, we show several ways in which buffer objects can 

be created. Let’s walk through the example and look at each instance.

The first buffer we create in Figure 7-2, b1, is a two-dimensional buffer 

of ten integers. We explicitly pass all template arguments, even explicitly 

passing the default value of buffer_allocator<T> as the allocator type. 

Since buffer_allocator is also a templated type, we must explicitly 

specialize it just as we do the buffer by specifying buffer_allocator<int>. 

However, using modern C++, we can express this much more compactly. 

Buffer b2 is also a two-dimensional buffer of ten integers using the default 

allocator. Here we make use of C++17’s class template argument deduction 

(CTAD) to automatically infer template arguments. CTAD is an all-or-none 

// Create a buffer of 2x5 ints using the default allocator
buffer<int, 2, buffer_allocator<int>> b1{range<2>{2, 5}};

// Create a buffer of 2x5 ints using the default allocator
// and CTAD for range
buffer<int, 2> b2{range{2, 5}};

// Create a buffer of 20 floats using a
// default-constructed std::allocator
buffer<float, 1, std::allocator<float>> b3{range{20}};

// Create a buffer of 20 floats using a passed-in
// allocator
std::allocator<float> myFloatAlloc;
buffer<float, 1, std::allocator<float>> b4{range(20),

myFloatAlloc};

Figure 7-2. Creating buffers, Part 1
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tool—it must either infer every template argument for a class or infer none 

of them. In this case, we use the fact that we are initializing b2 with a range 

that takes two arguments to infer that it is a two-dimensional range. The 

allocator template argument has a default value, so we do not need to 

explicitly list it when creating the buffer.

With buffer b3, we create a buffer of 20 floats and use a default- 

constructed std::allocator to allocate any necessary memory on the 

host. When using a custom allocator type with a buffer, we often want to 

pass an actual allocator object to the buffer to use instead of the default- 

constructed one. Buffer b4 shows how to do this, taking the allocator object 

after the range in the call to its constructor.

For the first four buffers in our example, we let the buffer allocate any 

memory it needs and we do not initialize that data with any values at the 

time of their creation. It is a common pattern to use buffers to effectively 

wrap existing C++ allocations, which may already have been initialized 

with data. We can do this by passing a source of initial values to the buffer 

constructor. Doing so allows us to do several things, which we will see with 

the next example.

// Create a buffer of 4 doubles and initialize it from a
// host pointer
double myDoubles[4] = {1.1, 2.2, 3.3, 4.4};
buffer b5{myDoubles, range{4}};

// Create a buffer of 5 doubles and initialize it from a
// host pointer to const double
const double myConstDbls[5] = {1.0, 2.0, 3.0, 4.0, 5.0};
buffer b6{myConstDbls, range{5}};

// Create a buffer from a shared pointer to int
auto sharedPtr = std::make_shared<int>(42);
buffer b7{sharedPtr, range{1}};

Figure 7-3. Creating buffers, Part 2
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In Figure 7-3, buffer b5 creates a one-dimensional buffer of four 

doubles. We pass the host pointer to the C array myDoubles to the buffer 

constructor in addition to the range that specifies the size of the buffer. 

Here we can make full use of CTAD to infer all the template arguments 

of our buffer. The host pointer we pass points to doubles, which gives us 

the data type of our buffer. The number of dimensions is automatically 

inferred from the one-dimensional range, which itself is inferred because 

it is created with only one number. Finally, the default allocator is used, so 

we do not have to specify that.

Passing a host pointer has a few ramifications of which we should be 

aware. By passing a pointer to host memory, we are promising the runtime 

that we will not try to access the host memory during the lifetime of the 

buffer. This is not (and cannot be) enforced by a SYCL implementation—

it is our responsibility to ensure that we do not break this contract. One 

reason that we should not try to access this memory while the buffer is 

alive is that the buffer may choose to use different memory on the host to 

represent the buffer content, often for optimization reasons. If it does so, 

the values will be copied into this new memory from the host pointer. If 

subsequent kernels modify the buffer, the original host pointer will not 

reflect the updated values until certain specified synchronization points. 

We will talk more about when data gets written back to a host pointer later 

in this chapter.

Buffer b6 is very similar to buffer b5 with one major difference. This 

time, we are initializing the buffer with a pointer to const double. This 

means that we can only read values through the host pointer and not write 

them. However, the type for our buffer in this example is still double, not 

const double since the deduction guides do not take const-ness into 

consideration. This means that the buffer may be written to by a kernel, 

but we must use a different mechanism to update the host after the buffer 

has outlived its use (covered later in this chapter).
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Buffers can also be initialized using C++ shared pointer objects. This 

is useful if our application already uses shared pointers, as this method of 

initialization will properly count the reference and ensure that the memory 

is not deallocated. Buffer b7 creates a buffer containing a single integer and 

initializes it using a shared pointer.

Containers are commonly used in modern C++ applications, with 

examples including std::array, std::vector, std::list, or std::map. 

We can initialize one-dimensional buffers using containers in two 

different ways. The first way, as shown in Figure 7-4 by buffer b8, uses 

input iterators. Instead of a host pointer, we pass two iterators to the buffer 

constructor, one representing the beginning of the data and another 

representing the end. The size of the buffer is computed as the number 

of elements returned by incrementing the start iterator until it equals 

the end iterator. This is useful for any data type that implements the C++ 

InputIterator interface. If the container object that provides the initial 

values for a buffer is also contiguous, then we can use an even simpler 

form to create the buffer. Buffer b9 creates a buffer from a vector simply by 

passing the vector to the constructor. The size of the buffer is determined 

by the size of the container being used to initialize it, and the type for the 

buffer data comes from the type of the container data. Creating buffers 

using this approach is common and recommended from containers such 

as std::vector and std::array.

// Create a buffer of ints from an input iterator
std::vector<int> myVec;
buffer b8{myVec.begin(), myVec.end()};
buffer b9{myVec};

// Create a buffer of 2x5 ints and 2 non-overlapping
// sub-buffers of 5 ints.
buffer<int, 2> b10{range{2, 5}};
buffer b11{b10, id{0, 0}, range{1, 5}};
buffer b12{b10, id{1, 0}, range{1, 5}};

Figure 7-4. Creating buffers, Part 3
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The final example of buffer creation illustrates another feature of 

the buffer class. It is possible to create a sub-buffer, which is a view of a 

buffer from another buffer. A sub-buffer requires three things: a reference 

to a parent buffer, a base index, and the range of the sub-buffer. A sub-

buffer cannot be created from a sub-buffer. Multiple sub-buffers can be 

created from the same buffer, and they are free to overlap. Buffer b10 is 

created exactly like buffer b2, a two-dimensional buffer of integers with 

five integers per row. Next, we create two sub-buffers from buffer b10, 

sub- buffers b11 and b12. Sub-buffer b11 starts at index (0,0) and contains 

every element in the first row. Similarly, sub-buffer b12 starts at index 

(1,0) and contains every element in the second row. This yields two 

disjoint sub-buffers. Since the sub-buffers do not overlap, different kernels 

could operate on the different sub-buffers concurrently, but we will talk 

more about scheduling execution graphs and dependences in the next 

chapter.
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queue q;
int my_ints[42];

// Create a buffer of 42 ints
buffer<int> b{range(42)};

// Create a buffer of 42 ints, initialize with a host
// pointer, and add the use_host_pointer property
buffer b1{my_ints,

range(42),
{property::buffer::use_host_ptr{}}};

// Create a buffer of 42 ints, initialize with a host
// pointer, and add the use_mutex property
std::mutex myMutex;
buffer b2{my_ints,

range(42),
{property::buffer::use_mutex{myMutex}}};

// Retrieve a pointer to the mutex used by this buffer
auto mutexPtr =

b2.get_property<property::buffer::use_mutex>()
.get_mutex_ptr();

// Lock the mutex until we exit scope
std::lock_guard<std::mutex> guard{*mutexPtr};

// Create a context-bound buffer of 42 ints, initialized
// from a host pointer
buffer b3{

my_ints,
range(42),
{property::buffer::context_bound{q.get_context()}}};

Figure 7-5. Buffer properties

 Buffer Properties

Buffers can also be created with special properties that alter their behavior. 

In Figure 7-5, we will walk through an example of the three different 

optional buffer properties and discuss how they might be used. Note that 

these properties are relatively uncommon in most codes.
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use_host_ptr

The first property that may be optionally specified during buffer creation 

is use_host_ptr. When present, this property requires the buffer to not 

allocate any memory on the host, and any allocator passed or specified 

on buffer construction is effectively ignored. Instead, the buffer must use 

the memory pointed to by a host pointer that is passed to the constructor. 

Note that this does not require the device to use the same memory to hold 

the buffer’s data. A device is free to cache the contents of a buffer in its 

attached memory. Also note that this property may only be used when a 

host pointer is passed to the constructor. This option can be useful when 

the program wants full control over all host memory allocations—for 

example, it allows programmers to try to minimize the memory footprint 

of an application.

In our example in Figure 7-5, we create a buffer b as we saw in our 

previous examples. We next create buffer b1 and initialize it with a pointer 

to myInts. We also pass the property use_host_ptr, which means that 

buffer b1 will only use the memory pointed to by myInts and not allocate 

any additional temporary storage on the host.

use_mutex

The next property, use_mutex, concerns fine-grained sharing of memory 

between buffers and host code. Buffer b2 is created using this property. 

The property takes a reference to a mutex object that can later be queried 

from the buffer as we see in the example. This property also requires a host 

pointer be passed to the constructor, and it lets the runtime determine 

when it is safe to access updated values in host code through the provided 

host pointer. We cannot lock the mutex until the runtime guarantees that 

the host pointer sees the latest value of the buffer. While this could be 

combined with the use_host_ptr property, it is not required. use_mutex 

is a mechanism that allows host code to access data within a buffer while 
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the buffer is still alive and without using the host accessor mechanism 

(described later). In general, the host accessor mechanism should be 

preferred unless we have a specific reason to use a mutex, particularly 

because there are no guarantees on how long it will take before the mutex 

will be successfully locked and the data ready for use by host code.

context_bound

The final property is shown in the creation of buffer b3 in our example. 

Here, our buffer of 42 integers is created with the context_bound property. 

The property takes a reference to a context object. Normally, a buffer is 

free to be used on any device or context. However, if this property is used, 

it locks the buffer to the specified context. Attempting to use the buffer 

on another context will result in a runtime error. This could be useful 

for debugging programs by identifying cases where a kernel might be 

submitted to the wrong queue, for instance. In practice, we do not expect 

to see this property used in many programs, and the ability for buffers 

to be accessed on any device in any context is one of the most powerful 

properties of the buffer abstraction (which this property undoes).

 What Can We Do with a Buffer?
Many things can be done with buffer objects. We can query characteristics 

of a buffer, determine if and where any data is written back to host memory 

after the buffer is destroyed, or reinterpret a buffer as one with different 

characteristics. One thing that cannot be done, however, is to directly 

access the data that a buffer represents. Instead, we must create accessor 

objects to access the data, and we will learn all about this later in the 

chapter.

Examples of things that can be queried about a buffer include its range, 

the total number of data elements it represents, and the number of bytes 

required to store its elements. We can also query which allocator object is 

being used by the buffer and whether the buffer is a sub-buffer or not.
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Updating host memory when a buffer is destroyed is an important 

aspect to consider when using buffers. Depending on how a buffer is 

created, host memory may or may not be updated with the results of a 

computation after buffer destruction. If a buffer is created and initialized 

from a host pointer to non-const data, that same pointer is updated 

with the latest data when the buffer is destroyed. However, there is also a 

way to update host memory regardless of how a buffer was created. The 

set_final_data method is a template method of buffer that can accept 

either a raw pointer, a C++ OutputIterator, or a std::weak_ptr. When 

the buffer is destroyed, data contained by the buffer will be written to the 

host using the supplied location. Note that if the buffer was created and 

initialized from a host pointer to non-const data, it’s as if set_final_data 

was called with that pointer. Technically, a raw pointer is a special case 

of an OutputIterator. If the parameter passed to set_final_data is a 

std::weak_ptr, the data is not written to the host if the pointer has expired 

or has already been deleted. Whether or not writeback occurs can also be 

controlled by the set_write_back method.

 Accessors
Data represented by a buffer cannot be directly accessed through the 

buffer object. Instead, we must create accessor objects that allow us to 

safely access a buffer’s data. Accessors inform the runtime where and 

how we want to access data, allowing the runtime to ensure that the right 

data is in the right place at the right time. This is a very powerful concept, 

especially when combined with the task graph that schedules kernels for 

execution based in part on data dependences.

Accessor objects are instantiated from the templated accessor class. 

This class has five template parameters. The first parameter is the type 

of the data being accessed. This should be the same as the type of data 
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being stored by the corresponding buffer. Similarly, the second parameter 

describes the dimensionality of the data and buffer and defaults to a 

value of one.

The next three template parameters are unique to accessors. The first 

of these is the access mode. The access mode describes how we intend to 

use an accessor in a program. The possible modes are listed in Figure 7-6. 

We will learn how these modes are used to order the execution of kernels 

and perform data movement in Chapter 8. The access mode parameter 

does have a default value if none is specified or automatically inferred. If 

we do not specify otherwise, accessors will default to read_write access 

mode for non-const data types and read for const data types. These 

defaults are always correct but providing more accurate information 

may improve a runtime’s ability to perform optimizations. When starting 

application development, it is safe and concise to simply not specify an 

access mode, and we can then refine the access modes based on profiling 

of performance-critical regions of the application.

Mode Description
read Read-only access
write

Figure 7-6. Access modes

Target Description
evice

Figure 7-7. Access targets
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The next template parameter is the access target. Buffers are an 

abstraction of data and do not describe where and how data is stored. The 

access target describes where we are accessing data. The two possible 

access targets are listed in Figure 7-7.

When using C++ with SYCL, there are only two targets: device and 

host_task. The default template value is device, and this means that we 

intend to access a buffer’s data on a device. This is reasonable as accessors 

are most commonly used in operations on a device such as kernels or data 

transfers. The other access target is host_task, which is used when a host 

task needs to access a buffer’s data.

Devices may have different types of memories available. In particular, 

many devices have some sort of fast local memory that is shared across 

multiple work-items in a work-group. Prior versions of SYCL had special 

access targets for local memory, but SYCL 2020 handles it in a different 

way. We will learn how to use work-group local memory in Chapter 9. Prior 

versions of SYCL also had a special access target for the host (outside of 

host tasks, which are new to SYCL 2020). This has been replaced with the 

new host_accessor class, which provides access to a buffer’s data in host 

code. However, the access will remain valid for the lifetime of the host_

accessor. Given that a buffer is locked to the host while a host_accessor 

is valid, one should take special care to limit the scope of host_accessor 

objects.

The final template parameter governs whether an accessor is a 

placeholder accessor or not. This is not a parameter that a programmer 

is likely to ever directly set and is usually deduced by which constructor 

call is used to create the accessor. A placeholder accessor is one that is 

declared outside of a command group but meant to be used to access data 

on a device inside a kernel. We will see what differentiates a placeholder 

accessor from one that is not once we look at examples of accessor 

creation.
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While accessors can be extracted from a buffer object using its 

get_access method, it’s simpler to directly create (construct) them. This 

is the style we will use in upcoming examples since it is very simple to 

understand and is compact.

 Accessor Creation
Figure 7-8 shows an example program with everything that we need to 

get started with accessors. In this example, we have three buffers, A, B, 

and C. The first parallel task we submit to the queue creates accessors to 

each buffer and defines a kernel that uses these accessors to initialize the 

buffers with some values. Each accessor is constructed with a reference 

to the buffer it will access as well as the handler object defined by the 

command group we’re submitting to the queue. This effectively binds the 

accessor to the kernel we’re submitting as part of the command group. 

Regular accessors are device accessors since they, by default, target global 

buffers stored in device memory. This is the most common use case.
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#include <cassert>
#include <sycl/sycl.hpp>
using namespace sycl;
constexpr int N = 42;

int main() {
queue q;
// Create 3 buffers of 42 ints
buffer<int> a_buf{range{N}};
buffer<int> b_buf{range{N}};
buffer<int> c_buf{range{N}};
accessor pc{c_buf};

q.submit([&](handler &h) {
accessor a{a_buf, h};
accessor b{b_buf, h};
accessor c{c_buf, h};
h.parallel_for(N, [=](id<1> i) {

a[i] = 1;
b[i] = 40;
c[i] = 0;

});
});
q.submit([&](handler &h) {
accessor a{a_buf, h};
accessor b{b_buf, h};
accessor c{c_buf, h};
h.parallel_for(N,

[=](id<1> i) { c[i] += a[i] + b[i]; });
});
q.submit([&](handler &h) {

h.require(pc);
h.parallel_for(N, [=](id<1> i) { pc[i]++; });

});

host_accessor result{c_buf};
for (int i = 0; i < N; i++) {

assert(result[i] == N);
}
return 0;

}

Figure 7-8. Simple accessor creation
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The second task we submit also defines three accessors to the buffers. 

We then use those accessors in the second kernel to add the elements of 

buffers A and B into buffer C. Since this second task operates on the same 

data as the first one, the runtime will execute this task after the first one is 

complete. We will learn about this in detail in the next chapter.

The third task shows how we can use a placeholder accessor. The 

accessor pC is declared at the beginning of the example in Figure 7-8 after 

we create our buffers. Note that the constructor is not passed a handler 

object since we don’t have one to pass. This lets us create a reusable 

accessor object ahead of time. However, in order to use this accessor inside 

a kernel, we need to bind it to a command group during submission. We 

do this using the handler object’s require method. Once we have bound 

our placeholder accessor to a command group, we can then use it inside a 

kernel as we would any other accessor.

Finally, we create a host_accessor object in order to read the results 

of our computations back on the host. Note that this is a different type 

than we used inside our kernels. Note that the host accessor result in 

this example also does not take a handler object since we once again 

do not have one to pass. The special type for host accessors also lets 

us disambiguate them from placeholders. An important aspect of host 

accessors is that the constructor only completes when the data is available 

for use on the host, which means that construction of a host accessor can 

appear to take a long time. The constructor must wait for any kernels to 

finish executing that produce the data to be copied as well as for the copy 

itself to finish. Once the host accessor construction is complete, it is safe 

to use the data that it accesses directly on the host, and we are guaranteed 

that the latest version of the data is available to us on the host.

While this example is perfectly correct, we don’t say anything about 

how we intend to use our accessors when we create them. Instead, we 

use the default access mode, which is read_write, for the non-const 

int data in our buffers. This is potentially overconservative and may 
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create unnecessary dependences between operations or superfluous 

data movement. A runtime may be able to do a better job if it has more 

information about how we plan to use the accessors we create. However, 

before we go through an example where we do this, we should first 

introduce one more tool—the deduction tag.

Deduction tags are a compact way to express the desired combination 

of access mode and target for an accessor. Deduction tags, when used, 

are passed as a parameter to an accessor’s constructor. The possible 

tags are shown in Figure 7-9. When an accessor is constructed with a tag 

parameter, C++ CTAD can then properly deduce the desired access mode 

and target, providing an easy way to override the default values for those 

template parameters. We could also manually specify the desired template 

parameters, but tags provide a simpler, more compact way to get the same 

result without spelling out fully templated accessors.

Tag value access_mode:: target::
read_only read device

read_write read_write device

write_only write device

read_only_host_task read host_task

Figure 7-9. Deduction tags

Let’s take our previous example and rewrite it to add deduction tags. 

This new and improved example is shown in Figure 7-10.
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#include <cassert>
#include <sycl/sycl.hpp>
using namespace sycl;
constexpr int N = 42;

int main() {
queue q;

// Create 3 buffers of 42 ints
buffer<int> buf_a{range{N}};
buffer<int> buf_b{range{N}};
buffer<int> buf_c{range{N}};

accessor pc{buf_c};

q.submit([&](handler &h) {
accessor a{buf_a, h, write_only, no_init};
accessor b{buf_b, h, write_only, no_init};
accessor c{buf_c, h, write_only, no_init};
h.parallel_for(N, [=](id<1> i) {

a[i] = 1;
b[i] = 40;
c[i] = 0;

});
});
q.submit([&](handler &h) {

accessor a{buf_a, h, read_only};
accessor b{buf_b, h, read_only};
accessor c{buf_c, h, read_write};
h.parallel_for(N,

[=](id<1> i) { c[i] += a[i] + b[i]; });
});
q.submit([&](handler &h) {

h.require(pc);
h.parallel_for(N, [=](id<1> i) { pc[i]++; });

});

host_accessor result{buf_c, read_only};

for (int i = 0; i < N; i++) {
assert(result[i] == N);

}
return 0;

}

Figure 7-10. Accessor creation with specified usage

Chapter 7  Buffers



197

We begin by declaring our buffers as we did in Figure 7-8. We also 

create our placeholder accessor that we’ll use later. Let’s now look at the 

first task we submit to the queue. Previously, we created our accessors by 

passing a reference to a buffer and the handler object for the command 

group. Now, we add two extra parameters to our constructor calls. The first 

new parameter is a deduction tag. Since this kernel is writing the initial 

values for our buffers, we use the write_only deduction tag. This lets the 

runtime know that this kernel is producing new data and will not read 

from the buffer.

The second new parameter is an optional accessor property, similar 

to the optional properties for buffers that we saw earlier in the chapter. 

The property we pass, no_init, lets the runtime know that the previous 

contents of the buffer can be discarded. This is useful because it can let 

the runtime eliminate unnecessary data movement. In this example, since 

the first task is writing the initial values for our buffers, it’s unnecessary for 

the runtime to copy the uninitialized host memory to the device before 

the kernel executes. The no_init property is useful for this example, but 

it should not be used for read–modify–write cases or kernels where only 

some values in a buffer may be updated.

The second task we submit to our queue is identical to before, but now 

we add deduction tags to our accessors. Here, we add the tags read_only 

to accessors aA and aB to let the runtime know that we will only read the 

values of buffers A and B through these accessors. The third accessor, aC, 

gets the read_write deduction tag since we accumulate the sum of the 

elements of A and B into C. We explicitly use the tag in the example to 

be consistent, but this is unnecessary since the default access mode is 

read_write.

The default usage is retained in the third task where we use our 

placeholder accessor. This remains unchanged from the simplified 

example we saw in Figure 7-8. Our final accessor, the host accessor result, 

now receives a deduction tag when we create it. Since we only read the 

final values on the host, we pass the read_only tag to the constructor. If we 
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rewrote the program in such a way that the host accessor was destroyed, 

launching another kernel that operated on buffer C would not require it 

to be written back to the device since the read_only tag lets the runtime 

know that it will not be modified by the host.

 What Can We Do with an Accessor?
Many things can be done with an accessor object. However, the most 

important thing we can do is spelled out in the accessor’s name—access 

data. This is usually done through one of the accessor’s [] operators. We 

use the [] operator in our examples in Figures 7-8 and 7-10. This operator 

takes either an id object that can properly index multidimensional data or 

a single size_t. The second case can be used when an accessor has more 

than one dimension. In that case, it returns an object that is then meant to 

be indexed again with [] until we arrive at a scalar value, and this would 

be of the form a[i][j] in a two-dimensional case. Remember that the 

ordering of accessor dimensions follows the convention of C++ where the 

rightmost dimension is the unit-stride dimension (iterates “fastest”).

An accessor can also return a pointer to the underlying data. This 

pointer can be accessed directly following normal C++ rules. Note that 

there can be additional complexity involved with respect to the address 

space of this pointer.

Many things can also be queried from an accessor object. Examples 

include the number of elements accessible through the accessor, the size 

in bytes of the region of the buffer it covers, or the range of data accessible.

Accessors provide a similar interface to C++ containers and may be 

used in many situations where containers may be passed. The container 

interface supported by accessors includes the data method, which is 

equivalent to get_pointer, and several flavors of forward and backward 

iterators.
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 Summary
In this chapter, we have learned about buffers and accessors. Buffers 

are an abstraction of data that hides the underlying details of memory 

management from the programmer. They do this in order to provide a 

simpler, higher-level abstraction. We went through several examples that 

showed us the different ways to construct buffers as well as the different 

optional properties that can be specified to alter their behavior. We learned 

how to initialize a buffer with data from host memory as well as how to 

write data back to host memory when we are done with a buffer.

Since we cannot access buffers directly, we learned how to access 

the data in a buffer by using accessor objects. We learned the difference 

between device accessors and host accessors. We discussed the different 

access modes and targets and how they inform the runtime how and 

where an accessor will be used by the program. We showed the simplest 

way to use accessors using the default access modes and targets, and 

we learned how to distinguish between a placeholder accessor and one 

that is not. We then saw how to further optimize the example program by 

giving the runtime more information about our accessor usage by adding 

deduction tags to our accessor declarations. Finally, we covered many of 

the different ways that accessors can be used in a program.

In the next chapter, we will learn in greater detail how the runtime can 

use the information we give it through accessors to schedule the execution 

of different kernels. We will also see how this information informs the 

runtime about when and how the data in buffers needs to be copied 

between the host and a device. We will learn how we can explicitly control 

data movement involving buffers—and USM allocations too.
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sharing, adaptation, distribution and reproduction in any medium or 
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the source, provide a link to the Creative Commons license and indicate if 
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The images or other third party material in this chapter are included 

in the chapter’s Creative Commons license, unless indicated otherwise 

in a credit line to the material. If material is not included in the chapter’s 

Creative Commons license and your intended use is not permitted by 

statutory regulation or exceeds the permitted use, you will need to obtain 

permission directly from the copyright holder.
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CHAPTER 8

Scheduling Kernels 
and Data Movement
We need to discuss our role as the conductor for our parallel programs. 

The proper orchestration of a parallel program is a thing of beauty—code 

running full speed without waiting for data, because we have arranged 

for all data to arrive and depart at the proper times—code carefully 

constructed to keep the hardware maximally busy. It is the thing that 

dreams are made of!

Life in the fast lanes—not just one lane!—demands that we take our 

work as the conductor seriously. In order to do that, we can think of our 

job in terms of task graphs.

Therefore, in this chapter, we will cover task graphs, the mechanism 

that is used to run complex sequences of kernels correctly and efficiently. 

There are two things that need sequencing in an application: kernel 

executions and data movement. Task graphs are the mechanism that we 

use to achieve proper sequencing.

First, we will quickly review how we can use dependences to order 

tasks from Chapter 3. Next, we will cover how the SYCL runtime builds 

graphs. We will discuss the basic building block of SYCL graphs, the 

command group. We will then illustrate the different ways we can build 

graphs of common patterns. We will also discuss how data movement, 

both explicit and implicit, is represented in graphs. Finally, we will discuss 

the various ways to synchronize our graphs with the host.
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 What Is Graph Scheduling?
In Chapter 3, we discussed data management and ordering the uses of 

data. That chapter described the key abstraction behind graphs in SYCL: 

dependences. Dependences between kernels are fundamentally based on 

what data a kernel accesses. A kernel needs to be certain that it reads the 

correct data before it can compute its output.

We described the three types of data dependences that are important 

for ensuring correct execution. The first, Read-after-Write (RAW), occurs 

when one task needs to read data produced by a different task. This type of 

dependence describes the flow of data between two kernels. The second 

type of dependence happens when one task needs to update data after 

another task has read it. We call that type of dependence a Write-after- 

Read (WAR) dependence. The final type of data dependence occurs when 

two tasks try to write the same data. This is known as a Write-after-Write 

(WAW) dependence.

Data dependences are the building blocks we will use to build graphs. 

This set of dependences is all we need to express both simple linear 

chains of kernels and large, complex graphs with hundreds of kernels with 

elaborate dependences. No matter which types of graph a computation 

needs, SYCL graphs ensure that a program will execute correctly based on 

the expressed dependences. However, it is up to the programmer to make 

sure that a graph correctly expresses all the dependences in a program.

 How Graphs Work in SYCL
A command group can contain three different things: an action, its 

dependences, and miscellaneous host code. Of these three things, the 

one that is always required is the action, since without it the command 

group really doesn’t do anything. Most command groups will also express 

dependences, but there are cases where they may not. One such example 
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is the first action submitted in a program. It does not depend on anything 

to begin execution; therefore, we would not specify any dependence. The 

other thing that can appear inside a command group is arbitrary C++ code 

that executes on the host. This is perfectly legal and can be useful to help 

specify the action or its dependences, and this code is executed while the 

command group is created (not later, when the action is performed based 

on dependences having been met).

Command groups are typically expressed as a C++ lambda expression 

passed to the submit method. Command groups can also be expressed 

through shortcut methods on queue objects that take a kernel and set of 

event-based dependences.

 Command Group Actions
There are two types of actions that may be performed by a command 

group: kernel executions and explicit memory operations. A command 

group may only perform a single action. As we’ve seen in earlier chapters, 

kernels are defined through calls to a parallel_for or single_task 

method and express computations that we want to perform on our 

devices. Operations for explicit data movement are the second type of 

action. Examples from USM include memcpy, memset, and fill operations. 

Examples from buffers include copy, fill, and update_host.

 How Command Groups Declare Dependences
The other main component of a command group is the set of dependences 

that must be satisfied before the action defined by the group can execute. 

SYCL allows these dependences to be specified in several ways.

If a program uses in-order SYCL queues, the in-order semantics of 

the queue specify implicit dependences between successively enqueued 

command groups. One task cannot execute until the previously submitted 

task has completed.
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Event-based dependences are another way to specify what must be 

complete before a command group may execute. These event-based 

dependences may be specified in two styles. The first way is used when 

a command group is specified as a lambda passed to a queue’s submit 

method. In this case, the programmer invokes the depends_on method 

of the command group handler object, passing either an event or vector 

of events as parameter. The other way is used when a command group is 

created from the shortcut methods defined on the queue object. When the 

programmer directly invokes parallel_for or single_task on a queue, an 

event or vector of events may be passed as an extra parameter.

The last way that dependences may be specified is through the creation 

of accessor objects. Accessors specify how they will be used to read or 

write data in a buffer object, letting the runtime use this information to 

determine the data dependences that exist between different kernels. 

As we reviewed in the beginning of this chapter, examples of data 

dependences include one kernel reading data that another produces, two 

kernels writing the same data, or one kernel modifying data after another 

kernel reads it.

 Examples
Now we will illustrate everything we’ve just learned with several examples. 

We will present how one might express two different dependence patterns 

in several ways. The two patterns we will illustrate are linear dependence 

chains where one task executes after another and a “Y” pattern where two 

independent tasks must execute before successive tasks.

Graphs for these dependence patterns can be seen in Figures 8-1 

and 8-2. Figure 8-1 depicts a linear dependence chain. The first node 

represents the initialization of data, while the second node presents the 

reduction operation that will accumulate the data into a single result. 

Figure 8-2 depicts a “Y” pattern where we independently initialize two 
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different pieces of data. After the data is initialized, an addition kernel 

will sum the two vectors together. Finally, the last node in the graph 

accumulates the result into a single value.

Figure 8-1. Linear dependence chain graph

Figure 8-2. “Y” pattern dependence graph

For each pattern, we will show three different implementations. 

The first implementation will use in-order queues. The second will use 

event-based dependences. The last implementation will use buffers and 

accessors to express data dependences between command groups.

Figure 8-3 shows how to express a linear dependence chain using 

in-order queues. This example is very simple because the semantics of in- 

order queues already guarantee a sequential order of execution between 

command groups. The first kernel we submit initializes the elements of 
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an array to 1. The next kernel then takes those elements and sums them 

together into the first element. Since our queue is in order, we do not need 

to do anything else to express that the second kernel should not execute 

until the first kernel has completed. Finally, we wait for the queue to finish 

executing all its tasks, and we check that we obtained the expected result.

#include <sycl/sycl.hpp>
using namespace sycl; 
constexpr int N = 42; 

int main() {
queue q{property::queue::in_order()};

int *data = malloc_shared<int>(N, q);

q.parallel_for(N, [=](id<1> i) { data[i] = 1; });

q.single_task([=]() {
for (int i = 1; i < N; i++) data[0] += data[i];

});
q.wait();

assert(data[0] == N);
return 0; 

} 

Figure 8-3. Linear dependence chain with in-order queues

Figure 8-4 shows the same example using an out-of-order queue 

and event-based dependences. Here, we capture the event returned by 

the first call to parallel_for. The second kernel is then able to specify 

a dependence on that event and the kernel execution it represents by 

passing it as a parameter to depends_on. We will see in Figure 8-6 how 

we could shorten the expression of the second kernel using one of the 

shortcut methods for defining kernels.
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#include <sycl/sycl.hpp>
using namespace sycl; 
constexpr int N = 42; 

int main() {
queue q;

int *data = malloc_shared<int>(N, q);

auto e = q.parallel_for(N, [=](id<1> i) { data[i] = 1; });

q.submit([&](handler &h) {
h.depends_on(e);
h.single_task([=]() {

for (int i = 1; i < N; i++) data[0] += data[i];
});

});
q.wait();

assert(data[0] == N);
return 0; 

} 

Figure 8-4. Linear dependence chain with events

Figure 8-5 rewrites our linear dependence chain example using buffers 

and accessors instead of USM pointers. Here we once again use an out- 

of- order queue but use data dependences specified through accessors 

instead of event-based dependences to order the execution of the 

command groups. The second kernel reads the data produced by the first 

kernel, and the runtime can see this because we declare accessors based 

on the same underlying buffer object. Unlike the previous examples, we do 

not wait for the queue to finish executing all its tasks. Instead, we construct 

a host accessor that defines a data dependence between the output of the 

second kernel and our assertion that we computed the correct answer on 

the host. Note that while a host accessor gives us an up-to-date view of 

data on the host, it does not guarantee that the original host memory has 

been updated if any was specified when the buffer was created. We can’t 
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safely access the original host memory unless the buffer is first destroyed 

or unless we use a more advanced mechanism like the mutex mechanism 

described in Chapter 7.

#include <sycl/sycl.hpp>
using namespace sycl; 
constexpr int N = 42; 

int main() {
queue q;

buffer<int> data{range{N}};

q.submit([&](handler &h) {
accessor a{data, h};
h.parallel_for(N, [=](id<1> i) { a[i] = 1; });

});

q.submit([&](handler &h) {
accessor a{data, h};
h.single_task([=]() {

for (int i = 1; i < N; i++) a[0] += a[i];
});

});

host_accessor h_a{data};
assert(h_a[0] == N);
return 0; 

} 

Figure 8-5. Linear dependence chain with buffers and accessors

Figure 8-6 shows how to express a “Y” pattern using in-order queues. 

In this example, we declare two arrays, data1 and data2. We then define 

two kernels that will each initialize one of the arrays. These kernels do not 

depend on each other, but because the queue is in order, the kernels must 

execute one after the other. Note that it would be perfectly legal to swap 

the order of these two kernels in this example. After the second kernel has 

executed, the third kernel adds the elements of the second array to those 

of the first array. The final kernel sums up the elements of the first array 

to compute the same result we did in our examples for linear dependence 
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chains. This summation kernel depends on the previous kernel, but this 

linear chain is also captured by the in-order queue. Finally, we wait for 

all kernels to complete and validate that we successfully computed our 

magic number.

Figure 8-7 shows our “Y” pattern example with out-of-order queues 

instead of in-order queues. Since the dependences are no longer implicit 

due to the order of the queue, we must explicitly specify the dependences 

between command groups using events. As in Figure 8-6, we begin by 

defining two independent kernels that have no initial dependences. We 

represent these kernels by two events, e1 and e2. When we define our 

third kernel, we must specify that it depends on the first two kernels.  

#include <sycl/sycl.hpp>
using namespace sycl; 
constexpr int N = 42; 

int main() {
queue q{property::queue::in_order()};

int *data1 = malloc_shared<int>(N, q);
int *data2 = malloc_shared<int>(N, q);

q.parallel_for(N, [=](id<1> i) { data1[i] = 1; });

q.parallel_for(N, [=](id<1> i) { data2[i] = 2; });

q.parallel_for(N, [=](id<1> i) { data1[i] += data2[i]; });

q.single_task([=]() {
for (int i = 1; i < N; i++) data1[0] += data1[i];

data1[0] /= 3; 
});
q.wait();

assert(data1[0] == N);
return 0; 

} 

Figure 8-6. “Y” pattern with in-order queues
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We do this by saying that it depends on events e1 and e2 to complete 

before it may execute. However, in this example, we use a shortcut 

form to specify these dependences instead of the handler’s depends_on 

method. Here, we pass the events as an extra parameter to parallel_for. 

Since we want to pass multiple events at once, we use the form that 

accepts a std::vector of events, but luckily modern C++ simplifies this 

for us by automatically converting the expression {e1, e2} into the 

appropriate vector.

#include <sycl/sycl.hpp>
using namespace sycl; 
constexpr int N = 42; 

int main() {
queue q;

int *data1 = malloc_shared<int>(N, q);
int *data2 = malloc_shared<int>(N, q);

auto e1 =
q.parallel_for(N, [=](id<1> i) { data1[i] = 1; });

auto e2 =
q.parallel_for(N, [=](id<1> i) { data2[i] = 2; });

auto e3 = q.parallel_for( 
range{N}, {e1, e2},
[=](id<1> i) { data1[i] += data2[i]; });

q.single_task(e3, [=]() {
for (int i = 1; i < N; i++) data1[0] += data1[i];

data1[0] /= 3; 
});
q.wait();

assert(data1[0] == N);
return 0; 

} 

Figure 8-7. “Y” pattern with events
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In our final example, seen in Figure 8-8, we again replace USM pointers 

and events with buffers and accessors. This example represents the two 

arrays data1 and data2 as buffer objects. Our kernels no longer use the 

shortcut methods for defining kernels since we must associate accessors 

with a command group handler. Once again, the third kernel must capture 

the dependence on the first two kernels. Here this is accomplished by 

declaring accessors for our buffers. Since we have previously declared 

accessors for these buffers, the runtime is able to properly order the 

execution of these kernels. Additionally, we also provide extra information 

to the runtime here when we declare accessor b. We add the access tag 

read_only to let the runtime know that we’re only going to read this data, 

not produce new values. As we saw in our buffer and accessor example 

for linear dependence chains, our final kernel orders itself by updating 

the values produced in the third kernel. We retrieve the final value of our 

computation by declaring a host accessor that will wait for the final kernel 

to finish executing before moving the data back to the host where we can 

read it and assert we computed the correct result.
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#include <sycl/sycl.hpp>
using namespace sycl; 
constexpr int N = 42; 

int main() {
queue q;

buffer<int> data1{range{N}};
buffer<int> data2{range{N}};

q.submit([&](handler &h) {
accessor a{data1, h};
h.parallel_for(N, [=](id<1> i) { a[i] = 1; });

});

q.submit([&](handler &h) {
accessor b{data2, h};
h.parallel_for(N, [=](id<1> i) { b[i] = 2; });

});

q.submit([&](handler &h) {
accessor a{data1, h};
accessor b{data2, h, read_only};
h.parallel_for(N, [=](id<1> i) { a[i] += b[i]; });

});

q.submit([&](handler &h) {
accessor a{data1, h};
h.single_task([=]() {

for (int i = 1; i < N; i++) a[0] += a[i];

a[0] /= 3; 
});

});

host_accessor h_a{data1};
assert(h_a[0] == N);
return 0; 

} 

Figure 8-8. “Y” pattern with accessors
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 When Are the Parts of a Command 
Group Executed?
Since task graphs are asynchronous, it makes sense to wonder when 

exactly command groups are executed. By now, it should be clear that 

kernels may be executed as soon as their dependences have been satisfied, 

but what happens with the host portion of a command group?

When a command group is submitted to a queue, it is executed 

immediately on the host (before the submit call returns). This host portion 

of the command group is executed only once. Any kernel or explicit data 

operation defined in the command group is enqueued for execution on 

the device.

 Data Movement
Data movement is another very important aspect of graphs in SYCL that 

is essential for understanding application performance. However, it can 

often be accidentally overlooked if data movement happens implicitly 

in a program, either using buffers and accessors or using USM shared 

allocations. Next, we will examine the different ways that data movement 

can affect graph execution in SYCL.

 Explicit Data Movement
Explicit data movement has the advantage that it appears explicitly in a 

graph, making it obvious to programmers what goes on within execution of 

a graph. We will separate explicit data operations into those for USM and 

those for buffers.
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As we learned in Chapter 6, explicit data movement in USM occurs 

when we need to copy data between device allocations and the host. This 

is done with the memcpy method, found in both the queue and handler 

classes. Submitting the action or command group returns an event that 

can be used to order the copy with other command groups.

Explicit data movement with buffers occurs by invoking either the 

copy or update_host method of the command group handler object. 

The copy method can be used to manually exchange data between host 

memory and an accessor object on a device. This can be done for a variety 

of reasons. A simple example is checkpointing a long-running sequence of 

computations. With the copy method, data can be written from the device 

to arbitrary host memory in a one-way fashion. If this were done using 

buffers, most cases (i.e., those where the buffer was not created with use_

host_ptr) would require the data to first be copied to the host and then 

from the buffer’s memory to the desired host memory.

The update_host method is a very specialized form of copy. If a 

buffer was created around a host pointer, this method will copy the data 

represented by the accessor back to the original host memory. This can be 

useful if a program manually synchronizes host data with a buffer that was 

created with the special use_mutex property. However, this use case is not 

likely to occur in most programs.

 Implicit Data Movement
Implicit data movement can have hidden consequences for command 

groups and task graphs in SYCL. With implicit data movement, data is 

copied between host and device either by the SYCL runtime or by some 

combination of hardware and software. In either case, copying occurs 

without explicit input from the user. Let’s again look separately at the USM 

and buffer cases.
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With USM, implicit data movement occurs with host and shared 

allocations. As we learned in Chapter 6, host allocations do not really 

move data so much as access it remotely, and shared allocations 

may migrate between host and device. Since this migration happens 

automatically, there is really nothing to think about with USM implicit data 

movement and command groups. However, there are some nuances with 

shared allocations worth keeping in mind.

The prefetch operation works in a similar fashion to memcpy in 

order to let the runtime begin migrating shared allocations before a 

kernel attempts to use them. However, unlike memcpy where data must 

be copied in order to ensure correct results, prefetches are often treated 

as hints to the runtime to increase performance, and prefetches do not 

invalidate pointer values in memory (as a copy would when copying to a 

new address range). The program will still execute correctly if a prefetch 

has not completed before a kernel begins executing, and so many codes 

may choose to make command groups in a graph not depend on prefetch 

operations since they are not a functional requirement.

Buffers also carry some nuance. When using buffers, command groups 

must construct accessors for buffers that specify how the data will be used. 

These data dependences express the ordering between different command 

groups and allow us to construct task graphs. However, command groups 

with buffers sometimes fill another purpose: they specify the requirements 

on data movement.

Accessors specify that a kernel will read or write to a buffer. The 

corollary from this is that the data must also be available on the device, 

and if it is not, the runtime must move it there before the kernel may begin 

executing. Consequently, the SYCL runtime must keep track of where the 

current version of a buffer resides so that data movement operations can 

be scheduled. Accessor creation effectively creates an extra, hidden node 

in the graph. If data movement is necessary, the runtime must perform it 

first. Only then may the kernel being submitted execute.
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Let us take another look at Figure 8-8. In this example, our first two 

kernels will require buffers data1 and data2 to be copied to the device; 

the runtime implicitly creates extra graph nodes to perform the data 

movement. When the third kernel’s command group is submitted, it is 

likely that these buffers will still be on the device, so the runtime will not 

need to perform any extra data movement. The fourth kernel’s data is also 

likely to not require any extra data movement, but the creation of the host 

accessor requires the runtime to schedule a movement of buffer data1 

back to the host before the accessor is available for use.

 Synchronizing with the Host
The last topic we will discuss is how to synchronize graph execution with 

the host. We have already touched on this throughout the chapter, but we 

will now examine all the different ways a program can do this.

The first method for host synchronization is one we’ve used in many 

of our previous examples: waiting on a queue. Queue objects have two 

methods, wait and wait_and_throw, that block host execution until every 

command group that was submitted to the queue has completed. This 

is a very simple method that handles many common cases. However, it 

is worth pointing out that this method is very coarse-grained. If finer- 

grained synchronization is desired (to possibly improve performance, for 

example), one of the other approaches we will discuss may be better suit 

an application’s needs.

The next method for host synchronization is to synchronize on events. 

This gives more flexibility over synchronizing on a queue since it lets an 

application only synchronize on specific actions or command groups. This 

is done by either invoking the wait method on an event or invoking the 

static method wait on the event class, which can accept a vector of events.
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We have seen the next method used in Figures 8-5 and 8-8: host 

accessors. Host accessors perform two functions. First, they make data 

available for access on the host, as their name implies. Second, they 

synchronize the device and the host by defining a new dependence 

between the currently accessing graph and the host. This ensures that 

the data that gets copied back to the host has the correct value of the 

computation the graph was performing. However, we once again note 

that if the buffer was constructed from existing host memory, this original 

memory is not guaranteed to contain the updated values.

Note that host accessors are blocking. Execution on the host may not 

proceed past the creation of the host accessor until the data is available. 

Likewise, a buffer cannot be used on a device while a host accessor exists 

and keeps its data available. A common pattern is to create host accessors 

inside additional C++ scopes in order to free the data once the host 

accessor is no longer needed. This is an example of the next method for 

host synchronization.

Certain objects in SYCL have special behaviors when they are 

destroyed, and their destructors are invoked. We just learned how host 

accessors can make data remain on the host until they are destroyed. 

Buffers and images also have special behavior when they are destroyed or 

leave scope. When a buffer is destroyed, it waits for all command groups 

that use that buffer to finish execution. Once a buffer is no longer being 

used by any kernel or memory operation, the runtime may have to copy 

data back to the host. This copy occurs either if the buffer was initialized 

with a host pointer or if a host pointer was passed to the method set_

final_data. The runtime will then copy back the data for that buffer and 

update the host pointer before the object is destroyed.

The final option for synchronizing with the host involves an 

uncommon feature first described in Chapter 7. Recall that the 

constructors for buffer objects optionally take a property list. One of the 

valid properties that may be passed when creating a buffer is use_mutex. 

When a buffer is created in this fashion, it adds the requirement that the 
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memory owned by the buffer can be shared with the host application. 

Access to this memory is governed by the mutex used to initialize the 

buffer. The host is able to obtain the lock on the mutex when it is safe 

to access the memory shared with the buffer. If the lock cannot be 

obtained, the user may need to enqueue memory movement operations 

to synchronize the data with the host. This use is very specialized and 

unlikely to be found in the majority of DPC++ applications.

 Summary
In this chapter, we have learned about graphs and how they are built, 

scheduled, and executed in SYCL. We went into detail on what command 

groups are and what function they serve. We discussed the three things 

that can be within a command group: dependences, an action, and 

miscellaneous host code. We reviewed how to specify dependences 

between tasks using events as well as through data dependences described 

by accessors. We learned that the single action in a command group may 

be either a kernel or an explicit memory operation, and we then looked 

at several examples that showed the different ways we can construct 

common execution graph patterns. Next, we reviewed how data movement 

is an important part of SYCL graphs, and we learned how it can appear 

either explicitly or implicitly in a graph. Finally, we looked at all the ways to 

synchronize the execution of a graph with the host.

Understanding the program flow can enable us to understand the sort 

of debug information that can be printed if we have runtime failures to 

debug. Chapter 13 has a table in the section “Debugging Runtime Failures” 

that will make a little more sense given the knowledge we have gained 

by this point in the book. However, this book does not attempt to discuss 

these advanced compiler dumps in detail.
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Hopefully this has left you feeling like a graph expert who can 

construct graphs that range in complexity from linear chains to enormous 

graphs with hundreds of nodes and complex data and task dependences! 

In the next chapter, we’ll begin to dive into low-level details that are useful 

for improving the performance of an application on a specific device.

Open Access  This chapter is licensed under the terms of 

the Creative Commons Attribution 4.0 International License 

(https://creativecommons.org/licenses/by/4.0/), which permits use, 

sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and 

the source, provide a link to the Creative Commons license and indicate if 

changes were made.

The images or other third party material in this chapter are included 

in the chapter’s Creative Commons license, unless indicated otherwise 

in a credit line to the material. If material is not included in the chapter’s 

Creative Commons license and your intended use is not permitted by 

statutory regulation or exceeds the permitted use, you will need to obtain 

permission directly from the copyright holder.
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CHAPTER 9

Communication 
and Synchronization
In Chapter 4, we discussed ways to express parallelism, using basic data- 

parallel kernels or explicit ND-range kernels. We discussed how basic 

data-parallel kernels apply the same operation to every piece of data 

independently. We also discussed how explicit ND-range kernels divide 

the execution range into work-groups of work-items.

In this chapter, we will revisit the question of how to break up a 

problem into bite-sized chunks in our continuing quest to Think Parallel. 

This chapter provides more detail regarding explicit ND-range kernels 

and describes how groupings of work-items may be used to improve the 

performance of some types of algorithms. We will describe how groups 

of work-items provide additional guarantees for how parallel work is 

executed, and we will introduce language features that support groupings 

of work-items. Many of these ideas and concepts will be important when 

optimizing programs for specific devices in Chapters 15, 16, and 17 and to 

describe common parallel patterns in Chapter 14.

 Work-Groups and Work-Items
Recall from Chapter 4 that explicit ND-range kernels organize work-items 

into work-groups and that all work-items in the same work-group have 
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additional scheduling guarantees. This property is important, because 

it means that the work-items in a work-group can cooperate to solve a 

problem.

Figure 9-1 shows an ND-range divided into work-groups, where each 

work-group is represented by a different color. The work-items in each 

work-group can safely communicate with other work-items that share the 

same color.

Figure 9-1. Two-dimensional ND-range of size (8, 8) divided into 
four work-groups of size (4,4)

There are no guarantees that work-items in different work-groups will 

be executing at the same time, and so a work-item with one color cannot 

reliably communicate with a work-item with a different color. A kernel may 

deadlock if one work-item attempts to communicate with another work- 

item that is not currently executing. Since we want our kernels to complete 

execution, we must ensure that when one work-item communicates with 

another work-item, they are in the same work-group.
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 Building Blocks for Efficient Communication
This section describes building blocks that support efficient 

communication between work-items in a group. Some are fundamental 

building blocks that enable construction of custom algorithms, whereas 

others are higher level and describe common operations used by many 

kernels.

 Synchronization via Barriers
The most fundamental building block for communication is the barrier 

function. The barrier function serves two key purposes:

First, the barrier function synchronizes execution of work-items in a 

group. By synchronizing execution, one work-item can ensure that another 

work-item in the same group has completed an operation before using 

the result of that operation. Alternatively, one work-item is given time to 

complete its operation before another work-item uses the result of the 

operation.

Second, the barrier function synchronizes how each work-item views 

the state of memory. This type of synchronization operation is known 

as enforcing memory consistency or fencing memory (more details in 

Chapter 19). Memory consistency is at least as important as synchronizing 

execution since it ensures that the results of memory operations 

performed before the barrier are visible to other work-items after the 

barrier. Without memory consistency, an operation in one work-item is 

like a tree falling in a forest, where the sound may or may not be heard by 

other work-items!

Figure 9-2 shows four work-items in a group that synchronize at a 

barrier function. Even though the execution time for each work-item may 

differ, no work-items can execute past the barrier until all work-items 

execute the barrier. After executing the barrier function, all work-items 

have a consistent view of memory.
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Figure 9-2. Four work-items in a group synchronize at a barrier 
function

WHY ISN’T MEMORY CONSISTENT BY DEFAULT?

For many programmers, the idea of memory consistency—and that different 

work-items can have different views of memory—can feel very strange. 

Wouldn’t it be easier if all memory was consistent for all work-items by 

default? the short answer is that it would, but it would also be very expensive 

to implement. By allowing work-items to have inconsistent views of memory 

and only requiring memory consistency at defined points during program 

execution, accelerator hardware may be cheaper, may perform better, or both.

Chapter 9  CommuniCation and SynChronization



225

Because barrier functions synchronize execution, it is critically 

important that either all work-items in the group execute the barrier or 

no work-items in the group execute the barrier. If some work-items in the 

group branch around any barrier function, the other work-items in the 

group may wait at the barrier forever—or at least until the user gives up 

and terminates the program!

COLLECTIVE FUNCTIONS

When a function is required to be executed by all work-items in a group, it 

may be called a collective function, since the operation is performed by the 

group and not by individual work-items in the group. Barrier functions are not 

the only collective functions available in SyCL. other collective functions are 

described later in this chapter.

 Work-Group Local Memory
The work-group barrier function is sufficient to coordinate communication 

among work-items in a work-group, but the communication itself must 

occur through memory. Communication may occur through USM 

or buffers, but this can be inconvenient and inefficient: it requires a 

dedicated allocation for communication and requires partitioning the 

allocation among work-groups.

To simplify kernel development and accelerate communication 

between work-items in a work-group, SYCL defines a special local 

memory space specifically for communication between work-items in a 

work-group.
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In Figure 9-3, two work-groups are shown. Both work-groups may 

access USM and buffers in the global memory space. Each work-group may 

access variables in its own local memory space but cannot access variables 

in another work-group’s local memory.

Figure 9-3. Each work-group may access all global memory, but only 
its own local memory

When a work-group begins, the contents of its local memory are 

uninitialized, and local memory does not persist after a work-group 

finishes executing. Because of these properties, local memory may only be 

used for temporary storage while a work-group is executing.

For some devices, such as for many CPU devices, local memory is 

a software abstraction and is implemented using the same memory 

subsystems as global memory. On these devices, using local memory is 

primarily a convenience mechanism for communication. Some compilers 

may use the memory space information for compiler optimizations, but 

otherwise using local memory for communication will not fundamentally 

perform better than communication via global memory on these devices.

For other devices, such as many GPU devices, there are dedicated 

resources for local memory. On these devices, communicating via local 

memory will perform better than communicating via global memory.
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Communication between work-items in a work-group can be more 
convenient and faster when using local memory!

We can use the device query info::device::local_mem_type to 

determine whether an accelerator has dedicated resources for local 

memory or whether local memory is implemented as a software 

abstraction of global memory. Please refer to Chapter 12 for more 

information about querying properties of a device and to Chapters 15, 16,  

and 17 for more information about how local memory is typically 

implemented for CPUs, GPUs, and FPGAs.

 Using Work-Group Barriers 
and Local Memory
Now that we have identified the basic building blocks for efficient 

communication between work-items, we can describe how to express 

work-group barriers and local memory in kernels. Remember that 

communication between work-items requires a notion of work-item 

grouping, so these concepts can only be expressed for ND-range kernels 

and are not included in the execution model for basic data-parallel 

kernels.

This chapter will build upon the naïve matrix multiplication kernel 

examples introduced in Chapter 4 by introducing communication between 

the work-items in the work-groups executing the matrix multiplication. 

On many devices—but not necessarily all!—communicating through local 

memory will improve the performance of the matrix multiplication kernel.
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A NOTE ABOUT MATRIX MULTIPLICATION

in this book, matrix multiplication kernels are used to demonstrate how 

changes in a kernel affect performance. although matrix multiplication 

performance may be improved on many devices using the techniques 

described in this chapter, matrix multiplication is such an important and 

common operation that many vendors have implemented highly tuned 

versions of matrix multiplication. Vendors invest significant time and effort 

implementing and validating functions for specific devices and in some cases 

may use functionality or techniques that are difficult or impossible to use in 

standard parallel kernels.

USE VENDOR-PROVIDED LIBRARIES!

When a vendor provides a library implementation of a function, it is almost 

always beneficial to use it rather than reimplementing the function as a 

parallel kernel! For matrix multiplication, one can look to onemKL as part of 

intel’s toolkits for solutions appropriate for C++ with SyCL programmers.

Figure 9-4 shows the naïve matrix multiplication kernel we will be 

starting from, similar to the matrix multiplication kernel from Chapter 4.  

For this kernel, and for all of the matrix multiplication kernels in this 

chapter, T is a template type indicating the type of data stored in the 

matrix, such as a 32-bit float or a 64-bit double.
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h.parallel_for(range{M, N}, [=](id<2> id) {
int m = id[0];
int n = id[1];

// Template type T is the type of data stored
// in the matrix
T sum = 0; 
for (int k = 0; k < K; k++) {

sum += matrixA[m][k] * matrixB[k][n];
  } 

matrixC[m][n] = sum;
});

Figure 9-4. The naïve matrix multiplication kernel from Chapter 4

In Chapter 4, we observed that the matrix multiplication algorithm has 

a high degree of reuse, and that grouping work-items may improve locality 

of access and therefore may also improve cache hit rates. In this chapter, 

instead of relying on implicit cache behavior to improve performance, our 

modified matrix multiplication kernels will instead use local memory as an 

explicit cache, to guarantee locality of access.

For many algorithms, it is helpful to think of local memory as an 
explicit cache.

Figure 9-5 is a modified diagram from Chapter 4 showing a work-group 

consisting of a single row, which makes the algorithm using local memory 

easier to understand. Observe that for elements in a row of the result 

matrix, every result element is computed using a unique column of data 

from one of the input matrices, shown in blue and orange. Because there 

is no data sharing for this input matrix, it is not an ideal candidate for local 

memory. Observe, though, that every result element in the row accesses 

the exact same data in the other input matrix, shown in green. Because 

this data is reused, it is an excellent candidate to benefit from work-group 

local memory.
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Figure 9-5. Mapping of matrix multiplication to work-groups and 
work-items

Because we want to multiply matrices that are potentially very large 

and because work-group local memory may be a limited resource, our 

modified kernels will process subsections of each matrix, which we will 

refer to as a matrix tile. For each tile, our modified kernel will load data for 

the tile into local memory, synchronize the work-items in the group, and 

then load the data from local memory rather than global memory. The 

data that is accessed for the first tile is shown in Figure 9-6.

Figure 9-6. Processing the first tile: the green input data (left of X) 
is reused and is read from local memory, the blue and orange input 
data (right of X) is read from global memory
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In our kernels, we have chosen the tile size to be equivalent to the 

work-group size. This is not required, but because it simplifies transfers 

into or out of local memory, it is common and convenient to choose a tile 

size that is a multiple of the work-group size.

 Work-Group Barriers and Local Memory 
in ND- Range Kernels
This section describes how work-group barriers and local memory are 

expressed in ND-range kernels. For ND-range kernels, the representation 

is explicit: a kernel declares and operates on a local accessor representing 

an allocation in the local address space and calls a barrier function to 

synchronize the work-items in a work-group.

 Local Accessors

To declare local memory for use in an ND-range kernel, use a local 

accessor. Like other accessor objects, a local accessor is constructed within 

a command group handler, but unlike the accessor objects discussed 

in Chapters 3 and 7, a local accessor is not created from a buffer object. 

Instead, a local accessor is created by specifying a type and a range 

describing the number of elements of that type. Like other accessors, 

local accessors may be one-dimensional, two-dimensional, or three- 

dimensional. Figure 9-7 demonstrates how to declare local accessors and 

use them in a kernel.

Chapter 9  CommuniCation and SynChronization



232

/ This is a typical global accessor.
accessor dataAcc{dataBuf, h};

// This is a 1D local accessor consisting of 16 ints:
auto localIntAcc = local_accessor<int, 1>(16, h);

// This is a 2D local accessor consisting of 4 x 4
// floats:
auto localFloatAcc =

local_accessor<float, 2>({4, 4}, h);

h.parallel_for( 
nd_range<1>{{size}, {16}}, [=](nd_item<1> item) {
auto index = item.get_global_id();
auto local_index = item.get_local_id();

// Within a kernel, a local accessor may be read
// from and written to like any other accessor.
localIntAcc[local_index] = dataAcc[index] + 1; 
dataAcc[index] = localIntAcc[local_index];

});

Figure 9-7. Declaring and using local accessors

Remember that local memory is uninitialized when each work-group 

begins and does not persist after each work-group completes. This means 

that a local accessor must always be read_write, since otherwise a kernel 

would have no way to assign the contents of local memory or view the 

results of an assignment. Local accessors may optionally be atomic though, 

in which case accesses to local memory via the accessor are performed 

atomically. Atomic accesses are discussed in more detail in Chapter 19.

 Synchronization Functions

To synchronize the work-items in an ND-range kernel work-group, call 

the group_barrier function with a group representing the work-group. 

Because the group representing the work-group may only be queried from 

an nd_item and cannot be queried from an item, work-group barriers are 

only available to ND-range kernels and are not available to basic data- 

parallel kernels.

Chapter 9  CommuniCation and SynChronization



233

The group_barrier function accepts one additional optional 

argument to describe the scope of any memory consistency operations that 

are performed by the barrier. When no additional arguments are passed 

to the group_barrier function, the barrier function will determine the 

default scope based on the passed-in group. The default scope is usually 

correct and therefore an explicit scope is rarely required, but the memory 

scope can be broadened if necessary for some algorithms.

Please note that the explicit scope only affects the memory operations 

that are performed by the barrier, and that the set of work-items that 

synchronize execution at the barrier is determined entirely by the group 

object passed to the barrier. We cannot synchronize more or fewer work- 

items by passing a different memory scope to the barrier, but we can 

synchronize a different set of work-items by passing a different group 

object to the barrier.

 A Full ND-Range Kernel Example

Now that we know how to declare a local memory accessor and 

synchronize accesses to it using a barrier function, we can implement 

an ND-range kernel version of matrix multiplication that coordinates 

communication among work-items in the work-group to reduce traffic to 

global memory. The complete example is shown in Figure 9-8.
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// Traditional accessors, representing matrices in
// global memory:
accessor matrixA{bufA, h};
accessor matrixB{bufB, h};
accessor matrixC{bufC, h};

// Local accessor, for one matrix tile:
constexpr int tile_size = 16; 

// Template type T is the type of data stored in the matrix
auto tileA = local_accessor<T, 1>(tile_size, h);

h.parallel_for( 
nd_range<2>{{M, N}, {1, tile_size}},
[=](nd_item<2> item) {
// Indices in the global index space:
int m = item.get_global_id()[0];
int n = item.get_global_id()[1];

// Index in the local index space:
int i = item.get_local_id()[1];

T sum = 0; 
for (int kk = 0; kk < K; kk += tile_size) {
// Load the matrix tile from matrix A, and
// synchronize to ensure all work-items have a
// consistent view of the matrix tile in local
// memory.
tileA[i] = matrixA[m][kk + i];
group_barrier(item.get_group());

// Perform computation using the local memory
// tile, and matrix B in global memory.
for (int k = 0; k < tile_size; k++) {
sum += tileA[k] * matrixB[kk + k][n];

       } 

// After computation, synchronize again, to
// ensure all reads from the local memory tile
// are complete.
group_barrier(item.get_group());

     } 

// Write the final result to global memory.
matrixC[m][n] = sum;

});

Figure 9-8. Expressing a tiled matrix multiplication kernel with an 
ND-range parallel_for and work-group local memory
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The main loop in this kernel can be thought of as two distinct phases: 

in the first phase, the work-items in the work-group collaborate to load 

shared data from the A matrix into work-group local memory; and in the 

second, the work-items perform their own computations using the shared 

data. To ensure that all work-items have completed the first phase before 

moving onto the second phase, the two phases are separated by a call to 

group_barrier to synchronize all work-items in the work-group and to 

provide a memory fence. This pattern is a common one, and the use of 

work-group local memory in a kernel almost always necessitates the use of 

work-group barriers.

Note that there must also be a call to group_barrier to synchronize 

execution between the computation phase for the current tile and the 

loading phase for the next matrix tile. Without this synchronization 

operation, part of the current matrix tile may be overwritten by one work- 

item in the work-group before another work-item is finished computing 

with it. In general, any time that one work-item is reading or writing 

data in local memory that was read or written by another work-item, 

synchronization is required. In Figure 9-8, the synchronization is done at 

the end of the loop, but it would be equally correct to synchronize at the 

beginning of each loop iteration instead.

 Sub-Groups
So far in this chapter, work-items have communicated with other work- 

items in the work-group by exchanging data through work-group local 

memory and by synchronizing using the group_barrier function on a 

work-group.

In Chapter 4, we discussed another grouping of work-items. A sub- 

group is an implementation-defined subset of work-items in a work-group 

that execute together on the same hardware resources or with additional 

scheduling guarantees. Because the implementation decides how to group 
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work-items into sub-groups, the work-items in a sub-group may be able to 

communicate or synchronize more efficiently than the work-items in an 

arbitrary work-group.

This section describes the building blocks for communication among 

work-items in a sub-group. Sub-groups also require a notion of work- 

item grouping, so sub-groups also require ND-range kernels and are not 

included in the execution model for basic data-parallel kernels.

 Synchronization via Sub-Group Barriers
Just like how the work-items in a work-group may synchronize using a 

work-group barrier, the work-items in a sub-group may synchronize using 

a sub-group barrier. To perform a sub-group barrier, call the same  group_

barrier function, but pass a group object representing the sub-group 

rather than the work-group, as shown in Figure 9-9. Like for work-group 

objects, a group object representing the sub-group can be queried from 

the nd_item class for ND-range kernels but cannot be queried from a basic 

data-parallel item.

h.parallel_for( 
nd_range{{size}, {16}}, [=](nd_item<1> item) {
auto sg = item.get_sub_group();
group_barrier(sg);
// ...
auto index = item.get_global_id();
data_acc[index] = data_acc[index] + 1; 

});

Figure 9-9. Querying and using the sub_group class

Also like the work-group barrier, the sub-group barrier may accept 

optional arguments to broaden the scope of any memory operations 

associated with the sub-group barrier, but this is uncommon and in most 

cases we can simply use the default memory scope.
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 Exchanging Data Within a Sub-Group
Unlike work-groups, sub-groups do not have a dedicated memory space 

for exchanging data. Instead, work-items in the sub-group may exchange 

data through work-group local memory, through global memory, or more 

commonly by using sub-group collective functions.

As described previously, a collective function is a function that 

describes an operation performed by a group of work-items, not an 

individual work-item. Because a barrier synchronization function is an 

operation performed by a group of work-items, it is one example of a 

collective function.

Other collective functions express common communication patterns. 

We will describe the semantics for many collective functions in detail later 

in this chapter, but for now, we focus on the group_broadcast collective 

function that we will use to implement matrix multiplication using 

sub-groups.

The group_broadcast collective function takes a value from one 

work-item in the group and communicates it to all other work-items in 

the group. An example is shown in Figure 9-10. Notice that the semantics 

of the broadcast function require that the local_id identifying the value 

in the group to communicate must be the same for all work-items in the 

group, ensuring that the result of the broadcast function is also the same 

for all work-items in the group.

Figure 9-10. Processing by the broadcast function
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If we look at the innermost loop of our local memory matrix 

multiplication kernel, shown in Figure 9-11, we can see that the access to 

the matrix tile is a broadcast operation, since each work-item in the group 

reads the same value out of the matrix tile.

h.parallel_for( 
nd_range<2>{{M, N}, {1, tile_size}},
[=](nd_item<2> item) {
// Indices in the global index space:
int m = item.get_global_id()[0];
int n = item.get_global_id()[1];

// Index in the local index space:
int i = item.get_local_id()[1];

// Template type T is the type of data stored in
// the matrix
T sum = 0; 
for (int kk = 0; kk < K; kk += tile_size) {
// Load the matrix tile from matrix A, and
// synchronize to ensure all work-items have a
// consistent view of the matrix tile in local
// memory.
tileA[i] = matrixA[m][kk + i];
group_barrier(item.get_group());

// Perform computation using the local memory
// tile, and matrix B in global memory.
for (int k = 0; k < tile_size; k++) {
// Because the value of k is the same for
// all work-items in the group, these reads
// from tileA are broadcast operations.
sum += tileA[k] * matrixB[kk + k][n];

        } 

// After computation, synchronize again, to
// ensure all reads from the local memory tile
// are complete.
group_barrier(item.get_group());

      } 

// Write the final result to global memory.
matrixC[m][n] = sum;

});

Figure 9-11. Matrix multiplication kernel includes a broadcast 
operation
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We will use the group_broadcast function with a sub-group object 

to implement a matrix multiplication kernel that does not require work- 

group local memory or barriers. On many devices, sub-group broadcasts 

are faster than work-group broadcasts using work-group local memory and 

barriers.

 A Full Sub-Group ND-Range Kernel Example
Figure 9-12 is a complete example that implements matrix multiplication 

using sub-groups. Notice that this kernel requires no work-group local 

memory or explicit synchronization and instead uses a sub-group 

broadcast collective function to communicate the contents of the matrix 

tile among the work-items in the sub-group.
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// Note: This example assumes that the sub-group size
// is greater than or equal to the tile size!
constexpr int tile_size = 4; 
h.parallel_for( 

nd_range<2>{{M, N}, {1, tile_size}},
[=](nd_item<2> item) {
auto sg = item.get_sub_group();

// Indices in the global index space:
int m = item.get_global_id()[0];
int n = item.get_global_id()[1];

// Index in the local index space:
int i = item.get_local_id()[1];

// Template type T is the type of data stored
// in the matrix
T sum = 0; 
for (int kk = 0; kk < K; kk += tile_size) {

// Load the matrix tile from matrix A.
T tileA = matrixA[m][kk + i];

// Perform computation by broadcasting from
// the matrix tile and loading from matrix B
// in global memory. The loop variable k
// describes which work-item in the sub-group
// to broadcast data from.
for (int k = 0; k < tile_size; k++) {

sum += group_broadcast(sg, tileA, k) *
matrixB[kk + k][n];

        } 
      } 

// Write the final result to global memory.
matrixC[m][n] = sum;

});

Figure 9-12. Tiled matrix multiplication kernel expressed with ND- 
range parallel_for and sub-group collective functions
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 Group Functions and Group Algorithms
In the “Sub-Groups” section of this chapter, we described collective 

functions and how collective functions express common communication 

patterns. We specifically discussed the broadcast collective function, 

which is used to communicate a value from one work-item in a group 

to the other work-items in the group. This section describes additional 

collective functions.

Although the collective functions described in this section can be 

implemented directly in our programs using features such as atomics, 

work-group local memory, and barriers, many devices include dedicated 

hardware to accelerate collective functions. Even when a device does 

not include specialized hardware, vendor-provided implementations of 

collective functions are likely tuned for the device they are running on, 

so calling a built-in collective function will usually perform better than a 

general-purpose implementation that we might write.

use collective functions for common communication patterns to 
simplify code and increase performance!

 Broadcast
The group_broadcast function enables one work-item in a group to share 

the value of a variable with all other work-items in the group. A diagram 

showing how the broadcast function works can be found in Figure 9-10. 

The group_broadcast function is supported for both work-groups and 

sub-groups.
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 Votes
The any_of_group, all_of_group, and none_of_group functions 

(henceforth referred to as “vote” functions) enable work-items to compare 

the result of a Boolean condition across their group: any_of_group returns 

true if the condition is true for at least one work-item in the group, all_of_

group returns true if the condition is true for all work-items in the group, 

and none_of_group returns true if the condition is false for all of the work- 

items in the group. A comparison of these two functions for an example 

input is shown in Figure 9-13.

Figure 9-13. Comparison of the any_of_group, all_of_group, and 
none_of_group functions

SYCL 2020 also supports another variant of these functions where 

the work-items in a group cooperate to evaluate a range of data like the 

standard C++ all_of, any_of, and none_of algorithms. These functions 

are named joint_any_of, joint_all_of, and joint_none_of to 

differentiate from the variants where each work-item in the group holds 

the data to compare directly.

The vote functions are useful for some iterative algorithms to 

determine when a solution has converged for all work-items in the group, 

for example. The vote functions are supported for work-groups and 

sub-groups.
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 Shuffles
One of the most useful features of sub-groups is the ability to communicate 

directly between individual work-items without explicit memory 

operations. In many cases, such as the sub-group matrix multiplication 

kernel, these shuffle operations enable us to both remove work-group local 

memory usage from our kernels and avoid unnecessary repeated accesses 

to global memory. There are several flavors of these shuffle functions 

available.

The most general of the shuffle functions is called select_from_group, 

and as shown in Figure 9-14, it allows for arbitrary communication 

between any pair of work-items in the sub-group. This generality may 

come at a performance cost, however, and we strongly encourage making 

use of the more specialized shuffle functions wherever possible.

Figure 9-14. Using a generic select_from_group to sort values 
based on precomputed indices

In Figure 9-14, a generic shuffle is used to sort the values of a sub- 

group using precomputed permutation indices. Arrows are shown for one 

work-item in the sub-group, where the result of the shuffle is the value of x 

for the work-item with local_id equal to 7.

Note that the sub-group group_broadcast function can be thought 

of as a specialized version of the general-purpose select_from_group 

function, where the shuffle index is the same for all work-items in the 

sub-group. When the shuffle index is known to be the same for all work- 
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items in the sub-group, using group_broadcast instead of select_from_

group provides the compiler additional information and may increase 

performance on some implementations.

The shift_group_right and shift_group_left functions effectively 

shift the contents of a sub-group by a fixed number of elements in a given 

direction, as shown in Figure 9-15. Note that the values returned to the last 

five work-items in the sub-group are undefined and are shown as blank 

in Figure 9-15. Shifting can be useful for parallelizing loops with loop- 

carried dependences or when implementing common algorithms such as 

exclusive or inclusive scans.

Figure 9-15. Using shift_group_left to shift x values of a sub- 
group by five items

The permute_group_by_xor function swaps the values of two work- 

items, specified by the result of an XOR operation applied to the work- 

item’s sub-group local id and a fixed constant. As shown in Figure 9-16 and 

Figure 9-17, several common communication patterns can be expressed 

using an XOR, such as swapping pairs of neighboring values or reversing 

the sub-group values.
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Figure 9-16. Swapping neighboring pairs of x using a permute_
group_by_xor

Figure 9-17. Reversing the values of x using a permute_
group_by_xor

SUB-GROUP OPTIMIZATIONS USING BROADCAST, VOTE, AND COLLECTIVES

the behavior of broadcast, vote, and other collective functions applied to sub- 

groups is identical to when they are applied to work-groups, but they deserve 

additional attention because they may enable aggressive optimizations in 

certain compilers. For example, a compiler may be able to reduce register 

usage for variables that are broadcast to all work-items in a sub-group, or 

may be able to reason about control flow divergence based on usage of the 

any_of_group and all_of_group functions.
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Because the shuffle functions are so specialized, they are only available 

for sub-groups and are not available for work-groups.

 Summary
This chapter discussed how work-items in a group may communicate and 

cooperate to improve the performance of some types of kernels.

We first discussed how ND-range kernels support grouping work-items 

into work-groups. We discussed how grouping work-items into work- 

groups changes the parallel execution model, guaranteeing that the work- 

items in a work-group are scheduled for execution in a way that enables 

communication and synchronization.

Next, we discussed how the work-items in a work-group may 

synchronize using barriers and how barriers are expressed in kernels. We 

also discussed how communication between work-items in a work-group 

can be performed via work-group local memory, to simplify kernels and to 

improve performance, and we discussed how work-group local memory is 

represented using local accessors.

We discussed how work-groups in ND-range kernels may be further 

divided into sub-groupings of work-items, where the sub-groups of work- 

items may support additional communication patterns or scheduling 

guarantees.

For both work-groups and sub-groups, we discussed how common 

communication patterns may be expressed and accelerated through the 

use of collective functions.

The concepts in this chapter are an important foundation for 

understanding the common parallel patterns described in Chapter 14 and 

for understanding how to optimize for specific devices in Chapters 15, 16,  

and 17.
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Open Access  This chapter is licensed under the terms of 

the Creative Commons Attribution 4.0 International License 

(https://creativecommons.org/licenses/by/4.0/), which permits use, 

sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and 

the source, provide a link to the Creative Commons license and indicate if 

changes were made.

The images or other third party material in this chapter are included 

in the chapter’s Creative Commons license, unless indicated otherwise 

in a credit line to the material. If material is not included in the chapter’s 

Creative Commons license and your intended use is not permitted by 

statutory regulation or exceeds the permitted use, you will need to obtain 

permission directly from the copyright holder.
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CHAPTER 10

Defining Kernels
Thus far in this book, our code examples have represented kernels 

using C++ lambda expressions. Lambda expressions are a concise and 

convenient way to represent a kernel right where it is used, but they are not 

the only way to represent a kernel in SYCL. In this chapter, we will explore 

various ways to define kernels in detail, helping us to choose a kernel form 

that is most natural for our C++ coding needs.

This chapter explains and compares three ways to represent a kernel:

• Lambda expressions.

• Named function objects (functors).

• Via interoperability with kernels created via other 

languages or APIs. This topic is covered briefly in this 

chapter, and in more detail in Chapter 20.

This chapter closes with a discussion of how to explicitly manipulate 

kernels in a kernel bundle to query kernel properties and to control when 

and how kernels are compiled.

 Why Three Ways to Represent a Kernel?
Before we dive into the details, let’s start with a summary of why there are 

three ways to define a kernel and the advantages and disadvantages of 

each method. A useful summary is given in Figure 10-1.
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Bear in mind that a kernel is used to express a unit of computation 

and that many instances of a kernel will usually execute in parallel on an 

accelerator. SYCL supports multiple ways to express a kernel to integrate 

naturally and seamlessly into codebases with different coding styles, while 

also executing efficiently on a wide diversity of accelerator types.

Kernel 
Representation

Description

Lambda Expression Pros:

� Lambda expressions are a concise way to represent a kernel right 

where it is used.

� Lambda expressions are a familiar way to represent kernel-like 

operations in modern C++ codebases.

� Lambda capture rules automatically pass data to kernels.

Cons:

� Kernels represented as lambda expressions cannot be templated, and 

do not assemble as a library (like regular functions) without extra 

work.

� The lambda syntax may be unfamiliar to some C++ codebases.

Named Function 
Object
(Functor)

Pros:

� Functors can be templated, reused, and shipped as a part of a library, 

just like any other C++ class.

� Functors provide more control over the data that gets passed into a 

kernel. 

Cons:

� Kernels represented as functors require more code than kernels

represented as lambda expressions.

� Kernel arguments must be explicitly passed to functors and are not 

captured automatically.

Interoperability 
with Other 
Languages or APIs

Pros:

� Enables re-use of previously written kernels or libraries.

� Enables large application codebases to incrementally add support for 

SYCL.

�

Cons:

�

�

�

Figure 10-1. Three ways to represent a kernel
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 Kernels as Lambda Expressions
C++ lambda expressions, also referred to as anonymous function objects, 

unnamed function objects, closures, or simply lambdas, are a convenient 

way to express a kernel right where it is used. This section describes how 

to represent a kernel as a C++ lambda expression. This expands on the 

introductory refresher on C++ lambda expressions, in Chapter 1, which 

included some basic coding samples with output.

C++ lambda expressions are very powerful and have an expressive 

syntax, but only a specific subset of the full C++ lambda expression syntax 

is required (and supported) when expressing a kernel in SYCL.

 Elements of a Kernel Lambda Expression
Figure 10-2 shows a simple kernel written as a typical lambda 

expression—the code examples so far in this book have used this syntax.

The illustration in Figure 10-3 shows elements of a lambda expression 

that may be used with kernels, but many of these elements are not typical. 

In most cases, the lambda defaults are sufficient, so a typical kernel 

lambda expression looks more like the lambda expression in Figure 10-2 

than the more complicated lambda expression in Figure 10-3.

h.parallel_for(
size,
// This is the start of a kernel lambda expression:
[=](id<1> i) { data_acc[i] = data_acc[i] + 1; }
// This is the end of the kernel lambda expression.

);

Figure 10-2. Simple kernel defined using a lambda expression
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q.submit([&](handler& h) {
accessor data_acc{data_buf, h};
h.parallel_for(

nd_range{{size}, {8}},

[=](id<1> i) noexcept [[sycl::reqd_work_group_size(8)]] ->void {
data_acc[i] = data_acc[i] + 1;

});
});

Figure 10-3. More elements of a kernel lambda expression, including 
optional elements

 1. The first part of a lambda expression describes 

the lambda captures. Capturing a variable from a 

surrounding scope enables it to be used within the 

lambda expression, without explicitly passing it to 

the lambda expression as a parameter.

C++ lambda expressions support capturing a 

variable by copying it or by creating a reference 

to it, but for kernel lambda expressions, variables 

may only be captured by copy. General practice is 

to simply use the default capture mode [=], which 

implicitly captures all variables by value, although it 

is possible to explicitly name each captured variable 

in a comma-separated capture-list as well. Any 

variable used within a kernel that is not captured 

by value will cause a compile-time error. Note 

that global variables are not captured by a lambda 

expression, as per the C++ standard.

 2. The second part of a lambda expression describes 

parameters that are passed to the lambda 

expression, just like parameters that are passed to 

named functions.
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For kernel lambda expressions, the parameter 

depends on how the kernel was invoked and 

identifies the index of the work-item in the parallel 

execution space. Please refer to Chapter 4 for more 

details about the various parallel execution spaces 

and how to identify the index of a work- item in each 

execution space.

 3. The last part of the lambda expression defines the 

function body. For a kernel lambda expression, 

the function body describes the operations that 

should be performed at each index in the parallel 

execution space.

There are other parts of a lambda expression, but they are either 

optional, infrequently used, or unsupported by SYCL 2020:

 4. No specifiers (such as mutable) are defined by SYCL 

2020, so none are shown in the example code.

 5. The exception specification is supported, but must 

be noexcept if provided, since exceptions are not 

supported for kernels.

 6. Lambda attributes are supported and may be used 

to control how the kernel is compiled. For example, 

the reqd_work_group_size attribute can be used 

to require a specific work-group size for a kernel, 

and the device_has attribute can be used to require 

specific device aspects for a kernel. Chapter 12 

contains more information on kernel specialization 

using attributes and aspects.
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 7. The return type may be specified but must be void 

if provided, since non-void return types are not 

supported for kernels.

LAMBDA CAPTURES: IMPLICIT OR EXPLICIT?

some C++ style guides recommend against implicit (or default) captures for 

lambda expressions due to possible dangling pointer issues, especially when 

lambda expressions cross scope boundaries. the same issues may occur 

when lambdas are used to represent kernels, since kernel lambdas execute 

asynchronously on the device, separately from host code.

Because implicit captures are useful and concise, it is common practice for 

sYCl kernels and a convention we use in this book, but it is ultimately our 

decision whether to prefer the brevity of implicit captures or the clarity of 

explicit captures.

 Identifying Kernel Lambda Expressions
There is one more element that must be provided in some cases when 

a kernel is written as a lambda expression: because lambda expressions 

are anonymous, at times SYCL requires an explicit kernel name template 

parameter to uniquely identify a kernel written as a lambda expression.

// In this example, "class Add" names the kernel
// lambda expression.
h.parallel_for<class Add>(size, [=](id<1> i) {
data_acc[i] = data_acc[i] + 1;

});

Figure 10-4. Identifying kernel lambda expressions
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Naming a kernel lambda expression is a way for a host code compiler 

to identify which kernel to invoke when the kernel was compiled by a 

separate device code compiler. Naming a kernel lambda also enables 

runtime introspection of a compiled kernel or building a kernel by name, 

as shown in Figure 10-9.

To support more concise code when the kernel name template 

parameter is not required, the kernel name template parameter is optional 

for most SYCL 2020 compilers. When no kernel name template parameter 

is required, our code can be more compact, as shown in Figure 10-5.

h.parallel_for(size, [=](id<1> i) {
data_acc[i] = data_acc[i] + 1;

});

Figure 10-5. Using unnamed kernel lambda expressions

Because the kernel name template parameter for lambda expressions 

is not required in most cases, we can usually start with an unnamed 

lambda and only add a kernel name in specific cases when the kernel 

name template parameter is required.

When the kernel name template parameter is not required, using 
unnamed kernel lambdas is preferred to reduce verbosity.

 Kernels as Named Function Objects
Named function objects, also known as functors, are an established pattern 

in C++ that allows operating on an arbitrary collection of data while 

maintaining a well-defined interface. When used to represent a kernel, 

the member variables of a named function object define the state that the 

kernel may operate on, and the overloaded function call operator() is 

invoked for each work-item in the parallel execution space.
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Named function objects require more code than lambda expressions 

to express a kernel, but the extra verbosity provides more control and 

additional capabilities. It may be easier to analyze and optimize kernels 

expressed as named function objects, for example, since any buffers and 

data values used by the kernel must be explicitly passed to the kernel, 

rather than captured automatically by a lambda expression.

Kernels expressed as named function objects may also be easier to 

debug, easier to reuse, and they may be shipped as part of a separate 

header file or library.

Finally, because named function objects are just like any other C++ 

class, kernels expressed as named function objects may be templated. 

C++20 added templated lambda expressions, but templated lambda 

expressions are not supported for kernels in SYCL 2020, which is based 

on C++17.

 Elements of a Kernel Named Function Object
The code in Figure 10-6 demonstrates typical usage of a kernel represented 

as a named function object. In this example, the parameters to the 

kernel are passed to the class constructor, and the kernel itself is in the 

overloaded function call operator().
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class Add {
public:
Add(accessor<int> acc) : data_acc(acc) {}
void operator()(id<1> i) const {
data_acc[i] = data_acc[i] + 1;

}

private:
accessor<int> data_acc;

};

int main() {
constexpr size_t size = 16;
std::array<int, size> data;

for (int i = 0; i < size; i++) {
data[i] = i;

}

{
buffer data_buf{data};

queue q;
std::cout

<< "Running on device: "
<< q.get_device().get_info<info::device::name>()
<< "\n";

q.submit([&](handler& h) {
accessor data_acc{data_buf, h};
h.parallel_for(size, Add(data_acc));

});
}
// ...

Figure 10-6. Kernel as a named function object

When a kernel is expressed as a named function object, the named 

function object type must follow SYCL 2020 rules to be device copyable. 

Informally, this means that the named function objects may be safely 

copied byte by byte, enabling the member variables of the named function 

object to be passed to and accessed by kernel code executing on a device. 

Any C++ type that is trivially copyable is implicitly device copyable.
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The argument to the overloaded function call operator() depends 

on how the kernel is launched, just like for kernels expressed as lambda 

expressions.

The code in Figure 10-7 shows how to use optional kernel attributes, 

like the reqd_work_group_size attribute, on kernels defined as named 

function objects. There are two valid positions for the optional kernel 

attribute when a kernel is defined as a named function object. This is 

different than a kernel written as a lambda expression, where only one 

position for the optional kernel attribute is valid.

class AddWithAttribute {
public:
AddWithAttribute(accessor<int> acc) : data_acc(acc) {}
[[sycl::reqd_work_group_size(8)]] void operator()(

id<1> i) const {
data_acc[i] = data_acc[i] + 1;

}

private:
accessor<int> data_acc;

};

class MulWithAttribute {
public:
MulWithAttribute(accessor<int> acc) : data_acc(acc) {}
void operator()

[[sycl::reqd_work_group_size(8)]] (id<1> i) const {
data_acc[i] = data_acc[i] * 2;

}

private:
accessor<int> data_acc;

};

Figure 10-7. Using optional attributes with a named function object

Because all function objects are named, the host code compiler can 

use the function object type to identify the kernel code produced by 

the device code compiler even if the function object is templated. No 

additional kernel name template parameter is needed to name a kernel 

function object.
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 Kernels in Kernel Bundles
One final topic we should be aware of related to SYCL kernels concerns 

SYCL kernel objects and SYCL kernel bundles. Knowledge of kernel objects 

and kernel bundles is not required for typical application development 

but is useful in some cases to tune application performance. Knowledge of 

kernel objects and kernel bundles can also help to understand how kernels 

are organized and managed by a SYCL implementation.

A SYCL kernel bundle is a container for SYCL kernels or SYCL 

functions used by an application. The number of kernel bundles in an 

application depends on the specific SYCL compiler. Some applications 

may have just one kernel bundle, even if they have multiple kernels, while 

other applications may have more than one kernel bundle, even if they just 

have a few kernels.

A SYCL kernel bundle and the kernels or functions it contains can be in 

one of three states:

• An input state: Kernel bundles in this state are typically 

in some sort of intermediate representation and must 

be just-in-time (JIT) compiled before they can execute 

on a device.

• An object state: Kernel bundles in this state are usually 

compiled but not linked, like object files created by 

host application compilers.

• An executable state: Kernel bundles in this state are 

fully compiled to device code and are ready to be 

executed on the device. Kernel bundles that are ahead- 

of- time (AOT) compiled when the host application is 

compiled will initially be in this state.
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While not required by the specification, many SYCL compilers compile 

kernels to an intermediate representation initially, for portability to the 

largest number of SYCL devices. This means that usually the application 

kernel bundles are in the input state initially. Then, many SYCL runtime 

libraries compile the kernel bundles from the input state to the executable 

state “lazily,” on an as-needed basis.

This is usually a good policy because it enables fast application startup 

and does not compile kernels unnecessarily if they are never executed. 

The disadvantage of this policy, though, is that the first use of a kernel 

takes longer than subsequent uses, since it includes both the time needed 

to compile the kernel and the usual time needed to submit and execute 

the kernel. For complex kernels, the time to compile the kernel can be 

significant, making it desirable to shift compilation to a different point 

during application execution, such as when the application is loading, or 

to a separate background thread.

To provide more control over when and how a kernel is compiled, 

we can explicitly request a kernel bundle to be compiled before 

submitting a kernel to a queue. The precompiled kernel bundle can be 

used when the kernel is submitted to a queue for execution. Figure 10-8 

shows how to compile all the kernels used by an application before 

any of the kernels are submitted to a queue, and how to use the 

precompiled kernel bundle.
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auto kb = get_kernel_bundle<bundle_state::executable>(
q.get_context());

std::cout
<< "All kernel compilation should be done now.\n";

q.submit([&](handler& h) {
// Use the pre-compiled kernel from the kernel bundle.
h.use_kernel_bundle(kb);

accessor data_acc{data_buf, h};
h.parallel_for(range{size}, [=](id<1> i) {
data_acc[i] = data_acc[i] + 1;

});
});

Figure 10-8. Compiling kernels explicitly using kernel bundles

This example requests a kernel bundle in an executable state for all 

the devices in the SYCL context associated with the SYCL queue, which 

will cause any kernels in the application to be just-in-time compiled if 

they are not already in the executable state. In this specific example, the 

kernel is very short and should not take long to compile, but if there were 

many kernels, or if they were more complicated, this step could take a 

significant amount of time. Of course, if all kernels were ahead-of-time 

compiled, or if all kernels had already been just-in-time compiled, this 

operation would effectively be free because all kernels would already be in 

the executable state.

If we want even more control over when and how our kernels are 

compiled, we can request a kernel bundle for a specific device, or even 

specific kernels in our program. This allows us to selectively compile some 

of the kernels in our program immediately, while leaving other kernels 

to be compiled later or on an as-needed basis. Figure 10-9 shows how to 

compile only the kernel identified by the class Add kernel name and only 

for the SYCL device associated with the SYCL queue, rather than all kernels 

in the program and all devices in the SYCL context.
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auto kid = get_kernel_id<class Add>();
auto kb = get_kernel_bundle<bundle_state::executable>(

q.get_context(), {q.get_device()}, {kid});

std::cout << "Kernel compilation should be done now.\n";

q.submit([&](handler& h) {
// Use the pre-compiled kernel from the kernel bundle.
h.use_kernel_bundle(kb);

accessor data_acc{data_buf, h};
h.parallel_for<class Add>(range{size}, [=](id<1> i) {

data_acc[i] = data_acc[i] + 1;
});

});

Figure 10-9. Compiling kernels explicitly and selectively using 
kernel bundles

This is a rare case where we needed to name our kernel lambda 

expression; otherwise, we would have no way to identify the kernel to 

compile.

Use kernel bundles to compile kernels predictably in an application!

Kernels in kernel bundles can also be used to query information about 

a compiled kernel, say to determine the maximum work-group size for a 

kernel for a specific device. In some cases, these types of kernel queries 

may be needed to choose valid values to use for a kernel and a specific 

device. In other cases, kernel queries can provide hints, allowing our 

application to dynamically adapt and choose optimal values for a kernel 

and a specific device.

The basic mechanism to identify a kernel, get a kernel object from 

a compiled kernel bundle, and use the kernel object to perform device- 

specific queries is shown in Figure 10-10. A more complete list of available 

kernel queries is described in Chapter 12.
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auto kid = get_kernel_id<class Add>();
auto kb = get_kernel_bundle<bundle_state::executable>(

q.get_context(), {q.get_device()}, {kid});
auto kernel = kb.get_kernel(kid);

std::cout
<< "The maximum work-group size for the kernel and "

"this device is: "
<< kernel.get_info<info::kernel_device_specific::

work_group_size>(
q.get_device())

<< "\n";

std::cout
<< "The preferred work-group size multiple for the "

"kernel and this device is: "
<< kernel.get_info<

info::kernel_device_specific::
preferred_work_group_size_multiple>(

q.get_device())
<< "\n";

Example Output:
Running on device: NVIDIA GeForce RTX 3060
The maximum work-group size for the kernel and this device is: 1024
The preferred work-group size multiple for the kernel and this device is: 32

Example Output:
Running on device: Intel(R) Data Center GPU Max 1100
The maximum work-group size for the kernel and this device is: 1024
The preferred work-group size multiple for the kernel and this device is: 16

Example Output:
Running on device: Intel(R) UHD Graphics 770
The maximum work-group size for the kernel and this device is: 512
The preferred work-group size multiple for the kernel and this device is: 64

Figure 10-10. Querying kernels in kernel bundles

This is another rare case where we need to name our kernel lambda 

expression; otherwise, we would have no way to identify the kernel 

to query.
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 Interoperability with Other APIs
When a SYCL implementation is built on top of another API, the 

implementation may be able to interoperate with kernels defined using 

mechanisms of the underlying API. This allows an application to integrate 

SYCL easily and incrementally into existing codebases that are already 

using the underlying API. This topic is covered in detail in Chapter 20. For 

the purposes of this chapter, we can simply recognize that interoperability 

with kernels or kernel bundles created via other source languages or APIs 

provides a third way to represent a kernel.

 Summary
In this chapter, we explored different ways to define kernels. We 

described how to seamlessly integrate SYCL into existing C++ codebases 

by representing kernels as C++ lambda expressions or named function 

objects. For new codebases, we also discussed the pros and cons of the 

different kernel representations to help choose the best way to define 

kernels based on the needs of our application or library.

We described how kernels are typically compiled in a SYCL application 

and how to directly manipulate kernels in kernel bundles to control the 

compilation process. Even though this level of control will not be required 

for most applications, it is a useful technique to be aware of when we are 

tuning our applications.
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Open Access  This chapter is licensed under the terms of 

the Creative Commons Attribution 4.0 International License 

(https://creativecommons.org/licenses/by/4.0/), which permits use, 

sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and 

the source, provide a link to the Creative Commons license and indicate if 

changes were made.

The images or other third party material in this chapter are included 

in the chapter’s Creative Commons license, unless indicated otherwise 

in a credit line to the material. If material is not included in the chapter’s 

Creative Commons license and your intended use is not permitted by 

statutory regulation or exceeds the permitted use, you will need to obtain 

permission directly from the copyright holder.
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CHAPTER 11

Vectors and Math 
Arrays
Vectors are collections of data. Vectors can be useful because parallelism 

in our computers comes from collections of computer hardware, and data 

is often processed in related groupings (e.g., the color channels in an RGB 

pixel). The concept is so important that we spend a chapter discussing 

the different SYCL vector types and how to utilize them. Note that we will 

not dive into vectorization of scalar operations in this chapter since that 

varies based on device type and implementations. Vectorization of scalar 

operations is covered in Chapter 16.

This chapter seeks to address the following questions:

• What are vector types?

• What is the difference between the SYCL math array 

(marray) and vector (vec) types?

• When and how should I use marray and vec?

We discuss marray and vec using working code examples and highlight 

the most important aspects of exploiting these types.
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 The Ambiguity of Vector Types
Vectors are a surprisingly controversial topic when we talk with parallel 

programming experts. In the authors’ experience, this is because different 

people define and think about vectors in different ways.

There are two broad ways to think about what this chapter calls 

vector types:

 1. As a convenience type, which groups data that we 

might want to refer to and operate on as a group, for 

example, the RGB or YUV color channels of a pixel. 

We could define a pixel class or struct and define 

math operators like + on it, but convenience types 

do this for us out of the box. Convenience types can 

be found in many shader languages used to program 

GPUs, so this way of thinking is common among 

many GPU developers.

 2. As a mechanism to describe how code maps 
to a SIMD (single instruction, multiple data) 
instruction set in hardware. For example, in some 

languages and implementations, operations on a 

float8 could map to an eight-lane SIMD instruction 

in hardware. SIMD vector types are used in many 

languages as a high-level alternative to CPU-specific 

intrinsics, so this way of thinking is already common 

among many CPU developers.

Although these two interpretations of vector types are very different, 

they unintentionally became combined and muddled together as SYCL 

and other languages became applicable to both CPUs and GPUs. The 

vec class (which existed in SYCL 1.2.1, and still exists in SYCL 2020) is 

compatible with either interpretation, whereas the marray class (which 

was introduced in SYCL 2020) is explicitly described as a convenience type 

unrelated to SIMD vector hardware instructions.
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CHANGES ARE ON THE HORIZON: SIMD TYPES

syCL 2020 does not yet include a vector type explicitly tied to the second 

interpretation (sIMd mappings). however, there are already extensions that 

allow us to write explicit vector code that maps directly to sIMd instructions 

in the hardware, designed for expert programmers who want to tune code 

for a specific architecture and take control from the compiler vectorizers. We 

should also expect another vector type to eventually appear in syCL to cover 

the second interpretation, likely aligned with the proposed C++ std::simd 

templates. this new class would make it very clear when code is written in an 

explicit vector style, to reduce confusion. Both the existing extensions and a 

future std::simd-like type in syCL are niche features that we expect will be 

used by few developers.

With marray and a dedicated sIMd class, our intent as programmers will be 

clear from the code that we write. this will be less error prone, less confusing, 

and may even reduce the number of heated discussions between expert 

developers when the question arises: “What is a vector?”

 Our Mental Model for SYCL Vector Types
Throughout this book, we talk about how work-items can be grouped 

together to expose powerful communication and synchronization 

primitives, such as sub-group barriers and shuffles. For these operations to 

be efficient on vector hardware, there is an assumption that different work- 

items in a sub-group combine and map to SIMD instructions. Said another 

way, multiple work-items are grouped together by the compiler, at which 

point they can map to SIMD instructions in the hardware. Remember from 

Chapter 4 that this is a basic premise of SPMD (single program, multiple 

data) programming models that operate on top of vector hardware, where 
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a single work-item constitutes a lane of what might be a SIMD instruction 

in hardware, instead of a work-item defining the entire operation that will 

be a SIMD instruction in the hardware. You can think of the compiler as 

always vectorizing across work-items when mapping to SIMD instructions 

in hardware, when programming in a SPMD style.

For developers coming from languages that don’t have vector types, or 

from GPU shading languages, we can think of SYCL vector types as being 

local to a work-item, in that if there is an addition of two four-element 

vectors that addition might take four instructions in the hardware (it would 

be scalarized from the perspective of the work-item). Each element of 

the vectors would be added by a different instruction/clock cycle in the 

hardware. This is consistent with our interpretation of vector types as a 

convenience—we can add two vectors in a single operation in our source 

code, as opposed to performing four scalar operations in our source.

For developers coming from a CPU background, we should know 

that implicit vectorization for SIMD hardware occurs by default in many 

compilers, independent of vector type usage. The compiler may perform 

this implicit vectorization across work-items, extract the vector operations 

from well-formed loops, or honor vector types when mapping to vector 

instructions—see Chapter 16 for more information.

The rest of this chapter focuses on teaching vectors using the 

convenience interpretation of vector types (for both marray and vec), 

and that is the one that we should keep in our minds when programming 

in SYCL.
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OTHER IMPLEMENTATIONS POSSIBLE!

different compilers and implementations of syCL can in theory make different 

decisions on how vector data types in code map to sIMd vector hardware 

instructions. We should read a vendor’s documentation and optimization 

guides to understand how to write code that will map to efficient sIMd 

instructions, though the thinking and programming patterns that are described 

in this chapter are applicable to most (ideally all) syCL implementations.

 Math Array (marray)
The SYCL math array type (marray), see Figure 11-1, is a new addition 

in SYCL 2020 which has been defined to disambiguate different 

interpretations of how vector types should behave. marray explicitly 

represents the first interpretation of vector types introduced in the 

previous section of this chapter—a convenience type unrelated to vector 

hardware instructions. By removing “vector” from the name and by 

including “array” instead, it becomes easier to remember and reason about 

how the type will be logically implemented on hardware.
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Type Alias marray Equivalent
mcharN marray<int8_t, N>

mucharN marray<uint8_t, N>
mshortN marray<int16_t, N>
mushortN marray<uint16_t, N>

mintN marray<int32_t, N>
muintN marray<uint32_t, N>
mlongN marray<int64_t, N>

mulongN marray<uint64_t, N>
mhalfN marray<half, N>

mfloatN marray<float, N>
mdoubleN marray<double N>
mboolN marray<bool, N>

Figure 11-1. Type aliases for math arrays

The marray class is templated on its element type and number of 

elements. The number of elements parameter, NumElements, is a positive 

integer—when NumElements is 1, an marray is implicitly convertible to 

an equivalent scalar type. The element type parameter, DataT, must be a 

numeric type as defined by C++.

Marray is an array container, like std::array, with additional support 

for mathematical operators (e.g., +, +=) and SYCL mathematical functions 

(e.g., sin, cos) on arrays. It is designed to provide efficient and optimized 

array operations for parallel computation on SYCL devices.

For convenience, SYCL provides type aliases for math arrays. For these 

type aliases, the number of elements N must be 2, 3, 4, 8, or 16.

Figure 11-2 shows a simple example how to apply the cos function 

to every element in an marray consisting of four floats. This example 

highlights the convenience of using marray to express operations that 

apply to all elements of a collection of data assigned to each work-item.
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queue q;
marray<float, 4> input{1.0004f, 1e-4f, 1.4f, 14.0f};
marray<float, 4> res[M];
for (int i = 0; i < M; i++)
res[i] = {-(i + 1), -(i + 1), -(i + 1), -(i + 1)};

{
buffer in_buf(&input, range{1});
buffer re_buf(res, range{M});

q.submit([&](handler &cgh) {
accessor re_acc{re_buf, cgh, read_write};
accessor in_acc{in_buf, cgh, read_only};

cgh.parallel_for(range<1>(M), [=](id<1> idx) {
int i = idx[0];
re_acc[i] = cos(in_acc[0]);

});
});

}

Figure 11-2. A simple example using marray

By executing this kernel over a large range of data M, we can achieve 

good parallelism on many different types of devices, including those that 

are much wider than the four elements of the marray, without prescribing 

how our code maps to a SIMD instruction set operating on vector types.

 Vector (vec)
The SYCL vector type (vec) existed in SYCL 1.2.1 and is still included 

in SYCL 2020. As mentioned previously, vec is compatible with either 

interpretation of a vector type. In practice, vec is typically interpreted as 

a convenience type, and our recommendation is therefore to use marray 

instead to improve code readability and reduce ambiguity. However, there 

are three exceptions to this recommendation, which we will cover in this 

section: vector loads and stores, interoperability with backend-native 

vector types, and operations known as “swizzles”.
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Like marray, the vec class is templated on its number of elements and 

element type. However, unlike marray, the NumElements parameter must 

be either 1, 2, 3, 4, 8, or 16, and any other value will produce a compilation 

failure. This is a good example of the confusion around vector types 

impacting vec’s design: limiting the size of a vector to small powers of 

2 makes sense for SIMD instruction sets but appears arbitrary from the 

perspective of a programmer looking for a convenience type. The element 

type parameter, DataT, can be any of the basic scalar types supported in 

device code.

Also, like marray, vec exposes shorthand type aliases for 2, 3, 4, 8, and 

16 elements. Whereas marray aliases are prefixed with an “m”, vec aliases 

are not, for example, uint4 is an alias to vec<uint32_t, 4> and float16 is 

an alias to vec<float, 16>. It is important we pay close attention to the 

presence or absence of this “m” when working with vector types, to ensure 

we know which class we are dealing with.

 Loads and Stores
The vec class provides member functions for loading and storing the 

elements of a vector. These operations act on contiguous memory 

locations storing objects of the same type as the channels of the vector.

The load and store functions are shown in Figure 11-3. The load 

member function reads values of type DataT from memory at the address 

of the multi_ptr, offset by NumElements * offset elements of DataT, and 

writes those values to the channels of the vec. The store member function 

reads the channels of a vec and writes those values to memory at the address 

of the multi_ptr, offset by NumElements * offset elements of DataT.

Note that the parameter is a multi_ptr, rather than an accessor or raw 

pointer. The data type of the multi_ptr is DataT, that is, the data type of the 

components of the vec class specialization. This requires that the pointer 

passed to either load or store must match the component type of the vec 

instance itself.
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template <access::address_space AddressSpace, access::decorated IsDecorated> 
void load(size_t offset, multi_ptr<DataT, AddressSpace, IsDecorated> ptr);

multi_ptr<DataT, AddressSpace, IsDecorated> ptr) const;
template <access::address_space addressSpace, access::decorated IsDecorated>
void store(size_t offset, 

Figure 11-3. vec load and store functions

A simple example of using the load and store functions is shown in 

Figure 11-4.

std::array<float, size> fpData;
for (int i = 0; i < size; i++) {
fpData[i] = 8.0f;

}

buffer fpBuf(fpData);

queue q;
q.submit([&](handler& h) {
accessor acc{fpBuf, h};

h.parallel_for(workers, [=](id<1> idx) {
float16 inpf16;
inpf16.load(idx, acc.get_multi_ptr<access::decorated::no>());
float16 result = inpf16 * 2.0f;
result.store(idx, acc.get_multi_ptr<access::decorated::no>());

});
});

Figure 11-4. Use of load and store member functions

The SYCL vector load and store functions provide abstractions for 

expressing vector operations, but the underlying hardware architecture 

and compiler optimizations will determine any actual performance 

benefits. We recommend analyzing performance using profiling tools and 

experimenting with different strategies to find the best utilization of vector 

load and store operations for specific use cases.

Even though we should not expect vector load and store operations 

to map to SIMD instructions, using vector load and store functions can 

still help to improve memory bandwidth utilization. Operating on vector 
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types effectively is a hint to the compiler that each work-item is accessing a 

contiguous block of memory, and certain devices may be able to leverage 

this information to load or store multiple elements at once, thereby 

improving efficiency.

 Interoperability with Backend-Native 
Vector Types
The SYCL vec class template may also provide interoperability with a 

backend’s native vector type (if one exists). The backend-native vector type 

is defined by the member type vector_t and is available only in device 

code. The vec class can be constructed from an instance of vector_t and 

can be implicitly converted to an instance of vector_t.

Most of us will never need to use vector_t, as its use cases are very 

limited; it exists only to allow interoperability with backend-native 

functions called from within a kernel function (e.g., calling a function 

written in OpenCL C from within a SYCL kernel).

 Swizzle Operations
In graphics applications, swizzling means rearranging the data elements 

of a vector. For example, if a vector a contains the elements {1, 2, 3, 4}, 

and knowing that the components of a four-element vector can be referred 

to as {x, y, z, w}, we could write b = a.wxyz(), and the values in the 

vector b would be {4, 1, 2, 3}. This syntax is common in applications 

for code compactness and where there is efficient hardware for such 

operations.

The vec class allows swizzles to be performed in one of two ways, as 

shown in Figure 11-5.
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template <int... swizzleindexes>
__swizzled_vec__ swizzle() const;
__swizzled_vec__ XYZW_ACCESS() const;
__swizzled_vec__ RGBA_ACCESS() const;
__swizzled_vec__ INDEX_ACCESS() const;

#ifdef SYCL_SIMPLE_SWIZZLES
// Available only when numElements <= 4
// XYZW_SWIZZLE is all permutations with repetition of:
// x, y, z, w, subject to numElements
__swizzled_vec__ XYZW_SWIZZLE() const;

// Available only when numElements == 4
// RGBA_SWIZZLE is all permutations with repetition of: r,
// g, b, a.
__swizzled_vec__ RGBA_SWIZZLE() const;
#endif

Figure 11-5. vec swizzle member functions

The swizzle member function template allows us to perform swizzle 

operations by calling the template member function swizzle. This 

member function takes a variadic number of integer template arguments, 

where each argument represents the swizzle index for the corresponding 

element in the vector. The swizzle indices must be integers between 0 and 

NumElements-1, where NumElements represents the number of elements in 

the original SYCL vector (e.g., vec.swizzle<2, 1, 0, 3>() for a vector of 

four elements). The return type of the swizzle member function is always 

an instance of __swizzled_vec__, which is an implementation-defined 

temporary class representing the swizzled vector. Note that the swizzle 

operation is not performed immediately when calling swizzle. Instead, 

the swizzle operation is performed when the returned __swizzled_vec__ 

instance is used within an expression.

The set of simple swizzle member functions, described in the SYCL 

specification as XYZW_SWIZZLE and RGBA_SWIZZLE, are provided as an 

alternative way to perform swizzle operations. These member functions 

are only available for vectors with up to four elements, and only if the 

SYCL_SIMPLE_SWIZZLES macro is defined before any SYCL header files. 
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The simple swizzle member functions allow us to refer to the elements of 

a vector using the names {x, y, z, w} or {r, g, b, a} and to perform 

swizzle operations by calling member functions using these element 

names directly.

For example, simple swizzles enable the XYZW swizzle syntax 

a.wxyz() used previously. The same operation can be performed 

equivalently using RGBA swizzles by writing a.argb(). Using simple 

swizzles can produce more compact code and code that is a closer match 

to other languages, especially graphics shading languages. Simple swizzles 

can also better express programmer intent when a vector contains XYZW 

position data or RGBA color data. The return type of the simple swizzle 

member functions is also __swizzled_vec__. Like the swizzle member 

function template, the actual swizzle operation is performed when the 

returned __swizzled_vec__ instance is used within an expression.
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constexpr int size = 16;

std::array<float4, size> input;
for (int i = 0; i < size; i++) {
input[i] = float4(8.0f, 6.0f, 2.0f, i);

}

buffer b(input);

queue q;
q.submit([&](handler& h) {
accessor a{b, h};

// We can access the individual elements of a vector by
// using the functions x(), y(), z(), w() and so on.
//
// "Swizzles" can be used by calling a vector member
// equivalent to the swizzle order that we need, for
// example zyx() or any combination of the elements.
// The swizzle need not be the same size as the
// original vector.
h.parallel_for(size, [=](id<1> idx) {
auto e = a[idx];
float w = e.w();
float4 sw = e.xyzw();
sw = e.xyzw() * sw.wzyx();
sw = sw + w;
a[idx] = sw.xyzw();

});
});

Figure 11-6. Example of using the __swizzled_vec__ class

Figure 11-6 demonstrates the usage of simple swizzles and the __

swizzled_vec__ class. Although the __swizzled_vec__ does not appear 

directly in our code, it is used within expressions such as b.xyzw() * 

sw.wzyx(): the return type of b.xyzw() and sw.wzyx() is instances of 

__swizzled_vec__, and the multiplication is not evaluated until the result 

is assigned back to the float4 variable sw.
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 How Vector Types Execute
As described throughout this chapter, there are two different 

interpretations of vector types and how they might map to hardware. Until 

this point, we have deliberately only discussed these mappings at a high 

level. In this section, we will take a deeper look into exactly how different 

interpretations of the vector types may map to low-level hardware features 

such as SIMD registers, demonstrating that both interpretations can make 

efficient use of vector hardware.

 Vectors as Convenience Types
There are three primary points that we’d like to make around how vectors 

map from convenience types (e.g., marray and usually vec) to hardware 

implementations:

 1. To leverage the portability and expressiveness of 

the SPMD programming model, we should think 

of multiple work-items being combined to create 

vector hardware instructions. More specifically, we 

should not think of vector hardware instructions 

being created from a single work-item in isolation.

 2. As a consequence of (1), we should think of 

operations (e.g., addition) on a vector as executing 

per-channel or per-element in time, from the 

perspective of one work-item. Using vectors in our 

source code is usually unrelated to taking advantage 

of underlying vector hardware instructions.
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 3. Compilers are required to obey the memory layout 

requirements of vectors and math arrays if we write 

code in certain ways, such as by passing the address 

of a vector to a function, which can cause surprising 

performance impacts. Understanding this can 

make it easier to write code which compilers can 

aggressively optimize.

We will start by further describing the first two points, because a clear 

mental model can make it much easier to write code.

As described in Chapters 4 and 9, a work-item is the leaf node of 

the parallelism hierarchy and represents an individual instance of a 

kernel function. Work-items can be executed in any order and cannot 

communicate or synchronize with each other except through atomic 

memory operations to local or global memory, or through group collective 

functions (e.g., select_from_group, group_barrier).

Instances of convenience types are local to a single work-item and can 

therefore be thought of as equivalent to a private array of NumElements per 

work-item. For example, the storage of a float4 y4 declaration can be 

considered equivalent to float y4[4]. Consider the example shown in 

Figure 11-7.

h.parallel_for(8, [=](id<1> i) {
float x = a[i];
float4 y4 = b[i];
a[i] = x + sycl::length(y4);

});

Figure 11-7. Vector execution example

For the scalar variable x, the result of kernel execution with multiple 

work-items on hardware that has SIMD instructions (e.g., CPUs, GPUs) 

might use a vector register and SIMD instructions, but the vectorization 

is across work-items and unrelated to any vector type in our code. Each 

work-item, with its own scalar x, could form a different lane in an implicit 
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SIMD hardware instruction that the compiler generates, as shown in 

Figure 11-8. The scalar data in a work-item can be thought of as being 

implicitly vectorized (combined into SIMD hardware instructions) 

across work-items that happen to execute at the same time, in some 

implementations and on some hardware, but the work-item code that we 

write does not encode this in any way—this is the core of the SPMD style of 

programming.

Work-item ID w0 w1 w2 w3 w4 w5 w6 w7
SIMD hardware 
instruc�on lanes x[w0] x[w1] x[w2] x[w3] x[w4] x[w5] x[w6] x[w7]

Figure 11-8. Possible expansion from scalar variable x to eight-wide 
hardware vector instruction

Exposing potential parallelism in a hardware-agnostic way ensures 

that our applications can scale up (or down) to fit the capabilities of 

different platforms, including those with vector hardware instructions. 

Striking the right balance between work-item and other forms of 

parallelism during application development is a challenge that we must all 

engage with, and is covered in more detail in Chapters 15, 16, and 17.

With the implicit vector expansion from scalar variable x to a vector 

hardware instruction by the compiler as shown in Figure 11-8, the 

compiler creates a SIMD operation in hardware from a scalar operation 

that occurs in multiple work-items.

Returning to the code example in Figure 11-7, for the vector variable 

y4, the result of kernel execution for multiple work-items (e.g., eight 

work-items) does not process the four-element vector by using vector 

operations in hardware. Instead, each work-item independently sees its 

own vector (float4 in this case), and the operations on elements of that 

vector may occur across multiple clock cycles/instructions. This is shown 

in Figure 11-9. We can think of the vectors as having been scalarized by the 

compiler from the perspective of a work-item.
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Scalarized 
ops

Exec 
cycle

Work-item ID

w0 w1 w2 w3 w4 w5 w6 w7
y4.x N y4[w0].x y4[w1].x y4[w2].x y4[w3].x y4[w4].x y4[w5].x y4[w6].x y4[w7].x
y4.y N+1 y4[w0].y y4[w1].y y4[w2].y y4[w3].y y4[w4].y y4[w5].y y4[w6].y y4[w7].y
y4.z N+2 y4[w0].z y4[w1].z y4[w2].z y4[w3].z y4[w4].z y4[w5].z y4[w6].z y4[w7].z
y4.w N+3 y4[w0].w y4[w1].w y4[w2].w y4[w3].w y4[w4].w y4[w5].w y4[w6].w y4[w7].w

Figure 11-9. Vector hardware instructions access strided memory 
locations across SIMD lanes

Figure 11-9 also demonstrates the third key point for this section, 

that the convenience interpretation of vectors can have memory access 

implications that are important to understand. In the preceding code 

example, each work-item sees the original (consecutive) data layout of y4, 

which provides an intuitive model to reason about and tune.

From a performance perspective, the downside of this work-item- 

centric vector data layout is that if a compiler vectorizes across work-items 

to create vector hardware instructions, the lanes of the vector hardware 

instruction do not access consecutive memory locations. Depending on 

the vector data size and the capabilities of a specific device; a compiler 

may need to generate, gather, or scatter memory instructions; as shown 

in Figure 11-10. This is required because the vectors are contiguous in 

memory, and neighboring work-items are operating on different vectors in 

parallel. See Chapters 15 and 16 for more discussion of how vector types 

may impact execution on specific devices, and be sure to check vendor 

documentation, compiler optimization reports, and use runtime profiling 

to understand the efficiency of specific scenarios.
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q.submit([&](sycl::handler &h) { // assume sub group size is 8
// ...
h.parallel_for(range<1>(8), [=](id<1> i) {
// ...
float4 y4 = b[i]; // i=0, 1, 2, ...
// ...
float x = dowork(&y4); // the “dowork” expects y4,

// i.e., vec_y[8][4] layout
});

Figure 11-10. Vector code example with address escaping

When the compiler can prove that the address of y4 does not escape 

from the current kernel work-item, or if all callee functions are inlined, 

then the compiler may perform aggressive optimizations that may 

improve performance. For example, the compiler can legally transpose 

the storage of y4 if it is not observable, enabling consecutive memory 

accesses that avoid the need for gather or scatter instructions. Compiler 

optimization reports can provide information how our source code has 

been transformed into vector hardware instructions and can provide hints 

on how to tweak our code for increased performance.

As a general guideline, we should use convenience vectors (e.g., 

marray) whenever they make logical sense, because code using these types 

is much easier to write and maintain. Only when we see performance 

hotspots in our application should we investigate whether a source 

code vector operation has been lowered into suboptimal hardware 

implementation.

 Vectors as SIMD Types
Although we have emphasized in this chapter that marray and vec are not 

SIMD types, for completeness we include here a brief discussion of how 

SIMD types may map to vector hardware. This discussion is not coupled 

to vectors within our SYCL source code but provides background that will 
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be useful as we progress to the later chapters of this book that describe 

specific device types (GPU, CPU, FPGA), and may help to prepare us for 

the possible introduction of SIMD types in future versions of SYCL.

SYCL devices may contain SIMD instruction hardware that operates 

on multiple data values contained in one vector register or a register file. 

On devices that provide SIMD hardware, we can consider a vector addition 

operation, for example, on an eight-element vector, as shown in Figure 11-11.

The vector addition in this example could execute in a single 

instruction using vector hardware, adding the vector registers vec_x and 

vec_y in parallel with that SIMD instruction.

This mapping of SIMD types to vector hardware is very straightforward 

and predictable, and likely to be performed the same way by any 

compiler. These properties make SIMD types very attractive for low-level 

performance tuning on SIMD hardware but come with a cost—the code is 

less portable and becomes sensitive to details of the specific architecture. 

The SPMD programming model evolved to combat these costs.

That developers expect SIMD types to have predictable hardware 

mapping properties is precisely why it is critical to cleanly separate the two 

interpretations of vectors via two distinct language features: if a developer 

uses a convenience type expecting it to behave as a SIMD type, they will 

likely be working against compiler optimizations and will likely see lower 

performance than hoped or expected.

Figure 11-11. SIMD addition with eight-way data parallelism
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 Summary
There are multiple interpretations of the term vector within programming 

languages, and understanding the interpretation that a particular language 

or compiler has been built around is important when writing performant 

and scalable code. SYCL has been built around the idea that vector 

types in source code are convenience types local to a work-item and that 

implicit vectorization by the compiler across work-items map to SIMD 

instructions in the hardware. When we (in very rare cases) want to write 

code which maps directly to vector hardware explicitly, we should look 

to vendor documentation and in some cases to extensions to SYCL. Most 

applications should be written assuming that kernels will be vectorized 

across work-items—doing so leverages the powerful abstraction of SPMD, 

which provides an easy-to-reason-about programming model, and that 

provides scalable performance across devices and architectures.

This chapter described the marray interface, which offers convenience 

out of the box when we have groupings of similarly typed data that we want 

to operate on (e.g., a pixel with multiple color channels). In addition, we 

discussed the legacy vec class, which may be convenient for expressing 

certain patterns (with swizzles) or optimizations (with loads/stores and 

backend interoperability).
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Open Access  This chapter is licensed under the terms of 

the Creative Commons Attribution 4.0 International License 

(https://creativecommons.org/licenses/by/4.0/), which permits use, 

sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and 

the source, provide a link to the Creative Commons license and indicate if 

changes were made.

The images or other third party material in this chapter are included 

in the chapter’s Creative Commons license, unless indicated otherwise 

in a credit line to the material. If material is not included in the chapter’s 

Creative Commons license and your intended use is not permitted by 

statutory regulation or exceeds the permitted use, you will need to obtain 

permission directly from the copyright holder.
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CHAPTER 12

Device Information 
and Kernel 
Specialization
In this chapter, we look at the advanced concept of making our program 

more flexible and therefore more portable. This is done by looking at 

mechanisms to match the capabilities of any system (and accelerators) our 

application might be executed upon, with a selection of kernels and code 

that we have written. This is an advanced topic because we can always 

simply “use the default accelerator” and run the kernels we write on that 

regardless of what it is. We have learned that this will work even on systems 

which may have no accelerator because SYCL guarantees there is always 

a device available that will run a kernel even if it is the CPU that is also 

running our host application.

When we move beyond “use the default accelerator” and general- 

purpose kernels, we find mechanisms are available to choose which 

device(s) to use, and mechanisms to create more specialized kernels. We 

discuss both capabilities in this chapter. Together, these two capabilities 

allow us to construct applications that are highly adaptable to the system 

on which they are executed.

© Intel Corporation 2023 
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Fortunately, the creators of the SYCL specification thought about 

these needs and gave us interfaces to let us solve this problem. The SYCL 

specification defines a device class that encapsulates a device on which 

kernels may be executed. We first cover the ability to query the device 

class, so that our program can adapt to the device characteristics and 

capabilities. We may occasionally choose to write different algorithms for 

different devices. Later in this chapter, we learn that we can apply aspects 

to a kernel to specialize a kernel and let a compiler take advantage of that. 

Such specialization helps make a kernel more tailored to a certain class of 

devices while likely rendering it unsuitable for other devices. Combining 

these concepts allows us to adapt our program as much, or as little, as 

we wish. This ensures we can decide how much investment to make in 

squeezing out performance while starting with broad portability.

 Is There a GPU Present?
Many of us will start with having logic to figure out “Is there a GPU 

present?” to inform the choices our program will make as it executes. 

That is the start of what this chapter covers. As we will see, there is much 

more information available to help us make our programs robust and 

performant.

Parameterizing a program can help with correctness, functional 
portability, performance portability, and future proofing.

This chapter dives into the most important queries and how to use 

them effectively in our programs. Implementations doubtlessly offer more 

detailed properties that we can query. To learn all possible queries, we 
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would need to review the latest SYCL specification, the documentation for 

our particular compiler, and documentation for any runtimes/drivers we 

may encounter.

Device-specific properties are queryable using get_info functions, 

including access to device-specific kernel and work-group properties.

 Refining Kernel Code to Be More  
Prescriptive
It is useful to consider that our coding, kernel by kernel, will fall broadly 

into one of these three categories:

• Generic kernel code: Run anywhere, not tuned to a 

specific class of device.

• Device type–specific kernel code: Run on a type of 

device (e.g., GPU, CPU, FPGA), not tuned to specific 

models of a device type. This is particularly useful 

because many device types share common features, 

so it is safe to make some assumptions that would not 

apply to fully general code written for all devices.

• Tuned device-specific kernel code: Run on a type of 

device, with tuning that reacts to specific parameters 

of a device—this covers a broad range of possibilities 

from a small amount of tuning to very detailed 

optimization work.

it is our job as programmers to determine when different patterns are 
needed for different device types. We dedicate Chapters 14, 15, 16, 
and 17 to illuminating this important thinking.
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It is most common to start by focusing on getting things working 

with a functionally correct implementation of a generic kernel. Chapter 2 

specifically talks about what methods are easiest to debug when getting 

started with a kernel implementation. Once we have a kernel working, 

we may evolve it to target the capabilities of a specific device type or 

device model.

Chapter 14 offers a framework of thinking to consider parallelism 

first, before we dive into device considerations. It is our choice of pattern 

(a.k.a. algorithm) that dictates our code, and it is our job as programmers 

to determine when different patterns are needed for different devices. 

Chapters 15 (GPU), 16 (CPU), and 17 (FPGA) dive more deeply into the 

qualities that distinguish these device types and motivate a choice in 

pattern to use. It is these qualities that motivate us to consider writing 

distinct versions of kernels when the best approach (pattern choice) varies 

on different device types.

When we have a kernel written for a specific type of device (e.g., a 

specific CPU, GPU, FPGA, etc.), it is logical to adapt it to specific vendors 

or even models of such devices. Good coding style is to parameterize code 

based on features (e.g., item size support found from a device query).

We should write code to query parameters that describe the actual 

capabilities of a device instead of its marketing information; it is bad 

programming practice to query the model number of a device and react to 

that—such code is less portable because it is not future-proof.

It is common to write a different kernel for each device type that 

we want to support (a GPU version of a kernel and an FPGA version of 

a kernel and maybe a generic version of a kernel). When we get more 

specific, to support a specific device vendor or even device model, we may 

benefit when we can parameterize a kernel rather than duplicate it. We 

are free to do either, as we see fit. Code cluttered with too many parameter 

adjustments may be hard to read or excessively burdened at runtime. It 

is common however that parameters can fit neatly into a single version of 

a kernel.
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Parameterizing makes the most sense when the algorithm is broadly 
the same but has been tuned for the capabilities of a specific device. 
Writing a different kernel is much cleaner when using a completely 
different approach, pattern, or algorithm.

 How to Enumerate Devices and Capabilities
Chapter 2 enumerates and explains five methods for choosing a device 

on which to execute. Essentially, Method#1 was the least prescriptive run 

it somewhere, and we evolve to the most prescriptive Method#5, which 

considered executing on a fairly precise model of a device from a family of 

devices. The enumerated methods in between gave a mix of flexibility and 

prescriptiveness. Figure 12-1, Figure 12-2, and Figure 12-4 help to illustrate 

how we can select a device.

Figure 12-1 shows that even if we allow the implementation to select 

a default device for us (Method#1 in Chapter 2), we can still query for 

information about the selected device.

Figure 12-2 shows how we can try to set up a queue using a specific 

device (in this case, a GPU), but fall back explicitly on the default device 

if no GPU is available. This gives us some control of our device choice by 

biasing us to get a GPU whenever one is available. We know that at least 

one device is always guaranteed to exist so our kernels can always run in 

a properly configured system. When there is no GPU, many systems will 

default to a CPU device but there is no guarantee. Likewise, if we ask for a 

CPU device explicitly, there is no guarantee there is such a device (but we 

are guaranteed that some device will exist).
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It is not recommended that we use the solution shown in Figure 12-2. 

In addition to appearing a little scary and error prone, Figure 12-2 does not 

give us control over which GPU is selected if there are choices of GPUs at 

runtime. Despite being both instructive and functional, there is a better 

way. It is recommended that we write custom device selectors as shown in 

the next code example (Figure 12-4).

Queries about devices rely on installed software (special user-level 

drivers), to respond regarding a device. SYCL relies on this, just as an 

operating system needs drivers to access hardware—it is not sufficient that 

the hardware simply be installed in a machine.

queue q;

std::cout << "By default, we are running on "
<< q.get_device().get_info<info::device::name>()
<< "\n"; 

Example Outputs (one line per run – depends on system):
By default, we are running on NVIDIA GeForce RTX 3060 
By default, we are running on AMD Radeon RX 5700 XT 
By default, we are running on Intel(R) UHD Graphics 770 
By default, we are running on Intel(R) Xeon(R) Gold 6336Y CPU @ 2.40GHz 
By default, we are running on Intel(R) Data Center GPU Max 1100 

Figure 12-1. Device we have been assigned by default
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auto GPU_is_available = false; 

try { 
device testForGPU(gpu_selector_v);
GPU_is_available = true; 

} catch (exception const& ex) {
std::cout << "Caught this SYCL exception: " << ex.what()

<< std::endl;
} 

auto q = GPU_is_available ? queue(gpu_selector_v) 
: queue(default_selector_v);

std::cout
<< "After checking for a GPU, we are running on:\n "
<< q.get_device().get_info<info::device::name>()
<< "\n"; 

Four Example Outputs (using four different 
  systems, each with a GPU):
After checking for a GPU, we are running on: 
 AMD Radeon RX 5700 XT 
After checking for a GPU, we are running on: 
 Intel(R) Data Center GPU Max 1100 
After checking for a GPU, we are running on: 
 NVIDIA GeForce RTX 3060 
After checking for a GPU, we are running on: 
 Intel(R) UHD Graphics 770 

Example Output (using a system without GPU):
Caught this SYCL exception: No device of 
requested type 'info::device_type::gpu' available. 
...(PI_ERROR_DEVICE_NOT_FOUND) 
After checking for a GPU, we are running on: 
 AMD Ryzen 5 3600 6-Core Processor 

Figure 12-2. Using try-catch to select a GPU device if possible, use the 
default device if not
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 Aspects
The SYCL standard has a small list of device aspects that can be used to 

understand the capabilities of a device, to control which devices we choose 

to use, and to control which kernels we submit to a device. At the end of 

this chapter, we will discuss “kernel specialization” and kernel templating. 

For now, we will enumerate the aspects and how to use them in device 

queries and selection. Figure 12-3 lists aspects that are defined by the SYCL 

standard to be available for use in every C++ program using SYCL. Aspects 

are Boolean—a device either has or does not have an aspect. The first four 

(cpu/gpu/accelerator/custom) are mutually exclusive since device types 

are defined as an enum by SYCL 2020. Features including aspect::fp16, 

aspect::fp64, and aspect::atomic64 are “optional features” so they 

may not be supported by all devices—testing for these can be especially 

important for a robust application.
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Standard aspect (all booleans) The device…
aspect::cpu executes code on a CPU
aspect::gpu executes code on a GPU
aspect::accelerator executes code on an accelerator
aspect::custom executes fixed functions only, no 

support for programmable kernels
aspect::emulated executes code in an emulator, not for 

performance – typically used for 

debug, pro�iling, etc.
aspect::host_debuggable can fully support standard debugging
aspect::fp16 supports the sycl::half data type

aspect::fp64 supports the double data type

aspect::atomic64 supports 64-bit atomic operations
aspect::image supports images, a topic not covered 

in this book (we emphasize the more 

general and portable buffer
instead)

aspect::online_compiler
aspect::online_linker

supports online compilation and/or 

linking of device code. Such devices 

may support the build(), compile(), 

and link() functions, all very 

advanced topics not covered in this 

book
aspect::queue_profiling supports queue pro�iling, an 

advanced topic discussed a bit, along 

with other practical tips, in Chapter 

13
aspect::usm_device_allocations

aspect::usm_host_allocations

aspect::usm_atomic_host_allocations

aspect::usm_shared_allocations

aspect::usm_atomic_shared_allocations

supports the corresponding USM 

capability

aspect::usm_system_allocations supports sharing data allocated by 

the system allocators, not just the 

Figure 12-3. Aspects defined by the SYCL standard (implementations 
can add more)
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 Custom Device Selector
Figure 12-4 uses a custom device selector. Custom device selectors were 

first discussed in Chapter 2 as Method#5 for choosing where our code runs 

(Figure 2-16). The custom device selector evaluates each device available 

to the application. A particular device is selected based on receiving the 

highest score (or no device if the highest score is -1). In this example, we 

will have a little fun with our selector:

• Reject non-GPUs (return -1).

• Favor GPUs with a vendor name including the word 

“ACME” (return 24 if Martian, 824 otherwise).

• Any other non-Martian GPU is a good one (return 799).

• Martian GPUs, which are not ACME, are rejected 

(return -1).

The next section, “Being Curious: get_info<>,” dives into the rich 

information that get_devices(), get_platforms(), and get_info<> 

offer. Those interfaces open up any type of logic we might want to utilize 

to pick our devices, including the simple vendor name checks shown in 

Figure 2-16 and Figure 12-4.
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#include <iostream>
#include <sycl/sycl.hpp>
using namespace sycl; 

int my_selector(const device& dev) {
int score = -1; 

// We prefer non-Martian GPUs, especially ACME GPUs
if (dev.is_gpu()) {
if (dev.get_info<info::device::vendor>().find("ACME") !=

std::string::npos)
score += 25; 

if (dev.get_info<info::device::vendor>().find( 
"Martian") == std::string::npos)

score += 800; 
  } 

// If there is no GPU on the system all devices will be
// given a negative score and the selector will not select
// a device. This will cause an exception.
return score;

} 

int main() {
try { 
auto q = queue{my_selector};
std::cout

<< "After checking for a GPU, we are running on:\n "
<< q.get_device().get_info<info::device::name>()
<< "\n"; 

} catch (exception const& ex) {
std::cout << "Custom device selector did not select a "

"device.\n"; 
std::cout << "Caught this SYCL exception: " << ex.what()

<< std::endl;
  } 

return 0; 
} 
Four Example Outputs (using four different 
  systems, each with a GPU):
After checking for a GPU, we are running on: 
 Intel(R) Gen9 HD Graphics NEO. 
After checking for a GPU, we are running on: 
 NVIDIA GeForce RTX 3060 
After checking for a GPU, we are running on: 
 Intel(R) Data Center GPU Max 1100 
After checking for a GPU, we are running on: 
 AMD Radeon RX 5700 XT 

Example Output (using a system without GPU):
After checking for a GPU, we are running on: 
Custom device selector did not select a device. 
Caught this SYCL exception: No device of requested 

Figure 12-4. Custom device selector—our preferred solution
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 Being Curious: get_info<>
In order for our program to “know” what devices are available at runtime, 

we can have our program query available devices from the device class, and 

then we can learn more details using get_info<> to inquire about a specific 

device. We provide a simple program, called curious (see Figure 12-5), that 

uses these interfaces to dump out information for us to look at directly. 

This can be especially useful for doing a sanity check when developing or 

debugging a program that uses these interfaces. Failure of this program to 

work as expected can often tell us that the software drivers we need are not 

installed correctly. Figure 12-6 shows a sample output from this program, 

with the high-level information about the devices that are present.

You may want to see if your system supports a utility such as  
sycl-ls, before you write your own “list all available SYCl devices” 
program.

// Loop through available platforms
for (auto const& this_platform :

platform::get_platforms()) {
std::cout

<< "Found platform: "
<< this_platform.get_info<info::platform::name>()
<< "\n"; 

// Loop through available devices in this platform
for (auto const& this_device :

this_platform.get_devices()) {
std::cout

<< " Device: "
<< this_device.get_info<info::device::name>()
<< "\n"; 

  } 
std::cout << "\n"; 

} 

Figure 12-5. Simple use of device query mechanisms: curious.cpp
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% clang++ -fsycl fig_12_5_curious.cpp -o curious

% ./curious
Found platform: NVIDIA CUDA BACKEND
Device: NVIDIA GeForce RTX 3060

Found platform: AMD HIP BACKEND
Device: AMD Radeon RX 5700 XT

Found platform: Intel(R) OpenCL
Device: Intel(R) Xeon(R) E-2176G CPU @ 3.70GHz

Found platform: Intel(R) OpenCL HD Graphics
Device: Intel(R) UHD Graphics P630 [0x3e96]

Found platform: Intel(R) Level-Zero
Device: Intel(R) UHD Graphics P630 [0x3e96]

Found platform: Intel(R) FPGA Emulation Platform for OpenCL(TM)
Device: Intel(R) FPGA Emulation Device

Figure 12-6. Example output from curious.cpp

 Being More Curious: Detailed Enumeration Code
We offer a program, which we have named verycurious.cpp (Figure 12-7), 

to illustrate some of the detailed information available using get_info. 

Again, we find ourselves writing code like this to help when developing or 

debugging a program.

Now that we have shown how to access the information, we will 

discuss the information fields that prove the most important to query and 

act upon in applications.
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template <typename queryT, typename T> 
void do_query(const T& obj_to_query, 

const std::string& name, int indent = 4) {
std::cout << std::string(indent, ' ') << name << " is '"

<< obj_to_query.template get_info<queryT>()
<< "'\n"; 

} 

int main() {
// Loop through the available platforms
for (auto const& this_platform :

platform::get_platforms()) {
std::cout << "Found Platform:\n"; 
do_query<info::platform::name>(this_platform,

"info::platform::name");
// query information like these (more in program than 
// shown here in this figure – see book github)

// Loop through the devices available in this plaform
for (auto& dev : this_platform.get_devices()) {
std::cout << " Device: "

<< dev.get_info<info::device::name>()
<< "\n"; 

// is_cpu() == has(aspect::cpu)
std::cout << " is_cpu(): "

<< (dev.is_cpu() ? "Yes" : "No") << "\n"; 
// is_cpu() == has(aspect::gpu)
std::cout << " is_gpu(): "

<< (dev.is_gpu() ? "Yes" : "No") << "\n"; 
std::cout << " has(fp16): "

<< (dev.has(aspect::fp16) ? "Yes" : "No") 
<< "\n"; 

// many more queries shown in fig_12_7_very_curious.cpp
// see book github for source code

    } 
std::cout << "\n"; 

  } 
return 0; 

} 

Figure 12-7. More detailed use of device query mechanisms: 
verycurious.cpp (subset shown)
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 Very Curious: get_info plus has()
The has() interface allows a program to test directly for a feature using 

aspects listed in Figure 12-3. Simple usage is shown in Figure 12-7—with 

more in the full verycurious.cpp source code in the book GitHub. The 

verycurious.cpp program is helpful for seeing the details about devices on 

your system.

 Device Information Descriptors
Our “curious” and “verycurious” program examples, used earlier in this 

chapter, utilize popular SYCL device class member functions (i.e., is_cpu, 

is_gpu, is_accelerator, get_info, has). These member functions are 

documented in the SYCL specification in a table titled “Member functions 

of the SYCL device class.”

The “curious” program examples also queried for information using 

the get_info member function. There is a set of queries that must be 

supported by all SYCL devices. The complete list of such items is described 

in the SYCL specification in a table titled “Device information descriptors.”

 Device-Specific Kernel Information  
Descriptors
Like platforms and devices, we can query information about our kernels 

using a get_info function. Such information (e.g., supported work-group 

sizes, preferred work-group size, the amount of private memory required 

per work-item) may be device-specific, and so the get_info member 

function of the kernel class accepts a device as an argument.
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 The Specifics: Those of “Correctness”
We will divide the specifics into information about necessary conditions 

(correctness) and information useful for tuning but not necessary for 

correctness.

In this first correctness category, we will enumerate conditions that 

should be met in order for kernels to launch properly. Failure to abide by 

these device limitations will lead to program failures. Figure 12-8 shows 

how we can fetch a few of these parameters in a way that the values are 

available for use in host code and in kernel code (via lambda capture). We 

can modify our code to utilize this information; for instance, it could guide 

our code on buffer sizing or work-group sizing.

queue q;
device dev = q.get_device();

std::cout << "We are running on:\n"
<< dev.get_info<info::device::name>() << "\n"; 

// Query results like the following can be used to
// calculate how large your kernel invocations can be.
auto maxWG =

dev.get_info<info::device::max_work_group_size>();
auto maxGmem =

dev.get_info<info::device::global_mem_size>();
auto maxLmem =

dev.get_info<info::device::local_mem_size>();

std::cout << "Max WG size is " << maxWG
<< "\nGlobal memory size is " << maxGmem
<< "\nLocal memory size is " << maxLmem << "\n"; 

Figure 12-8. Fetching parameters that can be used to shape a kernel

Submitting a kernel that violates a required condition  
(e.g., sub_group_sizes) will generate a runtime error.

ChaPter 12  DeviCe information anD Kernel SPeCialization



305

 Device Queries
device_type: cpu, gpu, accelerator, custom,1 automatic, all. These are most 

often tested by is_cpu, is_gpu(), and so on (see Figure 12-7):

max_work_item_sizes: The maximum number of work-items that 

are permitted in each dimension of the work-group of the nd_range. The 

minimum value is (1, 1, 1).

max_work_group_size: The maximum number of work-items that are 

permitted in a work-group executing a kernel on a single compute unit. 

The minimum value is 1.

global_mem_size: The size of global memory in bytes.

local_mem_size: The size of local memory in bytes. The minimum size 

is 32 K.

max_compute_units: Indicative of the amount of parallelism available 

on a device—implementation-defined, interpret with care!

sub_group_sizes: Returns the set of sub-group sizes supported by 

the device.

Note that many more characteristics are encoded as aspects (see 

Figure 12-3), such as USM capabilities.

1 Custom devices are not discussed in this book (do not confuse “custom device” 
with a “custom device selector”). If we find ourselves programming a device that 
identifies itself using the custom type, we will need to study the documentation 
for that device to learn more. Put less gently: custom devices are uncommon and 
weird so we are not going to talk about them—we’ve purposefully ignored limits 
they may impose on some of the features we discuss.
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WE STRONGLY ADVISE AVOIDING MAX_COMPUTE_UNITS 
 IN PROGRAM LOGIC

We have found that querying the maximum number of compute units should 

be avoided, in part because the definition isn’t crisp enough to be useful in 

code tuning. instead of using max_compute_units, most programs should 

express their parallelism and let the runtime map it onto available parallelism. 

relying on max_compute_units for correctness only makes sense when 

augmented with implementation- and device- specific information. experts 

might do that, but most developers do not and do not need to do so! let the 

runtime do its job in this case!

 Kernel Queries
The mechanisms discussed in Chapter 10, under “Kernels in Kernel 

Bundles,” are needed to perform these kernel queries:

work_group_size: Returns the maximum work- 

group size that can be used to execute a kernel on a 

specific device

compile_work_group_size: Returns the work-group 

size specified by a kernel if applicable; otherwise 

returns (0, 0, 0)

compile_sub_group_size: Returns the sub-group 

size specified by a kernel if applicable; otherwise 

returns 0

compile_num_sub_groups: Returns the number 

of sub-groups specified by a kernel if applicable; 

otherwise returns 0
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max_sub_group_size: Returns the maximum sub- 

group size for a kernel launched with the specified 

work-group size

max_num_sub_groups: Returns the maximum 

number of sub-groups for a kernel

 The Specifics: Those of “Tuning/
Optimization”
There are a few additional parameters that can be considered as fine- 

tuning parameters for our kernels. These can be ignored without 

jeopardizing the correctness of a program. These allow our kernels to 

really utilize the particulars of the hardware for performance.

Paying attention to the results of these queries can help when tuning 
for a cache (if it exists).

 Device Queries
global_mem_cache_line_size: Size of global memory cache line in bytes.

global_mem_cache_size: Size of global memory cache in bytes.

local_mem_type: The type of local memory supported. This can be 

info::local_mem_type::local implying dedicated local memory storage 

such as SRAM or info::local_mem_type::global. The latter type means 

that local memory is just implemented as an abstraction on top of global 

memory with potentially no performance gains.
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 Kernel Queries
preferred_work_group_size: The preferred work-group size for executing 

a kernel on a specific device.

preferred_work_group_size_multiple: Work-group size should 

be a multiple of this value (preferred_work_group_size_multiple) for 

executing a kernel on a particular device for best performance. The value 

must not be greater than work_group_size.

 Runtime vs. Compile-Time Properties
Implementations may offer compile-time constants/macros, or other 

functionality, but they are not standard and therefore we do not encourage 

their use nor do we discuss them in this book. The queries described in 

this chapter are performed through runtime APIs (get_info) so the results 

are not known until runtime. In the next section, we discuss how attributes 

may be used to control how the kernel is compiled. Other than attributes, 

the SYCL standard promotes only the use of runtime information with one 

fairly esoteric exception. SYCL does offer two traits that the application can 

use to query aspects at compilation time. These traits are there specifically 

to help avoid instantiating a templated kernel for device features that are 

not supported by any device. This is a very advanced, and seldom used, 

feature we do not elaborate upon in this book. The SYCL standard has an 

example toward the end of the “Device aspects” section that shows the use 

of any_device_has_v<aspect> and all_devices_have_v<aspect> for this 

purpose. The standard also defines “specialization constants,” which we do 

not discuss in this book because they are typically used in very advanced 

targeted development, such as in libraries. An experimental compile-time 

property extension is discussed in the Epilogue under “Compile-Time 

Properties.”
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 Kernel Specialization
We can specialize our kernels by having different kernels for different uses 

and select the appropriate kernel based on aspects (see Figure 12-3) of 

the device we are targeting. Of course, we can write specialized kernels 

explicitly and use C++ templating to help. We can inform the compiler 

that we want our kernel to use specific feature by using SYCL attributes 

(Figure 12-9) and aspects (Figure 12-3).

For example, the reqd_work_group_size attribute (Figure 12-9) can be 

used to require a specific work-group size for a kernel, and the device_has 

attribute can be used to require specific device aspects for a kernel.

Using attributes helps in two ways:

 1. A kernel will throw an exception if it is submitted to 

a device that does not have one of the listed aspects.

 2. The compiler will issue a diagnostic if the kernel (or 

any of the functions it calls) uses an optional feature 

(e.g., fp16) that is associated with an aspect that is 

not listed in the attribute.

The first helps prevent an application from proceeding if it will likely 

fail, and the second helps catch errors at compile time. For these reasons, 

using attributes can be helpful.

Figure 12-10 provides an example for illustration that uses run time 

logic to choose between two code sequences and uses attributes to 

specialize one of the kernels.
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Standard attribute Speci�ies
device_has(aspect, ...) This attribute is the only attribute

that can be used to decorate a non-

kernel function, in addition to the 

ability (of all attributes) to decorate a 

kernel function.

Requires: that the kernel is only 

launched with devices meeting the 

speci�ied aspect(s) from Figure 12-3).
reqd_work_group_size(dim0) 
reqd_work_group_size(dim0, 
dim1) 
reqd_work_group_size(dim0, 
dim1, dim2)

Requires: that the kernel must be 

launched with the speci�ied 

workgroup size.

work_group_size_hint(dim0) 
work_group_size_hint(dim0, 
dim1) 
work_group_size_hint(dim0, 
dim1, dim2)

Hints: that the kernel will most likely
be launched with the speci�ied

reqd_sub_group_size(dim)

Figure 12-9. Attributes defined by the SYCL standard (and not 
deprecated)
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#include <iostream>
#include <sycl/sycl.hpp>
using namespace sycl;

int main() {
queue q;

constexpr int size = 16; 
std::array<double, size> data;

// Using "sycl::device_has()" as an attribute does not
// affect the device we select. Therefore, our host code
// should check the device's aspects before submitting a
// kernel which does require that attribute.
if (q.get_device().has(aspect::fp64)) {

buffer B{data};
q.submit([&](handler& h) {

accessor A{B, h};
// the attributes here say that the kernel is allowed
// to require fp64 support any attribute(s) from
// Figure 12-3 could be specified note that namespace
// stmt above (for C++) does not affect attributes (a
// C++ quirk) so sycl:: is needed here
h.parallel_for( 

size, [=](auto& idx) 
[[sycl::device_has(aspect::fp64)]] {

A[idx] = idx * 2.0; 
});

});
std::cout << "doubles were used\n"; 

} else { 
// here we use an alternate method (not needing double
// math support on the device) to help our code be
// flexible and hence more portable
std::array<float, size> fdata;

    { 
buffer B{fdata};
q.submit([&](handler& h) {

accessor A{B, h};
h.parallel_for( 

size, [=](auto& idx) { A[idx] = idx * 2.0f; });
});

    } 

for (int i = 0; i < size; i++) data[i] = fdata[i];

std::cout << "no doubles used\n"; 
  } 
for (int i = 0; i < size; i++)

std::cout << "data[" << i << "] = " << data[i] << "\n"; 
return 0; 

} 

Figure 12-10. Specialization of kernel explicitly with the help of 
attributes
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 Summary
The most portable programs will query the devices that are available in 

a system and adjust their behavior based on runtime information. This 

chapter opens the door to the rich set of information that is available to 

allow such tailoring of our code to adjust to the hardware that is present at 

runtime. We also discussed various ways to specialize kernels so they can 

be more closely adapted to a particular device type when we decide the 

investment is worthwhile. These give us the tools to balance portability 

and performance as necessary to meet our needs, all within the bounds of 

using C++ with SYCL.

Our programs can be made more functionally portable, more 

performance portable, and more future-proof by parameterizing our 

application to adjust to the characteristics of the hardware. We can also 

test that the hardware present falls within the bounds of any assumptions 

we have made in the design of our program and either warns or aborts 

when hardware is found that lies outside the bounds of our assumptions.

Open Access  This chapter is licensed under the terms of 

the Creative Commons Attribution 4.0 International License 

(https://creativecommons.org/licenses/by/4.0/), which permits use, 

sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and 

the source, provide a link to the Creative Commons license and indicate if 

changes were made.

The images or other third party material in this chapter are included 

in the chapter’s Creative Commons license, unless indicated otherwise 

in a credit line to the material. If material is not included in the chapter’s 

Creative Commons license and your intended use is not permitted by 

statutory regulation or exceeds the permitted use, you will need to obtain 

permission directly from the copyright holder.
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CHAPTER 13

Practical Tips
This chapter is home to a number of pieces of useful information, practical 

tips, advice, and techniques that have proven useful when programming 

C++ with SYCL. None of these topics are covered exhaustively, so the intent 

is to raise awareness and encourage learning more as needed.

 Getting the Code Samples and a Compiler
Chapter 1 covers how to get a SYCL compiler (e.g., oneapi.com/

implementations or github.com/intel/llvm) and where to get the code 

samples used in this book (github.com/Apress/data-parallel-CPP). This 

is mentioned again to emphasize how useful it can be to try the examples 

(including making modifications!) to gain hands-on experience. Join those 

who know what the code in Figure 1-1 actually prints out!

 Online Resources
Key online resources include

• Extensive resources at sycl.tech/

• The official SYCL home at khronos.org/sycl/ with great 

resources listed at khronos.org/sycl/resources

© Intel Corporation 2023 
J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-9691-2_13
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• Resources to help migrate from CUDA to C++ with 

SYCL at tinyurl.com/cuda2sycl

• Migration tool GitHub home github.com/oneapi-src/

SYCLomatic

 Platform Model
A C++ compiler with SYCL support is designed to act and feel like any 

other C++ compiler we have ever used. It is worth understanding the inner 

workings, at a high level, that enable a compiler with SYCL support to 

produce code for a host (e.g., CPU) and devices.

The platform model (Figure 13-1) used by SYCL specifies a host that 

coordinates and controls the compute work that is performed on the 

devices. Chapter 2 describes how to assign work to devices, and Chapter 4  

dives into how to program devices. Chapter 12 describes using the 

platform model at various levels of specificity.

As we discussed in Chapter 2, there should always be a device to run 

on in a system using a properly configured SYCL runtime and compatible 

hardware. This allows device code to be written assuming that at least one 

device will be available. The choice of the devices on which to run device 

code is under program control—it is entirely our choice as programmers 

if, and how, we want to execute code on specific devices (device selection 

options are discussed in Chapter 12).
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Figure 13-1. Platform model: can be used abstractly or with 
specificity

 Multiarchitecture Binaries
Since our goal is to have a single-source code to support a heterogeneous 

machine, it is only natural to want a single executable file to be the result.

A multiarchitecture binary (a.k.a. a fat binary) is a single binary file 

that has been expanded to include all the compiled and intermediate code 

needed for our heterogeneous machine. A multiarchitecture binary acts 
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like any other a.out or a.exe we are used to—but it contains everything 

needed for a heterogeneous machine. This helps to automate the process 

of picking the right code to run for a particular device. As we discuss next, 

one possible form of the device code in a fat binary is an intermediate 

format that defers the final creation of device instructions until runtime.

 Compilation Model
The single-source nature of SYCL allows compilations to act and feel like 

regular C++ compilations. There is no need for us to invoke additional 

passes for devices or deal with bundling device and host code. That is all 

handled automatically for us by the compiler. Of course, understanding 

the details of what is happening can be important for several reasons. 

This is useful knowledge if we want to target specific architectures more 

effectively, and it is important to understand if we need to debug a failure 

happening in the compilation process.

We will review the compilation model so that we are educated for when 

that knowledge is needed. Since the compilation model supports code that 

executes on both a host and potentially several devices simultaneously, 

the commands issued by the compiler, linker, and other supporting tools 

are more complicated than the C++ compilations we are used to (targeting 

only one architecture). Welcome to the heterogeneous world!

This heterogeneous complexity is intentionally hidden from us by the 

compiler and “just works.”

The compiler can generate target-specific executable code similar 

to traditional C++ compilers (ahead-of-time (AOT) compilation, 

sometimes referred to as offline kernel compilation), or it can generate an 

intermediate representation that can be just-in-time (JIT) compiled to a 

specific target at runtime.
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Compilation can be “ahead-of-time” (aOt) or “just-in- time” (Jit).

The compiler can only compile ahead of time if the device target is 

known ahead of time (at the time when we compile our program). Using 

JIT compilation will give more portability for our compiled program but 

requires the compiler and the runtime to perform additional work while 

our application is running.

For most devices, including GPUs, the most common practice is to rely 

on JIT compilation. Some devices (e.g., FPGAs) may have exceptionally 

slow compilation processes and therefore the practice is to use AOT 

compilation.

Use Jit unless you know there is a need (e.g., FpGa) or benefit to 
using aOt code.

By default, when we compile our code for most devices, the output for 

device code is stored in an intermediate form. At runtime, the device driver 

on the system will just-in-time compile the intermediate form into code to 

run on the device(s) to match what is available on the system.

Unlike aOt code, the goal of Jit code is to be able to be compiled 
at runtime to use whatever device is on a system. this may include 
devices that did not exist when the program was originally compiled 
to Jit code.

We can ask the compiler to compile ahead-of-time for specific devices 

or classes of devices. This has the advantage of saving runtime, but it has 

the disadvantage of added compile time and fatter binaries! Code that 

is compiled ahead-of-time is not as portable as just-in-time because it 
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cannot be adapted to match the available hardware at runtime. We can 

include both in our binary to get the benefits of both AOT and JIT.

to maximize portability, even when including some aOt code, we like 
to have Jit code in our binary too.

Compiling for a specific device ahead-of-time also helps us to check at 

build time that our program should work on that device. With just-in-time 

compilation, it is possible that a program will fail to compile at runtime 

(which can be caught using the mechanisms in Chapter 5). There are a 

few debugging tips for this in the upcoming “Debugging” section of this 

chapter, and Chapter 5 details how these errors can be caught at runtime 

to avoid requiring that our applications abort.

Figure 13-2 illustrates a compilation process from source code to fat 

binary (executable). Whatever combinations we choose are combined 

into a fat binary. The fat binary is employed by the runtime when the 

application executes (and it is the binary that we execute on the host!). 

At times, we may want to compile device code for a particular device 

in a separate compile. We would want the results of such a separate 

compilation to eventually be combined into our fat binary. This can 

be very useful for FPGA development when full compile (doing a full 

synthesis place-and-route) times can be very long and is in fact a 

requirement for FPGA development to avoid requiring the synthesis tools 

to be installed on a runtime system. Figure 13-3 shows the flow of the 

bundling/unbundling activity supported for such needs. We always have 

the option to compile everything at once, but during development, the 

option to break up compilation can be very useful.

Every C++ compiler supporting SYCL has a compilation model with 

the same goal, but the exact implementation details will vary. The specific 

diagrams shown here are courtesy of the DPC++ compiler toolchain 

implementors.
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Figure 13-2. Compilation process: ahead-of-time and just-in- 
time options

Figure 13-3. Compilation process: offload bundler/unbundler

 Contexts: Important Things to Know
As mentioned in Chapter 6, a context represents a device or set of 

devices on which we can execute kernels. We can think of a context as a 

convenient place for the runtime to stash some state about what it is doing. 

Programmers are not likely to directly interact with contexts outside of 

passing them around in most SYCL programs.

Devices can be subdivided into sub-devices. This can be useful for 

partitioning a problem. Since sub-devices are treated exactly as devices 

(same C++ type), everything we say about grouping devices applies to sub- 

devices also.
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SYCL abstractly considers devices to be grouped together in platforms. 

Within a platform, devices may be able to interact in ways including 

sharing memory. Devices belonging to the same context must have the 

ability to access each other’s global memory using some mechanism. SYCL 

USM memory (Chapter 6) can be shared between devices only if they 

are in the same context. USM memory allocations are bound to contexts, 

not to devices, so a USM allocation within one context is not accessible 

to other contexts. Therefore, USM allocations are limited to use within a 

single context—possibly a subset of the device.

Contexts do not abstract what hardware cannot support. For instance, 

we cannot create a context to include two GPUs which cannot share 

memory with each other. Not all devices exposed from the same platform 

are required to be able to be grouped together in the same context.

When we create a queue, we can specify which context we wish to 

place it within. By default, the DPC++ compiler project implements a 

default context per platform and automatically assigns new queues to the 

default context. Other SYCL compilers are free to do the same but are not 

required to do so by the standard.

Contexts are expensive to create—having less makes our 
applications more efficient.

Having all devices from a given platform always be placed in the same 

context has two advantages: (1) since a context is expensive to create, our 

application is more efficient; and (2) the maximum sharing supported by 

the hardware is allowed (e.g., USM).
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 Adding SYCL to Existing C++ Programs
Adding the appropriate exploitation of parallelism to an existing C++ 

program is the first step to using SYCL. If a C++ application is already 

exploiting parallel execution, that may be a bonus, or it may be a headache. 

That is because the way we divide the work of an application into parallel 

execution greatly affects what we can do with it. When programmers talk 

about refactoring a program parallelism, they are referring to rearranging 

the flow of execution and data within a program to get it ready to exploit 

parallelism. This is a complex topic that we will only touch briefly upon. 

There is no one-size-fits-all answer on how to prepare an application for 

parallelism, but there are some tips worth noting.

When adding parallelism to a C++ application, an easy approach to 

consider is to find an isolated point in the program where the opportunity 

for parallelism is the greatest. We can start our modification there and then 

continue to add parallelism in other areas as needed. A complicating factor 

is that refactoring (i.e., rearranging the program flow and redesigning data 

structures) may improve the opportunity for parallelism.

Once we find an isolated point in the program where the opportunity 

for parallelism is the greatest, we will need to consider how to use SYCL at 

that point in the program. That is what the rest of the book teaches.

At a high level, the key steps for introducing parallelism consist of the 

following:

 1. Safety with concurrency (commonly called thread 

safety in conventional CPU programming): 

Adjusting the usage of all shared mutable data 

(data that can change and may be acted upon 

concurrently) to prevent data races. See Chapter 19.

 2. Introducing concurrency and/or parallelism.

 3. Tuning for parallelism (best scaling, optimizing for 

throughput or latency).
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It is important to consider step #1 first. Many applications have already 

been refactored for concurrency, but many have not. With SYCL as the sole 

source of parallelism, we focus on safety for the data being used within 

kernels and possibly shared with the host. If we have other techniques in 

our program (OpenMP, MPI, TBB, etc.) that introduce parallelism, that is 

an additional concern on top of our SYCL programming. It is important to 

note that it is okay to use multiple techniques inside a single program—

SYCL does not need to be the only source of parallelism within a program. 

This book does not cover the advanced topic of mixing with other 

parallelism techniques.

 Considerations When Using 
Multiple Compilers
C++ compilers that support SYCL also support linking with object code 

(libraries, object files, etc.) from other C++ compilers. In general, any 

issues that arise from using multiple compilers are the same as for any C++ 

compiler, requiring consideration of name mangling, targeting the same 

standard libraries, aligning calling conventions, etc. These are the same 

issues we must deal with when mixing and matching compilers for other 

languages such as Fortran or C.

In addition, applications must use the SYCL runtime that comes with 

the compiler used to build programs. It is not safe to mix and match SYCL 

compilers and SYCL runtimes—different runtimes may have different 

implementations and data layouts for important SYCL objects.
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sYCl interoperability with non-sYCl source languages refers to the 
ability of sYCl to work with kernel functions or device functions 
that are written in other programming languages, such as OpenCl, 
C, or CUDa, or to consume code in an intermediate representation 
precompiled by another compiler. refer to Chapter 20 for more 
information about interoperability with non- sYCl source languages.

Finally, the same compiler toolchain that was used for compiling SYCL 

device code is also required to do the linking phase of our compilation. 

Using a linker from a different compiler toolchain to do the linking will not 

result in a functional program as compilers that are not SYCL-aware will 

not know how to properly integrate host and device code.

 Debugging
This section conveys some modest debugging advice, to ease the 

challenges unique to debugging a parallel program, especially one 

targeting a heterogeneous machine.

We should never forget that we have the option to debug our 

applications while they are running on a CPU device. This debugging 

tip is described as Method#2 in Chapter 2. Because the architectures 

of devices often include fewer debugging hooks than general-purpose 

CPUs, tools can often probe code on a CPU more precisely. An important 

difference when running everything on a CPU is that many errors relating 

to synchronization will disappear, including moving memory back and 

forth between the host and devices. While we eventually need to debug all 

such errors, this can allow incremental debugging so we can resolve some 
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bugs before others. Experience will show that running on the device we 

are targeting as often as possible is important, as is leveraging portability 

to the CPU (and other devices) as part of the debugging process—running 

multiple devices will help expose issues and can help isolate whether a 

bug we encounter is device-specific.

Debugging tip running on a CpU is a powerful debugging tool.

Parallel programming errors, specifically data races and deadlocks, are 

generally easier for tools to detect and eliminate when running all code 

on the host. Much to our chagrin, we will most often see program failures 

from such parallel programming errors when running on a combination 

of host and devices. When such issues strike, it is very useful to remember 

that pulling back to CPU-only is a powerful debugging tool. Thankfully, 

SYCL is carefully designed to keep this option available to us and easy 

to access.

Debugging tip if a program is deadlocking, check that the 
host accessors are being destroyed properly and that work-items 
in kernels are obeying the synchronization rules from the sYCl 
specification.

The following compiler options are a good idea when we start 

debugging:

• -g: Put debug information in the output

• -ferror-limit=1: Maintain sanity when using 

C++ with template libraries such as those heavily 

used by SYCL
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• -Werror -Wall -Wpedantic: Have the compiler 

enforce good coding to help avoid producing incorrect 

code to debug at runtime

We really do not need to get bogged down fixing pedantic warnings 

just to use C++ with SYCL, so choosing to not use -Wpedantic is 

understandable.

When we leave our code to be compiled just-in-time during runtime, 

there is code we can inspect. This is highly dependent on the layers used by 

our compiler, so looking at the compiler documentation for suggestions is 

a good idea.

 Debugging Deadlock and Other 
Synchronization Issues
Parallel programming relies on the proper coordination between our work 

that happens in parallel. Data usage needs to be gated by when the data is 

ready for use—such data dependencies need to be encoded in the logic of 

our program for proper behavior.

Debugging dependency issues, especially with USM, can be a 

challenge when an error in our synchronization/dependency logic occurs. 

We may see a program hang (never complete) or generate erroneous 

information intermittently. In such cases, we may see behavior such 

as “it fails until I run it in the debugger—then it works perfectly!” Such 

intermittent failures often stem from dependencies which are not properly 

synchronized via waits, locks, explicit dependencies between queue 

submission, etc.

Useful debugging techniques include

• Switching from out-of-order to in-order queues

• Sprinkle queue.wait() calls around
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Using either, or both, of these while debugging can help to identify 

where dependency information may be missing. If such change makes 

program failures change or disappear, it is a strong hint that we have an 

issue to correct in our synchronization/dependency logic. Once fixed, we 

remove these temporary debugging measures.

 Debugging Kernel Code
While debugging kernel code, start by running on a CPU device (as advised 

in Chapter 2). The code for device selectors in Chapter 2 can easily be 

modified to accept runtime options, or compiler-time options, to redirect 

work to the host device when we are debugging.

When debugging kernel code, SYCL defines a C++-style stream that 

can be used within a kernel (Figure 13-4). The DPC++ compiler also 

offers an experimental implementation of a C-style printf that has useful 

capabilities, with some restrictions.

q.submit([&](handler &h) {
stream out(1024, 256, h);
h.parallel_for(range{8}, [=](id<1> idx) {

out << "Testing my sycl stream (this is work-item ID:"
<< idx << ")\n"; 

});
});

Figure 13-4. sycl::stream

When debugging kernel code, experience encourages that we put 

breakpoints before parallel_for or inside parallel_for, but not actually 

on the parallel_for. A breakpoint placed on a parallel_for can trigger 

a breakpoint multiple times even after performing the next operation. 

This C++ debugging advice applies to many template expansions like 

those in SYCL, where a breakpoint on the template call will translate into a 
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complicated set of breakpoints when it is expanded by the compiler. There 

may be ways that implementations can ease this, but the key point here is 

that we can avoid some confusion on all implementations by not setting 

the breakpoint precisely on the parallel_for itself.

 Debugging Runtime Failures
When a runtime error occurs while compiling just-in-time, we are either 

dealing with a case where we used a feature explicitly that the available 

hardware cannot support (e.g., fp16 or simd8), a compiler/runtime bug, or 

we have accidentally programmed nonsense that was not detected until it 

tripped up the runtime and created difficult-to-understand runtime error 

messages. In all three cases, it can be a bit intimidating to dive into these 

bugs. Thankfully, even a cursory look may allow us to get a better idea of 

what caused a particular issue. It might yield some additional knowledge 

that will guide us to avoid the issue, or it may just help us submit a short 

bug report to the compiler team. Either way, knowing that some tools exist 

to help can be important.

Output from our program that indicates a runtime failure may look like 

these examples:

terminate called after throwing an instance of 'sycl::_

V1::runtime_error'

  what():  Native API failed. Native API returns: ...

or

terminate called after throwing an instance of 'sycl::_

V1::compile_program_error'

  what():  The program was built for 1 devices

...
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error: Kernel compiled with required subgroup size 8, which is 

unsupported on this platform

in kernel: 'typeinfo name for main::'lambda'(sycl::_V1::nd_

item<2>)'

error: backend compiler failed build.

 -11 (PI_ERROR_BUILD_PROGRAM_FAILURE)

Seeing such exceptions here lets us know that our host program could 

have been constructed to catch this error. The first shows a bit of a catch- 

all error for accessing any API that is not supported natively (in this case it 

was using a host side memory allocation not supported on the platform); 

the second is easier to realize that SIMD8 was specified for a device that 

did not support it (in this case it supported SIMD16 instead). Runtime 

compiler failures do not need to abort our application; we could catch 

them, or code to avoid them, or both. Chapter 5 dives into this topic.

When we see a runtime failure and have any difficulty debugging 

it quickly, it is worth simply trying a rebuild using ahead-of-time 

compilations. If the device we are targeting has an ahead-of-time 

compilation option, this can be an easy thing to try that may yield easier- 

to- understand diagnostics. If our errors can be seen at compile time 

instead of JIT or runtime, often much more useful information will be 

found in the error messages from the compiler instead of the small amount 

of error information we usually see from a JIT or the runtime.

Figure 13-5 lists two of the flags and additional environment variables 

(supported on Windows and Linux) supported by compilers or runtimes 

to aid in advanced debugging. These are DPC++ compiler–specific 

advanced debug options that exist to inspect and control the compilation 

model. They are not discussed or utilized in this book; they are explained 

in detail online with the GitHub project at intel.github.io/llvm-docs/

EnvironmentVariables.html and tinyurl.com/IGCoptions.
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Environment variables Value description

ONEAPI_DEVICE_SELECTOR See online documentation for 

examples of the numerous 

options in the documents at 

intel.github.io.

Can be used to limit the choice of devices 

available when a SYCL-using application is 

run. Useful for limiting devices to a certain 

type (like GPUs or accelerators) or 

backends (like Level Zero or OpenCL).

SYCL_PI_TRACE 1 (basic),

2 (advanced),

-1 (all)

Runtime: Value of 1 enables tracing of 

Runtime Plugin Interface (PI) for plugin 

and device discovery; Value of 2 enables 

tracing of all PI calls. Value of -1 unleashes 

all levels of tracing.

SYCL_PRINT_EXECUTION_GRAPH always
(or ask to dump only 
select files by 
specifying: 
before_addCG, 
after_addCG, 
before_addCopyBack, 
after_addCopyBack, 
before_addHostAcc, or 
after_addHostAcc)

Runtime: create text �iles (with DOT 

extension) tracing the execution graph. 

Relatively easy to browse traces of what is 

happening during runtime.

IGC_ShaderDumpEnable 0 or 1 Linux only. Runtime: ask the Intel Graphics 

Compiler (JIT) to dump some information.

IGC_ShaderDumpEnableAll 0 or 1 Linux only. Runtime: ask the Intel Graphics 

Compiler (JIT) to dump lots of information.

Figure 13-5. DPC++ compiler advanced debug options

These options are not described more within this book, but they are 

mentioned here to open up this avenue of advanced debugging as needed. 

These options may give us insight into how to work around an issue or 

bug. It is possible that our source code is inadvertently triggering an issue 

that can be resolved by correcting the source code. Otherwise, the use 

of these options is for very advanced debugging of the compiler itself. 

Therefore, they are associated more with compiler developers than with 

users of the compiler. Some advanced users find these options useful; 

therefore, they are mentioned here and never again in this book. To dig 

deeper, see DPC++ compiler GitHub project  intel.github.io/llvm-docs/

EnvironmentVariables.html.
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Debugging tip When other options are exhausted and we need 
to debug a runtime issue, we look for dump tools that might give us 
hints toward the cause.

 Queue Profiling and Resulting 
Timing Capabilities
Many devices support queue profiling (device::has(aspect::queue_

profiling)—for more on aspects in general, see Chapter 12. A simple and 

powerful interface makes it easy to access detailed timing information on 

queue submission, actual start of execution on the device, completion on 

the device, and completion of the command. This profiling will be more 

precise about the device timings than using host timing mechanisms (e.g., 

chrono) because they will generally not include host to/from device data 

transfer times. See the examples shown in Figure 13-6 and Figure 13-7 

with sample outputs shown in Figure 13-8. The samples outputs shown 

in Figure 13-8 illustrate what is possible with this technique but have not 

been optimized and should not be used as representations of the merits of 

any particular system choice in any manner.

The aspect::queue_profiling aspect indicates that the device 

supports queue profiling via property::queue::enable_profiling. 

For such devices, we can specify property::queue::enable_profiling 

when constructing a queue—a property list is an optional final parameter 

to the queue constructor. Doing so activates the SYCL runtime captures 

of profiling information for the command groups that are submitted 

to that queue. The captured information is then made available via 

the SYCL event class get_profiling_info member function. If the 

queue’s associated device does not have aspect::queue_profiling, this 

will cause the constructor to throw a synchronous exception with the 

errc::feature_not_supported error code.
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An event can be queried for profiling information using the get_

profiling_info member function of the event class, specifying one of 

the profiling info parameters enumerated in info::event_profiling. 

The possible values for each info parameter and any restrictions are 

defined in the specification of the SYCL backend associated with the 

event. All info parameters in info::event_profiling are specified in 

SYCL specification’s table entitled “Profiling information descriptors for 

the SYCL event class,” and the synopsis for info::event_profiling is 

described in an Appendix of the specification under “Event information 

descriptors.”

Each profiling descriptor returns a timestamp that represents the 

number of nanoseconds that have elapsed since some implementation- 

defined time base. All events that share the same backend are guaranteed 

to share the same time base; therefore, the difference between two 

timestamps from the same backend yields the number of nanoseconds 

that have elapsed between those events.

As a final note, we do caution that enabling event profiling does 

increase overhead, so the best practice is to enable it during development 

or tuning and then to disable for production.

Tip Due to slight overhead, enable queue profiling only during 
development or tuning—disable for production.
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#include <iostream>
#include <sycl/sycl.hpp>
using namespace sycl; 

// Array type and data size for this example.
constexpr size_t array_size = (1 << 16);
typedef std::array<int, array_size> IntArray;
// Define VectorAdd (see Figure 13-7)

void InitializeArray(IntArray &a) {
for (size_t i = 0; i < a.size(); i++) a[i] = i;

} 

int main() {
IntArray a, b, sum;
InitializeArray(a);
InitializeArray(b);

queue q(property::queue::enable_profiling{});

std::cout << "Vector size: " << a.size()
<< "\nRunning on device: "
<< q.get_device().get_info<info::device::name>()
<< "\n"; 

VectorAdd(q, a, b, sum);

return 0; 
} 

Figure 13-6. Setting up to use queue profiling
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void VectorAdd(queue &q, const IntArray &a, 
const IntArray &b, IntArray &sum) {

range<1> num_items{a.size()};
buffer a_buf(a), b_buf(b);
buffer sum_buf(sum.data(), num_items);
auto t1 =

std::chrono::steady_clock::now(); // Start timing

event e = q.submit([&](handler &h) {
auto a_acc = a_buf.get_access<access::mode::read>(h);
auto b_acc = b_buf.get_access<access::mode::read>(h);
auto sum_acc =

sum_buf.get_access<access::mode::write>(h);

h.parallel_for(num_items, [=](id<1> i) {
sum_acc[i] = a_acc[i] + b_acc[i];

});
});
q.wait();

double timeA =
      (e.template get_profiling_info<

info::event_profiling::command_end>() - 
e.template get_profiling_info<

info::event_profiling::command_start>());

auto t2 =
std::chrono::steady_clock::now(); // Stop timing

double timeB = (std::chrono::duration_cast<
std::chrono::microseconds>(t2 - t1)

                      .count());

std::cout
<< "profiling: Vector add completed on device in "
<< timeA << " nanoseconds\n"; 

std::cout << "chrono: Vector add completed on device in "
<< timeB * 1000 << " nanoseconds\n"; 

std::cout << "chrono more than profiling by "
<< (timeB * 1000 - timeA) << " nanoseconds\n"; 

} 

Figure 13-7. Using queue profiling
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Vector size: 65536 
Running on device: Intel(R) UHD Graphics P630 [0x3e96] 
profiling: Vector add completed on device in 57602 nanoseconds 
chrono: Vector add completed on device in 2.85489e+08 nanoseconds 
chrono more than profiling by 2.85431e+08 nanoseconds 

Vector size: 65536 
Running on device: NVIDIA GeForce RTX 3060 
profiling: Vector add completed on device in 17410 nanoseconds 
chrono: Vector add completed on device in 3.6071e+07 nanoseconds 
chrono more than profiling by 3.60536e+07 nanoseconds 

Vector size: 65536 
Running on device: Intel(R) Data Center GPU Max 1100 
profiling: Vector add completed on device in 9440 nanoseconds 
chrono: Vector add completed on device in 5.6976e+07 nanoseconds 
chrono more than profiling by 5.69666e+07 nanoseconds 

Figure 13-8. Three sample outputs from queue profiling example

 Tracing and Profiling Tools Interfaces
Tracing and profiling tools can help us understand our runtime behaviors 

in our application, and often shed light on opportunities to improve our 

algorithms. Insights are often portable, in that they can be generalized 

to a wide class of devices, so we recommend using whatever tracing and 

profiling tools you find most valuable on whatever platform you prefer. Of 

course, fine-tuning any platform can require being on the exact platform in 

question. For maximally portable applications, we encourage first looking 

for opportunities to tune with an eye toward making any adjustments as 

portable as possible.

When our SYCL programs are running on top of an OpenCL runtime 

and using the OpenCL backend, we can run our programs with the 

OpenCL Intercept Layer: github.com/intel/opencl-intercept-layer. This 

is a tool that can inspect, log, and modify OpenCL commands that an 

application (or higher-level runtime) is generating. It supports a lot of 

controls, but good ones to set initially are ErrorLogging, BuildLogging, 

and maybe CallLogging (though it generates a lot of output). Useful 
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dumps are possible with DumpProgramSPIRV. The OpenCL Intercept Layer 

is a separate utility and is not part of any specific OpenCL implementation, 

so it works with many SYCL compilers.

There are a number of additional excellent tools for collecting 

performance data that are popular for SYCL developers. They are open 

source (github.com/intel/pti-gpu) along with samples to help to get us 

started.

Two of the most popular tools are as follows:

• onetrace: Host and device tracing tool for OpenCL and 

Level Zero backends with support of DPC++ (both for 

CPU and GPU) and OpenMP GPU offload

• oneprof: GPU HW metrics collection tool for OpenCL 

and Level Zero backends with support of DPC++ and 

OpenMP* GPU offload

Both tools use information from instrumented runtimes, so they apply 

to GPUs and CPUs. SYCL, ISPC, and OpenMP support in compilers that 

use these runtimes can all benefit from these tools. Consult the websites 

for the tools to explore their applicability for your usage. In general, we 

can find a platform that is supported and use the tools to learn useful 

information about your program even if every platform we target is not 

supported. Much of what we learn about a program is useful everywhere.

 Initializing Data and Accessing 
Kernel Outputs
In this section, we dive into a topic that causes confusion for new users of 

SYCL and that leads to the most common (in our experience) first bugs 

that we encounter as new SYCL developers.
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Put simply, when we create a buffer from a host memory allocation 

(e.g., array or vector), we can’t access the host allocation directly until the 

buffer has been destroyed. The buffer owns any host allocation passed to 

it at construction time, for the buffer’s entire lifetime. There are rarely used 

mechanisms that do let us access the host allocation while a buffer is still 

alive (e.g., buffer mutex), but those advanced features don’t help with the 

early bugs described here.

EVERYONE MAKES THIS ERROR—KNOWING THAT CAN HELP US DEBUG  
IT QUICKLY RATHER THAN PUZZLE OVER IT A LONG TIME!!!

if we construct a buffer from a host memory allocation, we must not directly 

access the host allocation until the buffer has been destroyed! While it is alive, 

the buffer owns the allocation. Understand buffer scope—and rules inside 

the scope!

A common bug appears when the host program accesses a host allocation 

while a buffer still owns that allocation. All bets are off once this happens 

because we don’t know what the buffer is using the allocation for. Don’t be 

surprised if the data is incorrect—the kernels that we’re trying to read the 

output from may not have even started running yet! As described in Chapters 

3 and 8, SYCL is built around an asynchronous task graph mechanism. Before 

we try to use output data from task graph operations, we need to be sure that 

we have reached synchronization points in the code where the graph has 

executed and made data available to the host. Both buffer destruction and 

creation of host accessors are operations that cause this synchronization.

Figure 13-9 shows a common pattern of code that we often write, 

where we cause a buffer to be destroyed by closing the block scope within 

which it was defined. By causing the buffer to go out of scope and be 

destroyed, we can then safely read kernel results through the original host 

allocation that was passed to the buffer constructor.
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constexpr size_t N = 1024; 

// Set up queue on any available device
queue q;

// Create host containers to initialize on the host
std::vector<int> in_vec(N), out_vec(N);

// Initialize input and output vectors
for (int i = 0; i < N; i++) in_vec[i] = i;
std::fill(out_vec.begin(), out_vec.end(), 0);

// Nuance: Create new scope so that we can easily cause
// buffers to go out of scope and be destroyed
{ 
// Create buffers using host allocations (vector in this
// case)
buffer in_buf{in_vec}, out_buf{out_vec};

// Submit the kernel to the queue
q.submit([&](handler& h) {

accessor in{in_buf, h};
accessor out{out_buf, h};

h.parallel_for( 
range{N}, [=](id<1> idx) { out[idx] = in[idx]; });

});

// Close the scope that buffer is alive within! Causes
// buffer destruction which will wait until the kernels
// writing to buffers have completed, and will copy the
// data from written buffers back to host allocations
// (our std::vectors in this case). After the buffer
// destructor runs, caused by this closing of scope,
// then it is safe to access the original in_vec and
// out_vec again!

} 

// Check that all outputs match expected value
// WARNING: The buffer destructor must have run for us to
// safely use in_vec and out_vec again in our host code.
// While the buffer is alive it owns those allocations,
// and they are not safe for us to use! At the least they
// will contain values that are not up to date. This code
// is safe and correct because the closing of scope above
// has caused the buffer to be destroyed before this point
// where we use the vectors again.
for (int i = 0; i < N; i++)
std::cout << "out_vec[" << i << "]=" << out_vec[i]

<< "\n"; 

Figure 13-9. Common pattern: buffer creation from a host allocation
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There are two common reasons to associate a buffer with existing host 

memory like Figure 13-9:

 1. To simplify initialization of data in a buffer. We can 

just construct the buffer from host memory that we 

(or another part of the application) have already 

initialized.

 2. To reduce the characters typed because closing 

scope with a ‘}’ is slightly more concise (though 

more error prone) than creating a host_accessor to 

the buffer.

If we use a host allocation to dump or verify the output values from a 

kernel, we need to put the buffer allocation into a block scope (or other 

scopes) so that we can control when it is destructed. We must then make 

sure that the buffer is destroyed before we access the host allocation to 

obtain the kernel output. Figure 13-9 shows this done correctly, while 

Figure 13-10 shows a common bug where the output is accessed while the 

buffer is still alive.

advanced users may prefer to use buffer destruction to return result 
data from kernels into a host memory allocation. But for most users, 
and especially new developers, it is recommended to use scoped 
host accessors.
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constexpr size_t N = 1024; 

// Set up queue on any available device
queue q;

// Create host containers to initialize on the host
std::vector<int> in_vec(N), out_vec(N);

// Initialize input and output vectors
for (int i = 0; i < N; i++) in_vec[i] = i;
std::fill(out_vec.begin(), out_vec.end(), 0);

// Create buffers using host allocations (vector in this
// case)
buffer in_buf{in_vec}, out_buf{out_vec};

// Submit the kernel to the queue
q.submit([&](handler& h) {
accessor in{in_buf, h};
accessor out{out_buf, h};

h.parallel_for(range{N},
[=](id<1> idx) { out[idx] = in[idx]; });

});

// BUG!!! We're using the host allocation out_vec, but the
// buffer out_buf is still alive and owns that allocation!
// We will probably see the initialiation value (zeros)
// printed out, since the kernel probably hasn't even run
// yet, and the buffer has no reason to have copied any
// output back to the host even if the kernel has run.
for (int i = 0; i < N; i++)
std::cout << "out_vec[" << i << "]=" << out_vec[i]

<< "\n"; 

Figure 13-10. Common bug: reading data directly from host 
allocation during buffer lifetime

To avoid these bugs, we recommend using host accessors instead of 

buffer scoping when getting started using C++ with SYCL. Host accessors 

provide access to a buffer from the host, and once their constructor has 

finished running, we are guaranteed that any previous writes (e.g., from 

kernels submitted before the host_accessor was created) to the buffer 
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have executed and are visible. This book uses a mixture of both styles (i.e., 

host accessors and host allocations passed to the buffer constructor) to 

provide familiarity with both. Using host accessors tends to be less error 

prone when getting started. Figure 13-11 shows how a host accessor can be 

used to read output from a kernel, without destroying the buffer first.

constexpr size_t N = 1024; 

// Set up queue on any available device
queue q;

// Create host containers to initialize on the host
std::vector<int> in_vec(N), out_vec(N);

// Initialize input and output vectors
for (int i = 0; i < N; i++) in_vec[i] = i;
std::fill(out_vec.begin(), out_vec.end(), 0);

// Create buffers using host allocations (vector in this
// case)
buffer in_buf{in_vec}, out_buf{out_vec};

// Submit the kernel to the queue
q.submit([&](handler& h) {
accessor in{in_buf, h};
accessor out{out_buf, h};

h.parallel_for(range{N},
[=](id<1> idx) { out[idx] = in[idx]; });

});

// Check that all outputs match expected value
// Use host accessor! Buffer is still in scope / alive
host_accessor A{out_buf};

for (int i = 0; i < N; i++)
std::cout << "A[" << i << "]=" << A[i] << "\n"; 

Figure 13-11. Recommendation: Use a host accessor to read 
kernel results
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Host accessors can be used whenever a buffer is alive, such as at both 

ends of a typical buffer lifetime—for initialization of the buffer content and 

for reading of results from our kernels. Figure 13-12 shows an example of 

this pattern.

constexpr size_t N = 1024; 

// Set up queue on any available device
queue q;

// Create buffers of size N
buffer<int> in_buf{N}, out_buf{N};

// Use host accessors to initialize the data
{ // CRITICAL: Begin scope for host_accessor lifetime!
host_accessor in_acc{in_buf}, out_acc{out_buf};
for (int i = 0; i < N; i++) {

in_acc[i] = i;
out_acc[i] = 0; 

  } 
} // CRITICAL: Close scope to make host accessors go out

// of scope!

// Submit the kernel to the queue
q.submit([&](handler& h) {
accessor in{in_buf, h};
accessor out{out_buf, h};

h.parallel_for(range{N},
[=](id<1> idx) { out[idx] = in[idx]; });

});

// Check that all outputs match expected value
// Use host accessor! Buffer is still in scope / alive
host_accessor A{out_buf};

for (int i = 0; i < N; i++)
std::cout << "A[" << i << "]=" << A[i] << "\n"; 

Figure 13-12. Recommendation: Use host accessors for buffer 
initialization and reading of results
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One final detail to mention is that host accessors sometime cause an 

opposite bug in applications, because they also have a lifetime. While a 

host_accessor to a buffer is alive, the runtime will not allow that buffer to 

be used by any devices! The runtime does not analyze our host programs 

to determine when they might access a host accessor, so the only way for 

it to know that the host program has finished accessing a buffer is for the 

host_accessor destructor to run. As shown in Figure 13-13, this can cause 

applications to appear to hang if our host program is waiting for some 

kernels to run (e.g., queue::wait() or acquiring another host accessor) 

and if the SYCL runtime is waiting for our earlier host accessor(s) to be 

destroyed before it can run kernels that use a buffer.

When using host accessors, be sure that they are destroyed when 
no longer needed to unlock use of the buffer by kernels or other host 
accessors.
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constexpr size_t N = 1024; 

// Set up queue on any available device
queue q;

// Create buffers using host allocations (vector in this
// case)
buffer<int> in_buf{N}, out_buf{N};

// Use host accessors to initialize the data
host_accessor in_acc{in_buf}, out_acc{out_buf};
for (int i = 0; i < N; i++) {
in_acc[i] = i;
out_acc[i] = 0; 

} 

// BUG: Host accessors in_acc and out_acc are still alive!
// Later q.submits will never start on a device, because
// the runtime doesn't know that we've finished accessing
// the buffers via the host accessors. The device kernels
// can't launch until the host finishes updating the
// buffers, since the host gained access first (before the
// queue submissions). This program will appear to hang!
// Use a debugger in that case.

// Submit the kernel to the queue
q.submit([&](handler& h) {
accessor in{in_buf, h};
accessor out{out_buf, h};

h.parallel_for(range{N},
[=](id<1> idx) { out[idx] = in[idx]; });

});

std::cout << "This program will deadlock here!!! Our "
"host_accessors used\n"

<< " for data initialization are still in "
"scope, so the runtime won't\n"

<< " allow our kernel to start executing on "
"the device (the host could\n"

<< " still be initializing the data that is "
"used by the kernel). The next line\n"

<< " of code is acquiring a host accessor for "
"the output, which will wait for\n"

<< " the kernel to run first. Since in_acc "
"and out_acc have not been\n"

<< " destructed, the kernel is not safe for "
"the runtime to run, and we deadlock.\n"; 

// Check that all outputs match expected value
// Use host accessor! Buffer is still in scope / alive
host_accessor A{out_buf};

for (int i = 0; i < N; i++)
std::cout << "A[" << i << "]=" << A[i] << "\n"; 

Figure 13-13. Deadlock (bug—it hangs!) from improper use of host_
accessors
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 Multiple Translation Units
When we want to call functions inside a kernel that are defined in 

a different translation unit, those functions need to be labeled with 

SYCL_EXTERNAL. Without this decoration, the compiler will only compile 

a function for use outside of device code (making it illegal to call that 

external function from within device code).

There are a few restrictions on SYCL_EXTERNAL functions that do not 

apply if we define the function within the same translation unit:

• SYCL_EXTERNAL can only be used on functions.

• SYCL_EXTERNAL functions cannot use raw pointers 

as parameter or return types. Explicit pointer 

classes must be used instead.

• SYCL_EXTERNAL functions cannot call a parallel_

for_work_item method.

• SYCL_EXTERNAL functions cannot be called from 

within a parallel_for_work_group scope.

If we try to compile a kernel that is calling a function that is not inside 

the same translation unit and is not declared with SYCL_EXTERNAL, then we 

can expect a compile error similar to

error: SYCL kernel cannot call an undefined function without 

SYCL_EXTERNAL attribute

If the function itself is compiled without a SYCL_EXTERNAL attribute, we 

can expect to see either a link or runtime failure such as

terminate called after throwing an instance of '...compile_

program_error'...

error: undefined reference to ...
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SYCL does not require compilers to support SYCL_EXTERNAL; it is an 

optional feature in general. DPC++ supports SYCL_EXTERNAL.

 Performance Implication of Multiple 
Translation Units
An implication of the compilation model (see earlier in this chapter) is 

that if we scatter our device code into multiple translation units, that may 

trigger more invocations of just-in-time compilation than if our device 

code is colocated. This is highly implementation-dependent and is subject 

to changes over time as implementations mature.

Such effects on performance are minor enough to ignore through most 

of our development work, but when we get to fine-tuning to maximize 

code performance, there are two things we can consider to mitigate these 

effects: (1) group device code together in the same translation unit, and (2) 

use ahead-of-time compilation to avoid just-in-time compilation effects 

entirely. Since both of these require some effort on our part, we only do 

this when we have finished our development and are trying to squeeze 

every ounce of performance out of our application. When we do resort to 

this detailed tuning, it is worth testing changes to observe their effect on 

the exact SYCL implementation that we are using.

 When Anonymous Lambdas Need Names
SYCL allows for assigning names to lambdas in case tools need it and 

for debugging purposes (e.g., to enable displays in terms of user-defined 

names). Naming lambdas is optional per the SYCL 2020 specification. 

Throughout most of this book, anonymous lambdas are used for kernels 

because names are not needed when using C++ with SYCL (except for 

passing of compile options as described with lambda naming discussion in 

Chapter 10).
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When we have an advanced need to mix SYCL tools from multiple 

vendors in a codebase, the tooling may require that we name lambdas. 

This is done by adding a <class uniquename> to the SYCL action construct 

in which the lambda is used (e.g., parallel_for). This naming allows 

tools from multiple vendors to interact in a defined way within a single 

compilation and can also help by displaying kernel names that we define 

within debug tools and layers.

We also need to name kernels if we want to use kernel queries. The 

SYCL standards committee was unable to find a solution to requiring 

this in the SYCL 2020 standard. For instance, querying a kernel’s 

preferred_work_group_size_multiple requires us to call the get_info() 

member function of the kernel class, which requires an instance of the 

kernel class, which ultimately requires that we know the name (and 

kernel_id) of the kernel in order to extract a handle to it from the relevant 

kernel_bundle.

 Summary
Popular culture today often refers to tips as life hacks. Unfortunately, 

programming culture often assigns a negative connotation to hack, so the 

authors refrained from naming this chapter “SYCL Hacks.” Undoubtedly, 

this chapter has just touched the surface of what practical tips can be given 

for using C++ with SYCL. More tips can be shared by all of us as we learn 

together how to make the most out of C++ with SYCL.
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Open Access  This chapter is licensed under the terms of 

the Creative Commons Attribution 4.0 International License 

(https://creativecommons.org/licenses/by/4.0/), which permits use, 

sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and 

the source, provide a link to the Creative Commons license and indicate if 

changes were made.

The images or other third party material in this chapter are included 

in the chapter’s Creative Commons license, unless indicated otherwise 

in a credit line to the material. If material is not included in the chapter’s 

Creative Commons license and your intended use is not permitted by 

statutory regulation or exceeds the permitted use, you will need to obtain 

permission directly from the copyright holder.
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CHAPTER 14

Common Parallel 
Patterns
When we are at our best as programmers, we recognize patterns in our 

work and apply techniques that are time-tested to be the best solution. 

Parallel programming is no different, and it would be a serious mistake not 

to study the patterns that have proven to be useful in this space. Consider 

the MapReduce frameworks adopted for Big Data applications; their 

success stems largely from being based on two simple yet effective parallel 

patterns—map and reduce.

There are a number of common patterns in parallel programming 

that crop up time and again, independent of the programming language 

that we’re using. These patterns are versatile and can be employed at 

any level of parallelism (e.g., sub-groups, work-groups, full devices) and 

on any device (e.g., CPUs, GPUs, FPGAs). However, certain properties 

of the patterns (such as their scalability) may affect their suitability for 

different devices. In some cases, adapting an application to a new device 

may simply require choosing appropriate parameters or fine-tuning 

an implementation of a pattern; in others, we may be able to improve 

performance by selecting a different pattern entirely.

Developing an understanding of how, when, and where to use these 

common parallel patterns is a key part of improving our proficiency in 

SYCL (and parallel programming in general). For those with existing 
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parallel programming experience, seeing how these patterns are expressed 

in SYCL can be a quick way to spin up and gain familiarity with the 

capabilities of the language.

This chapter aims to provide answers to the following questions:

• What are some common patterns that we should 

understand?

• How do the patterns relate to the capabilities of 

different devices?

• Which patterns are already provided as SYCL functions 

and libraries?

• How would the patterns be implemented using direct 

programming?

 Understanding the Patterns
The patterns discussed here are a subset of the parallel patterns described 

in the book Structured Parallel Programming by McCool et al. We do not 

cover the patterns related to types of parallelism (e.g., fork-join, branch- 

and- bound) but focus on some of the algorithmic patterns most useful for 

writing data-parallel kernels.

We wholeheartedly believe that understanding this subset of parallel 

patterns is critical to becoming an effective SYCL programmer. The table 

in Figure 14-1 presents a high-level overview of the different patterns, 

including their primary use cases, their key attributes, and how their 

attributes impact their affinity for different hardware devices.
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Figure 14-1. Parallel patterns and their affinity for different 
device types

 Map
The map pattern is the simplest parallel pattern of all and will 

be immediately familiar to readers with experience in functional 

programming languages. As shown in Figure 14-2, each input element of 

a range is independently mapped to an output by applying some function. 

Many data-parallel operations can be expressed as instances of the map 

pattern (e.g., vector addition).

Figure 14-2. Map pattern
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Since every application of the function is completely independent, 

expressions of map are often very simple, relying on the compiler and/

or runtime to do most of the hard work. We should expect kernels written 

to the map pattern to be suitable for any device and for the performance 

of those kernels to scale very well with the amount of available hardware 

parallelism.

However, we should think carefully before deciding to rewrite entire 

applications as a series of map kernels! Such a development approach is 

highly productive and guarantees that an application will be portable to a 

wide variety of device types but encourages us to ignore optimizations that 

may significantly improve performance (e.g., improving data reuse, fusing 

kernels).

 Stencil
The stencil pattern is closely related to the map pattern. As shown in 

Figure 14-3, a function is applied to an input and a set of neighboring 

inputs described by a stencil to produce a single output. Stencil patterns 

appear frequently in many domains, including scientific/engineering 

applications (e.g., finite difference codes) and computer vision/machine 

learning applications (e.g., image convolutions).

Chapter 14  Common parallel patterns



353

Figure 14-3. Stencil pattern

When the stencil pattern is executed out-of-place (i.e., writing the 

outputs to a separate storage location), the function can be applied to 

every input independently. Scheduling stencils in the real world is often 

more complicated than this: computing neighboring outputs requires 

the same data, and loading that data from memory multiple times will 

degrade performance; and we may wish to apply the stencil in-place (i.e., 

overwriting the original input values) in order to decrease an application’s 

memory footprint.

The suitability of a stencil kernel for different devices is therefore 

highly dependent on properties of the stencil and the input problem. 

Generally speaking,

• Small stencils can benefit from the scratchpad storage 

of GPUs.
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• Large stencils can benefit from the (comparatively) 

large caches of CPUs.

• Small stencils operating on small inputs can achieve 

significant performance gains via implementation as 

systolic arrays on FPGAs.

Since stencils are easy to describe but complex to implement 

efficiently, many stencil applications make use of a domain-specific 

language (DSL). There are already several embedded DSLs leveraging 

the template meta-programming capabilities of C++ to generate high- 

performance stencil kernels at compile time.

 Reduction
A reduction is a common parallel pattern which combines partial results 

using an operator that is typically associative and commutative (e.g., 

addition). The most ubiquitous examples of reductions are computing a 

sum (e.g., while computing a dot product) or computing the minimum/

maximum value (e.g., using maximum velocity to set time-step size).

Figure 14-4 shows the reduction pattern implemented by way of a 

tree reduction, which is a popular implementation requiring log2(N) 

combination operations for a range of N input elements. Although tree 

reductions are common, other implementations are possible—in general, 

we should not assume that a reduction combines values in a specific order.
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Figure 14-4. Reduction pattern

Kernels are rarely embarrassingly parallel in real life, and even 

when they are, they are often paired with reductions (as in MapReduce 

frameworks) to summarize their results. This makes reductions one of the 

most important parallel patterns to understand and one that we must be 

able to execute efficiently on any device.

Tuning a reduction for different devices is a delicate balancing act 

between the time spent computing partial results and the time spent 

combining them; using too little parallelism increases computation time, 

whereas using too much parallelism increases combination time.

It may be tempting to improve overall system utilization by using 

different devices to perform the computation and combination steps, 

but such tuning efforts must pay careful attention to the cost of moving 

data between devices. In practice, we find that performing reductions 

directly on data as it is produced and on the same device is often the best 
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approach. Using multiple devices to improve the performance of reduction 

patterns therefore relies not on task parallelism but on another level of 

data parallelism (i.e., each device performs a reduction on part of the 

input data).

 Scan
The scan pattern computes a generalized prefix sum using a binary 

associative operator, and each element of the output represents a partial 

result. A scan is said to be inclusive if the partial sum for element i is the 

sum of all elements in the range [0, i] (i.e., the sum including i). A scan 

is said to be exclusive if the partial sum for element i is the sum of all 

elements in the range [0, i) (i.e., the sum excluding i).

At first glance, a scan appears to be an inherently serial operation—the 

value of each output depends on the value of the previous output! While it 

is true that scan has less opportunities for parallelism than other patterns 

(and may therefore be less scalable), Figure 14-5 shows that it is possible to 

implement a parallel scan using multiple sweeps over the same data.
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Figure 14-5. Scan pattern

Because the opportunities for parallelism within a scan operation are 

limited, the best device on which to execute a scan is highly dependent on 

problem size: smaller problems are a better fit for a CPU, since only larger 

problems will contain enough data parallelism to saturate a GPU. Problem 

size is less of a concern for FPGAs and other spatial architectures since 

scans naturally lend themselves to pipeline parallelism. As in the case 

of a reduction, it is usually a good idea to execute the scan operation on 

the same device that produced the data—considering where and how 

scan operations fit into an application during optimization will typically 

produce better results than focusing on optimizing the scan operations in 

isolation.
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 Pack and Unpack
The pack and unpack patterns are closely related to scans and are often 

implemented on top of scan functionality. We cover them separately here 

because they enable performant implementations of common operations 

(e.g., appending to a list) that may not have an obvious connection to 

prefix sums.

 Pack

The pack pattern, shown in Figure 14-6, discards elements of an input 

range based on a Boolean condition, packing the elements that are not 

discarded into contiguous locations of the output range. This Boolean 

condition could be a precomputed mask or could be computed online by 

applying some function to each input element.

Figure 14-6. Pack pattern
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Like with scan, there is an inherently serial nature to the pack 

operation. Given an input element to pack/copy, computing its location 

in the output range requires information about how many prior elements 

were also packed/copied into the output. This information is equivalent to 

an exclusive scan over the Boolean condition driving the pack.

 Unpack

As shown in Figure 14-7 (and as its name suggests), the unpack pattern is 

the opposite of the pack pattern. Contiguous elements of an input range 

are unpacked into noncontiguous elements of an output range, leaving 

other elements untouched. The most obvious use case for this pattern is 

to unpack data that was previously packed, but it can also be used to fill in 

“gaps” in data resulting from some previous computation.

Figure 14-7. Unpack pattern
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 Using Built-In Functions and Libraries
Many of these patterns can be expressed directly using built- 

in functionality of SYCL or vendor-provided libraries written in 

SYCL. Leveraging these functions and libraries is the best way to balance 

performance, portability, and productivity in real large-scale software 

engineering projects.

 The SYCL Reduction Library
Rather than require that each of us maintain our own library of portable 

and highly performant reduction kernels, SYCL provides a convenient 

abstraction for describing variables with reduction semantics. This 

abstraction simplifies the expression of reduction kernels and makes the 

fact that a reduction is being performed explicit, allowing implementations 

to select between different reduction algorithms for different combinations 

of device, data type, and reduction operation.

The kernel in Figure 14-8 shows an example of using the reduction 

library. Note that the kernel body doesn’t contain any reference to 

reductions—all we must specify is that the kernel contains a reduction 

which combines instances of the sum variable using the plus functor. This 

provides enough information for an implementation to automatically 

generate an optimized reduction sequence.

h.parallel_for(
range<1>{N}, reduction(sum, plus<>()),
[=](id<1> i, auto& sum) { sum += data[i]; });

Figure 14-8. Reduction expressed as a data-parallel kernel using the 
reduction library
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The result of a reduction is not guaranteed to be written back to 

the original variable until the kernel has completed. Apart from this 

restriction, accessing the result of a reduction behaves identically to 

accessing any other variable in SYCL: accessing a reduction result stored 

in a buffer requires the creation of an appropriate device or host accessor, 

and accessing a reduction result stored in a USM allocation may require 

explicit synchronization and/or memory movement.

One important way in which the SYCL reduction library differs from 

reduction abstractions found in other languages is that it restricts our 

access to the reduction variable during kernel execution—we cannot 

inspect the intermediate values of a reduction variable, and we are 

forbidden from updating the reduction variable using anything other 

than the specified combination function. These restrictions prevent us 

from making mistakes that would be hard to debug (e.g., adding to a 

reduction variable while trying to compute the maximum) and ensure that 

reductions can be implemented efficiently on a wide variety of different 

devices.

 The reduction Class

The reduction class is the interface we use to describe the reductions 

present in a kernel. The only way to construct a reduction object is to 

use one of the functions shown in Figure 14-9. Note that there are three 

families of reduction function (for buffers, USM pointers and spans), each 

with two overloads (with and without an identity variable).
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template <typename BufferT, typename BinaryOperation>
unspecified reduction(BufferT variable, handler& h,

BinaryOperation combiner,
const property_list& properties = {});

template <typename BufferT, typename BinaryOperation>
unspecified reduction(BufferT variable, handler& h,

const BufferT::value_type& identity,
BinaryOperation combiner,
const property_list& properties = {});

template <typename T, typename BinaryOperation>
unspecified reduction(T* variable, BinaryOperation combiner,

const property_list& properties = {});

template <typename T, typename BinaryOperation>
unspecified reduction(T* variable, const T& identity,

BinaryOperation combiner,
const property_list& properties = {});

template <typename T, typename Extent,
typename BinaryOperation>

unspecified reduction(span<T, Extent> variables,
BinaryOperation combiner,
const property_list& properties = {});

template <typename T, typename Extent,
typename BinaryOperation>

unspecified reduction(span<T, Extent> variables,
const T& identity,
BinaryOperation combiner,
const property_list& properties = {});

Figure 14-9. Function prototypes of the reduction function

If a reduction is initialized using a buffer or a USM pointer, the 

reduction is a scalar reduction, operating on the first object in an array. If 

a reduction is initialized using a span, the reduction is an array reduction. 

Each component of an array reduction is independent—we can think of 

an array reduction operating on an array of size N as equivalent to N scalar 

reductions with the same data type and operator.
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The simplest overloads of the function allow us to specify the 

reduction variable and the operator used to combine the contributions 

from each work-item. The second set of overloads allow us to provide an 

optional identity value associated with the reduction operator—this is an 

optimization for user-defined reductions, which we will revisit later.

Note that the return type of the reduction function is unspecified, 

and the reduction class itself is completely implementation-defined. 

Although this may appear slightly unusual for a C++ class, it permits an 

implementation to use different classes (or a single class with any number 

of template arguments) to represent different reduction algorithms. Future 

versions of SYCL may decide to revisit this design in order to enable us 

to explicitly request specific reduction algorithms in specific execution 

contexts (most likely, via the property_list argument).

 The reducer Class

An instance of the reducer class encapsulates a reduction variable, 

exposing a limited interface ensuring that we cannot update the reduction 

variable in any way that an implementation could consider to be unsafe. 

A simplified definition of the reducer class is shown in Figure 14-10. 

Like the reduction class, the precise definition of the reducer class 

is implementation-defined—a reducer’s type will depend on how the 

reduction is being performed, and it is important to know this at compile 

time in order to maximize performance. However, the functions and 

operators that allow us to update the reduction variable are well defined 

and are guaranteed to be supported by any SYCL implementation.
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template <typename T, typename BinaryOperation,
/* implementation-defined */>

class reducer {
// Combine partial result with reducer's value
void combine(const T& partial);

};

// Other operators are available for standard binary
// operations
template <typename T>
auto& operator+=(reducer<T, plus::<T>>&, const T&);

Figure 14-10. Simplified definition of the reducer class

Specifically, every reducer provides a combine() function which 

combines the partial result (from a single work-item) with the value 

of the reduction variable. How this combine function behaves is 

implementation-defined but is not something that we need to worry 

about when writing a kernel. A reducer is also required to make other 

operators available depending on the reduction operator; for example, the 

+= operator is defined for plus reductions. These additional operators are 

provided only as a programmer convenience and to improve readability; 

where they are available, these operators have identical behavior to calling 

combine() directly.

When working with array reductions, the reducer provides an 

additional subscript operator (i.e., operator[]), allowing access to 

individual elements of the array. Rather than returning a reference directly 

to an element of the array, this operator returns another reducer object, 

which exposes the same combine() function and shorthand operators 

as the reducers associated with a scalar reduction. Figure 14-11 shows 

a simple example of a kernel using an array reduction to compute a 

histogram, where the subscript operator is used to access only the 

histogram bin that is updated by the work-item.
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h.parallel_for(
range{N},
reduction(span<int, 16>(histogram, 16), plus<>()),
[=](id<1> i, auto& histogram) {

histogram[i % B]++;
});

Figure 14-11. An example kernel using an array reduction to 
compute a histogram

 User-Defined Reductions

Several common reduction algorithms (e.g., a tree reduction) do not 

see each work-item directly update a single shared variable, but instead 

accumulate some partial result in a private variable that will be combined 

at some point in the future. Such private variables introduce a problem: 

how should the implementation initialize them? Initializing variables to 

the first contribution from each work-item has potential performance 

ramifications, since additional logic is required to detect and handle 

uninitialized variables. Initializing variables to the identity of the reduction 

operator instead avoids the performance penalty but is only possible when 

the identity is known.

SYCL implementations can only automatically determine the correct 

identity value to use when a reduction is operating on simple arithmetic 

types and the reduction operator is one of several standard function 

objects (e.g., plus). For user-defined reductions (i.e., those operating on 

user-defined types and/or using user-defined function objects), we may be 

able to improve performance by specifying the identity value directly.

Support for user-defined reductions is limited to trivially copyable 

types and combination functions with no side effects, but this is enough 

to enable many real-life use cases. For example, the code in Figure 14-12 

demonstrates the usage of a user-defined reduction to compute both the 

minimum element in a vector and its location.
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template <typename T, typename I>
using minloc = minimum<std::pair<T, I>>;

int main() {
constexpr size_t N = 16;

queue q;
float* data = malloc_shared<float>(N, q);
std::pair<float, int>* res =

malloc_shared<std::pair<float, int>>(1, q);
std::generate(data, data + N, std::mt19937{});

std::pair<float, int> identity = {
std::numeric_limits<float>::max(),
std::numeric_limits<int>::min()};

*res = identity;

auto red =
sycl::reduction(res, identity, minloc<float, int>());

q.submit([&](handler& h) {
h.parallel_for(

range<1>{N}, red, [=](id<1> i, auto& res) {
std::pair<float, int> partial = {data[i], i};
res.combine(partial);

});
}).wait();

std::cout << "minimum value = " << res->first << " at "
<< res->second << "\n";

...

Figure 14-12. Using a user-defined reduction to find the location of 
the minimum value

 Group Algorithms
Support for parallel patterns in SYCL device code is provided by a separate 

library of group algorithms. These functions exploit the parallelism of 

a specific group of work-items (i.e., a work-group or a sub-group) to 

implement common parallel algorithms at limited scope and can be used 

as building blocks to construct other more complex algorithms.
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The syntax of the group algorithms in SYCL is based on that of the 

algorithm library in C++, and any restrictions from the C++ algorithms 

apply. However, there is a critical difference: whereas the STL’s algorithms 

are called from sequential (host) code and indicate an opportunity for a 

library to employ parallelism, SYCL’s group algorithms are designed to be 

called within (device) code that is already executing in parallel. To ensure 

that this difference cannot be overlooked, the group algorithms have 

slightly different syntax and semantics to their C++ counterparts.

SYCL distinguishes between two different kinds of parallel algorithm. If 

an algorithm is performed collaboratively by all work-items in a group but 

otherwise behaves identically to an algorithm from the STL, the algorithm 

is named with a “joint” prefix (because the members of the group “join” 

together to perform the algorithm). Such algorithms read their inputs from 

memory and write their results to memory and can only operate on data in 

memory locations visible to all work-items in a given group. If an algorithm 

instead operates over an implicit range reflecting the group itself, with 

inputs and outputs stored in work-item private memory, the algorithm 

name is modified to include the word “group” (because the algorithm is 

performed directly on data owned to the group).

The code examples in Figure 14-13 demonstrate these two different 

kinds of algorithm, comparing the behavior of std::reduce to the 

behaviors of sycl::joint_reduce and sycl::reduce_over_group.
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// std::reduce// std::reduce
// // Each workEach work--item reduces over a given input rangeitem reduces over a given input range
qq..parallel_forparallel_for(number_of_reductions, [=]((number_of_reductions, [=](size_tsize_t ii) {) {

output1output1[i] = [i] = stdstd::::reducereduce((
input + i * elements_per_reduction,input + i * elements_per_reduction,
input + (i + input + (i + 11) * elements_per_reduction);) * elements_per_reduction);

}).}).waitwait();();

// // sycl::joint_reducesycl::joint_reduce
// Each work// Each work--group reduces over a given input rangegroup reduces over a given input range
// The elements are automatically distributed over// The elements are automatically distributed over
// work// work--items in the groupitems in the group
qq..parallel_forparallel_for((nd_rangend_range<<11>{number_of_reductions *>{number_of_reductions *

elements_per_reduction,elements_per_reduction,
elements_per_reduction},elements_per_reduction},

[=]([=](nd_itemnd_item<<11> > itit) {) {
autoauto g = g = itit..get_groupget_group();();
intint sum = sum = joint_reducejoint_reduce((

g,g,
input + input + gg..get_group_idget_group_id() *() *

elements_per_reduction,elements_per_reduction,
input + (input + (gg..get_group_idget_group_id() + () + 11) *) *

elements_per_reduction,elements_per_reduction,
plusplus<>());<>());

ifif ((gg..leaderleader()) {()) {
output2output2[[gg..get_group_idget_group_id()] = sum;()] = sum;

}}
})})

..waitwait();();

// sycl::reduce_over_group// sycl::reduce_over_group
// Each work// Each work--group reduces over data held in workgroup reduces over data held in work--itemitem
// private memory. Each work-item is responsible for
// loading and contributing one value// loading and contributing one value
qq..parallel_forparallel_for((

nd_rangend_range<<11>{>{
number_of_reductions * elements_per_reduction,number_of_reductions * elements_per_reduction,
elements_per_reduction},elements_per_reduction},

[=]([=](nd_itemnd_item<<11> > itit) {) {
autoauto g = g = itit..get_groupget_group();();
intint x = x = inputinput[[gg..get_group_idget_group_id() *() *

elements_per_reduction +elements_per_reduction +
gg..get_local_idget_local_id()];()];

intint sum = sum = reduce_over_groupreduce_over_group(g, x, (g, x, plusplus<>());<>());
ifif ((gg..leaderleader()) {()) {
output3output3[[gg..get_group_idget_group_id()] = sum;()] = sum;

}}
})})

..waitwait();();

Figure 14-13. A comparison of std::reduce, sycl::joint_reduce, 
and sycl::reduce_over_group
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Note that in both cases, the first argument to each group algorithm 

accepts a group or sub_group object in place of an execution policy, 

to describe the set of work-items that should be used to perform the 

algorithm. Since algorithms are performed collaboratively by all the work- 

items in the specified group, they must also be treated similarly to a group 

barrier—all work-items in the group must encounter the same algorithm 

in converged control flow (i.e., all work-items in the group must similarly 

encounter or not encounter the algorithm call), and the arguments 

provided by all work-items must be such that all work-items agree on the 

operation being performed. For example, sycl::joint_reduce requires 

all arguments to be the same for all work-items, to ensure that all work- 

items in the group operate on the same data and use the same operator to 

accumulate results.

The table in Figure 14-14 shows how the parallel algorithms available 

in the STL relate to the group algorithms, and whether there are any 

restrictions on the type of group that can be used. Note that in some 

cases, a group algorithm can only be used with sub-groups; these cases 

correspond to the “shuffle” operations introduced in earlier chapters.

C++ Algorithm SYCL "Joint" Algorithm SYCL "Group" Algorithm Group 
Types 

std::any_of sycl::joint_any_of sycl::any_of_group All 

std::all_of sycl::joint_all_of sycl::all_of_group All 

std::none_of sycl::joint_none_of sycl::none_of_group All 

std::shift_left N/A sycl::shift_group_left sub_group 
std::shift_right N/A sycl::shift_group_right sub_group 
N/A N/A sycl::permute_group_by_xor sub_group 

Figure 14-14. Mapping between C++ algorithms and SYCL group 
algorithms
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At the time of writing, the group algorithms are limited to supporting 

only primitive data types and a set of built-in operators recognized by 

SYCL (i.e., plus, multiplies, bit_and, bit_or, bit_xor, logical_and, 

logical_or, minimum, and maximum). This is enough to cover most common 

use cases, but future versions of SYCL are expected to extend collective 

support to user-defined types and operators.

 Direct Programming
Although we recommend leveraging libraries wherever possible, we can 

learn a lot by looking at how each pattern could be implemented using 

“native” SYCL kernels.

The kernels in the remainder of this chapter should not be expected 

to reach the same level of performance as highly tuned libraries but 

are useful in developing a greater understanding of the capabilities of 

SYCL—and may even serve as a starting point for prototyping new library 

functionality.

USE VENDOR-PROVIDED LIBRARIES!

When a vendor provides a library implementation of a function, it is almost 

always beneficial to use it rather than reimplementing the function as a kernel!

 Map
Owing to its simplicity, the map pattern can be implemented directly as 

a basic parallel kernel. The code shown in Figure 14-15 shows such an 

implementation, using the map pattern to compute the square root of each 

input element in a range.
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// Compute the square root of each input value
q.parallel_for(N, [=](id<1> i) {

output[i] = sqrt(input[i]);
}).wait();

Figure 14-15. Implementing the map pattern in a data- parallel kernel

 Stencil
Implementing a stencil directly as a multidimensional basic data-parallel 

kernel with multidimensional buffers, as shown in Figure 14-16, is 

straightforward and easy to understand.

q.submit([&](handler& h) {
accessor input{input_buf, h};
accessor output{output_buf, h};

// Compute the average of each cell and its immediate
// neighbors
h.parallel_for(stencil_range, [=](id<2> idx) {

int i = idx[0] + 1;
int j = idx[1] + 1;

float self = input[i][j];
float north = input[i - 1][j];
float east = input[i][j + 1];
float south = input[i + 1][j];
float west = input[i][j - 1];
output[i][j] =

(self + north + east + south + west) / 5.0f;
});

});

Figure 14-16. Implementing the stencil pattern in a data- parallel kernel

However, this expression of the stencil pattern is very naïve and should 

not be expected to perform very well. As mentioned earlier in the chapter, 

it is well known that leveraging locality (via spatial or temporal blocking) is 

required to avoid repeated reads of the same data from memory. A simple 

example of spatial blocking, using work-group local memory, is shown in 

Figure 14-17.
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q.submit([&](handler& h) {
accessor input{input_buf, h};
accessor output{output_buf, h};

constexpr size_t B = 4;
range<2> local_range(B, B);
range<2> tile_size =

local_range +
range<2>(2, 2); // Includes boundary cells

auto tile = local_accessor<float, 2>(tile_size, h);

// Compute the average of each cell and its immediate
// neighbors
h.parallel_for(

nd_range<2>(stencil_range, local_range),
[=](nd_item<2> it) {

// Load this tile into work-group local memory
id<2> lid = it.get_local_id();
range<2> lrange = it.get_local_range();
for (int ti = lid[0]; ti < B + 2;

ti += lrange[0]) {
int gi = ti + B * it.get_group(0);
for (int tj = lid[1]; tj < B + 2;

tj += lrange[1]) {
int gj = tj + B * it.get_group(1);
tile[ti][tj] = input[gi][gj];

}
}
group_barrier(it.get_group());

// Compute the stencil using values from local
// memory
int gi = it.get_global_id(0) + 1;
int gj = it.get_global_id(1) + 1;

int ti = it.get_local_id(0) + 1;
int tj = it.get_local_id(1) + 1;

float self = tile[ti][tj];
float north = tile[ti - 1][tj];
float east = tile[ti][tj + 1];
float south = tile[ti + 1][tj];
float west = tile[ti][tj - 1];
output[gi][gj] =

(self + north + east + south + west) / 5.0f;
});

});

Figure 14-17. Implementing the stencil pattern in an ND-range 
kernel, using work-group local memory
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Selecting the best optimizations for a given stencil requires compile- 

time introspection of block size, the neighborhood, and the stencil 

function itself, requiring a much more sophisticated approach than 

discussed here.

 Reduction
It is possible to implement reduction kernels in SYCL by leveraging 

language features that provide synchronization and communication 

capabilities between work-items (e.g., atomic operations, work-group and 

sub-group functions, sub-group “shuffles”). The kernels in Figure 14-18 

and Figure 14-19 show two possible reduction implementations: a naïve 

reduction using a basic parallel_for and an atomic operation for every 

work-item, and a slightly smarter reduction that exploits locality using an 

ND-range parallel_for and a work-group reduce function, respectively. 

We revisit these atomic operations in more detail in Chapter 19.

q.parallel_for(N, [=](id<1> i) {
atomic_ref<int, memory_order::relaxed,

memory_scope::system,
access::address_space::global_space>(

*sum) += data[i];
}).wait();

Figure 14-18. Implementing a naïve reduction expressed as a  
data- parallel kernel
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q.parallel_for(nd_range<1>{N, B}, [=](nd_item<1> it) {
int i = it.get_global_id(0);
auto grp = it.get_group();
int group_sum =

reduce_over_group(grp, data[i], plus<>());
if (grp.leader()) {

atomic_ref<int, memory_order::relaxed,
memory_scope::system,
access::address_space::global_space>(

*sum) += group_sum;
}

}).wait();

Figure 14-19. Implementing a naïve reduction expressed as an  
ND- range kernel

There are numerous other ways to write reduction kernels, and 

different devices will likely prefer different implementations, owing to 

differences in hardware support for atomic operations, work-group local 

memory size, global memory size, the availability of fast device-wide 

barriers, or even the availability of dedicated reduction instructions. On 

some architectures, it may even be faster (or necessary!) to perform a tree 

reduction using log2(N) separate kernel calls.

We strongly recommend that manual implementations of reductions 

should only be considered for cases that are not supported by the SYCL 

reduction library or when fine-tuning a kernel for the capabilities of a 

specific device—and even then, only after being 100% sure that SYCL’s 

built-in reductions are underperforming!

 Scan
As we saw earlier in this chapter, implementing a parallel scan requires 

multiple sweeps over the data, with synchronization occurring between 

each sweep. Since SYCL does not provide a mechanism for synchronizing 

all work-items in an ND-range, a direct implementation of a device-wide 

scan must use multiple kernels that communicate partial results through 

global memory.
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The code, shown in Figures 14-20, 14-21, and 14-22, demonstrates 

an inclusive scan implemented using several kernels. The first kernel 

distributes the input values across work-groups, computing work-group 

local scans in work-group local memory (note that we could have used 

the work-group inclusive_scan function instead). The second kernel 

computes a local scan using a single work-group, this time over the final 

value from each block. The third kernel combines these intermediate 

results to finalize the prefix sum. These three kernels correspond to the 

three layers of the diagram in Figure 14-5.

// Phase 1: Compute local scans over input blocks
q.submit([&](handler& h) {

auto local = local_accessor<int32_t, 1>(L, h);
h.parallel_for(nd_range<1>(N, L), [=](nd_item<1> it) {

int i = it.get_global_id(0);
int li = it.get_local_id(0);

// Copy input to local memory
local[li] = input[i];
group_barrier(it.get_group());

// Perform inclusive scan in local memory
for (int32_t d = 0; d <= log2((float)L) - 1; ++d) {

uint32_t stride = (1 << d);
int32_t update =

(li >= stride) ? local[li - stride] : 0;
group_barrier(it.get_group());
local[li] += update;
group_barrier(it.get_group());

}

// Write the result for each item to the output
// buffer Write the last result from this block to
// the temporary buffer
output[i] = local[li];
if (li == it.get_local_range()[0] - 1) {
tmp[it.get_group(0)] = local[li];

}
});

}).wait();

Figure 14-20. Phase 1 for implementing a global inclusive scan in an 
ND-range kernel: computing across each work-group
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// Phase 2: Compute scan over partial results
q.submit([&](handler& h) {

auto local = local_accessor<int32_t, 1>(G, h);
h.parallel_for(nd_range<1>(G, G), [=](nd_item<1> it) {

int i = it.get_global_id(0);
int li = it.get_local_id(0);

// Copy input to local memory
local[li] = tmp[i];
group_barrier(it.get_group());

// Perform inclusive scan in local memory
for (int32_t d = 0; d <= log2((float)G) - 1; ++d) {

uint32_t stride = (1 << d);
int32_t update =

(li >= stride) ? local[li - stride] : 0;
group_barrier(it.get_group());
local[li] += update;
group_barrier(it.get_group());

}

// Overwrite result from each work-item in the
// temporary buffer
tmp[i] = local[li];

});
}).wait();

Figure 14-21. Phase 2 for implementing a global inclusive scan in an 
ND-range kernel: scanning across the results of each work-group

// Phase 3: Update local scans using partial results
q.parallel_for(nd_range<1>(N, L), [=](nd_item<1> it) {

int g = it.get_group(0);
if (g > 0) {

int i = it.get_global_id(0);
output[i] += tmp[g - 1];

}
}).wait();

Figure 14-22. Phase 3 (final) for implementing a global inclusive 
scan in an ND-range kernel
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Figure 14-20 and Figure 14-21 are very similar; the only differences are 

the size of the range and how the input and output values are handled. A 

real-life implementation of this pattern could use a single function taking 

different arguments to implement these two phases, and they are only 

presented as distinct code here for pedagogical reasons.

 Pack and Unpack
Pack and unpack are also known as gather and scatter operations. These 

operations handle differences in how data is arranged in memory and how 

we wish to present it to the compute resources.

 Pack

Since pack depends on an exclusive scan, implementing a pack that 

applies to all elements of an ND-range must also take place via global 

memory and over the course of several kernel enqueues. However, there 

is a common use case for pack that does not require the operation to be 

applied over all elements of an ND-range—namely, applying a pack only 

across items in a specific work-group or sub-group.

The snippet in Figure 14-23 shows how to implement a group pack 

operation on top of an exclusive scan.

uint32_t index =
exclusive_scan(g, (uint32_t)predicate, plus<>());

if (predicate) dst[index] = value;

Figure 14-23. Implementing a group pack operation on top of an 
exclusive scan

The code in Figure 14-24 demonstrates how such a pack operation 

could be used in a kernel to build a list of elements which require some 

additional postprocessing (in a future kernel). The example shown is based 
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on a real kernel from molecular dynamics simulations: the work-items in 

the sub-group assigned to particle i cooperate to identify all other particles 

within a fixed distance of i, and only the particles in this “neighbor list” will 

be used to calculate the force acting on each particle.

range<2> global(N, 8);
range<2> local(1, 8);
q.parallel_for(nd_range<2>(global, local), [=](nd_item<2>

it) {
int i = it.get_global_id(0);
sub_group sg = it.get_sub_group();
int sglid = sg.get_local_id()[0];
int sgrange = sg.get_local_range()[0];

uint32_t k = 0;
for (int j = sglid; j < N; j += sgrange) {

// Compute distance between i and neighbor j
float r = distance(position[i], position[j]);

// Pack neighbors that require
// post-processing into a list
uint32_t pack = (i != j) and (r <= CUTOFF);
uint32_t offset =

exclusive_scan_over_group(sg, pack, plus<>());
if (pack) {

neighbors[i * MAX_K + k + offset] = j;
}

// Keep track of how many neighbors have been
// packed so far
k += reduce_over_group(sg, pack, plus<>());

}
num_neighbors[i] =

reduce_over_group(sg, k, maximum<>());
}).wait();

Figure 14-24. Using a sub-group pack operation to build a list of 
elements needing additional postprocessing
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Note that the pack pattern never reorders elements—the elements that 

are packed into the output array appear in the same order as they did in 

the input. This property of pack is important and enables us to use pack 

functionality to implement other more abstract parallel algorithms (such 

as std::copy_if and std::stable_partition). However, there are other 

parallel algorithms that can be implemented on top of pack functionality 

where maintaining order is not required (such as std::partition).

 Unpack

As with pack, we can implement unpack using scan. Figure 14-25 

shows how to implement a sub-group unpack operation on top of an 

exclusive scan.

uint32_t index =
exclusive_scan(sg, (uint32_t)predicate, plus<>());

return (predicate) ? new_value[index] : original_value;

Figure 14-25. Implementing a sub-group unpack operation on top of 
an exclusive scan

The code in Figure 14-26 demonstrates how such a sub-group 

unpack operation could be used to improve load balancing in a kernel 

with divergent control flow (in this case, computing the Mandelbrot set). 

Each work-item is assigned a separate pixel to compute and iterates until 

convergence or a maximum number of iterations is reached. An unpack 

operation is then used to replace completed pixels with new pixels.
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// Keep iterating as long as one work-item has work to do
while (any_of_group(sg, i < Nx)) {
uint32_t converged = next_iteration(

params, i, j, count, cr, ci, zr, zi, mandelbrot);
if (any_of_group(sg, converged)) {
// Replace pixels that have converged using an
// unpack. Pixels that haven't converged are not
// replaced.
uint32_t index = exclusive_scan_over_group(

sg, converged, plus<>());
i = (converged) ? iq + index : i;
iq += reduce_over_group(sg, converged, plus<>());

// Reset the iterator variables for the new i
if (converged) {

reset(params, i, j, count, cr, ci, zr, zi);
}

}
}

Figure 14-26. Using a sub-group unpack operation to improve load 
balancing for kernels with divergent control flow

The degree to which an approach like this improves efficiency (and 

decreases execution time) is highly application- and input-dependent, 

since checking for completion and executing the unpack operation both 

introduce some overhead! Successfully using this pattern in realistic 

applications will therefore require some fine-tuning based on the amount 

of divergence present and the computation being performed (e.g., 

introducing a heuristic to execute the unpack operation only if the number 

of active work-items falls below some threshold).

 Summary
This chapter has demonstrated how to implement some of the most 

common parallel patterns using SYCL features, including built-in functions 

and libraries.
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The SYCL ecosystem is still developing, and we expect to uncover new 

best practices for these patterns as developers gain more experience with 

the language and from the development of production-grade applications 

and libraries.

 For More Information
• Structured Parallel Programming: Patterns for Efficient 

Computation by Michael McCool, Arch Robison, 

and James Reinders, © 2012, published by Morgan 

Kaufmann, ISBN 978-0-124-15993-8.

• Algorithms library, C++ Reference,  

https://en.cppreference.com/w/cpp/algorithm.

Open Access  This chapter is licensed under the terms of  

the Creative Commons Attribution 4.0 International License 

(https://creativecommons.org/licenses/by/4.0/), which permits use, 

sharing, adaptation, distribution and reproduction in any medium or 
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the source, provide a link to the Creative Commons license and indicate if 

changes were made.

The images or other third party material in this chapter are included 

in the chapter’s Creative Commons license, unless indicated otherwise 
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Creative Commons license and your intended use is not permitted by 

statutory regulation or exceeds the permitted use, you will need to obtain 

permission directly from the copyright holder.
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CHAPTER 15

Programming 
for GPUs
Over the last few decades, graphics processing units (GPUs) have evolved 

from specialized hardware devices capable of drawing images on a screen 

to general-purpose devices capable of executing complex parallel kernels. 

Nowadays, nearly every computer includes a GPU alongside a traditional 

CPU, and many programs may be accelerated by offloading part of a 

parallel algorithm from the CPU to the GPU.

In this chapter, we will describe how a typical GPU works, how 

GPU software and hardware execute a SYCL application, and tips and 

techniques to keep in mind when we are writing and optimizing parallel 

kernels for a GPU.

 Performance Caveats
As with any processor type, GPUs differ from vendor to vendor or even 

from product generation to product generation; therefore, best practices 

for one device may not be best practices for a different device. The 

advice in this chapter is likely to benefit many GPUs, both now and in the 

future, but…
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To achieve optimal performance for a particular GPU, always consult 
the GPU vendor’s documentation!

Links to documentation from many GPU vendors are provided at the 

end of this chapter.

 How GPUs Work
This section describes how typical GPUs work and how GPUs differ from 

other accelerator types.

 GPU Building Blocks
Figure 15-1 shows a very simplified GPU consisting of three high-level 

building blocks:

 1. Execution resources: A GPU’s execution resources 

are the processors that perform computational 

work. Different GPU vendors use different names 

for their execution resources, but all modern GPUs 

consist of multiple programmable processors. The 

processors may be heterogeneous and specialized 

for particular tasks, like transforming vertices and 

shading pixels, or they may be homogeneous and 

interchangeable. Processors for most modern GPUs 

are homogeneous and interchangeable.

 2. Fixed functions: GPU fixed functions are hardware 

units that are less programmable than the execution 

resources and are specialized for a single task. 

When a GPU is used for graphics, many parts of the 
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graphics pipeline such as rasterization or ray tracing 

are performed using fixed functions to improve 

power efficiency and performance. When a GPU is 

used for data-parallel computation, fixed functions 

may be used for tasks such as workload scheduling, 

texture sampling, and dependence tracking.

 3. Caches and memory: Like other processor types, 

GPUs frequently have caches to store data accessed 

by the execution resources. GPU caches may be 

implicit, in which case they require no action from 

the programmer, or may be explicit scratchpad 

memories, in which case a programmer must 

purposefully move data into a cache before using 

it. Many GPUs also have a large pool of memory to 

provide fast access to data used by the execution 

resources.

Figure 15-1. Typical GPU building blocks—not to scale!
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 Simpler Processors (but More of Them)
Traditionally, when performing graphics operations, GPUs process large 

batches of data. For example, a typical game frame or rendering workload 

involves thousands of vertices that produce millions of pixels per frame. 

To maintain interactive frame rates, these large batches of data must be 

processed as quickly as possible.

A typical GPU design trade-off is to eliminate features from the 

processors forming the execution resources that accelerate single- 

threaded performance and to use these savings to build additional 

processors, as shown in Figure 15-2. For example, GPU processors may 

not include sophisticated out-of-order execution capabilities or branch 

prediction logic used by other types of processors. Due to these trade-offs, 

a single data element may be processed on a GPU slower than it would on 

another processor, but the larger number of processors enables GPUs to 

process many data elements quickly and efficiently.

Figure 15-2. GPU processors are simpler, but there are more of them

To take advantage of this trade-off when executing kernels, it is 

important to give the GPU a sufficiently large range of data elements to 

process. To demonstrate the importance of offloading a large range of data, 

consider the matrix multiplication kernel we have been developing and 

modifying throughout this book.
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A REMINDER ABOUT MATRIX MULTIPLICATION 

in this book, matrix multiplication kernels are used to demonstrate how 

changes in a kernel or the way it is dispatched affects performance. 

although matrix multiplication performance is significantly improved using 

the techniques described in this chapter, matrix multiplication is such an 

important and common operation that many hardware (GPU, CPU, fPGa, 

DsP, etc.) vendors have implemented highly tuned versions of many routines 

including matrix multiplication. such vendors invest significant time and effort 

implementing and validating functions for specific devices and in some cases 

may use functionality or techniques that are difficult or impossible to use in 

standard kernels.

USE VENDOR-PROVIDED LIBRARIES!

When a vendor provides a library implementation of a function, it is almost 

always beneficial to use it rather than reimplementing the function as a kernel! 

The onemKL project (part of oneaPi) proposes interfaces that will call intel’s 

mKL for intel, cuBLas for nViDia, and hipBLas for amD. if such interfaces are 

available, they might make things easier. otherwise, we need to do our own 

work to make sure we are using the best libraries for the hardware we are 

targeting.

A matrix multiplication kernel may be trivially executed on a GPU 

by submitting it into a queue as a single task. The body of this matrix 

multiplication kernel looks exactly like a function that executes on the host 

CPU and is shown in Figure 15-3.
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h.single_task([=]() {
for (int m = 0; m < M; m++) {

for (int n = 0; n < N; n++) {
T sum = 0;
for (int k = 0; k < K; k++) {

sum +=
matrixA[m * K + k] * matrixB[k * N + n];

}
matrixC[m * N + n] = sum;

}
}

});

Figure 15-3. A single-task matrix multiplication looks a lot like CPU 
host code

If we try to execute this kernel on a CPU, it will probably perform 

okay—not great, since it is not expected to utilize any parallel capabilities 

of the CPU, but potentially good enough for small matrix sizes. As shown in 

Figure 15-4, if we try to execute this kernel on a GPU, however, it will likely 

perform very poorly, because the single task will only utilize a single GPU 

processor.

Figure 15-4. A single-task kernel on a GPU leaves many execution 
resources idle
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 Expressing Parallelism

To improve the performance of this kernel for both CPUs and GPUs, 

we can instead submit a range of data elements to process in parallel, 

by converting one of the loops to a parallel_for. For the matrix 

multiplication kernel, we can choose to submit a range of data elements 

representing either of the two outermost loops. In Figure 15-5, we’ve 

chosen to process rows of the result matrix in parallel.

h.parallel_for(range{M}, [=](id<1> idx) {
int m = idx[0];

for (int n = 0; n < N; n++) {
T sum = 0;
for (int k = 0; k < K; k++) {

sum += matrixA[m * K + k] * matrixB[k * N + n];
}
matrixC[m * N + n] = sum;

}
});

Figure 15-5. Somewhat-parallel matrix multiplication

CHOOSING HOW TO PARALLELIZE 

Choosing which dimension to parallelize is one very important way to tune an 

application for both GPUs and other device types. subsequent sections in this 

chapter will describe some of the reasons why parallelizing in one dimension 

may perform better than parallelizing in a different dimension.

Even though the somewhat-parallel kernel is very similar to the single- 

task kernel, it should run better on a CPU and much better on a GPU. As 

shown in Figure 15-6, the parallel_for enables work-items representing 

rows of the result matrix to be processed on multiple processor resources 

in parallel, so all execution resources stay busy.
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Figure 15-6. Somewhat-parallel kernel keeps more processor 
resources busy

Note that the exact way that the rows are partitioned and assigned to 

different processor resources is not specified, giving an implementation 

flexibility to choose how best to execute the kernel on a device. For 

example, instead of executing individual rows on a processor, an 

implementation may choose to execute consecutive rows on the same 

processor to gain locality benefits.

 Expressing More Parallelism

We can parallelize the matrix multiplication kernel even more by choosing 

to process both outer loops in parallel. Because parallel_for can express 

parallel loops over up to three dimensions, this is straightforward, as 

shown in Figure 15-7. In Figure 15-7, note that both the range passed 

to parallel_for and the item representing the index in the parallel 

execution space are now two-dimensional.
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h.parallel_for(range{M, N}, [=](id<2> idx) {
int m = idx[0];
int n = idx[1];

T sum = 0;
for (int k = 0; k < K; k++) {

sum += matrixA[m * K + k] * matrixB[k * N + n];
}

matrixC[m * N + n] = sum;
});

Figure 15-7. Even more parallel matrix multiplication

Exposing additional parallelism will likely improve the performance 

of the matrix multiplication kernel when run on a GPU. This is likely to be 

true even when the number of matrix rows exceeds the number of GPU 

processors. The next few sections describe possible reasons why this may 

be the case.

 Simplified Control Logic (SIMD Instructions)
Many GPU processors optimize control logic by leveraging the fact that 

most data elements tend to take the same control flow path through a 

kernel. For example, in the matrix multiplication kernel, each data element 

executes the innermost loop the same number of times since the loop 

bounds are invariant.

When data elements take the same control flow path through a kernel, 

a processor may reduce the costs of managing an instruction stream by 

sharing control logic among multiple data elements and executing them 

as a group. One way to do this is to implement a single instruction, multiple 

data, or SIMD, instruction set, where multiple data elements are processed 

simultaneously by a single instruction.
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THREADS VS. INSTRUCTION STREAMS 

in many parallel programming contexts and GPU literature, the term “thread” 

is used to mean an “instruction stream.” in these contexts, a “thread” is 

different than a traditional operating system thread and is typically much more 

lightweight. This isn’t always the case, though, and in some cases, a “thread” 

is used to describe something completely different.

since the term “thread” is overloaded and easily misunderstood, even among 

different GPU vendors, this chapter uses the term “instruction stream” instead.

The number of data elements that are processed simultaneously by 

a single instruction is sometimes referred to as the SIMD width of the 

instruction or the processor executing the instruction. In Figure 15-8, the 

four ALUs share the same control logic, so this may be described as a four- 

wide SIMD processor.

Figure 15-8. Four-wide SIMD processor: the four ALUs share fetch/
decode logic
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GPU processors are not the only processors that implement SIMD 

instruction sets. Other processor types also implement SIMD instruction 

sets to improve efficiency when processing large sets of data. The main 

difference between GPU processors and other processor types is that GPU 

processors rely on executing multiple data elements in parallel to achieve 

good performance and that GPU processors may support wider SIMD 

widths than other processor types. For example, it is not uncommon for 

GPU processors to support SIMD widths of 16, 32, or more data elements.

PROGRAMMING MODELS: SPMD AND SIMD 

although GPU processors implement simD instruction sets with varying 

widths, this is usually an implementation detail and is transparent to the 

application executing data-parallel kernels on the GPU processor. This is 

because many GPU compilers and runtime aPis implement a single program, 

multiple data, or sPmD, programming model, where the GPU compiler and 

runtime aPi determine the most efficient group of data elements to process 

with a simD instruction stream, rather than expressing the simD instructions 

explicitly. The “sub-Groups” section of Chapter 9 explores cases where the 

grouping of data elements is visible to applications.

In Figure 15-9, we have widened each of our execution resources to 

support four-wide SIMD, allowing us to process four times as many matrix 

rows in parallel.
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Figure 15-9. Executing a somewhat-parallel kernel on SIMD 
processors

The use of SIMD instructions that process multiple data elements 

in parallel is one of the ways that the performance of the parallel matrix 

multiplication kernels in Figures 15-5 and 15-7 is able to scale beyond the 

number of processors alone. The use of SIMD instructions also provides 

natural locality benefits in many cases, including matrix multiplication, by 

executing consecutive data elements on the same processor.

Kernels benefit from parallelism across processors and parallelism 
within processors!

 Predication and Masking

Sharing an instruction stream among multiple data elements works well 

so long as all data elements take the same path through conditional code 

in a kernel. When data elements take different paths through conditional 

code, control flow is said to diverge. When control flow diverges in a SIMD 

instruction stream, usually both control flow paths are executed, with 
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some channels masked off or predicated. This ensures correct behavior, 

but the correctness comes at a performance cost since channels that are 

masked do not perform useful work.

To show how predication and masking works, consider the kernel in 

Figure 15-10, which multiplies each data element with an “odd” index by 

two and increments each data element with an “even” index by one.

h.parallel_for(array_size, [=](id<1> i) {
auto condition = i[0] & 1;
if (condition) {

dataAcc[i] = dataAcc[i] * 2; // odd
} else {

dataAcc[i] = dataAcc[i] + 1; // even
}

});

Figure 15-10. Kernel with divergent control flow

Let’s say that we execute this kernel on the four-wide SIMD processor 

shown in Figure 15-8, and that we execute the first four data elements in 

one SIMD instruction stream, the next four data elements in a different 

SIMD instruction stream, and so on. Figure 15-11 shows one of the ways 

channels may be masked and execution may be predicated to correctly 

execute this kernel with divergent control flow.
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Figure 15-11. Possible channel masks for a divergent kernel

 SIMD Efficiency

SIMD efficiency measures how well a SIMD instruction stream performs 

compared to equivalent scalar instruction streams. In Figure 15-11, 

since control flow partitioned the channels into two equal groups, each 

instruction in the divergent control flow executes with half efficiency. 

In a worst-case scenario, for highly divergent kernels, efficiency may be 

reduced by a factor of the processor’s SIMD width.

All processors that implement a SIMD instruction set will suffer 

from divergence penalties that affect SIMD efficiency, but because GPU 

processors typically support wider SIMD widths than other processor 

types, restructuring an algorithm to minimize divergent control flow 

and maximize converged execution may be especially beneficial when 

optimizing a kernel for a GPU. This is not always possible, but as an 

example, choosing to parallelize along a dimension with more converged 

execution may perform better than parallelizing along a different 

dimension with highly divergent execution.
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 SIMD Efficiency and Groups of Items

All kernels in this chapter so far have been basic data-parallel kernels that 

do not specify any grouping of items in the execution range, which gives 

an implementation freedom to choose the best grouping for a device. For 

example, a device with a wider SIMD width may prefer a larger grouping, 

but a device with a narrower SIMD width may be fine with smaller 

groupings.

When a kernel is an ND-range kernel with explicit groupings of work- 

items, care should be taken to choose an ND-range work-group size that 

maximizes SIMD efficiency. When a work-group size is not evenly divisible 

by a processor’s SIMD width, part of the work-group may execute with 

channels disabled for the entire duration of the kernel. The device-specific 

kernel query for the preferred_work_group_size_multiple can be used 

to choose an efficient work-group size. Please refer to Chapter 12 for more 

information on how to query properties of a device.

Choosing a work-group size consisting of a single work-item will likely 

perform very poorly since many GPUs will implement a single-work-item 

work-group by masking off all SIMD channels except for one. For example, 

the kernel in Figure 15-12 will likely perform much worse than the very 

similar kernel in Figure 15-5, even though the only significant difference 

between the two is a change from a basic data-parallel kernel to an 

inefficient single-work-item ND-range kernel (nd_range<1>{M, 1}).
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h.parallel_for(
nd_range<1>{M, 1}, [=](nd_item<1> idx) {

int m = idx.get_global_id(0);

for (int n = 0; n < N; n++) {
T sum = 0;
for (int k = 0; k < K; k++) {

sum += matrixA[m * K + k] * matrixB[k * N + n];
}
matrixC[m * N + n] = sum;

}
});

Figure 15-12. Inefficient single-item, somewhat-parallel matrix 
multiplication

 Switching Work to Hide Latency
Many GPUs use one more technique to simplify control logic, maximize 

execution resources, and improve performance: instead of executing 

a single instruction stream on a processor, many GPUs allow multiple 

instruction streams to be resident on a processor simultaneously.

Having multiple instruction streams resident on a processor is 

beneficial because it gives each processor a choice of work to execute. If 

one instruction stream is performing a long-latency operation, such as 

a read from memory, the processor can switch to a different instruction 

stream that is ready to run instead of waiting for the operation to complete. 

With enough instruction streams, by the time that the processor switches 

back to the original instruction stream, the long-latency operation may 

have completed without requiring the processor to wait at all.

Figure 15-13 shows how a processor uses multiple simultaneous 

instruction streams to hide latency and improve performance. Even 

though the first instruction stream took a little longer to execute with 

multiple streams, by switching to other instruction streams, the processor 

was able to find work that was ready to execute and never needed to idly 

wait for the long operation to complete.
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Figure 15-13. Switching instruction streams to hide latency

GPU profiling tools may describe the number of instruction streams 

that a GPU processor is currently executing vs. the theoretical total number 

of instruction streams using a term such as occupancy.

Low occupancy does not necessarily imply low performance, since 

it is possible that a small number of instruction streams will keep a 

processor busy. Likewise, high occupancy does not necessarily imply high 

performance, since a GPU processor may still need to wait if all instruction 

streams perform inefficient, long-latency operations. All else being equal 

though, increasing occupancy maximizes a GPU processor’s ability to hide 

latency and will usually improve performance. Increasing occupancy is 

another reason why performance may improve with the even more parallel 

kernel in Figure 15-7.

This technique of switching between multiple instruction streams 

to hide latency is especially well suited for GPUs and data-parallel 

processing. Recall from Figure 15-2 that GPU processors are frequently 

simpler than other processor types and hence lack complex latency-hiding 

features. This makes GPU processors more susceptible to latency issues, 

but because data-parallel programming involves processing a lot of data, 

GPU processors usually have plenty of instruction streams to execute!
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 Offloading Kernels to GPUs
This section describes how an application, the SYCL runtime library, 

and the GPU software driver work together to offload a kernel on GPU 

hardware. The diagram in Figure 15-14 shows a typical software stack with 

these layers of abstraction. In many cases, the existence of these layers 

is transparent to an application, but it is important to understand and 

account for them when debugging or profiling our application.

Figure 15-14. Offloading parallel kernels to GPUs (simplified)

 SYCL Runtime Library
The SYCL runtime library is the primary software library that SYCL 

applications interface with. The runtime library is responsible for 

implementing classes such as queues, buffers, and accessors and the 

member functions of these classes. Parts of the runtime library may be in 

header files and hence directly compiled into the application executable. 

Other parts of the runtime library are implemented as library functions, 

which are linked with the application executable as part of the application 

build process. The runtime library is usually not device-specific, and the 

same runtime library may orchestrate offload to CPUs, GPUs, FPGAs, or 

other devices.
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 GPU Software Drivers
Although it is theoretically possible that a SYCL runtime library could 

offload directly to a GPU, in practice, most SYCL runtime libraries interface 

with a GPU software driver to submit work to a GPU.

A GPU software driver is typically an implementation of an API, 

such as OpenCL, Level Zero, or CUDA. Most of a GPU software driver is 

implemented in a user-mode driver library that the SYCL runtime calls 

into, and the user-mode driver may call into the operating system or 

a kernel-mode driver to perform system-level tasks such as allocating 

memory or submitting work to the device. The user-mode driver may also 

invoke other user-mode libraries; for example, the GPU driver may invoke 

a GPU compiler to just-in-time compile a kernel from an intermediate 

representation to GPU ISA (Instruction Set Architecture). These software 

modules and the interactions between them are shown in Figure 15-15.

Figure 15-15. Typical GPU software driver modules
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 GPU Hardware
When the runtime library or the GPU software user-mode driver 

is explicitly requested to submit work, or when the GPU software 

heuristically determines that work should begin, it will typically call 

through the operating system or a kernel-mode driver to start executing 

work on the GPU. In some cases, the GPU software user-mode driver may 

submit work directly to the GPU, but this is less common and may not be 

supported by all devices or operating systems.

When the results of work executed on a GPU are consumed by the host 

processor or another accelerator, the GPU must issue a signal to indicate 

that work is complete. The steps involved in work completion are very 

similar to the steps for work submission, executed in reverse: the GPU 

may signal the operating system or kernel-mode driver that it has finished 

execution, then the user-mode driver will be informed, and finally the 

runtime library will observe that work has completed via GPU software 

API calls.

Each of these steps introduces latency, and in many cases, the runtime 

library and the GPU software are making a trade-off between lower 

latency and higher throughput. For example, submitting work to the GPU 

more frequently may reduce latency, but submitting frequently may also 

reduce throughput due to per-submission overheads. Collecting large 

batches of work increases latency but amortizes submission overheads 

over more work and introduces more opportunities for parallel execution. 

The runtime and drivers are tuned to make the right trade-off and usually 

do a good job, but if we suspect that driver heuristics are submitting 

work inefficiently, we should consult documentation to see if there are 

ways to override the default driver behavior using API-specific or even 

implementation-specific mechanisms. The techniques described in 

Chapter 20 to interact directly with an API backend can be useful to tune 

GPU submission policies.
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 Beware the Cost of Offloading!
Although SYCL implementations and GPU vendors are continually 

innovating and optimizing to reduce the cost of offloading work to a GPU, 

there will always be overhead involved both when starting work on a 

GPU and observing results on the host or another device. When choosing 

where to execute an algorithm, consider both the benefit of executing 

an algorithm on a device and the cost of moving the algorithm and any 

data that it requires to the device. In some cases, it may be most efficient 

to perform a parallel operation using the host processor—or to execute a 

serial part of an algorithm inefficiently on the GPU—to avoid the overhead 

of moving an algorithm from one processor to another.

Consider the performance of our algorithm as a whole—it may be 
most efficient to execute part of an algorithm inefficiently on one 
device than to transfer execution to another device!

 Transfers to and from Device Memory

On GPUs with dedicated memory, be especially aware of transfer costs 

between dedicated GPU memory and memory on the host or another 

device. Figure 15-16 shows typical memory bandwidth differences 

between different memory types in a system.
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Figure 15-16. Typical differences between device memory, remote 
memory, and host memory

Recall from Chapter 3 that GPUs prefer to operate on dedicated 

device memory, which can be faster by an order of magnitude or more, 

instead of operating on host memory or another device’s memory. Even 

though accesses to dedicated device memory are significantly faster than 

accesses to remote memory or system memory, if the data is not already in 

dedicated device memory, then it must be copied or migrated.

So long as the data will be accessed frequently, moving it into 

dedicated device memory is beneficial, especially if the transfer can 

be performed asynchronously while the GPU execution resources are 

busy processing another task. When the data is accessed infrequently 

or unpredictably though, it may be preferable to save transfer costs and 

operate on the data remotely or in system memory, even if per-access costs 

are higher. Chapter 6 describes ways to control where memory is allocated 

and different techniques to copy and prefetch data into dedicated device 

memory. These techniques are important when optimizing program 

execution for GPUs.
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 GPU Kernel Best Practices
The previous sections described how the dispatch parameters passed to a 

parallel_for affect how kernels are assigned to GPU processor resources 

and the software layers and overheads involved in executing a kernel on 

a GPU. This section describes best practices when a kernel is executing 

on a GPU.

Broadly speaking, kernels are either memory bound, meaning that their 

performance is limited by data read and write operations into or out of the 

execution resources on the GPU, or are compute bound, meaning that their 

performance is limited by the execution resources on the GPU. A good first 

step when optimizing a kernel for a GPU—and many other processors!—is 

to determine whether our kernel is memory bound or compute bound, 

since the techniques to improve a memory-bound kernel frequently will 

not benefit a compute-bound kernel and vice versa. GPU vendors often 

provide profiling tools to help make this determination.

Different optimization techniques are needed depending on whether 
our kernel is memory bound or compute bound!

Because GPUs tend to have many processors and wide SIMD widths, 

kernels tend to be memory bound more often than they are compute 

bound. If we are unsure where to start, examining how our kernel accesses 

memory is a good first step.

 Accessing Global Memory
Efficiently accessing global memory is critical for optimal application 

performance because almost all data that a work-item or work-group 

operates on originates in global memory. If a kernel operates on global 

memory inefficiently, it will almost always perform poorly. Even though 
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GPUs often include dedicated hardware gather and scatter units for 

reading and writing arbitrary locations in memory, the performance 

of accesses to global memory is usually driven by the locality of data 

accesses. If one work-item in a work-group is accessing an element in 

memory that is adjacent to an element accessed by another work-item 

in the work-group, the global memory access performance is likely to 

be good. If work-items in a work-group instead access memory that is 

strided or random, the global memory access performance will likely be 

worse. Some GPU documentation describes operating on nearby memory 

accesses as coalesced memory accesses.

Recall that for our somewhat-parallel matrix multiplication kernel 

in Figure 15-5, we had a choice whether to process a row or a column of 

the result matrix in parallel, and we chose to operate on rows of the result 

matrix in parallel. This turns out to be a poor choice: if one work-item with 

id equal to m is grouped with a neighboring work-item with id equal to m-1 

or m+1, the indices used to access matrixB are the same for each work-item, 

but the indices used to access matrixA differ by K, meaning the accesses 

are highly strided. The access pattern for matrixA is shown in Figure 15-17.
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Figure 15-17. Accesses to matrixA are highly strided and inefficient

If, instead, we choose to process columns of the result matrix in 

parallel, the access patterns have much better locality. The kernel in 

Figure 15-18 is structurally very similar to that in Figure 15-5 with the only 

difference being that each work-item in Figure 15-18 operates on a column 

of the result matrix, rather than a row of the result matrix.

h.parallel_for(N, [=](item<1> idx) {
int n = idx[0];

for (int m = 0; m < M; m++) {
T sum = 0;
for (int k = 0; k < K; k++) {

sum += matrixA[m * K + k] * matrixB[k * N + n];
}
matrixC[m * N + n] = sum;

}
});

Figure 15-18. Computing columns of the result matrix in parallel, 
not rows
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Even though the two kernels are structurally very similar, the kernel 

that operates on columns of data will significantly outperform the kernel 

that operates on rows of data on many GPUs, purely due to the more 

efficient memory accesses: if one work-item with id equal to n is grouped 

with a neighboring work-item with id equal to n-1 or n+1, the indices used 

to access matrixA are now the same for each work-item, and the indices 

used to access matrixB are consecutive. The access pattern for matrixB is 

shown in Figure 15-19.

Figure 15-19. Accesses to matrixB are consecutive and efficient

Accesses to consecutive data are usually very efficient. A good rule of 

thumb is that the performance of accesses to global memory for a group of 

work-items is a function of the number of GPU cache lines accessed. If all 

accesses are within a single cache line, the access will execute with peak 

performance. If an access requires two cache lines, say by accessing every 

other element or by starting from a cache-misaligned address, the access 
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may operate at half performance. When each work-item in the group 

accesses a unique cache line, say for a very strided or random accesses, the 

access is likely to operate at lowest performance.

PROFILING KERNEL VARIANTS 

for matrix multiplication, choosing to parallelize along one dimension clearly 

results in more efficient memory accesses, but for other kernels, the choice 

may not be as obvious. for kernels where it is important to achieve the best 

performance, if it is not obvious which dimension to parallelize, it is sometimes 

worth developing and profiling different kernel variants that parallelize along 

each dimension to see what works better for a device and data set.

 Accessing Work-Group Local Memory
In the previous section, we described how accesses to global memory 

benefit from locality, to maximize cache performance. As we saw, in some 

cases we can design our algorithm to efficiently access memory, such 

as by choosing to parallelize in one dimension instead of another. This 

technique isn’t possible in all cases, however. This section describes how 

we can use work-group local memory to efficiently support more memory 

access patterns.

Recall from Chapter 9 that work-items in a work-group can cooperate 

to solve a problem by communicating through work-group local memory 

and synchronizing using work-group barriers. This technique is especially 

beneficial for GPUs, since typical GPUs have specialized hardware 

to implement both barriers and work-group local memory. Different 

GPU vendors and different products may implement work-group local 

memory differently, but work-group local memory frequently has two 

benefits compared to global memory: local memory may support higher 
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bandwidth and lower latency than accesses to global memory, even when 

the global memory access hits a cache, and local memory is often divided 

into different memory regions, called banks. So long as each work-item in 

a group accesses a different bank, the local memory access executes with 

full performance. Banked accesses allow local memory to support far more 

access patterns with peak performance than global memory.

Many GPU vendors will assign consecutive local memory addresses 

to different banks. This ensures that consecutive memory accesses always 

operate at full performance, regardless of the starting address. When 

memory accesses are strided, though, some work-items in a group may 

access memory addresses assigned to the same bank. When this occurs, 

it is considered a bank conflict and results in serialized access and lower 

performance.

for maximum global memory performance, minimize the number of 
cache lines accessed.

for maximum local memory performance, minimize the number of 
bank conflicts!

A summary of access patterns and expected performance for global 

memory and local memory is shown in Figure 15-20. Assume that 

when ptr points to global memory, the pointer is aligned to the size of a 

GPU cache line. The best performance when accessing global memory 

can be achieved by accessing memory consecutively starting from a 

cache-aligned address. Accessing an unaligned address will likely lower 

global memory performance because the access may require accessing 

additional cache lines. Because accessing an unaligned local address will 

not result in additional bank conflicts, the local memory performance is 

unchanged.
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The strided case is worth describing in more detail. Accessing every 

other element in global memory requires accessing more cache lines and 

will likely result in lower performance. Accessing every other element 

in local memory may result in bank conflicts and lower performance, but 

only if the number of banks is divisible by two. If the number of banks is 

odd, this case will operate at full performance also.

When the stride between accesses is very large, each work-item 

accesses a unique cache line, resulting in the worst performance. For local 

memory though, the performance depends on the stride and the number 

of banks. When the stride N is equal to the number of banks, each access 

results in a bank conflict, and all accesses are serialized, resulting in the 

worst performance. If the stride M and the number of banks share no 

common factors, however, the accesses will run at full performance. For 

this reason, many optimized GPU kernels will pad data structures in local 

memory to choose a stride that reduces or eliminates bank conflicts.

Figure 15-20. Possible performance for different access patterns, for 
global and local memory
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 Avoiding Local Memory Entirely with Sub-Groups
As discussed in Chapter 9, sub-group collective functions are an 

alternative way to exchange data between work-items in a group. For many 

GPUs, a sub-group represents a collection of work-items processed by a 

single instruction stream. In these cases, the work-items in the sub-group 

can inexpensively exchange data and synchronize without using work- 

group local memory. Many of the best-performing GPU kernels use sub- 

groups, so for expensive kernels, it is well worth examining if our algorithm 

can be reformulated to use sub-group collective functions.

 Optimizing Computation Using Small Data Types
This section describes techniques to optimize kernels after eliminating 

or reducing memory access bottlenecks. One very important perspective 

to keep in mind is that GPUs have traditionally been designed to draw 

pictures on a screen. Although the pure computational capabilities of 

GPUs have evolved and improved over time, in some areas their graphics 

heritage is still apparent.

Consider support for kernel data types, for example. Many GPUs 

are highly optimized for 32-bit floating-point operations since these 

operations tend to be common in graphics and games. For algorithms that 

can cope with lower precision, many GPUs also support a lower-precision 

16-bit floating-point type that trades precision for faster processing. 

Conversely, although many GPUs do support 64-bit double-precision 

floating-point operations, the extra precision will come at a cost, and 32-bit 

operations usually perform much better than their 64-bit equivalents.

The same is true for integer data types, where 32-bit integer data types 

typically perform better than 64-bit integer data types and 16-bit integers 

may perform even better still. If we can structure our computation to use 

smaller integers, our kernel may perform faster. One area to pay careful 

attention to are addressing operations, which typically operate on 64-bit 
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size_t data types, but can sometimes be rearranged to perform most of 

the calculation using 32-bit data types. In some local memory cases, 16 bits 

of indexing is sufficient, since most local memory allocations are small.

 Optimizing Math Functions
Another area where a kernel may trade off accuracy for performance 

involves SYCL built-in functions. SYCL includes a rich set of math 

functions with well-defined accuracy across a range of inputs. Most 

GPUs do not support these functions natively and implement them 

using a long sequence of other instructions. Although the math 

function implementations are typically well optimized for a GPU, if our 

application can tolerate lower accuracy, we should consider a different 

implementation with lower accuracy and higher performance instead. 

Please refer to Chapter 18 for more information about SYCL built-in 

functions.

For commonly used math functions, the SYCL library includes fast 

or native function variants with reduced or implementation-defined 

accuracy requirements. For some GPUs, these functions can be an order 

of magnitude faster than their precise equivalents, so they are well worth 

considering if they have enough precision for an algorithm. For example, 

many image postprocessing algorithms have well-defined inputs and can 

tolerate lower accuracy and hence are good candidates for using fast or 

native math functions.

if an algorithm can tolerate lower precision, we can use smaller data 
types or lower-precision math functions to increase performance!
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 Specialized Functions and Extensions
One final consideration when optimizing a kernel for a GPU is specialized 

instructions that are common in many GPUs. As one example, nearly all 

GPUs support a mad or fma multiply-and-add instruction that performs 

two operations in a single clock. GPU compilers are generally very good at 

identifying and optimizing individual multiplies and adds to use a single 

instruction instead, but SYCL also includes mad and fma functions that can 

be called explicitly. Of course, if we expect our GPU compiler to optimize 

multiplies and adds for us, we should be sure that we do not prevent 

optimizations by disabling floating-point contractions!

Other specialized GPU instructions may only be available via compiler 

optimizations, extensions to the SYCL language, or by interacting directly 

with a low-level GPU backend. For example, some GPUs support a 

specialized dot-product-and-accumulate instruction that compilers will 

try to identify and optimize for, or that may be called directly. Refer to 

Chapter 12 for more information on how to query the extensions that are 

supported by a GPU implementation and to Chapter 20 for information 

about backend interoperability.

 Summary
In this chapter, we started by describing how typical GPUs work and how 

GPUs are different than traditional CPUs. We described how GPUs are 

optimized for large amounts of data, by trading processor features that 

accelerate a single instruction stream for additional processors.

We described how GPUs process multiple data elements in parallel 

using wide SIMD instructions and how GPUs use predication and masking 

to execute kernels with complex flow control using SIMD instructions. We 

discussed how predication and masking can reduce SIMD efficiency and 

decrease performance for kernels that are highly divergent and how choosing 

to parallelize along one dimension vs. another may reduce SIMD divergence.
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Because GPUs have so many processing resources, we discussed how 

it is important to give GPUs enough work to keep occupancy high. We also 

described how GPUs use instruction streams to hide latency, making it 

even more crucial to give GPUs lots of work to execute.

Next, we discussed the software and hardware layers involved in 

offloading a kernel to a GPU and the costs of offloading. We discussed how 

it may be more efficient to execute an algorithm on a single device than it 

is to transfer execution from one device to another.

Finally, we described best practices for kernels once they are executing 

on a GPU. We described how many kernels start off memory bound and 

how to access global memory and local memory efficiently or how to 

avoid local memory entirely by using sub-group operations. When kernels 

are compute bound instead, we described how to optimize computation 

by trading lower precision for higher performance or using custom GPU 

extensions to access specialized instructions.

 For More Information
There is much more to learn about GPU programming, and this chapter 

just scratched the surface!

GPU specifications and white papers are a great way to learn more 

about specific GPUs and GPU architectures. Many GPU vendors provide 

very detailed information about their GPUs and how to program them.

At the time of this writing, relevant reading about major GPUs can be 

found on software.intel.com, devblogs.nvidia.com, and amd.com.

Some GPU vendors have open source drivers or driver components. 

When available, it can be instructive to inspect or step through driver code, 

to get a sense for which operations are expensive or where overheads may 

exist in an application.
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This chapter focused entirely on traditional accesses to global memory 

via buffer accessors or Unified Shared Memory, but most GPUs also 

include a fixed-function texture sampler that can accelerate operations on 

images. For more information about images and samplers, please refer to 

the SYCL specification.

Open Access  This chapter is licensed under the terms of 

the Creative Commons Attribution 4.0 International License 

(https://creativecommons.org/licenses/by/4.0/), which permits use, 

sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and 

the source, provide a link to the Creative Commons license and indicate if 

changes were made.

The images or other third party material in this chapter are included 

in the chapter’s Creative Commons license, unless indicated otherwise 

in a credit line to the material. If material is not included in the chapter’s 

Creative Commons license and your intended use is not permitted by 

statutory regulation or exceeds the permitted use, you will need to obtain 

permission directly from the copyright holder.
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CHAPTER 16

Programming for 
CPUs
Kernel programming originally became popular as a way to program 

GPUs. As kernel programming is generalized, it is important to understand 

how kernel style of programming affects the mapping of our code to a CPU.

The CPU has evolved over the years. A major shift occurred around 

2005 when performance gains from increasing clock speeds diminished. 

Parallelism arose as the favored solution—instead of increasing clock 

speeds, CPU producers introduced multicore chips. Computers became 

more effective in performing multiple tasks at the same time!

While multicore prevailed as the path for increasing hardware 

performance, realizing that gain in software required nontrivial effort. 

Multicore processors required developers to come up with different 

algorithms so the hardware improvements could be noticeable, and this 

was not always easy. The more cores that we have, the harder it is to keep 

them busy efficiently. SYCL is one of the programming languages that 

address these challenges, with many constructs that help to exploit various 

forms of parallelism on CPUs (and other architectures).

This chapter discusses some particulars of CPU architectures, how 

CPU hardware typically executes SYCL applications and offers best 

practices when writing a SYCL code for a CPU platform.

© Intel Corporation 2023 
J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-9691-2_16
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 Performance Caveats
SYCL paves a portable path to parallelize our applications or to develop 

parallel applications from scratch. The performance of an application, 

when run on CPUs, is largely dependent upon the following factors:

• The underlying performance of the launch and 

execution of kernel code

• The percentage of the program that runs in a parallel 

kernel and its scalability

• CPU utilization, effective data sharing, data locality, 

and load balancing

• The amount of synchronization and communication 

between work-items

• The overhead introduced to create, resume, manage, 

suspend, destroy, and synchronize any threads that 

work-items execute on, which is impacted by the 

number of serial-to-parallel or parallel-to-serial 

transitions

• Memory conflicts caused by shared memory (including 

falsely shared memory)

• Performance limitations of shared resources such 

as memory, write combining buffers, and memory 

bandwidth

In addition, as with any processor type, CPUs may differ from vendor 

to vendor or even from product generation to product generation. The best 

practices for one CPU may not be best practices for a different CPU and 

configuration.
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to achieve optimal performance on a CpU, understand as many 
characteristics of the CpU architecture as possible!

 The Basics of Multicore CPUs
Emergence and rapid advancements in multicore CPUs have driven 

substantial acceptance of shared memory parallel computing platforms. 

CPUs offer parallel computing platforms at laptop, desktop, and server 

levels, making them ubiquitous and exposing performance almost 

everywhere. The most common form of CPU architecture is cache- 

coherent non-uniform memory access (cc-NUMA), which is characterized 

by memory access times not being completely uniform. Many small dual- 

socket general-purpose CPU systems have this kind of memory system. 

This architecture has become dominant because the number of cores in a 

processor, as well as the number of sockets, continues to increase.

In a cc-NUMA CPU system, each socket connects to a subset of 

the total memory in the system. A cache-coherent interconnect glues 

all the sockets together and provides a single system memory view for 

programmers. Such a memory system is scalable, because the aggregate 

memory bandwidth scales with the number of sockets in the system. The 

benefit of the interconnect is that an application has transparent access 

to all the memory in the system, regardless of where the data resides. 

However, there is a cost: the latency to access data from memory is no 

longer consistent (i.e., we no longer have fixed access latency). The latency 

instead depends on where that data is stored in the system. In a good case, 

data comes from memory directly connected to the socket where code 

runs. In a bad case, data has to come from a memory connected to a socket 

far away in the system, and that cost of memory access can increase due 

to the number of hops in the interconnect between sockets on a cc-NUMA 

CPU system.
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In Figure 16-1, a generic CPU architecture with cc-NUMA memory 

is shown. This is a simplified system architecture containing cores and 

memory components found in contemporary, general-purpose, multi- 

socket systems today. Throughout the remainder of this chapter, the figure 

will be used to illustrate the mapping of corresponding code examples.

To achieve optimal performance, we need to be sure to understand 

the characteristics of the cc-NUMA configuration of a specific system. 

For example, recent servers from Intel make use of a mesh interconnect 

architecture. In this configuration, the cores, caches, and memory 

controllers are organized into rows and columns. Understanding the 

connectivity of processors with memory can be critical when working to 

achieve peak performance of the system.

Figure 16-1. Generic multicore CPU system
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The system in Figure 16-1 has two sockets, each of which has two 

cores with four hardware threads per core. Each core has its own level 1 

(L1) cache. L1 caches are connected to a shared last-level cache, which 

is connected to the memory system on the socket. The memory access 

latency within a socket is uniform, meaning that it is consistent and can be 

predicted with accuracy.

The two sockets are connected through a cache-coherent interconnect. 

Memory is distributed across the system, but all the memory may be 

transparently accessed from anywhere in the system. The memory read 

and write latency is non-uniform when accessing memory that isn’t in 

the socket where the code making the access is running, which means 

it imposes a potentially much longer and inconsistent latency when 

accessing data from a remote socket. A critical aspect of the interconnect, 

though, is coherency. We do not need to worry about inconsistent 

views of data in memory across the system and can instead focus on the 

performance impact of how we are accessing the distributed memory 

system. More advanced optimizations (e.g., atomic operation with a 

relaxed memory order) can enable operations that no longer require as 

much hardware memory consistency, but when we want the consistency, 

the hardware provides it for us.

Hardware threads in CPUs are the execution vehicles. These are the 

units that execute instruction streams. The hardware threads in Figure 16-1 

are numbered consecutively from 0 to 15, which is a notation used to 

simplify discussions on the examples in this chapter. Unless otherwise 

noted, all references to a CPU system in this chapter are to the reference 

cc-NUMA system shown in Figure 16-1.
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 The Basics of SIMD Hardware
In 1996, a widely deployed SIMD instruction set was MMX extensions on 

top of the x86 architecture. Many SIMD instruction set extensions have 

since followed both on Intel architectures and more broadly across the 

industry. A CPU core carries out its job by executing instructions, and 

the specific instructions that a core knows how to execute are defined 

by the instruction set (e.g., x86, x86_64, AltiVec, NEON) and instruction 

set extensions (e.g., SSE, AVX, AVX-512) that it implements. Many of the 

operations added by instruction set extensions are focused on SIMD.

SIMD instructions allow multiple calculations to be carried out 

simultaneously on a single core by using registers and hardware bigger 

than the fundamental unit of data being processed. For example, using 

512-bit registers we can perform eight 64-bit calculations with a single 

machine instruction.

This example shown in Figure 16-2 could, in theory, give us up to an 

eight times speed-up. In reality, it is likely to be somewhat curtailed as a 

portion of the eight times speed-up serves to remove one bottleneck and 

expose the next, such as memory throughput. In general, the performance 

benefit of using SIMD varies depending on the specific scenario, and in 

a few cases such as extensive branch divergence, gather/scatter for non- 

unit- stride memory access, and cache-line split for SIMD loads and stores, 

it can even perform worse than simpler non-SIMD equivalent code. That 

said, considerable gains are achievable on today’s processors when we 

know when and how to apply (or have the compiler apply) SIMD. As with 

all performance optimizations, programmers should measure the gains on 

a typical target machine before putting it into production. There are more 

details on expected performance gains in the following sections of this 

chapter.
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h.parallel_for(range(1024),
[=](id<1> k) { z[k] = x[k] + y[k]; });

Figure 16-2. SIMD execution in a CPU hardware thread

The cc-NUMA CPU architecture with SIMD units forms the foundation 

of a multicore processor, which can exploit a wide spectrum of parallelism 

starting from instruction-level parallelism in at least the five different ways 

as shown in Figure 16-3.

Figure 16-3. Five ways for executing instructions in parallel
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In Figure 16-3, instruction-level parallelism can be achieved through 

both out-of-order execution of scalar instructions and SIMD parallelism 

within a single thread. Thread-level parallelism can be achieved through 

executing multiple threads on the same core or on multiple cores at 

different scales. More specifically, thread-level parallelism can be exposed 

from the following:

• Modern CPU architectures allow one core to execute 

the instructions of two or more threads simultaneously.

• Multicore architectures that contain two or more cores 

within each processor. The operating system perceives 

each of its execution cores as a discrete processor, with 

all of the associated execution resources.

• Multiprocessing at the processor (chip) level, which can 

be accomplished by executing separate threads of code. 

As a result, the processor can have one thread running 

from an application and another thread running from 

an operating system, or it can have parallel threads 

running from within a single application.

• Distributed processing, which can be accomplished by 

executing processes consisting of multiple threads on 

a cluster of computers, which typically communicate 

through message passing frameworks.

As multiprocessor computers and multicore technology become more 

and more common, it is important to use parallel processing techniques as 

standard practice to increase performance. Later sections of this chapter 

will introduce the coding methods and performance-tuning techniques 

within SYCL that allow us to achieve peak performance on multicore CPUs.
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Like other parallel processing hardware (e.g., GPUs), it is important 

to give the CPU a sufficiently large set of data elements to process. To 

demonstrate the importance of exploiting multilevel parallelism to handle 

a large set of data, consider a simple C++ STREAM Triad program, as 

shown in Figure 16-4.

// C++ STREAM Triad workload
// __restrict is used to denote no memory aliasing among
// arguments
template <typename T>
double triad(T* __restrict VA, T* __restrict VB,

T* __restrict VC, size_t array_size,
const T scalar) {

double ts = timer_start(); 
for (size_t id = 0; id < array_size; id++) {

VC[id] = VA[id] + scalar * VB[id];
}
double te = timer_end();
return (te – ts);

}

Figure 16-4. STREAM Triad C++ loop

A NOTE ABOUT STREAM TRIAD WORKLOAD

the stream triad workload (www.cs.virginia.edu/stream) is an 

important and popular benchmark workload that CpU vendors use to 

demonstrate memory bandwidth capabilities. We use the stream triad 

kernel to demonstrate code generation of a parallel kernel and the way 

that it is scheduled to achieve significantly improved performance through 

the techniques described in this chapter. stream triad is a relatively 

simple workload but is sufficient to show many of the optimizations in an 

understandable way. there is a stream implementation from the University of 

Bristol, called Babelstream, that includes a C++ with sYCL version.
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The STREAM Triad loop may be trivially executed on a CPU using a 

single CPU core for serial execution. A good C++ compiler will perform 

loop vectorization to generate SIMD code for the CPU that has hardware to 

exploit instruction-level SIMD parallelism. For example, for an Intel Xeon 

processor with AVX-512 support, the Intel C++ compiler generates SIMD 

code as shown in Figure 16-5. Critically, the compiler’s transformation of 

the code reduced the number of loop iterations by doing more work per 

loop iteration (using SIMD instructions and loop unrolling).
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As shown in Figure 16-5, the compiler was able to exploit instruction- 

level parallelism in two ways. First is by using SIMD instructions, exploiting 

instruction-level data parallelism, in which a single instruction can process 

eight double-precision data elements simultaneously in parallel (per 

instruction). Second, the compiler applied loop unrolling to get the out- 

of- order execution effect of these instructions that have no dependences 

between them, based on hardware multiway instruction scheduling.

If we try to execute this function on a CPU, it will probably run well for 

small array sizes—not great, though, since it does not utilize any multicore 

or threading capabilities of the CPU. If we try to execute this function with 

a large array size on a CPU, however, it will likely perform very poorly 

because the single thread will only utilize a single CPU core and will be 

bottlenecked when it saturates the memory bandwidth of that core.

 Exploiting Thread-Level Parallelism
To improve the performance of the STREAM Triad kernel, we can 

compute on a range of data elements that can be processed in parallel, by 

converting the loop to a parallel_for kernel.

The body of this STREAM Triad SYCL parallel kernel looks exactly like 

the body of the STREAM Triad loop that executes in serial C++ on the CPU, 

as shown in Figure 16-6.

Chapter 16  programming for CpUs



429

constexpr int num_runs = 10;
constexpr size_t scalar = 3;

double triad(const std::vector<float>& vecA,
const std::vector<float>& vecB,
std::vector<float>& vecC) {

assert(vecA.size() == vecB.size() &&
vecB.size() == vecC.size());

const size_t array_size = vecA.size();
double min_time_ns = std::numeric_limits<double>::max();

queue q{property::queue::enable_profiling{}};
std::cout << "Running on device: "

<< q.get_device().get_info<info::device::name>()
<< "\n";

buffer<float> bufA(vecA);
buffer<float> bufB(vecB);
buffer<float> bufC(vecC);

for (int i = 0; i < num_runs; i++) {
auto Q_event = q.submit([&](handler& h) {

accessor A{bufA, h};
accessor B{bufB, h};
accessor C{bufC, h};

h.parallel_for(array_size, [=](id<1> idx) {
C[idx] = A[idx] + B[idx] * scalar;

});
});

double exec_time_ns =
Q_event.get_profiling_info<

info::event_profiling::command_end>() -
Q_event.get_profiling_info<

info::event_profiling::command_start>();

std::cout << "Execution time (iteration " << i
<< ") [sec]: "
<< (double)exec_time_ns * 1.0E-9 << "\n";

min_time_ns = std::min(min_time_ns, exec_time_ns);
}

return min_time_ns;
}

Figure 16-6. SYCL STREAM Triad parallel_for kernel code
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Even though the parallel kernel is very similar to the STREAM Triad 

function written as serial C++ with a loop, it runs much faster because 

the parallel_for enables different elements of the array to be processed 

on multiple cores in parallel. Figure 16-7 shows how this kernel could be 

mapped to a CPU. Assume that we have a system with one socket, four 

cores, and two hardware threads per core (for a total of eight threads) and 

that the implementation processes data in work-groups containing 32 

work-items each. If we have 1024 double-precision data elements to be 

processed, we will have 32 work-groups. The work-group scheduling can 

be done in a round-robin order, that is, thread-id = work-group-id mod 8. 

Essentially, each thread will execute four work-groups. Eight work-groups 

can be executed in parallel for each round. Note that, in this case, the 

work-group is a set of work-items that is implicitly formed by the SYCL 

compiler and runtime.

Figure 16-7. A mapping of a STREAM Triad parallel kernel

Note that in the SYCL program, the exact way that data elements are 

partitioned and assigned to different processor cores (or threads) is not 

specified. This gives a SYCL implementation flexibility to choose how 

best to execute a parallel kernel on a specific CPU. With that said, an 
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implementation may provide some level of control to programmers to 

enable performance tuning (e.g., via compiler options or environment 

variables).

While a CPU may impose a relatively expensive thread context switch 

and synchronization overhead, having more software threads resident on 

a processor core may be beneficial because it gives each processor core 

a choice of work to execute. If one software thread is waiting for another 

thread to produce data, the processor core can switch to a different 

software thread that is ready to run without leaving the processor core idle.

CHOOSING HOW TO BIND AND SCHEDULE THREADS 

Choosing an effective scheme to partition and schedule the work among threads 

is important to tune an application on CpUs and other device types. subsequent 

sections will describe some of the techniques.

 Thread Affinity Insight
Thread affinity designates the CPU cores on which specific threads 

execute. Performance can suffer if a thread moves around among cores—

for instance, if threads do not execute on the same core, cache locality can 

become an inefficiency if data ping-pongs between different cores.

The DPC++ compiler’s runtime library supports several schemes for 

binding threads to cores through the environment variables DPCPP_CPU_

CU_AFFINITY, DPCPP_CPU_PLACES, DPCPP_CPU_NUM_CUS, and DPCPP_CPU_

SCHEDULE, which are not defined by SYCL. Other implementations may 

expose similar environment variables.

The first of these is the environment variable DPCPP_CPU_CU_

AFFINITY. Tuning using these environment variable controls is simple and 

low cost but can have large impact for many applications. The description 

of this environment variable is shown in Figure 16-8.
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DPCPP_CPU_CU_AFFINITY Description

spread Bind successive threads to distinct sockets starting with 
socket 0 in a round-robin order

close Bind successive threads to distinct hardware threads
starting with thread 0 in a round-robin order

Figure 16-8. DPCPP_CPU_CU_AFFINITY environment variable

When the environment variable DPCPP_CPU_CU_AFFINITY is specified, 

a software thread is bound to a hardware thread through the following 

formula:

spread: boundHT = ( tid mod numHT ) + (tid mod numSocket) × numHT)

close: boundHT = tid mod (numSocket × numHT )

where

• tid denotes a software thread identifier

• boundHT denotes a hardware thread (logical core) that 

thread tid is bound to

• numHT denotes the number of hardware threads 

per socket

• numSocket denotes the number of sockets in the system

Assume that we run a program with eight threads on a dual-core dual- 

socket system—in other words, we have four cores with a total of eight 

threads to program. Figure 16-9 shows examples of how threads can map 

to the hardware threads and cores for different DPCPP_CPU_CU_AFFINITY 

settings.
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Figure 16-9. Mapping threads to cores with hardware threads

In conjunction with the environment variable DPCPP_CPU_CU_

AFFINITY, there are other environment variables that support CPU 

performance tuning:

• DPCPP_CPU_NUM_CUS = [n], which sets the number of 

threads used for kernel execution. Its default value is 

the number of hardware threads in the system.

• DPCPP_CPU_PLACES = [ sockets | numa_domains | 

cores | threads ], which specifies the places that the 

affinity will be set similar to OMP_PLACES in OpenMP 

5.1. The default setting is cores.

• DPCPP_CPU_SCHEDULE = [ dynamic | affinity | 

static ], which specifies the algorithm for scheduling 

work-groups. Its default setting is dynamic.

dynamic: Enable the auto_partitioner, which 

usually performs sufficient splitting to balance the 

load among worker threads.

affinity: Enable the affinity_partitioner, 

which improves cache affinity and uses proportional 

splitting when mapping subranges to worker 

threads.

static: Enable the static_partitioner, which 

distributes iterations among worker threads as 

uniformly as possible.
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When running on CPUs using Intel’s OpenCL CPU runtime, work- 

group scheduling is handled by the Threading Building Blocks (TBB) 

library. Using DPCPP_CPU_SCHEDULE determines which TBB partitioner is 

used. Note that the TBB partitioner also uses a grain size to control work 

splitting, with a default grain size of 1 which indicates that all work-groups 

can be executed independently. More information can be found at  

tinyurl.com/oneTBBpart.

A lack of thread affinity tuning does not necessarily mean lower 

performance. Performance often depends more on how many total 

threads are executing in parallel than on how well the thread and data 

are related and bound. Testing the application using benchmarks is one 

way to be certain whether the thread affinity has a performance impact 

or not. The STREAM Triad code, as shown in Figure 16-1, started with 

a lower performance without thread affinity settings. By controlling the 

affinity setting and using static scheduling of software threads through 

the environment variables (exports shown in the following for Linux), 

performance improved:

export DPCPP_CPU_PLACES=numa_domains

export DPCPP_CPU_CU_AFFINITY=close

By using numa_domains as the places setting for affinity, the TBB task 

arenas are bound to NUMA nodes or sockets, and the work is uniformly 

distributed across task arenas. In general, the environment variable DPCPP_

CPU_PLACES is recommended to be used together with DPCPP_CPU_CU_

AFFINITY. These environment variable settings help us to achieve a ~30% 

performance gain on an Intel Xeon server system with 2 sockets, 28 cores 

per socket, and 2 hardware threads per core, running at 2.5 GHz. However, 

we can still do better to further improve the performance on this CPU.
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 Be Mindful of First Touch to Memory
Memory is stored where it is first touched (used). Since the initialization 

loop in our example is executed by the host thread serially, all the 

memory is associated with the socket that the host thread is running on. 

Subsequent access by other sockets will then access data from memory 

attached to the initial socket (used for the initialization), which is clearly 

undesirable for performance. We can achieve a higher performance on the 

STREAM Triad kernel by parallelizing the initialization loop to control the 

first touch effect across sockets, as shown in Figure 16-10.

template <typename T>
void init(queue& deviceQueue, T* VA, T* VB, T* VC,

size_t array_size) {
range<1> numOfItems{array_size};

buffer<T, 1> bufferA(VA, numOfItems);
buffer<T, 1> bufferB(VB, numOfItems);
buffer<T, 1> bufferC(VC, numOfItems);

auto queue_event = deviceQueue.submit([&](handler& cgh) {
auto aA = bufA.template get_access<sycl_write>(cgh);
auto aB = bufB.template get_access<sycl_write>(cgh);
auto aC = bufC.template get_access<sycl_write>(cgh);

cgh.parallel_for<class Init<T>>(numOfItems, [=](id<1> wi) {
aA[wi] = 2.0;
aB[wi] = 1.0;
aC[wi] = 0.0;

});
});

queue_event.wait();
}

Figure 16-10. STREAM Triad parallel initialization kernel to control 
first touch effects

Exploiting parallelism in the initialization code improves performance 

of the kernel when run on a CPU. In this instance, we achieve a ~2x 

performance gain on an Intel Xeon processor system.
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The recent sections of this chapter have shown that by exploiting 

thread-level parallelism, we can utilize CPU cores and threads effectively. 

However, we need to exploit the SIMD vector-level parallelism in the CPU 

core hardware as well, to achieve peak performance.

sYCL parallel kernels benefit from thread-level parallelism across 
cores and hardware threads!

 SIMD Vectorization on CPU
While a well-written SYCL kernel without cross-work-item dependences 

can run in parallel effectively on a CPU, implementations can also apply 

vectorization to SYCL kernels to leverage SIMD hardware similar to the 

GPU support described in Chapter 15. Essentially, CPU processors may 

optimize memory loads, stores, and operations using SIMD instructions 

by leveraging the fact that most data elements are often in contiguous 

memory and take the same control flow paths through a data-parallel 

kernel. For example, in a kernel with a statement a[i] = a[i] + b[i], 

each data element executes with the same instruction stream load, load, 

add, and store by sharing hardware logic among multiple data elements 

and executing them as a group, which may be mapped naturally onto a 

hardware’s SIMD instruction set. Specifically, multiple data elements can 

be processed simultaneously by a single instruction.

The number of data elements that are processed simultaneously by a 

single instruction is sometimes referred to as the vector length (or SIMD 

width) of the instruction or processor executing it. In Figure 16-11, our 

instruction stream runs with four-way SIMD execution.
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Figure 16-11. Instruction stream for SIMD execution

CPU processors are not the only processors that implement SIMD 

instruction sets. Other processors such as GPUs implement SIMD 

instructions to improve efficiency when processing large sets of data. A key 

difference with Intel Xeon CPU processors, compared with other processor 

types, is having three fixed-size SIMD register widths 128-bit XMM, 256-bit 

YMM, and 512-bit ZMM instead of a variable length of SIMD width. When 

we write SYCL code with SIMD parallelism using sub-group or vector types 

(see Chapter 11), we need to be mindful of SIMD width and the number of 

SIMD vector registers in the hardware.

 Ensure SIMD Execution Legality
Semantically, the SYCL execution model ensures that SIMD execution 

can be applied to any kernel, and a set of work-items in each work-group 

(i.e., a sub-group) may be executed concurrently using SIMD instructions. 

Some implementations may instead choose to execute loops within a 

kernel using SIMD instructions, but this is possible if and only if all original 

data dependences are preserved, or data dependences are resolved 

by the compiler based on privatization and reduction semantics. Such 

implementation would likely report a sub-group size of one.

A single SYCL kernel execution can be transformed from processing a 

single work-item to a set of work-items using SIMD instructions within the 

work-group. Under the ND-range model, the fastest-growing (unit-stride) 

dimension is selected by the compiler vectorizer on which to generate 

SIMD code. Essentially, to enable vectorization given an ND-range, there 
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should be no cross-work-item dependences between any two work-items 

in the same sub-group, or the compiler needs to preserve cross-work-item 

forward dependences in the same sub-group.

When the kernel execution of work-items is mapped to threads on 

CPUs, fine-grained synchronization is known to be costly, and the thread 

context switch overhead is high as well. It is therefore an important 

performance optimization to eliminate dependences between work- 

items within a work-group when writing a SYCL kernel for CPUs. Another 

effective approach is to restrict such dependences to the work-items 

within a sub-group, as shown for the read-before-write dependence in 

Figure 16-12. If the sub-group is executed under a SIMD execution model, 

the sub-group barrier in the kernel can be treated by the compiler as a no- 

op, and no real synchronization cost is incurred at runtime.
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const int n = 16, w = 16;

queue q;
range<2> G = {n, w};
range<2> L = {1, w};

int *a = malloc_shared<int>(n * (n + 1), q);

for (int i = 0; i < n; i++)
for (int j = 0; j < n + 1; j++) a[i * n + j] = i + j;

q.parallel_for(
nd_range<2>{G, L},
[=](nd_item<2> it) [[sycl::reqd_sub_group_size(w)]] {

// distribute uniform "i" over the sub-group with
// 16-way redundant computation
const int i = it.get_global_id(0);
sub_group sg = it.get_sub_group();

for (int j = sg.get_local_id()[0]; j < n; j += w) {
// load a[i*n+j+1:16] before updating a[i*n+j:16]
// to preserve loop-carried forward dependency
auto va = a[i * n + j + 1];
group_barrier(sg);
a[i * n + j] = va + i + 2;

}
group_barrier(sg);

})
.wait();

Figure 16-12. Using a sub-group to vectorize a loop with a forward 
dependence

The kernel is vectorized (with a vector length of 8 as an illustration), 

and its SIMD execution is shown in Figure 16-13. A work-group is formed 

with a group size of (1, 8), and the loop iterations inside the kernel are 

distributed over these sub-group work-items and executed with eight-way 

SIMD parallelism.
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Figure 16-13. SIMD vectorization for a loop with a forward 
dependence

In this example, if the loop in the kernel dominates the performance, 

allowing SIMD vectorization across the sub-group will result in a 

significant performance improvement.

The use of SIMD instructions that process data elements in parallel is 

one way to let the performance of the kernel scale beyond the number of 

CPU cores and hardware threads.

 SIMD Masking and Cost
In real applications, we can expect conditional statements such as an if 

statement, conditional expressions such as a = b > a? a: b, loops with 

a variable number of iterations, switch statements, and so on. Anything 

that is conditional may lead to scalar control flows not executing the same 

code paths and just like on a GPU (Chapter 15) can lead to decreased 

performance. A SIMD mask is a set of bits with the value 1 or 0, which is 

generated from conditional statements in a kernel. Consider an example 

with A={1, 2, 3, 4}, B={3, 7, 8, 1} and the comparison expression  

a < b. The comparison returns a mask with four values {1, 1, 1, 0} that 
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can be stored in a hardware mask register, to dictate which lanes of later 

SIMD instructions should execute the code that was guarded (enabled) by 

the comparison.

If a kernel contains conditional code, it is vectorized with masked 

instructions that are executed based on the mask bits associated with each 

data element (lane in the SIMD instruction). The mask bit for each data 

element is the corresponding bit in a mask register.

Using masking may result in lower performance than corresponding 

non-masked code. This may be caused by

• An additional mask blend operation on each load

• Dependence on the destination

Masking has a cost, so use it only when necessary. When a kernel is an 

ND-range kernel with explicit groupings of work-items in the execution 

range, care should be taken when choosing an ND-range work-group size 

to maximize SIMD efficiency by minimizing masking cost. When a work- 

group size is not evenly divisible by a processor’s SIMD width, part of the 

work-group may execute with masking for the kernel.

Figure 16-14 shows how using merge masking creates a dependence 

on the destination register:

• With no masking, the processor executes two multiplies 

(vmulps) per cycle.

• With merge masking, the processor executes two 

multiplies every four cycles as the multiply instruction 

(vmulps) preserves results in the destination register as 

shown in Figure 16-17.

• Zero masking doesn’t have a dependence on the 

destination register and therefore can execute two 

multiplies (vmulps) per cycle.
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Figure 16-14. Three masking code generations for masking in kernel

Accessing cache-aligned data gives better performance than accessing 

nonaligned data. In many cases, the address is not known at compile 

time or is known and not aligned. When working with loops, a peeling on 

memory accesses may be implemented, to process the first few elements 

using masked accesses, up to the first aligned address, and then to process 

unmasked accesses followed by a masked remainder, through multi- 

versioning techniques. This method increases code size, but improves 

data processing overall. When working with parallel kernels, we as 

programmers can improve performance by employing similar techniques 

by hand, or by ensuring that allocations are appropriately aligned to 

improve performance.

 Avoid Array of Struct for SIMD Efficiency
AOS (Array-of-Struct) structures lead to gathers and scatters, which 

can both impact SIMD efficiency and introduce extra bandwidth and 

latency for memory accesses. The presence of a hardware gather–scatter 

mechanism does not eliminate the need for this transformation—gather–

scatter accesses commonly need significantly higher bandwidth and 

latency than contiguous loads. Given an AOS data layout of struct {float 

x; float y; float z; float w;} a[4], consider a kernel operating on it 

as shown in Figure 16-15.
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cgh.parallel_for<class aos<T>>(numOfItems,[=](id<1> wi) {
x[wi] = a[wi].x; // lead to gather x0, x1, x2, x3
y[wi] = a[wi].y; // lead to gather y0, y1, y2, y3
z[wi] = a[wi].z; // lead to gather z0, z1, z2, z3
w[wi] = a[wi].w; // lead to gather w0, w1, w2, w3

});

Figure 16-15. SIMD gather in a kernel

When the compiler vectorizes the kernel along a set of work-items, it 

leads to SIMD gather instruction generation due to the need for non-unit- 

stride memory accesses. For example, the stride of a[0].x, a[1].x, a[2].x, 

and a[3].x is 4, not a more efficient unit-stride of 1.

 

In a kernel, we can often achieve a higher SIMD efficiency by 

eliminating the use of memory gather–scatter operations. Some code 

benefits from a data layout change that converts data structures written 

in an Array-of-Struct (AOS) representation to a Structure-of-Arrays (SOA) 

representation, that is, having separate arrays for each structure field to 

keep memory accesses contiguous when SIMD vectorization is performed. 

For example, consider a SOA data layout of struct {float x[4]; float 

y[4]; float z[4]; float w[4];} a; as shown here:

 

A kernel can operate on the data with unit-stride (contiguous) vector 

loads and stores as shown in Figure 16-16, even when vectorized!
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cgh.parallel_for<class aos<T>>(numOfItems,[=](id<1> wi) {
x[wi] = a.x[wi]; // lead to unit-stride vector load x[0:4]
y[wi] = a.y[wi]; // lead to unit-stride vector load y[0:4]
z[wi] = a.z[wi]; // lead to unit-stride vector load z[0:4]
w[wi] = a.w[wi]; // lead to unit-stride vector load w[0:4]

});

Figure 16-16. SIMD unit-stride vector load in a kernel

The SOA data layout helps prevent gathers when accessing one field of 

the structure across the array elements and helps the compiler to vectorize 

kernels over the contiguous array elements associated with work-items. 

Note that such AOS-to-SOA or AOSOA data layout transformations are 

expected to be done at the program level (by us) considering all the 

places where those data structures are used. Doing it at just a loop level 

will involve costly transformations between the formats before and after 

the loop. However, we may also rely on the compiler to perform vector- 

load- and-shuffle optimizations for AOS data layouts with some cost. 

When a member of SOA (or AOS) data layout has a vector type, compiler 

vectorization may perform either horizontal expansion or vertical 

expansion based on underlying hardware to generate optimal code.

 Data Type Impact on SIMD Efficiency
C++ programmers often use integer data types whenever they know that 

the data fits into a 32-bit signed type, often leading to code such as

int id = get_global_id(0); a[id] = b[id] + c[id];

However, given that the return type of the get_global_id(0) is 

size_t (unsigned integer, often 64-bit), the conversion may reduce the 

optimization that a compiler can legally perform. This can then lead to 

SIMD gather/scatter instructions when the compiler vectorizes the code in 

the kernel, for example:
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• Read of a[get_global_id(0)] may lead to a SIMD 

unit-stride vector load.

• Read of a[(int)get_global_id(0)] may lead to a non- 

unit- stride gather instruction.

This nuanced situation is introduced by the wraparound behavior 

(unspecified behavior and/or well-defined wraparound behavior in C++ 

standards) of data type conversion from size_t to int (or uint), which 

is mostly a historical artifact from the evolution of C-based languages. 

Specifically, overflow across some conversions is undefined behavior, 

which allows the compiler to assume that such conditions never happen 

and to optimize more aggressively. Figure 16-17 shows some examples for 

those wanting to understand the details.

SIMD gather/scatter instructions are slower than SIMD unit-stride 

vector load/store operations. To achieve an optimal SIMD efficiency, 

avoiding gathers/scatters can be critical for an application regardless of 

which programming language is used.

Most SYCL get_*_id() family functions have the same detail, although 

many cases fit within MAX_INT because the possible return values are 

bounded (e.g., the maximum id within a work-group). Thus, whenever 

legal, SYCL compilers can assume unit-stride memory addresses across 

the chunk of neighboring work-items to avoid gathers/scatters. For cases 

get_global_id(0) a[(int)get_global_id(0)] get_global_id(0)a((uint)get_global_id(0)]

0x7FFFFFFE a[MAX_INT-1] 0xFFFFFFFE a[MAX_UINT-1]

0x7FFFFFFF a[MAX_INT (big 
positive)]

0xFFFFFFFF a[MAX_UINT]

0x80000000 a[MIN_INT (big 
negative)]

0x100000000 a[0]

0x80000001 a[MIN_INT+1] Ox100000001 a[1]

Figure 16-17. Examples of integer type value wraparound
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that the compiler can’t safely generate linear unit-stride vector memory 

loads/stores because of possible overflow from the value of global IDs and/

or derivative value from global IDs, the compiler will generate gathers/

scatters.

Under the philosophy of delivering optimal performance for users, 

the DPC++ compiler assumes no overflow, and captures the reality almost 

all of the time in practice, so the compiler can generate optimal SIMD 

code to achieve good performance. However, a compiler option -fno- 

sycl- id-queries-fit-in-int is provided by the DPC++ compiler for 

us to tell the compiler that there will be an overflow and that vectorized 

accesses derived from the id queries may not be safe. This can have large 

performance impact and should be used whenever unsafe to assume no 

overflow. The key takeaway is that a programmer should ensure the value 

of global ID fit in 32-bit int. Otherwise, the compiler option -fno-sycl-id- 

queries-fit-in-int should be used to guarantee program correctness, 

which may result in a lower performance.

 SIMD Execution Using single_task
Under a single-task execution model, there are no work-items to vectorize 

over. Optimizations related to the vector types and functions may be 

possible, but this will depend on the compiler. The compiler and runtime 

are given a freedom either to enable explicit SIMD execution or to choose 

scalar execution within the single_task kernel, and the result will depend 

on the compiler implementation.

C++ compilers may map vector types occurring inside of a single_

task to SIMD instructions when compiling to CPU. The vec load, store, 

and swizzle functions perform operations directly on vector variables, 

informing the compiler that data elements are accessing contiguous data 

starting from the same (uniform) location in memory and enabling us 

to request optimized loads/stores of contiguous data. As discussed in 
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Chapter 11, this interpretation of vec is valid—however, we should expect 

this functionality to be deprecated, eventually, in favor of a more explicit 

vector type (e.g., std::simd) once available.

In the example shown in Figure 16-18, under single-task execution, 

a vector with three data elements is declared. A swizzle operation is 

performed with old_v.abgr(). If a CPU provides SIMD hardware 

instructions for some swizzle operations, we may achieve some 

performance benefits of using swizzle operations in applications.

SIMD VECTORIZATION GUIDELINES

CpU processors implement simD instruction sets with different simD widths. 

in many cases, this is an implementation detail and is transparent to the 

application executing kernels on the CpU, as the compiler can determine an 

efficient group of data elements to process with a specific simD size rather 

queue q;

bool *resArray = malloc_shared<bool>(1, q);
resArray[0] = true;

q.single_task([=]() {
sycl::vec<int, 4> old_v =

sycl::vec<int, 4>(0, 100, 200, 300);
sycl::vec<int, 4> new_v = sycl::vec<int, 4>();

new_v.rgba() = old_v.abgr();
int vals[] = {300, 200, 100, 0};

if (new_v.r() != vals[0] || new_v.g() != vals[1] ||
new_v.b() != vals[2] || new_v.a() != vals[3]) {

resArray[0] = false;
}

}).wait();

Figure 16-18. Using vector types and swizzle operations in the 
single_task kernel
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than requiring us to use the simD instructions explicitly. sub-groups may be 

used to more directly express cases where the grouping of data elements 

should be subject to simD execution in kernels.

given computational complexity, selecting the code and data layouts that are 

most amenable to vectorization may ultimately result in higher performance. 

While selecting data structures, try to choose a data layout, alignment, and 

data width such that the most frequently executed calculation can access 

memory in a simD-friendly manner with maximum parallelism, as described in 

this chapter.

 Summary
To get the most out of thread-level parallelism and SIMD vector-level 

parallelism on CPUs, we need to keep the following goals in mind:

• Be familiar with all types of SYCL parallelism and the 

underlying CPU architectures that we wish to target.

• Exploit the right amount of parallelism—not more and 

not less—at a thread level that best matches hardware 

resources. Use vendor tooling, such as analyzers and 

profilers, to help guide our tuning work to achieve this.

• Be mindful of thread affinity and memory first touch 

impact on program performance.

• Design data structures with a data layout, alignment, 

and data width such that the most frequently executed 

calculations can access memory in a SIMD-friendly 

manner with maximum SIMD parallelism.

• Be mindful of balancing the cost of masking vs. code 

branches.
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Open Access  This chapter is licensed under the terms of 

the Creative Commons Attribution 4.0 International License 

(https://creativecommons.org/licenses/by/4.0/), which permits use, 

sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and 

the source, provide a link to the Creative Commons license and indicate if 

changes were made.

The images or other third party material in this chapter are included 

in the chapter’s Creative Commons license, unless indicated otherwise 

in a credit line to the material. If material is not included in the chapter’s 

Creative Commons license and your intended use is not permitted by 

statutory regulation or exceeds the permitted use, you will need to obtain 

permission directly from the copyright holder.

• Use a clear programming style that minimizes potential 

memory aliasing and side effects.

• Be aware of the scalability limitations of using vector 

types and interfaces. If a compiler implementation 

maps them to hardware SIMD instructions, a fixed 

vector size may not match the SIMD width of SIMD 

registers well across multiple generations of CPUs and 

CPUs from different vendors.
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CHAPTER 17

Programming for  
FPGAs
Kernel-based programming originally became popular as a way to access 

GPUs. Since it has now been generalized across many types of accelerators, 

it is important to understand how our style of programming affects the 

mapping of code to an FPGA as well.

Field-programmable gate arrays (FPGAs) are unfamiliar to the majority of 

software developers, in part because most desktop computers don’t include 

an FPGA alongside the typical CPU and GPU. But FPGAs are worth knowing 

about because they offer advantages in many applications. The same 

questions need to be asked as we would of other accelerators, such as “When 

should I use an FPGA?”, “What parts of my applications should be offloaded to 

FPGA?”, and “How do I write code that performs well on an FPGA?”

This chapter gives us the knowledge to start answering those 

questions, at least to the point where we can decide whether an FPGA 

is interesting for our applications, and to know which constructs are 

commonly used to achieve performance. This chapter is the launching 

point from which we can then read vendor documentation to fill in details 

for specific products and toolchains. We begin with an overview of how 

programs can map to spatial architectures such as FPGAs, followed by 

discussion of some properties that make FPGAs a good choice as an 

accelerator, and we finish by introducing the programming constructs 

used to achieve performance.
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The “How to Think About FPGAs” section in this chapter is applicable 

to thinking about any FPGA. SYCL allows vendors to specify devices 

beyond CPUs and GPUs but does not specifically say how to support an 

FPGA. The specific vendor support for FPGAs described in this chapter 

is currently unique to DPC++, namely, FPGA selectors and pipes. FPGA 

selectors and pipes are the only DPC++ extensions used in this chapter. 

It is hoped that vendors will converge on similar or compatible means of 

supporting FPGAs, and this is encouraged by DPC++ as an open source 

project.

 Performance Caveats
As with any processor or accelerator, FPGA devices differ from vendor to 

vendor or even from product generation to product generation; therefore, 

best practices for one device may not be best practices for a different 

device. The advice in this chapter is likely to benefit many FPGA devices, 

both now and in the future, however…

…to achieve optimal performance for a particular FPGA, always 
consult the vendor’s documentation!

 How to Think About FPGAs
FPGAs are commonly classified as a spatial architecture. They benefit from 

very different coding styles and forms of parallelism than devices that use 

an Instruction Set Architecture (ISA), including CPUs and GPUs, which are 

more familiar to most people. To get started forming an understanding of 

FPGAs, we’ll briefly cover some ideas from ISA-based accelerators, so that 

we can highlight key differences.
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For our purposes, an ISA-based accelerator is one where the device 

can execute many different instructions, one or a few at a time. The 

instructions are usually relatively primitive such as “load from memory at 

address A” or “add the following numbers.” A chain of operations is strung 

together to form a program, and the processor conceptually executes one 

instruction after the other.

In an ISA-based accelerator, a single region of a chip (or the entire 

chip) executes a different instruction from the program in each clock 

cycle. The instructions execute on a fixed hardware architecture that can 

run different instructions at different times, such as shown in Figure 17-1. 

For example, the memory load unit feeding an addition is probably 

the same memory load unit used to feed a subtraction. Similarly, the 

same arithmetic unit is probably used to execute both the addition and 

subtraction instructions. Hardware on the chip is reused by different 

instructions as the program executes over time.

Figure 17-1. Simple ISA-based (temporal) processing: reuses 
hardware (regions) over time

Spatial architectures are different. Instead of being based around 

a machine that executes a variety of instructions on shared hardware, 

they start from the opposite perspective. Spatial implementations of a 
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program conceptually take the entire program as a whole and lay it down 

at once on the device. Different regions of the device implement different 

instructions in the program. This is in many ways the opposite perspective 

from sharing hardware between instructions over time (e.g., ISA)—in 

spatial architectures, each instruction receives its own dedicated hardware 

that can execute simultaneously (same clock cycle) as the hardware 

implementing the other instructions. Figure 17-2 shows this idea which is 

a spatial implementation of an entire program (a very simple program in 

this example).

Figure 17-2. Spatial processing: Each operation uses a different 
region of the device

This description of a spatial implementation of a program is overly 

simplistic, but it captures the idea that in spatial architectures, different 

parts of the program execute on different parts of the device, as opposed to 

being issued over time to a shared set of more general-purpose hardware.

With different regions of an FPGA programmed to perform distinct 

operations, some of the hardware typically associated with ISA-based 

accelerators is unnecessary. For example, Figure 17-2 shows that we no 

longer need an instruction fetch or decode unit, program counter, or 
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register file. Instead of storing data for future instructions in a register file, 

spatial architectures connect the output of one instruction to the input 

of the next, which is why spatial architectures are often called data flow 

architectures.

A few obvious questions arise from the mapping to FPGA that we’ve 

introduced. First, since each instruction in the program occupies some 

percentage of the spatial area of the device, what happens if the program 

requires more than 100% of the area? Some solutions provide resource 

sharing mechanisms to enable larger programs to fit at a performance 

cost, but FPGAs do have the concept of a program fitting. This is both an 

advantage and a disadvantage:

• The benefit: If a program uses most of the area on 

the FPGA and there is sufficient work to keep all of 

the hardware busy every clock cycle, then executing 

a program on the device can be incredibly efficient 

because of the extreme parallelism. More general 

architectures may have significant unused hardware 

per clock cycle, whereas with an FPGA, the use of 

area can be perfectly tailored to a specific application 

without waste. This customization can allow 

applications to run faster through massive parallelism, 

usually with compelling energy efficiency.

• The downside: Large programs may have to be tuned 

and restructured to fit on a device. Resource sharing 

features of compilers can help to address this, but 

usually with some degradation in performance that 

reduces the benefit of using an FPGA. ISA-based 

accelerators are very efficient resource sharing 

implementations—FPGAs prove most valuable 

for compute primarily when an application can be 

architected to utilize most of the available area.
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Taken to the extreme, resource sharing solutions on an FPGA lead 

to an architecture that looks like an ISA-based accelerator, but that is 

built in reconfigurable logic instead being optimized in fixed silicon. The 

reconfigurable logic leads to overhead relative to a fixed silicon design—

therefore, FPGAs are not typically chosen as ways to implement ISAs. 

FPGAs are of prime benefit when an application is able to utilize the 

resources to implement efficient data flow algorithms more directly, which 

we cover in the coming sections.

 Pipeline Parallelism
Another question that often arises from Figure 17-2 is how the spatial 

implementation of a program relates to a clock frequency and how quickly 

a program will execute from start to finish. In the example shown, it’s easy 

to believe that data could be loaded from memory, have multiplication 

and addition operations performed, and have the result stored back 

into memory, quite quickly. As the program becomes larger, potentially 

with tens of thousands of operations across the FPGA device, it becomes 

apparent that for all of the instructions to operate one after the other 

(operations often depend on results produced by previous operations), it 

might take significant time given the processing delays introduced by each 

operation.

Intermediate results between operations are updated (propagated) 

over time in a spatial architecture as shown in Figure 17-3. For example, 

the load executes and then passes its result into the multiplier, whose 

result is then passed into the adder and so on. After some amount of time, 

the intermediate data has propagated all the way to the end of the chain of 

operations, and the final result is available or stored to memory.
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Figure 17-3. Propagation time of a naïve spatial compute 
implementation

A spatial implementation as shown in Figure 17-3 is quite inefficient, 

because most of the hardware is only doing useful work a small percentage 

of the time. Most of the time, an operation such as the multiply is 

either waiting for new data from the load or holding its output so that 

operations later in the chain can use its result. Most spatial compilers and 

implementations address this inefficiency by pipelining, which means that 

execution of a single program is spread across many clock cycles. This is 

achieved by inserting registers (a data storage primitive in the hardware) 

between some operations, where each register holds a binary value for the 

duration of a clock cycle. By holding the result of an operation’s output so 

that the next operation in the chain can see and operate on that held value, 

the previous operation is free to work on a different computation without 

impacting the input to following operations.

The goal of algorithmic pipelining is to keep every operation (hardware 

unit) busy for the majority of every clock cycle. Figure 17-4 shows a 

pipelined implementation of the previous simple example. Keep in mind 

that the compiler does all of this pipelining and balancing for us! We cover 
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this topic so that we can understand how to fill the pipeline with work 

in the coming sections, not because we need to worry about manually 

pipelining anything in our code.

Figure 17-4. Pipelining of a computation: Stages execute in parallel

When a spatial implementation is pipelined, it becomes extremely 

efficient in the same way as a factory assembly line. Each pipeline stage 

performs only a small amount of the overall work, but it does so quickly 

and then begins to work on the next unit of work immediately afterward. 

It takes many clock cycles for a single computation to be processed by the 

pipeline, from start to finish, but the pipeline can compute many different 

instances of the computation on different data simultaneously.

When enough work starts executing in the pipeline, over enough 

consecutive clock cycles, then every single pipeline stage and therefore 

operation in the program can perform useful work during every 

clock cycle, meaning that the entire spatial device performs work 

simultaneously. This is one of the powers of spatial architectures—the 

entire device can execute work in parallel, all of the time. We call this 

pipeline parallelism.
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Pipeline parallelism is the primary form of parallelism exploited 
on FPGAs to achieve performance.

PIPELINING IS AUTOMATIC 

in the DPC++ implementation of sYCL for FPGAs, and in other high-level 

programming solutions for FPGAs, the pipelining of an algorithm is performed 

automatically by the compiler. it is useful to roughly understand the 

implementation on spatial architectures, as described in this section, because 

then it becomes easier to structure applications to take advantage of the 

pipeline parallelism. it should be made clear that pipeline register insertion and 

balancing is performed by the compiler and not manually by developers.

Real programs and algorithms often have control flow (e.g., if/else 

structures) that leaves some parts of the program inactive a certain 

percentage of the clock cycles. FPGA compilers typically perform 

optimizations that allow both sides of a branch to share the same hardware 

resources when it is possible, to minimize wasted spatial area and to 

maximize compute efficiency during control flow divergence. This makes 

control flow divergence much less expensive and less of a development 

concern than on other, especially vectorized architectures.

 Kernels Consume Chip “Area”
In existing implementations, each kernel in a SYCL application generates a 

spatial pipeline that consumes some resources of the FPGA (we can think 

about this as space or area on the device), which is conceptually shown in 

Figure 17-5.
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Figure 17-5. Multiple kernels in the same FPGA binary: Kernels can 
run concurrently

Since a kernel uses its own area on the device, different kernels can 

execute concurrently. If one kernel is waiting for something such as 

a memory access, other kernels on the FPGA can continue executing 

because they are independent pipelines elsewhere on the chip. This idea, 

more formally described as independent forward progress across kernels, 

is a critical property of FPGA spatial compute.

 When to Use an FPGA
Like any accelerator architecture, predicting when an FPGA is the right 

choice of accelerator vs. an alternative often comes down to knowledge 

of the architecture, the application characteristics, and the system 

bottlenecks. This section describes some of the characteristics of an 

application to consider.

 Lots and Lots of Work
Like most modern compute accelerators, achieving good performance 

requires a large amount of work to be performed. If computing a single 

result from a single element of data, then it may not be useful to leverage 
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an accelerator at all (of any kind). This is no different with FPGAs. Knowing 

that FPGA compilers leverage pipeline parallelism makes this more 

apparent. A pipelined implementation of an algorithm has many stages, 

often thousands or more, each of which should have different work within 

it in any clock cycle. If there isn’t enough work to occupy most of the 

pipeline stages most of the time, then efficiency will be low. We’ll call the 

average utilization of pipeline stages over time occupancy of the pipeline. 

This is different from the definition of occupancy used when optimizing 

other architectures such as GPUs!

There are multiple ways to generate work on an FPGA to fill the 

pipeline stages, which we’ll cover in coming sections.

 Custom Operations or Operation Widths
FPGAs were originally designed to perform efficient integer and bitwise 

operations and to act as glue logic that could adapt interfaces of other 

chips to work with each other. Although FPGAs have evolved into 

computational powerhouses instead of just glue logic solutions, they are 

still very efficient at bitwise operations, integer math operations on custom 

data widths or types, and operations on arbitrary bit fields in packet 

headers, for example.

The fine-grained architecture of an FPGA, described at the end of 

this chapter, means that novel and arbitrary data types can be efficiently 

implemented. For example, if we need a 33-bit integer multiplier or a 

129-bit adder, FPGAs can provide these custom operations with great 

efficiency. Because of this flexibility, FPGAs are commonly employed in 

rapidly evolving domains, such as recently in artificial intelligence, where 

the data widths and operations have been changing faster than can be 

built into ASICs.

ChAPter 17  ProGrAmminG For FPGAs 



462

 Scalar Data Flow
An important aspect of FPGA spatial pipelines, apparent from Figure 17-4, 

is that the intermediate data between operations not only stays on-chip 

(is not stored to external memory), but that intermediate data between 

each pipeline stage has dedicated storage registers. FPGA parallelism 

often comes primarily from pipelining of computation such that many 

operations are being executed concurrently, each at a different stage 

of the pipeline. This results in scalar data flow being the common 

implementation (under the hood) even in arithmetically intense regions of 

a program and is fundamentally different from vector architectures where 

multiple computations are executed as lanes of a shared vector instruction.

The scalar nature of the parallelism in a spatial pipeline is important 

for many applications because it still applies even with tight data 

dependences across the units of work. These data dependences can 

be handled without loss of performance, as we will discuss later in this 

chapter when talking about loop-carried dependences. The result is that 

spatial pipelines, and therefore FPGAs, are a compelling architecture 

to target for algorithms where data dependences across units of work 

(such as work-items) can’t be broken and fine-grained communication 

must occur. Many optimization techniques for other accelerators focus 

on breaking these dependences through various complex approaches or 

managing communication at controlled scales through features such as 

sub-groups. FPGAs can instead perform well with communication through 

tight dependences and should be on your mind when working with classes 

of algorithms where such patterns exist.

LOOPS ARE FINE! 

A common misconception on data flow architectures is that loops with 

either fixed or dynamic iteration counts lead to poor data flow performance 

because they aren’t simple feed-forward pipelines. At least with the intel 
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FPGA toolchains, this is not true. Loop iterations can instead be a good way to 

produce high occupancy within the pipeline, and the compilers are built around 

the concept of allowing multiple loop iterations to execute in an overlapped 

way. Loops provide an easy mechanism to keep the pipeline busy with work!

 Low Latency and Rich Connectivity
More conventional uses of FPGAs which take advantage of the rich input 

and output transceivers on the devices apply equally well for developers 

using SYCL. For example, as shown in Figure 17-6, some FPGA accelerator 

cards have network interfaces that make it possible to stream data directly 

into the device, process it, and then stream the result directly back to the 

network. Such systems are often sought when processing latency needs to 

be minimized and where processing through operating system network 

stacks is too slow or needs to be offloaded to free CPU processing cycles.

Figure 17-6. Low-latency I/O streaming: FPGA connects network 
data and computation tightly

The opportunities are almost limitless when considering direct input/

output through FPGA transceivers, but the options do come down to 

what is available on the circuit board that forms an accelerator. Because 

of the dependence on a specific accelerator card and variety of such uses, 
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aside from describing the pipe language constructs in a coming section, 

this chapter doesn’t dive into these applications. We should instead read 

the vendor documentation associated with a specific accelerator card or 

search for an accelerator card that matches our specific interface needs.

 Customized Memory Systems
Memory systems on an FPGA, such as function private or work-group 

local memory, are built out of small blocks of on-chip memory. This is 

important because each memory system is custom built for the specific 

portion of an algorithm or kernel using it. FPGAs have significant on- 

chip memory bandwidth, and combined with the formation of custom 

memory systems, they can perform very well on applications that have 

atypical access patterns and structures. Figure 17-7 shows some of the 

optimizations that can be performed by the compiler when a memory 

system is implemented on an FPGA.

Figure 17-7. FPGA memory systems are customized by the compiler 
for our specific code

Other architectures such as GPUs have fixed memory structures that 

are easy to reason about by experienced developers, but that can also be 

hard to optimize around in many cases. Many optimizations on other 

accelerators are focused on memory pattern modification to avoid bank 

conflicts, for example. If we have algorithms that would benefit from a 
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custom memory structure, such as a different number of access ports per 

bank or an unusual number of banks, then FPGAs can offer immediate 

advantages. Conceptually, the difference is between writing code to use a 

fixed memory system efficiently (most other accelerators) vs. having the 

memory system custom designed by the compiler to be efficient with our 

specific code (FPGA).

 Running on an FPGA
There are two steps to run a kernel on an FPGA (as with any ahead-of-time 

compilation accelerator):

• Compiling the source to a binary which can be run on 

our hardware of interest

• Selecting the correct accelerator that we are interested 

in at runtime

To compile kernels so that they can run on FPGA hardware, we can use 

the command line:

icpx -fsycl -fintelfpga my_source_code.cpp -Xshardware

This command tells the compiler to turn all kernels in my_source_

code.cpp into binaries that can run on an Intel FPGA accelerator and then 

to package them within the host binary that is generated. When we execute 

the host binary (e.g., by running ./a.out on Linux), the runtime will 

automatically program any attached FPGA as required, before executing 

the submitted kernels, as shown in Figure 17-8.
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Figure 17-8. FPGA programmed automatically at runtime

FPGA programming binaries are embedded within the compiled 
DPC++ executable that we run on the host. the FPGA is automatically 
configured behind the scenes for us.

When we run a host program and submit the first kernel for execution 
on an FPGA, there might be a slight delay before the kernel begins 
executing, while the FPGA is programmed. resubmitting kernels for 
additional executions won’t see the same delay because the kernel is 
already programmed to the device and ready to run.
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Selection of an FPGA device at runtime was covered in Chapter 2. We 

need to tell the host program where we want kernels to run because there 

are typically multiple accelerator options available, such as a CPU and 

GPU, in addition to the FPGA. To quickly recap one method to select an 

FPGA during program execution, we can use code like that in Figure 17-9.

 
#include <sycl/ext/intel/fpga_extensions.hpp>  // For fpga_selector_v 
#include <sycl/sycl.hpp> 
using namespace sycl; 
 
void say_device(const queue& q) { 
  std::cout << "Device : " 
            << q.get_device().get_info<info::device::name>() 
            << "\n"; 
} 
 
int main() { 
  queue q{ext::intel::fpga_selector_v}; 
  say_device(q); 
 
  q.submit([&](handler& h) { 
    h.parallel_for(1024, [=](auto idx) { 
      // ... 
    }); 
  }); 
 
  return 0; 
} 

Figure 17-9. Choosing an FPGA device at runtime using the fpga_
selector

 Compile Times
Rumors abound that compiling designs for an FPGA can take a long time, 

much longer than compiling for ISA-based accelerators. The rumors are 

true! The end of this chapter overviews the fine-grained architectural 

elements of an FPGA that lead to both the advantages of an FPGA and the 

computationally intensive compilation (place-and-route optimizations) 

that can take hours in some cases.
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The compile time from source code to FPGA hardware execution 

is long enough that we don’t want to develop and iterate on our code 

exclusively in hardware. FPGA development flows offer several stages that 

minimize the number of hardware compilations, to make us productive 

despite the hardware compile times. Figure 17-10 shows the typical 

stages, where most of our time is spent on the early steps that provide fast 

turnaround and rapid iteration.

Figure 17-10. Most verification and optimizations occur prior to 
lengthy hardware compilation

Emulation and static reports from the compiler are the cornerstones 

of FPGA code development in DPC++. The emulator acts as if it was 

an FPGA, including supporting relevant extensions and emulating the 

execution model, but runs on the host processor. Compilation time 

is therefore the same as we would expect from compilation to a CPU 

device, although we won’t see the performance boost that we would from 

execution on actual FPGA hardware. The emulator is great for establishing 

and testing functional correctness in an application.
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Static reports, like emulation, are generated quickly by the toolchain. 

They report on the FPGA structures created by the compiler and on 

bottlenecks identified by the compiler. Both of these can be used to predict 

whether our design will achieve good performance when run on FPGA 

hardware and are used to optimize our code. Please read the vendor’s 

documentation for information on the reports, which are often improved 

from release to release of a toolchain (see documentation for the latest 

and greatest features!). Extensive documentation is provided by vendors 

on how to interpret and optimize based on the reports. This information 

would be the topic of another book, so we can’t dive into details in this 

single chapter.

 The FPGA Emulator
Emulation is primarily used to functionally debug our application, to make sure 

that it behaves as expected and produces correct results. There is no reason to 

do this level of development on actual FPGA hardware where compile times 

are longer. The emulation flow is activated by removing the -Xshardware  

flag from the icpx compilation command and at the same time using 

INTEL::fpga_emulator_selector_v instead of INTEL::fpga_selector_v in 

our host code. We would compile using a command like

icpx -fsycl -fintelfpga my_source_code.cpp

By using fpga_emulator_selector_v, which uses the host processor 

to emulate an FPGA, we maintain a rapid development and debugging 

process before we have to commit to the lengthier compile for actual 

FPGA hardware. An example of using INTEL::fpga_emulator_selector_v 

instead of INTEL::fpga_selector_v is shown in Figure 17-11.
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#include <sycl/ext/intel/fpga_extensions.hpp> // For fpga_selector_v
#include <sycl/sycl.hpp>
using namespace sycl; 

void say_device(const queue& q) {
std::cout << "Device : "

<< q.get_device().get_info<info::device::name>()
<< "\n"; 

} 

int main() {
queue q{ext::intel::fpga_emulator_selector_v};
say_device(q);

q.submit([&](handler& h) {
h.parallel_for(1024, [=](auto idx) {

// ...
});

});

return 0; 
} 

Figure 17-11. Using fpga_emulator_selector_v for rapid 
development and debugging

 FPGA Hardware Compilation Occurs 
“Ahead- of-Time”
The Full Compile and Hardware Profiling stage in Figure 17-10 is an ahead- 

of- time compile in SYCL terminology. This means that the compilation of 

the kernel to a device binary occurs when we initially compile our program 

and not when the program is submitted to a device to be run. On an FPGA, 

this is particularly important because

• Compilation takes a length of time that we don’t 

normally want to incur when running an application.

• DPC++ programs may be executed on systems that 

don’t have a capable host processor. The compilation 

process to an FPGA binary benefits from a fast 
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processor with a good amount of attached memory. 

Ahead-of-time compilation lets us easily choose 

where the compile occurs, rather than having it run on 

systems where the program is deployed.

A LOT HAPPENS BEHIND THE SCENES WITH DPC++ ON AN FPGA! 

Conventional FPGA design (not using a high-level language) can be very 

complicated. there are many steps beyond just writing our kernel, such 

as building and configuring the interfaces that communicate with off-chip 

memories and closing timing by inserting registers needed to make the 

compiled design run fast enough to communicate with certain peripherals. 

DPC++ solves all of this for us, so that we don’t need to know anything about 

the details of conventional FPGA design to achieve working applications! 

the tooling treats our kernels as code to optimize and make efficient on the 

device and then automatically handles all of the details of talking to off-chip 

peripherals, closing timing, and setting up drivers for us.

Achieving peak performance on an FPGA still requires detailed knowledge of 

the architecture, just like any other accelerator, but the steps to move from 

code to a working design are much simpler and more productive with DPC++ 

than in traditional FPGA flows.

 Writing Kernels for FPGAs
Once we have decided to use an FPGA for our application or even just 

decided to try one out, having an idea of how to write code to see good 

performance is important. This section highlights important concepts 

and covers a few topics that often cause confusion, to make getting 

started faster.
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 Exposing Parallelism
We have already looked at how pipeline parallelism is used to efficiently 

perform work on an FPGA. Another simple pipeline example is shown in 

Figure 17-12.

Figure 17-12. Simple pipeline with five stages: six clock cycles to 
process an element of data

In this pipeline, there are five stages. Data moves from one stage to the 

next once per clock cycle, so in this very simple example, it takes six clock 

cycles from when data enters into stage 1 until it exits from stage 5.

A major goal of pipelining is to enable multiple elements of data to be 

processed at different stages of the pipeline, simultaneously. To be sure 

that this is clear, Figure 17-13 shows a pipeline where there is not enough 

work (only one element of data in this case), which causes each pipeline 

stage to be unused during most of the clock cycles. This is an inefficient 

use of the FPGA resources because most of the hardware is idle most of 

the time.
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Figure 17-13. Pipeline stages are mostly unused if processing only a 
single element of work

To keep the pipeline stages better occupied, it is useful to imagine a 

queue of un-started work waiting before the first stage, which feeds the 

pipeline. In each clock cycle, the pipeline can consume and start one more 

element of work from the queue, as shown in Figure 17-14. After some 

initial startup cycles, each stage of the pipeline is occupied and doing 

useful work every clock cycle, leading to efficient utilization of the FPGA 

resources.
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Figure 17-14. Efficient utilization comes when each pipeline stage is 
kept busy

The following two sections cover methods to keep the queue feeding 

the pipeline filled with work that is ready to start. We’ll look at

 1. ND-range kernels

 2. Loops

Choosing between these options impacts how kernels that run on an 

FPGA should be fundamentally architected. In some cases, algorithms 

lend themselves well to one style or the other, and in other cases 

programmer preference and experience inform which method should 

be chosen.
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 Keeping the Pipeline Busy Using ND-Ranges
The ND-range hierarchical execution model was described in Chapter 4. 

Figure 17-15 illustrates the key concepts: an ND-range execution model 

where there is a hierarchical grouping of work-items, and where a work- 

item is the primitive unit of work that a kernel defines. This model was 

originally developed to enable efficient programming of GPUs where 

work-items may execute concurrently at various levels of the execution 

model hierarchy. To match the type of work that GPU hardware is efficient 

at, ND-range work-items do not frequently communicate with each other 

in most applications.

Figure 17-15. ND-range execution model: a hierarchical grouping of 
work-items

The FPGA spatial pipeline can be very efficiently filled with work using 

an ND-range. This programming style is fully supported on FPGA, and 

we can think of it as depicted in Figure 17-16 where on each clock cycle, a 

different work-item enters the first stage of the pipeline.
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Figure 17-16. ND-range feeding a spatial pipeline

When should we create an ND-range kernel on an FPGA using 

work-items to keep the pipeline occupied? It’s simple. Whenever we can 

structure our algorithm or application as independent work-items that 

don’t need to communicate often (or ideally at all), we should use ND- 

range! If work-items do need to communicate often or if we don’t naturally 

think in terms of ND-ranges, then loops (described in the next section) 

provide an efficient way to express our algorithm as well.

if we can structure our algorithm so that work-items don’t need 
to communicate much (or at all), then nD-range is a great way to 
generate work to keep the spatial pipeline full!

ChAPter 17  ProGrAmminG For FPGAs 



477

A good example of a kernel that is efficient with an ND-range feeding 

the pipeline is a random number generator, with an algorithm where 

creation of numbers in the sequence is independent of the previous 

numbers generated.

Figure 17-17 shows an ND-range kernel that will call the random 

number generation function once for each work-item in the 16 × 16 × 16 

range. Note how the random number generation function takes the work- 

item id as input.

h.parallel_for({16, 16, 16}, [=](auto I) {
output[I] = generate_random_number_from_ID(I);

});

Figure 17-17. Multiple work-item (16 × 16 × 16) invocation of a 
random number generator

The example shows a parallel_for invocation that uses a range, 

with only a global size specified. We can alternately use the parallel_for 

invocation style that takes an nd_range, where both the global work 

size and local work-group sizes are specified. FPGAs can very efficiently 

implement work-group local memory from on-chip resources, so feel free 

to use work-groups whenever they make sense, either because we want 

work-group local memory or because having work-group IDs available 

simplifies our code.

PARALLEL RANDOM NUMBER GENERATORS 

the example in Figure 17-17 assumes that generate_random_number_from_

iD(i) is a random number generator which has been written to be safe and 

correct when invoked in a parallel way. For example, if different work-items 

in the parallel_for range execute the function, we expect different sequences 
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to be created by each work-item, with each sequence adhering to whatever 

distribution is expected from the generator. Parallel random number generators 

are themselves a complex topic, so it is a good idea to use libraries or to learn 

about the topic through techniques such as block skip-ahead algorithms.

 Pipelines Do Not Mind Data Dependences!
One of the challenges when programming vector architectures (e.g., GPUs) 

where some work-items execute together as lanes of vector instructions is 

structuring an algorithm to be efficient without extensive communication 

between work-items. Some algorithms and applications lend themselves 

well to vector hardware, and some don’t. A common cause of a poor 

mapping is an algorithmic need for extensive sharing of data, due to data 

dependences with other computations that are in some sense neighbors. 

Sub-groups address some of this challenge on vector architectures by 

providing efficient communication between work-items in the same sub- 

group, as described in Chapter 14.

FPGAs play an important role for algorithms that can’t be decomposed 

into independent work. FPGA spatial pipelines are not vectorized across 

work-items, but instead execute consecutive work-items across pipeline 

stages. This implementation of the parallelism means that fine-grained 

communication between work-items (even those in different work-groups) 

can be implemented easily and efficiently within the spatial pipeline!

One example is a random number generator where output N+1 

depends on knowing what output N was. This creates a data dependence 

between two outputs, and if each output is generated by a work-item in an 

ND-range, then there is a data dependence between work-items that can 

require complex and often costly synchronization on some architectures. 

When coding such algorithms serially, one would typically write a loop, 
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where iteration N+1 uses the computation from iteration N, such as shown 

in Figure 17-18. Each iteration depends on the state computed by the 

previous iteration. This is a very common pattern.

int state = 0; 
for (int i = 0; i < size; i++) {
state = generate_random_number(state);
output[i] = state;

} 

Figure 17-18. Loop-carried data dependence (state)

Spatial implementations can very efficiently communicate results 

backward in the pipeline to work that started in a later cycle (i.e., to work 

at an earlier stage in the pipeline), and spatial compilers implement 

many optimizations around this pattern. Figure 17-19 shows the idea 

of backward communication of data, from stage 5 to stage 4. Spatial 

pipelines are not vectorized across work-items. This enables efficient data 

dependence communication by passing results backward in the pipeline!
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Figure 17-19. Backward communication enables efficient data 
dependence communication

The ability to pass data backward (to an earlier stage in the pipeline) 

is key to spatial architectures, but it isn’t obvious how to write code that 

takes advantage of it. There are two approaches that make expressing this 

pattern easy:

 1. Loops

 2. Intra-kernel pipes with ND-range kernels

The second option is based on pipes that we describe later in this 

chapter, but it isn’t nearly as common as loops so we mention it for 

completeness, but don’t detail it here. Vendor documentation provides 

more details on the pipe approach, but it’s easier to stick to loops which 

are described next unless there is a reason to do otherwise.
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 Spatial Pipeline Implementation of a Loop
A loop is a natural fit when programming an algorithm that has data 

dependences. Loops frequently express dependences across iterations, 

even in the most basic loop examples where the counter that determines 

when the loop should exit is carried across iterations (variable i in 

Figure 17-20).

int a = 0; 
for (int i = 0; i < size; i++) {
a = a + i;

} 

Figure 17-20. Loop with two loop-carried dependences (i.e., i and a)

In the simple loop of Figure 17-20, it is understood that the value of a,  

which is on the right-hand side of a= a + i, reflects the value stored by 

the previous loop iteration or the initial value if it’s the first iteration of 

the loop. When a spatial compiler implements a loop, iterations of the 

loop can be used to fill the stages of the pipeline as shown in Figure 17-21. 

Notice that the queue of work, which is ready to start, now contains loop 

iterations, not work-items!
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Figure 17-21. Pipelines stages fed by successive iterations of a loop

A modified random number generator example is shown in 

Figure 17-22. In this case, instead of generating a number based on the 

id of a work-item, as in Figure 17-17, the generator takes the previously 

computed value as an argument.

h.single_task([=]() {
int state = seed;
for (int i = 0; i < size; i++) {

state = generate_incremental_random_number(state);
output[i] = state;

  } 
});

Figure 17-22. Random number generator that depends on previous 
value generated
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The example uses single_task instead of parallel_for because the 

repeated work is expressed by a loop within the single task, so there isn’t 

a reason to also include multiple work-items in this code (via parallel_

for). The loop inside the single_task makes it much easier to express 

(programming convenience) that the previously computed value of state 

is passed to each invocation of the random number generation function.

In cases such as Figure 17-22, the FPGA can implement the loop 

efficiently. It can maintain a fully occupied pipeline in many cases or can 

at least tell us through reports what to change to increase occupancy. 

With this in mind, it becomes clear that this same algorithm would be 

much more difficult to describe if loop iterations were replaced with 

work-items, where the value generated by one work-item would need to 

be communicated to another work-item to be used in the incremental 

computation. The code complexity would rapidly increase, particularly 

if the work couldn’t be batched so that each work-item was actually 

computing its own independent random number sequence.

 Loop Initiation Interval
Conceptually, we probably think of iterations of a loop in C++ as executing 

one after another, as shown in Figure 17-23. That’s the programming 

model and is the right way to think about loops. In implementation, 

though, compilers are free to perform many optimizations as long as most 

behavior (i.e., defined and race-free behavior) of the program doesn’t 

observably change. Regardless of compiler optimizations, what matters is 

that the loop appears to execute as if Figure 17-23 is how it happened.

ChAPter 17  ProGrAmminG For FPGAs 



484

Figure 17-23. Conceptually, loop iterations execute one after another

Moving into the spatial compiler perspective, Figure 17-24 shows a 

loop pipelining optimization where the execution of iterations of a loop are 

overlapped in time. Different iterations will be executing different stages of 

the spatial pipeline from each other, and data dependences across stages 

of the pipeline can be managed by the compiler to ensure that the program 

appears to execute as if the iterations were sequential (except that the loop 

will finish executing sooner!).
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Figure 17-24. Loop pipelining allows iterations of the loop to be 
overlapped across pipeline stages

Loop pipelining is easy to understand with the realization that many 

results within a loop iteration may finish computation well before the loop 

iteration finishes all of its work and that, in a spatial pipeline, results can 

be passed to an earlier pipeline stage when the compiler decides to do so. 

Figure 17-25 shows this idea where the results of stage 1 are fed backward 

in the pipeline, allowing a future loop iteration to use the result early, 

before the previous iteration has completed.
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Figure 17-25. A pipelined implementation of the incremental 
random number generator

With loop pipelining, it is possible for the execution of many iterations 

of a loop to overlap. The overlap means that even with loop-carried data 

dependences, loop iterations can still be used to fill the pipeline with work, 

leading to efficient utilization. Figure 17-26 shows how loop iterations 

might overlap their executions, even with loop-carried data dependences, 

within the same simple pipeline as was shown in Figure 17-25.
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Figure 17-26. Loop pipelining simultaneously processes parts of 
multiple loop iterations

In real algorithms, it is often not possible to launch a new loop iteration 

every single clock cycle, because a data dependence may take multiple 

clock cycles to compute. This often arises if memory lookups, particularly 

from off-chip memories, are on the critical path of the computation of 

a dependence. The result is a pipeline that can only initiate a new loop 

iteration every N clock cycles, and we refer to this as an initiation interval 

(II) of N cycles. An example is shown in Figure 17-27. A loop initiation 

interval (II) of two means that a new loop iteration can begin every second 

cycle, which results in suboptimal occupancy of the pipeline stages.
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Figure 17-27. Suboptimal occupancy of pipeline stages

An II larger than one can lead to inefficiency in the pipeline because 

the average occupancy of each stage is reduced. This is apparent from 

Figure 17-27 where II=2 and pipeline stages are unused a large percentage 

(50%!) of the time. There are multiple ways to improve this situation.

The compiler performs extensive optimization to reduce II whenever 

possible, so its reports will also tell us what the initiation interval of each 

loop is and give us information on why it is larger than one, if that occurs. 

Restructuring the compute in a loop based on the reports can often reduce 

the II, particularly because as developers, we can make loop structural 

changes that the compiler isn’t allowed to (because they would be 

observable). Read the compiler reports to learn how to reduce the II in 

specific cases.

An alternative way to reduce inefficiency from an II that is larger than 

one is through nested loops, which can fill all pipeline stages through 

interleaving of outer loop iterations with those of an inner loop that has 

II>1. Check vendor documentation and the compiler reports for details on 

using this technique.
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 Pipes
An important concept in spatial and other architectures is a first-in, first- 

out (FIFO) buffer. There are many reasons that FIFOs are important, but 

two properties are especially useful when thinking about programming:

 1. There is implicit control information carried 
alongside the data. These signals tell us whether 

the FIFO is empty or full and can be useful when 

decomposing a problem into independent pieces.

 2. FIFOs have storage capacity. This can make it 

easier to achieve performance in the presence of 

dynamic behaviors such as highly variable latencies 

when accessing memory.

Figure 17-28 shows a simple example of a FIFO’s operation.

Figure 17-28. Example operation of a FIFO over time
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FIFOs are exposed in DPC++ through a feature called pipes. The main 

reason that we should care about pipes when writing FPGA programs is 

that they allow us to decompose a problem into smaller pieces to focus 

on development and optimizations in a more modular way. They also 

allow the rich communication features of the FPGA to be harnessed. 

Figure 17-29 shows both of these graphically.

Figure 17-29. Pipes simplify modular design and access to hardware 
peripherals

Remember that FPGA kernels can exist on the device simultaneously 

(in different areas of the chip) and that in an efficient design, all parts 

of the kernels are active all the time, every clock cycle. This means that 

optimizing an FPGA application involves considering how kernels or parts 

of kernels interact with one another, and pipes provide an abstraction to 

make this easy.

Pipes are FIFOs that are implemented using on-chip memories on 

an FPGA, so they allow us to communicate between and within running 

kernels without the cost of moving data to off-chip memory. This provides 

inexpensive communication, and the control information that is coupled 

with a pipe (empty/full signals) provides a lightweight synchronization 

mechanism.
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Do We Need Pipes? no. it is possible to write efficient kernels 
without using pipes. We can use all of the FPGA resources and 
achieve maximum performance using conventional programming 
styles without pipes. But it is easier for most developers to program 
and optimize more modular spatial designs, and pipes are a great 
tool to achieve this.

As shown in Figure 17-30, there are four general types of pipes 

available. In the rest of this section, we’ll cover the first type (inter-kernel 

pipes), because they suffice to show what pipes are and how they are used. 

Pipes can also communicate within a single kernel and with the host or 

input/output peripherals. Please check vendor documentation for more 

information on those forms and uses of pipes that we don’t have room to 

dive into here.

Figure 17-30. Types of pipe connectivity in DPC++

A simple example is shown in Figure 17-31. In this case, there are 

two kernels that communicate through a pipe, with each read or write 

operating on a unit of an int.
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// Create alias for pipe type to be consistent across uses
using my_pipe = ext::intel::pipe<class some_pipe, int>;

// ND-range kernel
q.submit([&](handler& h) {
auto a = accessor(b_in, h);

h.parallel_for( 
count, [=](auto idx) { my_pipe::write(a[idx]); });

});

// Single_task kernel
q.submit([&](handler& h) {
auto a = accessor(b_out, h);

h.single_task([=]() {
for (int i = 0; i < count; i++) {
a[i] = my_pipe::read();

    } 
});

});

Figure 17-31. Pipe between two kernels: (1) ND-range and (2) single 
task with a loop

There are a few points to observe from Figure 17-31. First, two kernels 

are communicating with each other using a pipe. If there are no accessor 

or event dependences between the kernels, the DPC++ runtime will 

execute both at the same time, allowing them to communicate through the 

pipe instead of full SYCL memory buffers or USM.

Pipes are identified using a type-based approach, where each is 

identified using a parameterization of the pipe type which is shown in 

Figure 17-32. The parameterization of the pipe type identifies a specific 

pipe. Reads or writes on the same pipe type are to the same FIFO. There 

are three template parameters that together define the type and therefore 

identity of a pipe.
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template <typename name, typename dataT, 
size_t min_capacity = 0> 

class pipe; 

Figure 17-32. Parameterization of the pipe type

It is recommended to use type aliases to define our pipe types, as 

shown in the first line of code in Figure 17-31, to reduce programming 

errors and improve code readability.

Use type aliases to identify pipes. this simplifies code and prevents 
accidental creation of unexpected pipes.

Pipes have a min_capacity parameter. It defaults to 0 which is 

automatic selection, but if specified, it guarantees that at least that number 

of words can be written to the pipe without any being read out. This 

parameter is useful when

• Two kernels communicating with a pipe do not run at 

the same time, and we need enough capacity in the 

pipe for a first kernel to write all of its outputs before a 

second kernel starts to run and reads from the pipe.

• If kernels generate or consume data in bursts, then 

adding capacity to a pipe can provide isolation between 

the kernels, decoupling their performance from each 

other. For example, a kernel producing data can 

continue to write (until the pipe capacity becomes full), 

even if a kernel consuming that data is busy and not 

ready to consume anything yet. This provides flexibility 

in execution of kernels relative to each other, at the cost 

only of some memory resources on the FPGA.

ChAPter 17  ProGrAmminG For FPGAs 



494

 Blocking and Non-blocking Pipe Accesses

Like most FIFO interfaces, pipes have two styles of interface: blocking and 

non-blocking. Blocking accesses wait (block/pause execution!) for the 

operation to succeed, while non-blocking accesses return immediately 

and set a Boolean value indicating whether the operation succeeded.

The definition of success is simple: If we are reading from a pipe and 

there was data available to read (the pipe wasn’t empty), then the read 

succeeds. If we are writing and the pipe wasn’t already full, then the write 

succeeds. Figure 17-33 shows both forms of access member functions of 

the pipe class. We see the member functions of a pipe that allow it to be 

written to or read from. Recall that accesses to pipes can be blocking or 

non-blocking.

// Blocking
T read();
void write(const T &data);

// Non-blocking
T read(bool &success_code);
void write(const T &data, bool &success_code);

Figure 17-33. Member functions of a pipe that allow it to be written 
to or read from

Both blocking and non-blocking accesses have their uses depending 

on what our application is trying to achieve. If a kernel can’t do any more 

work until it reads data from the pipe, then it probably makes sense to use 

a blocking read. If instead a kernel wants to read data from any one of a 

set of pipes and it is not sure which one might have data available, then 

reading from pipes with a non-blocking call makes more sense. In that 

case, the kernel can read from a pipe and process the data if there was any, 

but if the pipe was empty, it can instead move on and try reading from the 

next pipe that potentially has data available.

ChAPter 17  ProGrAmminG For FPGAs 



495

 For More Information on Pipes

We could only scratch the surface of pipes in this chapter, but we should 

now have an idea of what they are and the basics of how to use them. FPGA 

vendor documentation has a lot more information and many examples of 

their use in different types of applications, so we should look there if we 

think that pipes are relevant for our particular needs.

 Custom Memory Systems
When programming for most accelerators, much of the optimization effort 

tends to be spent making memory accesses more efficient. The same 

is true of FPGA designs, particularly when input and output data pass 

through off-chip memory.

There are two main reasons that memory accesses on an FPGA can be 

worth optimizing:

• To reduce required bandwidth, particularly if some of 

that bandwidth is used inefficiently

• To modify access patterns on a memory that is leading 

to unnecessary stalls in the spatial pipeline

It is worth talking briefly about stalls in the spatial pipeline. The 

compiler builds in assumptions about how long it will take to read from 

or write to specific types of memories, and it optimizes and balances the 

pipeline accordingly, hiding memory latencies in the process. But if we 

access memory in an inefficient way, we can introduce longer latencies 

and as a by-product stalls in the pipeline, where earlier stages cannot make 

progress executing because they’re blocked by a pipeline stage that is 

waiting for something (e.g., a memory access). Figure 17-34 shows such a 

situation, where the pipeline above the load is stalled and unable to make 

forward progress.
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Figure 17-34. How a memory stall can cause earlier pipeline stages 
to stall as well

There are a few fronts on which memory system optimizations can be 

performed. As usual, the compiler reports are our primary guide to what 

the compiler has implemented for us and what might be worth tweaking or 

improving. We list a few optimization topics here to highlight some of the 

degrees of freedom available to us. Optimization is typically available both 

through explicit controls and by modifying code to allow the compiler to 

infer the structures that we intend. The compiler static reports and vendor 

documentation are key parts of memory system optimization, sometimes 

combined with profiling tools during hardware executions to capture 

actual memory behavior for validation or for the final stages of tuning. 

Some memory optimization considerations are as follows:
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• Static coalescing: The compiler will combine memory 

accesses into a smaller number of wider accesses, 

where it can. This reduces the complexity of a memory 

system in terms of numbers of load or store units in 

the pipeline, ports on the memory system, the size and 

complexity of arbitration networks, and other memory 

system details. In general, we want to maximize static 

coalescing wherever possible, which we can confirm 

through the compiler reports. Simplifying addressing 

logic in a kernel can sometimes be enough for the 

compiler to perform more aggressive static coalescing, 

so always check in the reports that the compiler has 

inferred what we expect!

• Memory access style: The compiler creates load or 

store units for memory accesses, and these are tailored 

to both the memory technology being accessed (e.g., 

on-chip vs. DDR vs. HBM) and the access pattern 

inferred from the source code (e.g., streaming, 

dynamically coalesced/widened, or likely to benefit 

from a cache of a specific size). The compiler reports 

tell us what the compiler has inferred and allow us to 

modify or add controls to our code, where relevant, to 

improve performance.

• Memory system structure: Memory systems (both 

on- and off-chip) can have banked structures and 

numerous optimizations implemented by the compiler. 

There are many controls and mode modifications that 

can be used to control these structures and to tune 

specific aspects of the spatial implementation.

ChAPter 17  ProGrAmminG For FPGAs 



498

 Some Closing Topics
When talking with developers who are getting started with FPGAs, we find 

that it often helps to understand at a high level the components that make 

up the device and also to mention clock frequency which seems to be a 

point of confusion. We close this chapter with these topics.

 FPGA Building Blocks
To help with an understanding of the tool flows (particularly compile time), 

it is worth mentioning the building blocks that make up an FPGA. These 

building blocks are abstracted away through DPC++ and SYCL, and 

knowledge of them plays no part in typical application development (at 

least in the sense of making code functional). Their existence does, however, 

factor into development of an intuition for spatial architecture optimization 

and tool flows, and occasionally in advanced optimizations such as 

choosing the ideal data types for our application, for example.

A very simplified view of a modern FPGA device consists of five basic 

elements:

 1. Look-up tables: Fundamental blocks that have a 

few binary input wires and produce a binary output. 

The output relative to the inputs is defined through 

the entries programmed into a look-up table. These 

are extremely primitive blocks, but there are many 

of them (millions) on a typical modern FPGA used 

for compute. These are the basis on which much of 

our design is implemented!

 2. Math engines: For common math operations such 

as addition or multiplication of single-precision 

floating-point numbers, FPGAs have specialized 

hardware to make those operations very efficient.  
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A modern FPGA has thousands of these blocks, such 

that at least these many floating-point primitive 

operations can be performed in parallel every clock 

cycle! Most FPGAs name these math engines digital 

signal processors (DSPs).

 3. On-chip memory: This is a distinguishing aspect 

of FPGAs vs. other accelerators, and memories 

come in two flavors (more actually, but we won’t 

get into those here): (1) registers that are used 

to pipeline between operations and some other 

purposes and (2) block memories that provide small 

random-access memories spread across the device. 

A modern FPGA can have on the order of millions 

of register bits and more than 10,000 20 Kbit RAM 

memory blocks. Since each of those can be active 

every clock cycle, the result is significant on-chip 

memory capacity and bandwidth, when used 

efficiently.

 4. Interfaces to off-chip hardware: FPGAs have 

evolved in part because of their very flexible 

transceivers and input/output connectivity that 

allows communications with almost anything 

ranging from off-chip memories to network 

interfaces and beyond.

 5. Routing fabric between all of the other 
elements: There are many of each element 

mentioned previously on a typical FPGA, and the 

connectivity between them is not fixed. A complex 

programmable routing fabric allows signals to pass 

between the fine-grained elements that make up 

an FPGA.
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Given the numbers of blocks on an FPGA of each specific type (some 

blocks are counted in the millions) and the fine granularity of those 

blocks such as look-up tables, the compile times seen when generating 

FPGA configuration bitstreams may make more sense. Not only does 

functionality need to be assigned to each fine-grained resource but routing 

needs to be configured between them. Much of the compile time comes 

from finding a first legal mapping of our design to the FPGA fabric, before 

optimizations even start! The extensive configurability of an FPGA is how 

a spatial implementation of your algorithms can achieve compelling 

performance.

 Clock Frequency
FPGAs are extremely flexible and configurable, and that configurability 

comes with some cost to the frequency that an FPGA runs at compared 

with an equivalent design hardened into a CPU or any other fixed compute 

architecture. But this is not a problem! The spatial architecture of an 

FPGA more than makes up for the clock frequency because there are so 

many independent operations occurring simultaneously, spread across 

the area of the FPGA. Simply put, the frequency of an FPGA is lower 

than other architectures because of the configurable design, but more 

happens per clock cycle which balances out the frequency. We should 

compare compute throughput (e.g., in operations per second) and not raw 

frequency when benchmarking and comparing accelerators.

This said, as we approach 100% utilization of the resources on an 

FPGA, operating frequency may start to decrease. This is primarily a result 

of signal routing resources on the device becoming overused. There are 

ways to remedy this, typically at the cost of increased compile time. But 

it’s best to avoid using more than 80–90% of the resources on an FPGA for 

most applications unless we are willing to dive into details to counteract 

frequency decrease.
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RECOMMENDATION 

try not to exceed 90% of any resources on an FPGA and certainly not more 

than 90% of multiple resources. exceeding these thresholds may lead to 

exhaustion of routing resources which leads to lower operating frequencies 

unless we are willing to dive into lower-level FPGA details to counteract this.

 Summary
In this chapter, we have introduced how the compiler maps an algorithm 

to the FPGA’s spatial architecture. We have also covered concepts that can 

help us to decide whether an FPGA is useful for our applications and that 

can help us get up and running developing code faster. From this starting 

point, we should be in good shape to browse vendor programming and 

optimization manuals and to start writing FPGA code! FPGAs provide 

performance and enable applications that don’t map well to other 

accelerators, so we should keep them near the front of our mental toolbox!
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Open Access  This chapter is licensed under the terms of 

the Creative Commons Attribution 4.0 International License 

(https://creativecommons.org/licenses/by/4.0/), which permits use, 

sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and 

the source, provide a link to the Creative Commons license and indicate if 

changes were made.

The images or other third party material in this chapter are included 

in the chapter’s Creative Commons license, unless indicated otherwise 

in a credit line to the material. If material is not included in the chapter's 

Creative Commons license and your intended use is not permitted by 

statutory regulation or exceeds the permitted use, you will need to obtain 

permission directly from the copyright holder.

ChAPter 17  ProGrAmminG For FPGAs 

https://creativecommons.org/licenses/by/4.0/


503

CHAPTER 18

Libraries
We have spent the entire book promoting the art of writing our own code. 

Now we finally acknowledge that some great programmers have already 

written code that we can just use. Libraries are the best way to get our work 

done. This is not a case of being lazy—it is a case of having better things to 

do than reinvent the work of others.

This chapter covers three different sets of library functionality:

 1. Built-in functions defined by the SYCL specification

 2. The C++ standard library

 3. C++17 parallel algorithms, supported by the oneAPI 

DPC++ Library (oneDPL)

SYCL defines a rich set of built-in functions that provide common 

functions shared by host and device code. All SYCL implementations 

support these functions, and so we can rely on key math libraries being 

available on all SYCL devices.

The C++ standard library is not guaranteed to be supported in device 

code by all SYCL implementations. However, the DPC++ compiler (and 

other compilers) support this as an extension to SYCL, and so we briefly 

discuss the limitations of that extension here.

Finally, the oneAPI DPC++ Library (oneDPL) provides a set of 

algorithms based on the C++17 algorithms, implemented in SYCL, to 

provide a high-productivity solution for SYCL programmers. This can 
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minimize programming effort across CPUs, GPUs, and FPGAs. Although 

oneDPL is not part of SYCL 2020, since it is implemented on top of SYCL, it 

should be compatible with any SYCL 2020 compiler.

 Built-In Functions
SYCL provides a rich set of built-in functions with support for various data 

types. These built-in functions are available in the sycl namespace on host 

and device and can be classified as in the following:

• Floating-point math functions: asin, acos, log, sqrt, 

floor, etc.

• Integer functions: abs, max, min, etc.

• Common functions: clamp, smoothstep, etc.

• Geometric functions: cross, dot, distance, etc.

• Relational functions: isequal, isless, isfinite, etc.

The documentation for this extensive collection of functions can be 

found in the SYCL 2020 specification, and the online documentation 

at registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html in 

sections 4.17.5 through 4.17.9.

Some compilers may provide options to control the precision of 

these functions. For example, the DPC++ compiler provides several such 

options, including -mfma, -ffast-math, and -ffp-contract=fast. It is 

important to check the documentation of a SYCL implementation to 

understand the availability of similar options (and their default values).

Several of the SYCL built-in functions have equivalents in the C++ 

standard library (e.g., sycl::log and std::log). SYCL implementations 

are not required to support calling C++ standard library functions within 

device code, but some implementations (e.g., DPC++) do.
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Figure 18-1 demonstrates the usage of both the C++ std::log function 

and SYCL built-in sycl::log function in device code. Using DPC++ 

compiler implementation, both functions produce the same numeric 

results. In the example, the built-in relational function sycl::isequal is 

used to compare the results of std::log and sycl::log.

constexpr int size = 9;
std::array<float, size> a;
std::array<float, size> b;

bool pass = true;

for (int i = 0; i < size; ++i) {
a[i] = i;
b[i] = i;

}

queue q;

range sz{size};

buffer<float> bufA(a);
buffer<float> bufB(b);
buffer<bool> bufP(&pass, 1);

q.submit([&](handler &h) {
accessor accA{bufA, h};
accessor accB{bufB, h};
accessor accP{bufP, h};

h.parallel_for(size, [=](id<1> idx) {
accA[idx] = std::log(accA[idx]);
accB[idx] = sycl::log(accB[idx]);
if (!sycl::isequal(accA[idx], accB[idx])) {
accP[0] = false;

}
});

});

Figure 18-1. Using std::log and sycl::log
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Note that the SYCL 2020 specification does not mandate that a SYCL 

math function implementation must produce the exact same numeric 

result as its corresponding C and C++ standard math function for a 

given hardware target. The specification allows for certain variations in 

the implementation to account for the characteristics and limitations 

of different hardware platforms. Therefore, it is possible for a SYCL 

implementation to produce matching results in practice, as demonstrated 

in the code example shown in Figure 18-1.

 Use the sycl:: Prefix with Built-In Functions
We strongly recommend invoking the SYCL built-in functions with 

an explicit sycl:: prepended to the name. Calling just sqrt() is not 

guaranteed to invoke the SYCL built-in on all implementations even if 

“using namespace sycl;” has been used.

sYCL built-in functions should always be invoked with an explicit 
sycl:: in front of the built-in name. Failure to follow this advice may 
result in strange and non-portable results.

When writing portable code, we recommend avoiding using 

namespace sycl; completely, in favor of explicitly using std:: and sycl:: 

namespaces. By being explicit, we remove the possibility of encountering 

unresolvable conflicts within certain SYCL implementations. This may 

also make code easier to debug in the future (e.g., if an implementation 

provides different precision guarantees for math functions in the std:: 

and sycl:: namespaces).
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 The C++ Standard Library
As mentioned previously, the SYCL specification does not guarantee that 

functions from the C++ standard library will be supported in device code. 

However, there are several compilers that do support these functions: this 

simplifies the offloading of existing C++ code to SYCL devices and makes it 

easier to write libraries that use SYCL as an implementation detail (e.g., a 

user passing a function into a library can write that function without using 

any SYCL-specific features).

YOUR MILEAGE MAY VARY

since support in device code for functions from the std:: namespace varies 

across sYCL implementations, we cannot be sure that kernels employing the 

C++ standard library will be portable across multiple sYCL compilers and 

implementations.

The DPC++ compiler is compatible with a set of tested C++ standard 

APIs—we simply need to include the corresponding C++ header files and 

use the std namespace. All these APIs can be employed in device kernels 

the way they are employed in a typical C++ host application. Figure 18-2 

shows an example of how to use std::swap in device code.
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int main() {
std::array<int, 2> arr{8, 9};
buffer<int> buf{arr};

{
host_accessor host_A(buf);
std::cout << "Before: " << host_A[0] << ", "

<< host_A[1] << "\n";
} // End scope of host_A so that upcoming kernel can

// operate on buf

queue q;
q.submit([&](handler &h) {

accessor a{buf, h};
h.single_task([=]() {

// Call std::swap!
std::swap(a[0], a[1]);

});
});

host_accessor host_B(buf);
std::cout << "After: " << host_B[0] << ", " << host_B[1]

<< "\n";
return 0;

}

Sample output:
8, 9
9, 8

Figure 18-2. Using std::swap in device code

Figure 18-3 lists C++ standard APIs with “Y” to indicate those that have 

been tested for use in SYCL kernels for CPU, GPU, and FPGA devices, at 

the time of writing. A blank indicates incomplete coverage (not all three 

device types) at the time of publication for this book.
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Figure 18-3. Library support with CPU/GPU/FPGA coverage (at 
time of book publication)

The tested standard C++ APIs are supported in libstdc++ (GNU) with 

gcc 7.5.0+ and libc++ (LLVM) with clang 11.0+ and MSVC Standard C++ 

Library with Microsoft Visual Studio 2019+ for the host CPU as well.

On Linux, GNU libstdc++ is the default C++ standard library for 

the DPC++ compiler, so no compilation or linking option is required. 

If we want to use libc++, use the compile options -stdlib=libc++ 

-nostdinc++ to leverage libc++ and to not include C++ std headers from 

the system. The DPC++ compiler has been verified using libc++ in SYCL 
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kernels on Linux, but the runtime needs to be rebuilt with libc++ instead 

of libstdc++. Details are in https://intel.github.io/llvm-docs/

GetStartedGuide.html#build-dpc-toolchain-with-libc-library. 

Because of these extra steps, libc++ is not the recommended C++ standard 

library for us to use in general, without a specific reason to do so.

to achieve cross-architecture portability, if a std:: function is not 
marked with “Y” in Figure 18-3, we need to be careful that we don’t 
create functional incorrectness (or build failures) for our application 
as it runs on target devices that we haven’t tested on!

 oneAPI DPC++ Library (oneDPL)
C++17 introduced parallel versions of the algorithms defined in the C++ 

standard library. Unlike their serial counterparts, each of the parallel 

algorithms accepts an execution policy as its first argument—this execution 

policy denotes how an algorithm may execute.

Loosely speaking, an execution policy communicates to an 

implementation whether it can parallelize the algorithm using threads, 

SIMD instructions, or both. We can pass one of the values seq, unseq, par, 

or par_unseq as the execution policy, with meanings shown in Figure 18-4.

Figure 18-4. Execution policies
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oneDPL extends the standard execution policies to provide support for 

SYCL devices. These SYCL-aware execution policies specify not only how 

an algorithm should execute, but also where it should execute. A SYCL- 

aware policy inherits a standard C++ execution policy, encapsulates a 

SYCL device or queue, and allows us to set an optional kernel name. SYCL- 

aware execution policies can be used with all standard C++ algorithms that 

support execution policies according to the C++17 standard.

oneDPL is not tied to any single SYCL compiler, it is designed to 

support all SYCL compilers.

Before we can use oneDPL and its SYCL-aware execution policies, 

we need to add some additional header files. Which headers we include 

will depend on the algorithms we intend to use, some common examples 

include:

• #include <oneapi/dpl/algorithm>

• #include <oneapi/dpl/numeric>

• #include <oneapi/dpl/memory>

 SYCL Execution Policy
Currently, only algorithms with the parallel unsequenced policy (par_

unseq) can be safely offloaded to SYCL devices. This restriction stems 

from the forward progress guarantees provided by work-items in SYCL, 

which are incompatible with the requirements of other execution policies 

(e.g., par).

There are three steps to using a SYCL execution policy:

 1. Add #include <oneapi/dpl/execution> into 

our code.

 2. Create a policy object by providing a standard 

policy type, a class type for a unique kernel name 
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as a template argument (optional), and one of the 

following constructor arguments:

A SYCL queue

A SYCL device

A SYCL device selector

An existing policy object with a different 

kernel name

 3. Pass the created policy object to an algorithm.

A oneapi::dpl::execution::dpcpp_default object is a predefined 

device_policy created with a default kernel name and default queue. 

This can be used to create custom policy objects or passed directly when 

invoking an algorithm if the default choices are sufficient.

Figure 18-5 shows examples that assume use of the using namespace 

oneapi::dpl::execution; directive when referring to policy classes and 

functions.

auto policy_b = device_policy<parallel_unsequenced_policy,
class PolicyB>{

sycl::device{sycl::gpu_selector{}}};
std::for_each(policy_b, …);
auto policy_c =

device_policy<parallel_unsequenced_policy,
class PolicyС>{sycl::default_selector{}};

std::for_each(policy_c, …);
auto policy_d =

make_device_policy<class PolicyD>(default_policy);
std::for_each(policy_d, …);
auto policy_e =

make_device_policy<class PolicyE>(sycl::queue{});
std::for_each(policy_e, …);

Figure 18-5. Creating execution policies
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 Using oneDPL with Buffers
The algorithms in the C++ standard library are all based on iterators. To 

support passing SYCL buffers into these algorithms, oneDPL defines two 

special helper functions: oneapi::dpl::begin and oneapi::dpl::end.

These functions accept a SYCL buffer and return an object of an 

unspecified type that satisfies the following requirements:

• Is CopyConstructible, CopyAssignable, and 

comparable with operators == and !=.

• The following expressions are valid: a + n, a – n, and 

a – b, where a and b are objects of the type and n is an 

integer value.

• Has a get_buffer method with no arguments. 

The method returns the SYCL buffer passed to 

oneapi::dpl::begin and oneapi::dpl::end functions.

Note that using these helper functions requires us to add #include 

<oneapi/dpl/iterator> to our code. This functionality is not included by 

default, because these iterators are not required when using USM (which 

we will revisit shortly).

The code in Figure 18-6 shows how to use the std::fill function in 

conjunction with the begin/end helpers to fill a SYCL buffer. Note that the 

algorithm is in the std:: namespace, and only the execution policy is in 

a nonstandard namespace—this is not a typo! The C++ standard library 

explicitly permits implementations to define their own execution policies 

to support coding patterns like this.
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#include <oneapi/dpl/algorithm>
#include <oneapi/dpl/execution>
#include <oneapi/dpl/iterator>
#include <sycl/sycl.hpp>

int main() {
sycl::queue q;
sycl::buffer<int> buf{1000};

auto buf_begin = oneapi::dpl::begin(buf);
auto buf_end = oneapi::dpl::end(buf);

auto policy = oneapi::dpl::execution::make_device_policy<
class fill>(q);

std::fill(policy, buf_begin, buf_end, 42);

return 0;
}

Figure 18-6. Using std::fill

The code in Figure 18-7 shows an even simpler version of this code, 

using a default policy and ordinary (host-side) iterators. In this case, a 

temporary SYCL buffer is created, and the data is copied to this buffer. 

After processing of the temporary buffer on a device is complete, the data 

is copied back to the host. Working directly with existing SYCL buffers 

(where possible) is recommended to reduce data movement between the 

host and device and any unnecessary overhead of buffer creations and 

destructions.
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#include <oneapi/dpl/algorithm>
#include <oneapi/dpl/execution>
#include <oneapi/dpl/iterator>
#include <sycl/sycl.hpp>

int main() {
std::vector<int> v(100000);
std::fill(oneapi::dpl::execution::dpcpp_default,

v.begin(), v.end(), 42);

if (v[788] == 42)
std::cout << "passed" << std::endl;

else
std::cout << "failed" << std::endl;

return 0;
}

Figure 18-7. Using std::fill with default policy and host-side 
iterators

Figure 18-8 shows an example which performs a binary search of the 

input sequence for each of the values in the search sequence provided. As 

the result of a search for the ith element of the search sequence, a Boolean 

value indicating whether the search value was found in the input sequence 

is assigned to the ith element of the result sequence. The algorithm returns 

an iterator that points to one past the last element of the result sequence 

that was assigned a result. The algorithm assumes that the input sequence 

has been sorted by the comparator provided. If no comparator is provided, 

then a function object that uses operator< to compare the elements will 

be used.

The complexity of the preceding description highlights that we 

should leverage library functions where possible, instead of writing our 

own implementations of similar algorithms which may take significant 

debugging and tuning time. Authors of the libraries that we can take 

advantage of are often experts in the internals of the device architectures 

we are targeting and may have access to information that we do not, so we 

should always leverage optimized libraries when they are available.
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#include <oneapi/dpl/algorithm>
#include <iostream>
#include <oneapi/dpl/execution>
#include <oneapi/dpl/iterator>
#include <sycl/sycl.hpp>

using namespace sycl;

int main() {
buffer<uint64_t, 1> kB{range<1>(10)};
buffer<uint64_t, 1> vB{range<1>(5)};
buffer<uint64_t, 1> rB{range<1>(5)};
{
host_accessor k{kB};
host_accessor v{vB};

// Initialize data, sorted
k[0] = 0;
k[1] = 5;
k[2] = 6;
k[3] = 6;
k[4] = 7;
k[5] = 7;
k[6] = 8;
k[7] = 8;
k[8] = 9;
k[9] = 9;

v[0] = 1;
v[1] = 6;
v[2] = 3;
v[3] = 7;
v[4] = 8;

}

// create dpc++ iterators
auto k_beg = oneapi::dpl::begin(kB);
auto k_end = oneapi::dpl::end(kB);
auto v_beg = oneapi::dpl::begin(vB);
auto v_end = oneapi::dpl::end(vB);
auto r_beg = oneapi::dpl::begin(rB);

// create named policy from existing one
auto policy = oneapi::dpl::execution::make_device_policy<

class bSearch>(oneapi::dpl::execution::dpcpp_default);

Figure 18-8. Using binary_search
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The code example shown in Figure 18-8 demonstrates the three typical 

steps when using oneDPL in conjunction with SYCL buffers:

 1. Create SYCL iterators from our buffers.

 2. Create a named policy from an existing policy.

 3. Invoke the parallel algorithm.

 Using oneDPL with USM
In this section, we explore two ways to use oneDPL in combination 

with USM:

• Through USM pointers

• Through USM allocators

Unlike with buffers, we can directly use USM pointers as the iterators 

passed to an algorithm. Specifically, we can pass the pointers to the 

start and (one past the) end of the allocation to a parallel algorithm. It is 

// call algorithm
oneapi::dpl::binary_search(policy, k_beg, k_end, v_beg,

v_end, r_beg);

// check data
host_accessor r{rB};
if ((r[0] == false) && (r[1] == true) &&

(r[2] == false) && (r[3] == true) && (r[4] == true)) {
std::cout << "Passed. \nRun on "

<< policy.queue()
.get_device()
.get_info<info::device::name>()

<< "\n";
} else

std::cout << "failed: values do not match.\n";

return 0;
}

Figure 18-8. (continued)
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important to be sure that the execution policy and the allocation itself 

were created for the same queue or context, to avoid undefined behavior at 

runtime. (Remember that this is not oneDPL specific, and we must always 

pay close attention to contexts when using USM!)

If the same USM allocation is to be processed by several algorithms, 

we can either use an in-order queue or explicitly wait for completion of 

each algorithm before using the same allocation in the next one (this is 

typical operation ordering when using USM). We should also be careful to 

ensure that we wait for completion before accessing the data on the host, 

as shown in Figure 18-9.

#include <oneapi/dpl/algorithm>
#include <oneapi/dpl/execution>
#include <sycl/sycl.hpp>

int main() {
sycl::queue q;
const int n = 10;
int* h_head = sycl::malloc_host<int>(n, q);
int* d_head = sycl::malloc_device<int>(n, q);
std::fill(oneapi::dpl::execution::make_device_policy(q),

d_head, d_head + n, 78);
q.wait();

q.memcpy(h_head, d_head, n * sizeof(int));
q.wait();

if (h_head[8] == 78)
std::cout << "passed" << std::endl;

else
std::cout << "failed" << std::endl;

sycl::free(h_head, q);
sycl::free(d_head, q);
return 0;

}

Figure 18-9. Using oneDPL with a USM pointer
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Alternatively, we can use std::vector with a USM allocator as shown 

in Figure 18-10. With this approach, std::vector manages its own 

memory (as normal) but allocates any memory it needs via an internal 

call to sycl::malloc_shared. The begin() and end() member functions 

then return iterators that step through a USM allocation. This style of 

programming is very convenient, especially when migrating existing C++ 

code that already makes use of containers and algorithms.

#include <oneapi/dpl/algorithm>
#include <oneapi/dpl/execution>
#include <sycl/sycl.hpp>

int main() {
sycl::queue q;
const int n = 10;
sycl::usm_allocator<int, sycl::usm::alloc::shared> alloc(

q);
std::vector<int, decltype(alloc)> vec(n, alloc);

std::fill(oneapi::dpl::execution::make_device_policy(q),
vec.begin(), vec.end(), 78);

q.wait();

return 0;
}

Figure 18-10. Using oneDPL with a USM allocator

 Error Handling with SYCL Execution Policies
As detailed in Chapter 5, the SYCL error handling model supports two 

types of errors. With synchronous errors, the runtime throws exceptions, 

while asynchronous errors are only processed by an asynchronous error 

handler at specified times during program execution.

For algorithms executed with SYCL-aware execution policies, the 

handling of all errors (synchronous or asynchronous) is the responsibility 

of the caller. Specifically,
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• No exceptions are thrown explicitly by algorithms.

• Exceptions thrown by the runtime on the host CPU, 

including SYCL synchronous exceptions, are passed 

through to the caller.

• SYCL asynchronous errors are not handled by oneDPL, 

so must be handled (if any handling is desired) by the 

caller using the usual SYCL asynchronous exception 

mechanisms.

 Summary
We should use libraries wherever possible in our heterogeneous 

applications, to avoid wasting time rewriting and testing common 

functions and parallel patterns. We should leverage the work of others 

rather than writing everything ourselves, and we should use that approach 

wherever practical to simplify application development and (often) to 

realize superior performance.

This chapter has briefly introduced three sets of library functionality 

that we think every SYCL developer should be familiar with:

 1. The SYCL built-in functions, for common math 

operations

 2. The standard C++ library, for other common 

operations

 3. The C++17 parallel algorithms (supported by 

oneDPL), for complete kernels
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With any library, it is important to understand which devices, 

compilers, and implementations are tested and supported before 

relying upon them in production. This is not SYCL-specific advice, but 

worth remembering—the number of potential targets for a portable 

programming solution like SYCL is huge, and it is our responsibility as 

programmers to identify which libraries are aligned with our goals.

Open Access  This chapter is licensed under the terms of 

the Creative Commons Attribution 4.0 International License 

(https://creativecommons.org/licenses/by/4.0/), which permits use, 

sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and 

the source, provide a link to the Creative Commons license and indicate if 

changes were made.

The images or other third party material in this chapter are included 

in the chapter’s Creative Commons license, unless indicated otherwise 

in a credit line to the material. If material is not included in the chapter’s 

Creative Commons license and your intended use is not permitted by 

statutory regulation or exceeds the permitted use, you will need to obtain 

permission directly from the copyright holder.

Chapter 18  Libraries

https://creativecommons.org/licenses/by/4.0/


523

CHAPTER 19

Memory Model 
and Atomics
Memory consistency is not an esoteric concept if we want to be parallel 

programmers. It helps us to ensure that data is where we need it, when we 

need it, and that its values are what we are expecting. This chapter brings 

to light key things we need to master to ensure our program hums along 

correctly. This topic is not unique to SYCL.

Having a basic understanding of the memory (consistency) model of 

a programming language is necessary for any programmer who wants to 

allow concurrent updates to memory (whether those updates originate 

from multiple work-items in the same kernel, multiple devices, or both). 

This is true regardless of how memory is allocated, and the content of this 

chapter is equally important to us whether we choose to use buffers or 

USM allocations.

In previous chapters, we have focused on the development of simple 

kernels, where work-items either operate on completely independent data or 

share data using structured communication patterns that can be expressed 

directly using language and/or library features. As we move toward 

writing more complex and realistic kernels, we are likely to encounter 

situations where work-items may need to communicate in less structured 

ways—understanding how the memory model relates to SYCL language 

features and the capabilities of the hardware we are targeting is a necessary 

precondition for designing correct, portable, and efficient programs.
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THREADS OF EXECUTION

C++17 introduced the concept of a “thread of execution” (often referred 

to simply as a “thread”) to help describe the behaviors of library features 

related to parallelism and concurrency (e.g., the parallel algorithms). The C++ 

memory consistency model and execution model are defined entirely in terms 

of interactions between these “threads.”

To simplify comparison between SYCL and C++, this chapter often uses 

the term “thread” to mean “thread of execution.” A SYCL work-item is 

equivalent to a C++ thread of execution with weakly parallel forward 

progress guarantees, and so it is safe to use these terms interchangeably—

occasionally, we may still use “work-item” to highlight when we are 

discussing SYCL-specific concepts.

The memory consistency model of C++ is sufficient for writing 

applications that execute entirely on the host, but it is modified by SYCL 

in order to address complexities that may arise when programming 

heterogeneous systems. Specifically, we need to be able to

• Reason about which types of memory allocation 

(buffers and USM) can be accessed by which devices in 

the system

• Prevent unsafe concurrent memory accesses (data 

races) during the execution of our kernels by using 

barriers and atomics

• Enable safe communication between work-items 

using barriers, fences, atomics, memory orders, and 

memory scopes
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• Prevent optimizations that may unexpectedly alter the 

behavior of parallel applications—while still allowing 

other optimizations—using barriers, fences, atomics, 

memory orders, and memory scopes

Memory models are a complex topic, but for a good reason—processor 

architects care about making processors and accelerators execute our 

codes as efficiently as possible! We have worked hard in this chapter 

to break down this complexity and highlight the most critical concepts 

and language features. This chapter starts us down the path of not only 

knowing the memory model inside and out but also enjoying an important 

aspect of parallel programming that many people do not know exists. If 

questions remain after reading the descriptions and example codes here, 

we highly recommend visiting the websites listed at the end of this chapter 

or referring to the C++ and SYCL specifications.

 What’s in a Memory Model?
This section expands upon the motivation for programming languages to 

contain a memory model and introduces a few core concepts that parallel 

programmers should familiarize themselves with:

• Data races and synchronization

• Barriers and fences

• Atomic operations

• Memory ordering

Understanding these concepts at a high level is necessary to appreciate 

their expression and usage in C++ with SYCL. Readers with extensive 

experience in parallel programming, especially using C++, may wish to 

skip ahead.
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 Data Races and Synchronization
The operations that we write in our programs typically do not map directly 

to a single hardware instruction or micro-operation. A simple addition 

operation such as data[i] += x may be broken down into a sequence of 

several instructions or micro-operations:

• Load data[i] from memory into a temporary 

(register).

• Compute the result of adding x to data[i].

• Store the result back to data[i].

This is not something that we need to worry about when developing 

sequential applications—the three stages of the addition will be executed 

in the order that we expect, as depicted in Figure 19-1.

Figure 19-1. Sequential execution of data[i] += x broken into three 
separate operations
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Switching to parallel application development introduces an extra 

level of complexity: if we have multiple operations being applied to the 

same data concurrently, how can we be certain that their view of that data 

is consistent? Consider the situation shown in Figure 19-2, where two 

executions of data[i] += x have been interleaved on two threads. If the 

two threads use different values of i, the application will execute correctly. 

If they use the same value of i, both load the same value from memory, 

and one of the results is overwritten by the other! This is just one of many 

ways in which their operations could be scheduled, and the behavior of 

our application depends on which thread gets to which data first—our 

application contains a data race.

Figure 19-2. One possible interleaving of data[i] += x executed 
concurrently

The code in Figure 19-3 and its output in Figure 19-4 show how easily 

this can happen in practice. If M is greater than or equal to N, the value of 

j used by each thread is unique; if it is not, values of j will conflict, and 

updates may be lost. We say may be lost because a program containing 

a data race could still produce the correct answer some or all the time 

(depending on how work is scheduled by the implementation and 

hardware). Neither the compiler nor the hardware can possibly know 
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what this program is intended to do or what the values of N and M may be at 

runtime—it is our responsibility as programmers to understand whether 

our programs may contain data races and whether they are sensitive to 

execution order.

int* data = malloc_shared<int>(N, q);
std::fill(data, data + N, 0);

q.parallel_for(N, [=](id<1> i) {
int j = i % M;
data[j] += 1;

}).wait();

for (int i = 0; i < N; ++i) {
std::cout << "data [" << i << "] = " << data[i] << "\n";

}

Figure 19-3. Kernel containing a data race

N = 2, M = 2:
data [0] = 1
data [1] = 1

N = 2, M = 1:
data [0] = 1
data [1] = 0

Figure 19-4. Sample output of the code in Figure 19-3 for small 
values of N and M

In general, when developing massively parallel SYCL applications, 

we should not concern ourselves with the exact order in which individual 

work-items execute—there are hopefully hundreds (or thousands!) of 

work-items in each of our kernels, and trying to impose a specific ordering 

upon them will negatively impact both scalability and performance. 

Rather, our focus should be on developing portable applications that 

execute correctly, which we can achieve by providing the compiler 

(and hardware) with information about when work-items share data, 

what guarantees are needed when sharing occurs, and which execution 

orderings are legal.
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Massively parallel applications should not be concerned with the 
exact order in which individual work-items execute!

 Barriers and Fences
One way to prevent data races between work-items in the same group is 

to introduce synchronization across different threads using work-group 

barriers and appropriate memory fences. We could use a work-group 

barrier to order our updates of data[i] as shown in Figure 19-5, and an 

updated version of our example kernel is given in Figure 19-6. Note that 

because a work-group barrier does not synchronize work-items in different 

groups, our simple example is only guaranteed to execute correctly if we 

limit ourselves to a single work-group!

Figure 19-5. Two executions of data[i] += x separated by a barrier
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int* data = malloc_shared<int>(N, q);
std::fill(data, data + N, 0);

// Launch exactly one work-group
// Number of work-groups = global / local
range<1> global{N};
range<1> local{N};

q.parallel_for(nd_range<1>{global, local},
[=](nd_item<1> it) {

int i = it.get_global_id(0);
int j = i % M;
for (int round = 0; round < N; ++round) {

// Allow exactly one work-item update
// per round
if (i == round) {
data[j] += 1;

}
group_barrier(it.get_group());

}
})

.wait();

for (int i = 0; i < N; ++i) {
std::cout << "data [" << i << "] = " << data[i] << "\n";

}

Figure 19-6. Avoiding a data race using a barrier

Although using a barrier to implement this pattern is possible, it is 

not typically encouraged—it forces the work-items in a group to execute 

sequentially and in a specific order, which may lead to long periods of 

inactivity in the presence of load imbalance. It may also introduce more 

synchronization than is strictly necessary—if the different work-items 

happen to use different values of i, they will still be forced to synchronize 

at the barrier.

Barrier synchronization is a useful tool for ensuring that all work-items 

in a work-group or sub-group complete some stage of a kernel before 

proceeding to the next stage, but is too heavy-handed for fine-grained 

(and potentially data-dependent) synchronization. For more general 

synchronization patterns, we must look to atomic operations.
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 Atomic Operations
Atomic operations enable concurrent access to a memory location without 

introducing a data race. When multiple atomic operations access the same 

memory, they are guaranteed not to overlap. Note that this guarantee 

does not apply if only some of the accesses use atomics and that it is our 

responsibility as programmers to ensure that we do not concurrently 

access the same data using operations with different atomicity guarantees.

Mixing atomic and non-atomic operations on the same memory 
location(s) at the same time results in undefined behavior!

If our simple addition is expressed using atomic operations, the result 

may look like Figure 19-8—each update is now an indivisible chunk of 

work, and our application will always produce the correct result. The 

corresponding code is shown in Figure 19-7—we will revisit the atomic_

ref class and the meaning of its template arguments later in the chapter.

int* data = malloc_shared<int>(N, q);
std::fill(data, data + N, 0);

q.parallel_for(N, [=](id<1> i) {
int j = i % M;
atomic_ref<int, memory_order::relaxed,

memory_scope::system,
access::address_space::global_space>

atomic_data(data[j]);
atomic_data += 1;

}).wait();

for (int i = 0; i < N; ++i) {
std::cout << "data [" << i << "] = " << data[i] << "\n";

}

Figure 19-7. Avoiding a data race using atomic operations
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Figure 19-8. An interleaving of data[i] += x executed concurrently 
with atomic operations

However, it is important to note that this is still only one possible 

execution order. Using atomic operations guarantees that the two updates 

do not overlap (if both threads use the same value of i), but there is still 

no guarantee as to which of the two threads will execute first. Even more 

importantly, there are no guarantees about how these atomic operations 

are ordered with respect to any non-atomic operations in different threads.

 Memory Ordering
Even within a sequential application, optimizing compilers and the 

hardware are free to reorder operations if they do not change the 

observable behavior of an application. In other words, the application 

must behave as if it ran exactly as it was written by the programmer.
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Unfortunately, this as-if guarantee is not strong enough to help us 

reason about the execution of parallel programs. We now have two sources 

of reordering to worry about: the compiler and hardware may reorder the 

execution of statements within each sequential thread, and the threads 

themselves may be executed in any (possibly interleaved) order. To design 

and implement safe communication protocols between threads, we need 

to be able to constrain this reordering. By providing the compiler with 

information about our desired memory order, we can prevent reordering 

optimizations that are incompatible with the intended behavior of our 

applications.

Three commonly available memory orderings are:

 1. A relaxed memory ordering

 2. An acquire-release or release-acquire memory 

ordering

 3. A sequentially consistent memory ordering

Under a relaxed memory ordering, memory operations can be 

reordered without any restrictions. The most common usage of a relaxed 

memory model is incrementing shared variables (e.g., a single counter, an 

array of values during a histogram computation).

Under an acquire-release memory ordering, one thread releasing an 

atomic variable and another thread acquiring the same atomic variable 

acts as a synchronization point between those two threads and guarantees 

that any prior writes to memory issued by the releasing thread are visible 

to the acquiring thread. Informally, we can think of atomic operations 

releasing side effects from other memory operations to other threads or 

acquiring the side effects of memory operations on other threads. Such 

a memory model is required if we want to communicate values between 

pairs of threads via memory, which may be more common than we would 

think. When a program acquires a lock, it typically goes on to perform 

some additional calculations and modify some memory before eventually 
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releasing the lock—only the lock variable is ever updated atomically, but 

we expect memory updates guarded by the lock to be protected from 

data races. This behavior relies on an acquire-release memory ordering 

for correctness, and attempting to use a relaxed memory ordering to 

implement a lock will not work.

Under a sequentially consistent memory ordering, the guarantees 

of acquire-release ordering still hold, but there additionally exists a 

single global order of all atomic operations. The behavior of this memory 

ordering is the most intuitive of the three and the closest that we can get to 

the original as-if guarantee we are used to relying upon when developing 

sequential applications. With sequential consistency, it becomes 

significantly easier to reason about communication between groups 

(rather than pairs) of threads, since all threads must agree on the global 

ordering of all atomic operations.

Understanding which memory orders are supported by a combination 

of programming model and device is a necessary part of designing 

portable parallel applications. Being explicit in describing the memory 

order required by our applications ensures that they fail predictably 

(e.g., at compile time) when the behavior we require is unsupported and 

prevents us from making unsafe assumptions.

 The Memory Model
The chapter so far has introduced the concepts required to understand the 

memory model. The remainder of the chapter explains the memory model 

in detail, including

• How to express the memory ordering requirements of 

our kernels

• How to query the memory orders supported by a 

specific device
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• How the memory model behaves with respect to 

disjoint address spaces and multiple devices

• How the memory model interacts with barriers, fences, 

and atomics

• How using atomic operations differs between 

buffers and USM

The memory model is based on the memory model of C++ but differs 

in some important ways. These differences reflect our long-term vision 

that SYCL should help inform the future of C++: the default behaviors and 

naming of classes are closely aligned with the C++ standard library and are 

intended to extend C++ functionality rather than to restrict it.

The table in Figure 19-9 summarizes how different memory model 

concepts are exposed as language features in C++ (C++11, C++14, C++17, 

C++20) vs. SYCL. The C++14, C++17, and C++20 standards additionally 

include some clarifications that impact implementations of C++. These 

clarifications should not affect the application code that we write, so we do 

not cover them here.
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Feature C++ SYCL
Atomic Objects std::atomic Not available.

Atomic 

References
std::atomic_ref (C++20 onwards) sycl::atomic_ref

Memory Orders

relaxed
consume
acquire
release
acq_rel
seq_cst

relaxed

acquire
release
acq_rel
seq_cst

Memory Scopes

Not available.

Behavior of atomics and fences 

matches SYCL system scope.

work_item
sub_group
work_group
device
system

std::atomic_thread_fence sycl::atomic_fence
std::barrier sycl::group_barrier

Figure 19-9. Comparing C++ and SYCL memory models

 The memory_order Enumeration Class
The memory model exposes different memory orders through five 

values of the memory_order enumeration class (note: C++ “consume” 

is not part of SYCL), which can be supplied as arguments to fences and 

atomic operations. Supplying a memory order argument to an operation 

tells the compiler what memory ordering guarantees are required for all 

other memory operations (to any address) relative to that operation, as 

explained in the following:

• memory_order::relaxed

Read and write operations can be reordered before 

or after the operation with no restrictions. There are 

no ordering guarantees.
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• memory_order::acquire

Read and write operations appearing after the 

operation in the program must occur after it (i.e., 

they cannot be reordered before the operation).

• memory_order::release

Read and write operations appearing before the 

operation in the program must occur before it (i.e., 

they cannot be reordered after the operation), 

and preceding write operations are guaranteed to 

be visible to other work-items which have been 

synchronized by a corresponding acquire operation 

(i.e., an atomic operation using the same variable 

and memory_order::acquire or a barrier function).

• memory_order::acq_rel

The operation acts as both an acquire and a release. 

Read and write operations cannot be reordered 

around the operation, and preceding writes must 

be made visible as previously described for memory_

order::release.

• memory_order::seq_cst

The operation acts as an acquire, release, or 

both depending on whether it is a read, write, or 

read–modify–write operation, respectively. All 

operations with this memory order are observed in a 

sequentially consistent order.

There are several restrictions on which memory orders are supported 

by each operation. The table in Figure 19-10 summarizes which 

combinations are valid.
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Figure 19-10. Supporting atomic operations with memory_order

Load operations do not write values to memory and are therefore 

incompatible with release semantics. Similarly, store operations do not 

read values from memory and are therefore incompatible with acquire 

semantics. The remaining read–modify–write atomic operations and 

fences are compatible with all memory orderings.

MEMORY ORDER IN C++

The C++ memory model additionally includes memory_order::consume, 

with similar behavior to memory_order::acquire. however, C++17 

discourages its use, noting that its definition is being revised. its inclusion in 

SYCL has therefore been left to consider for a future specification.

 The memory_scope Enumeration Class
The C++ memory model assumes that applications execute on a single 

device with a single address space. Neither of these assumptions holds for 

SYCL applications: various parts of the application execute on different 
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devices (i.e., a host and one or more accelerator devices); each device has 

multiple address spaces (i.e., private, local, and global); and the global 

address space of each device may or may not be disjoint (depending on 

USM support).

To address this, SYCL extends the C++ notion of memory order to 

include the scope of an atomic operation, denoting the minimum set of 

work-items to which a given memory ordering constraint applies. The set 

of scopes are defined by way of a memory_scope enumeration class:

• memory_scope::work_item

The memory ordering constraint applies only to 

the calling work-item. This scope is only useful for 

image operations, as all other operations within 

a work-item are already guaranteed to execute in 

program order.

• memory_scope::sub_group, memory_scope::work_group

The memory ordering constraint applies only to 

work- items in the same sub-group or work-group as 

the calling work-item.

• memory_scope::device

The memory ordering constraint applies only to 

work- items executing on the same device as the 

calling work-item.

• memory_scope::system

The memory ordering constraint applies to all work- 

items in the system.
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Barring restrictions imposed by the capabilities of a device, all memory 

scopes are valid arguments to all atomic and fence operations. However, a 

scope argument may be automatically demoted to a narrower scope in one 

of three situations:

 1. If an atomic operation updates a value in work-

group local memory, any scope broader than 

memory_scope::work_group is narrowed (because 

local memory is only visible to work-items in the 

same work-group).

 2. If a device does not support USM, specifying 

memory_scope::system is always equivalent to 

memory_scope::device (because buffers cannot be 

accessed concurrently by multiple devices).

 3. If an atomic operation uses memory_order::relaxed, 

there are no ordering guarantees, and the memory 

scope argument is effectively ignored.

 Querying Device Capabilities
To ensure compatibility with devices supported by previous versions of 

SYCL and to maximize portability, SYCL supports OpenCL 1.2 devices 

and other hardware that may not be capable of supporting the full C++ 

memory model (e.g., certain classes of embedded devices). SYCL provides 

device queries to help us reason about the memory order(s) and memory 

scope(s) supported by the devices available in a system:

• atomic_memory_order_capabilities

Return a list of all memory orderings supported  

by atomic operations on a specific device.  

All devices are required to support at least  

memory_order::relaxed.
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• atomic_fence_order_capabilities

Return a list of all memory orderings supported  

by fence operations on a specific device.  

All devices are required to support at least  

memory_order::relaxed, memory_order::acquire, 

memory_order::release, and memory_order::acq_rel. 

Note that the minimum requirement for fences is 

stronger than the minimum requirement for atomic 

operations, since such fences are essential for 

reasoning about memory order in the presence of 

barriers.

• atomic_memory_scope_capabilities

 atomic_fence_scope_capabilities

Return a list of all memory scopes supported by 

atomic and fence operations on a specific device.  

All devices are required to support at least  

memory_order::work_group.

It may be difficult at first to remember which memory orders and 

scopes are supported for which combinations of function and device 

capability. In practice, we can avoid much of this complexity by following 

one of the two development approaches outlined in the following:

 1. Develop applications with sequential consistency 
and system fences.

Only consider adopting less strict memory orders 

during performance tuning.
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 2. Develop applications with relaxed consistency 
and work- group fences.

Only consider adopting more strict memory orders 

and broader memory scopes where required for 

correctness.

The first approach ensures that the semantics of all atomic operations 

and fences match the default behavior of C++. This is the simplest and 

least error-prone option but has the worst performance and portability 

characteristics.

The second approach is more aligned with the default behavior of 

previous versions of SYCL and languages like OpenCL. Although more 

complicated—since it requires that we become more familiar with the 

different memory orders and scopes—it ensures that the majority of the 

SYCL code we write will work on any device without performance penalties.

 Barriers and Fences
All previous usages of barriers and fences in the book so far have ignored 

the issue of memory order and scope, by relying on default behavior.

By default, every group barrier in SYCL acts as an acquire-release 

fence to all address spaces accessible by the calling work-item and makes 

preceding writes visible to at least all other work-items in the same group 

(as defined by the group’s fence_scope member variable). This ensures 

memory consistency within a group of work-items after a barrier, in line 

with our intuition of what it means to synchronize (and the definition of 

the synchronizes-with relation in C++). It is possible to override this default 

behavior by passing an explicit memory_scope argument to the group_

barrier function.

The atomic_fence function gives us even more fine-grained control 

than this, allowing work-items to execute fences specifying both a memory 

order and scope.
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 Atomic Operations in SYCL
SYCL provides support for many kinds of atomic operations on a variety 

of data types. All devices are guaranteed to support atomic versions of 

common operations (e.g., loads, stores, arithmetic operators), as well as 

the atomic compare-and-swap operations required to implement lock-free 

algorithms. The language defines these operations for all fundamental 

integer, floating-point, and pointer types—all devices must support these 

operations for 32-bit types, but 64-bit-type support is optional.

 The atomic Class

The std::atomic class from C++11 provides an interface for creating and 

operating on atomic variables. Instances of the atomic class own their 

data, cannot be moved or copied, and can only be updated using atomic 

operations. These restrictions significantly reduce the chances of using the 

class incorrectly and introducing undefined behavior. Unfortunately, they 

also prevent the class from being used in SYCL kernels—it is impossible to 

create atomic objects on the host and transfer them to the device! We are 

free to continue using std::atomic in our host code, but attempting to use 

it inside of device kernels will result in a compiler error.

ATOMIC CLASS DEPRECATED IN SYCL 2020

The SYCL 1.2.1 specification included a cl::sycl::atomic class that 

is loosely based on the std::atomic class from C++11. We say loosely 

because there are some differences between the interfaces of the two classes, 

most notably that the SYCL 1.2.1 version does not own its data and defaults to 

a relaxed memory ordering.

The cl::sycl::atomic class is deprecated in SYCL 2020. The  

atomic_ref class (covered in the next section) should be used in its place.
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 The atomic_ref Class

The std::atomic_ref class from C++20 provides an alternative interface 

for atomic operations which provides greater flexibility than std::atomic. 

The biggest difference between the two classes is that instances of 

std::atomic_ref do not own their data but are instead constructed from 

an existing non-atomic variable. Creating an atomic reference effectively 

acts as a promise that the referenced variable will only be accessed 

atomically for the lifetime of the reference. These are exactly the semantics 

needed by SYCL, since they allow us to create non-atomic data on the host, 

transfer that data to the device, and treat it as atomic data only after it has 

been transferred. The atomic_ref class used in SYCL kernels is therefore 

based on std::atomic_ref.

We say based on because the SYCL version of the class includes three 

additional template arguments as shown in Figure 19-11.

template <typename T, memory_order DefaultOrder,
memory_scope DefaultScope,
access::address_space AddressSpace>

class atomic_ref {
public:
using value_type = T;
static constexpr size_t required_alignment =

/* implementation-defined */;
static constexpr bool is_always_lock_free =

/* implementation-defined */;
static constexpr memory_order default_read_order =

memory_order_traits<DefaultOrder>::read_order;
static constexpr memory_order default_write_order =

memory_order_traits<DefaultOrder>::write_order;
static constexpr memory_order

default_read_modify_write_order = DefaultOrder;
static constexpr memory_scope default_scope =

DefaultScope;

explicit atomic_ref(T& obj);
atomic_ref(const atomic_ref& ref) noexcept;

};

Figure 19-11. Constructors and static members of the atomic_ref class
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As discussed previously, the capabilities of different SYCL devices 

are varied. Selecting a default behavior for the atomic classes of SYCL is a 

difficult proposition: defaulting to C++ behavior (i.e., memory_order::seq_

cst, memory_scope::system) limits code to executing only on the most 

capable of devices; on the other hand, breaking with C++ conventions 

and defaulting to the lowest common denominator (i.e., memory_

order::relaxed, memory_scope::work_group) could lead to unexpected 

behavior when migrating existing C++ code. The design adopted by SYCL 

offers a compromise, allowing us to define our desired default behavior 

as part of an object’s type (using the DefaultOrder and DefaultScope 

template arguments). Other orderings and scopes can be provided as 

runtime arguments to specific atomic operations as we see fit—the 

DefaultOrder and DefaultScope only impact operations where we do 

not or cannot override the default behavior (e.g., when using a shorthand 

operator like +=). The final (optional) template argument denotes the 

address space in which the referenced object is allocated. Note that if the 

final template argument is not specified, the referenced variable can be 

allocated in any address space—although specifying an address space 

here is optional, we recommend providing explicit address spaces (where 

possible) to give compilers more information and to avoid unwanted 

performance overheads.

An atomic reference provides support for different operations 

depending on the type of object that it references. The basic operations 

supported by all types are shown in Figure 19-12, providing the ability to 

atomically move data to and from memory.
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void store(
T operand, memory_order order = default_write_order,
memory_scope scope = default_scope) const noexcept;

T operator=(
T desired) const noexcept; // equivalent to store

T load(memory_order order = default_read_order,
memory_scope scope = default_scope) const noexcept;

operator T() const noexcept; // equivalent to load

T exchange(
T operand,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

bool compare_exchange_weak(
T &expected, T desired, memory_order success,
memory_order failure,
memory_scope scope = default_scope) const noexcept;

bool compare_exchange_weak(
T &expected, T desired,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

bool compare_exchange_strong(
T &expected, T desired, memory_order success,
memory_order failure,
memory_scope scope = default_scope) const noexcept;

bool compare_exchange_strong(
T &expected, T desired,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

Figure 19-12. Basic operations with atomic_ref for all types

Atomic references to objects of integral and floating-point types extend 

the set of available atomic operations to include arithmetic operations, as 

shown in Figure 19-13 and Figure 19-14. Devices are required to support 

atomic floating-point types irrespective of whether they feature native 

support for floating-point atomics in hardware, and many devices are 

expected to emulate atomic floating-point addition using an atomic 

compare exchange. This emulation is an important part of providing 
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performance and portability in SYCL, and we should feel free to use 

floating-point atomics anywhere that an algorithm requires them—the 

resulting code will work correctly everywhere and will benefit from future 

improvements in floating-point atomic hardware without any modification!

Integral fetch_add(
Integral operand,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

Integral fetch_sub(
Integral operand,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

Integral fetch_and(
Integral operand,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

Integral fetch_or(
Integral operand,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

Integral fetch_min(
Integral operand,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

Integral fetch_max(
Integral operand,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

Integral operator++(int) const noexcept;
Integral operator--(int) const noexcept;
Integral operator++() const noexcept;
Integral operator--() const noexcept;
Integral operator+=(Integral) const noexcept;
Integral operator-=(Integral) const noexcept;
Integral operator&=(Integral) const noexcept;
Integral operator|=(Integral) const noexcept;

Figure 19-13. Additional operations with atomic_ref only for 
integral types
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Floating fetch_add(
Floating operand,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

Floating fetch_sub(
Floating operand,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

Floating fetch_min(
Floating operand,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

Floating fetch_max(
Floating operand,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

Floating operator+=(Floating) const noexcept;
Floating operator-=(Floating) const noexcept;

Figure 19-14. Additional operations with atomic_ref only for 
floating-point types

 Using Atomics with Buffers
As discussed in the previous section, there is no way in SYCL to allocate 

atomic data and move it between the host and device. To use atomic 

operations in conjunction with buffers, we must create a buffer of non- 

atomic data to be transferred to the device and then access that data 

through an atomic reference.
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q.submit([&](handler& h) {
accessor acc{buf, h};
h.parallel_for(N, [=](id<1> i) {

int j = i % M;
atomic_ref<int, memory_order::relaxed,

memory_scope::system,
access::address_space::global_space>

atomic_acc(acc[j]);
atomic_acc += 1;

});
});

Figure 19-15. Accessing a buffer via an explicitly created atomic_ref

The code in Figure 19-15 is an example of expressing atomicity in 

SYCL using an explicitly created atomic reference object. The buffer stores 

normal integers, and we require an accessor with both read and write 

permissions. We can then create an instance of atomic_ref for each data 

access, using the += operator as a shorthand alternative for the fetch_add 

member function.

This pattern is useful if we want to mix atomic and non-atomic 

accesses to a buffer within the same kernel, to avoid paying the 

performance overheads of atomic operations when they are not required. 

If we know that only a subset of the memory locations in the buffer will 

be accessed concurrently by multiple work-items, we only need to use 

atomic references when accessing that subset. Or, if we know that work- 

items in the same work-group only concurrently access local memory 

during one stage of a kernel (i.e., between two work-group barriers), 

we only need to use atomic references during that stage. When mixing 

atomic and non-atomic accesses like this, it is important to pay attention 

to object lifetimes—while any atomic_ref referencing a specific object 

exists, all accesses to that object must occur (atomically) via an instance of 

atomic_ref.
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 Using Atomics with Unified Shared Memory
As shown in Figure 19-16 (reproduced from Figure 19-7), we can construct 

atomic references from data stored in USM in exactly the same way as we 

could for buffers. Indeed, the only difference between this code and the 

code shown in Figure 19-15 is that the USM code does not require buffers 

or accessors.

q.parallel_for(N, [=](id<1> i) {
int j = i % M;
atomic_ref<int, memory_order::relaxed,

memory_scope::system,
access::address_space::global_space>

atomic_data(data[j]);
atomic_data += 1;

}).wait();

Figure 19-16. Accessing a USM allocation via an explicitly created 
atomic_ref

 Using Atomics in Real Life
The potential usages of atomics are so broad and varied that it would be 

impossible for us to provide an example of each usage in this book. We 

have included two representative examples, with broad applicability across 

domains:

 1. Computing a histogram

 2. Implementing device-wide synchronization
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 Computing a Histogram
The code in Figure 19-17 demonstrates how to use relaxed atomics in 

conjunction with work-group barriers to compute a histogram. The kernel 

is split by the barriers into three phases, each with their own atomicity 

requirements. Remember that the barrier acts both as a synchronization 

point and an acquire-release fence—this ensures that any reads and writes 

in one phase are visible to all work-items in the work-group in later phases.

The first phase sets the contents of some work-group local memory to 

zero. The work-items in each work-group update independent locations in 

work-group local memory by design—race conditions cannot occur, and 

no atomicity is required.

The second phase accumulates partial histogram results in local 

memory. Work-items in the same work-group may update the 

same locations in work-group local memory, but synchronization 

can be deferred until the end of the phase—we can satisfy the 

atomicity requirements using memory_order::relaxed and memory_

scope::work_group.

The third phase contributes the partial histogram results to the 

total stored in global memory. Work-items in the same work-group are 

guaranteed to read from independent locations in work-group local 

memory, but may update the same locations in global memory—we 

no longer require atomicity for the work-group local memory and can 

satisfy the atomicity requirements for global memory using memory_

order::relaxed and memory_scope::system as before.
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q.submit([&](handler& h) {
auto local = local_accessor<uint32_t, 1>{B, h};
h.parallel_for(

nd_range<1>{num_groups * num_items, num_items},
[=](nd_item<1> it) {
auto grp = it.get_group();

// Phase 1: Work-items co-operate to zero local
// memory
for (int32_t b = it.get_local_id(0); b < B;

b += it.get_local_range(0)) {
local[b] = 0;

}
group_barrier(grp); // Wait for all to be zeroed

// Phase 2: Work-groups each compute a chunk of
// the input. Work-items co-operate to compute
// histogram in local memory
const auto [group_start, group_end] =

distribute_range(grp, N);
for (int i = group_start + it.get_local_id(0);

i < group_end; i += it.get_local_range(0)) {
int32_t b = input[i] % B;
atomic_ref<uint32_t, memory_order::relaxed,

memory_scope::work_group,
access::address_space::local_space>(local[b])++;

}
group_barrier(

grp); // Wait for all local histogram
// updates to complete

// Phase 3: Work-items co-operate to update
// global memory
for (int32_t b = it.get_local_id(0); b < B;

b += it.get_local_range(0)) {
atomic_ref<uint32_t, memory_order::relaxed, memory_scope::system,

access::address_space::global_space>(histogram[b]) +=
local[b];

}
});

}).wait();

Figure 19-17. Computing a histogram using atomic references in 
different memory spaces
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 Implementing Device-Wide Synchronization
Back in Chapter 4, we warned against writing kernels that attempt to 

synchronize work-items across work-groups. However, we fully expect 

several readers of this chapter will be itching to implement their own 

device-wide synchronization routines atop of atomic operations and that 

our warnings will be ignored.

device-wide synchronization is currently not portable and is best left 
to expert programmers. Future versions of SYCL will address this.

The code discussed in this section is dangerous and should not be 

expected to work on all devices, because of potential differences in device 

hardware features and SYCL implementations. The memory ordering 

guarantees provided by atomics are orthogonal to forward progress 

guarantees, and, at the time of writing, work-group scheduling in SYCL 

is completely implementation-defined. Formalizing the concepts and 

terminology required to describe SYCL’s ND-range execution model and 

the forward progress guarantees associated with work-items, sub-groups, 

and work-groups is currently an area of active academic research—future 

versions of SYCL are expected to build on this work to provide additional 

scheduling queries and controls. For now, these topics should be 

considered expert-only.

Figure 19-18 shows a simple implementation of a device-wide latch (a 

single-use barrier), and Figure 19-19 shows a simple example of its usage. 

Each work-group elects a single work-item to signal arrival of the group 

at the latch and await the arrival of other groups using a naïve spin-loop, 

while the other work-items wait for the elected work-item using a work- 

group barrier. It is this spin-loop that makes device-wide synchronization 

unsafe; if any work-groups have not yet begun executing or the currently 

executing work-groups are not scheduled fairly, the code may deadlock.
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relying on memory order alone to implement synchronization 
primitives may lead to deadlocks in the absence of sufficiently strong 
forward progress guarantees!

For the code to work correctly, the following three conditions 

must hold:

 1. The atomic operations must use memory orders at 

least as strict as those shown, to guarantee that the 

correct fences are generated.

 2. The elected leader of each work-group in the ND-

range must make progress independently of the 

leaders in other work-groups, to avoid a single 

work-item spinning in the loop from starving other 

work-items that have yet to increment the counter.

 3. The device must be capable of executing all work-

groups in the ND- range simultaneously, with strong 

forward progress guarantees, in order to ensure that 

the elected leaders of every work-group in the ND-

range eventually reach the latch.
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struct device_latch { 
  explicit device_latch(size_t num_groups) 
      : counter(0), expected(num_groups) {} 
 
  template <int Dimensions> 
  void arrive_and_wait(nd_item<Dimensions>& it) { 
    auto grp = it.get_group(); 
    group_barrier(grp); 
    // Elect one work-item per work-group to be involved in 
    // the synchronization. All other work-items wait at the 
    // barrier after the branch. 
    if (grp.leader()) { 
      atomic_ref<size_t, memory_order::acq_rel, 
                 memory_scope::device, 
                 access::address_space::global_space> 
          atomic_counter(counter); 
 
      // Signal arrival at the barrier. 
      // Previous writes should be visible to all work-items 
      // on the device. 
      atomic_counter++; 
 
      // Wait for all work-groups to arrive. 
      // Synchronize with previous releases by all 
      // work-items on the device. 
      while (atomic_counter.load() != expected) { 
      } 
    } 
    group_barrier(grp); 
  } 
 
  size_t counter; 
  size_t expected; 
}; 

Figure 19-18. Building a simple device-wide latch on top of atomic 
references
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Figure 19-19. Using the device-wide latch from Figure 19-18

Although this code is not guaranteed to be portable, we have included 

it here to highlight two key points: (1) SYCL is expressive enough to enable 

device-specific tuning, sometimes at the expense of portability; and (2) 

SYCL already contains the building blocks necessary to implement higher- 

level synchronization routines, which may be included in a future version 

of the language.

 Summary
This chapter provided a high-level introduction to memory model and 

atomic classes. Understanding how to use (and how not to use!) these 

classes is key to developing correct, portable, and efficient parallel programs.

Memory models are an overwhelmingly complex topic, and our 

focus here has been on establishing a base for writing real applications. If 

more information is desired, there are several websites, books, and talks 

dedicated to memory models referenced in the following.
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 For More Information
• A. Williams, C++ Concurrency in Action: Practical 

Multithreading, Manning, 2012, 978-1933988771

• H. Sutter, “atomic<> Weapons: The C++ Memory Model 

and Modern Hardware”, herbsutter.com/2013/02/11/

atomic-weapons-the-c-memory-model-and-modern-

hardware/

• H-J. Boehm, “Temporarily discourage memory_order_

consume,” wg21.link/p0371

• C++ Reference, “std::atomic,” en.cppreference.com/w/

cpp/atomic/atomic

• C++ Reference, “std::atomic_ref,” en.cppreference.

com/w/cpp/atomic/atomic_ref

Open Access  This chapter is licensed under the terms of 

the Creative Commons Attribution 4.0 International License 

(https://creativecommons.org/licenses/by/4.0/), which permits use, 

sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and 

the source, provide a link to the Creative Commons license and indicate if 

changes were made.

The images or other third party material in this chapter are included 

in the chapter’s Creative Commons license, unless indicated otherwise 

in a credit line to the material. If material is not included in the chapter’s 

Creative Commons license and your intended use is not permitted by 

statutory regulation or exceeds the permitted use, you will need to obtain 

permission directly from the copyright holder.
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CHAPTER 20

Backend 
Interoperability
In this chapter we will learn about backend interoperability, a SYCL feature 

that can incrementally add SYCL to an application that is already using 

other data parallel techniques or APIs.

We will also learn how backend interoperability can be used by expert 

programmers familiar with low-level APIs to “peek behind the curtain” 

and use underlying data parallel APIs from SYCL programs directly. This 

provides direct access to API-specific features, when necessary, while 

retaining the portability and ease-of-use benefits of SYCL otherwise.

 What Is Backend Interoperability?
So far in this book we have referred to SYCL programs running on SYCL 

devices, but in practice many SYCL implementations build upon lower- 

level APIs such as OpenCL, Level Zero, CUDA, or others to access the 

parallel hardware in a system. When a SYCL implementation is built upon 

a lower-level API, we refer to the target API as a SYCL backend. Figure 20-1 

shows the relationship between SYCL backends, platforms, and devices. 

Most SYCL implementations can run SYCL programs on multiple SYCL 

backends simultaneously to utilize all the parallel hardware in a system.

© Intel Corporation 2023 
J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-9691-2_20

https://doi.org/10.1007/978-1-4842-9691-2_20


560

Figure 20-1. Relationship between SYCL backends, platforms, 
and devices

We can query the SYCL backends in a system by first querying the 

SYCL platforms and then querying the SYCL backend associated with 

each platform, as shown in Figure 20-2. The output from this program will 

depend on the number and type of SYCL devices in a system. If the same 

device is supported by different SYCL backends, it may enumerate as a 

SYCL device for each backend.

#include <iostream>
#include <sycl/sycl.hpp>
using namespace sycl;

int main() {
for (auto& p : platform::get_platforms()) {

std::cout << "SYCL Platform: "
<< p.get_info<info::platform::name>()
<< " is associated with SYCL Backend: "
<< p.get_backend() << std::endl;

}
return 0;

}

Example Output:
SYCL Platform: Portable Computing Language is associated with SYCL Backend: opencl
SYCL Platform: Intel(R) OpenCL HD Graphics is associated with SYCL Backend: opencl
SYCL Platform: Intel(R) OpenCL is associated with SYCL Backend: opencl
SYCL Platform: Intel(R) FPGA Emulation Platform for OpenCL(TM) is associated with SYCL 
Backend: opencl
SYCL Platform: Intel(R) Level-Zero is associated with SYCL Backend: 
ext_oneapi_level_zero
SYCL Platform: NVIDIA CUDA BACKEND is associated with SYCL Backend: ext_oneapi_cuda
SYCL Platform: AMD HIP BACKEND is associated with SYCL Backend: ext_oneapi_hip

Figure 20-2. Querying the SYCL backend for a SYCL platform
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The associated backend can be queried for most SYCL objects, not 

just for SYCL platforms. For example, we can also query the associated 

backend for a SYCL device, a SYCL context, or a SYCL queue.

Backend interoperability lets us use knowledge of the associated 

backend to interact with and manipulate underlying native backend objects 

that represent SYCL objects for the associated backend.

 When Is Backend Interoperability Useful?
Many SYCL programmers will never need to use backend interoperability. 

In fact, using backend interoperability may be undesirable; backend 

interoperability will frequently either make a program more complex 

because it requires multiple code paths for multiple SYCL backends, or 

it will make a program less portable because it will restrict execution to 

devices with a single associated backend.

Still, backend interoperability is a useful tool to have in our toolbox 

to solve some specific problems. In this section we will explore several 

common use cases where backend interoperability is useful.

BACKEND INTEROPERABILITY IS LIKE AN INLINE ASSEMBLER

a useful mental model for backend interoperability is that backend 

interoperability is to SyCl as inline assembler is to C++ host code: backend 

interoperability is not necessary for learning SyCl or being productive with 

SyCl, and backend interoperability is often undesirable because it increases 

complexity or decreases portability. nevertheless, it is a useful tool to have in 

our toolbox to solve specific problems.
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 Adding SYCL to an Existing Codebase
The SYCL programs in this book are designed to teach specific SYCL 

concepts so they are intentionally straightforward and short. By contrast, 

most real-world software is large and complex, consisting of thousands or 

millions of lines of code, perhaps developed by many people over many 

years. Even if we wanted to do so, completely rewriting a large application 

to use SYCL may not be feasible.

One of the key benefits provided by backend interoperability is the 

ability to incrementally add SYCL to an existing codebase that is already 

using a low-level API, by creating SYCL objects from native backend 

objects for that API. For example, let’s say we have a large OpenCL 

application that creates an OpenCL context and OpenCL memory objects. 

Backend interoperability has templated functions like make_context 

and make_buffer which let us seamlessly create SYCL objects from these 

OpenCL objects. After creating SYCL objects from the OpenCL objects, 

they can be used by SYCL queues and SYCL kernels just like any other 

SYCL object, as shown in Figure 20-3.

// Create SYCL objects from the native backend objects.
context c =

make_context<backend::opencl>(openclContext);
device d = make_device<backend::opencl>(openclDevice);
buffer data_buf =

make_buffer<backend::opencl, int>(openclBuffer, c);

// Now use the SYCL objects to create a queue and submit
// a kernel.
queue q{c, d};

q.submit([&](handler& h) {
accessor data_acc{data_buf, h};
h.parallel_for(size, [=](id<1> i) {

data_acc[i] = data_acc[i] + 1;
});

}).wait();

Figure 20-3. Creating SYCL objects from OpenCL objects
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The SYCL 2020 specification only defines interoperability with OpenCL 

backends, but SYCL implementations may provide interoperability with 

other backends via extensions. Figure 20-4 shows how SYCL objects may 

be created from Level Zero objects using the sycl_ext_oneapi_backend_

level_zero extension.

// Create SYCL objects from the native backend objects.
device d = make_device<backend::ext_oneapi_level_zero>(

level0Device);
context c =

make_context<backend::ext_oneapi_level_zero>(
{level0Context,
{d},
ext::oneapi::level_zero::ownership::keep});

buffer data_buf =
make_buffer<backend::ext_oneapi_level_zero, int>(

{level0Ptr,
ext::oneapi::level_zero::ownership::keep},

c);

// Now use the SYCL objects to create a queue and submit
// a kernel.
queue q{c, d};

q.submit([&](handler& h) {
accessor data_acc{data_buf, h};
h.parallel_for(size, [=](id<1> i) {

data_acc[i] = data_acc[i] + 1;
});

}).wait();

Figure 20-4. Creating SYCL objects from Level Zero objects

Notice that the parameters that are passed to create the SYCL 

objects are slightly different for the Level Zero backend. This will 

generally be true for any supported backend interoperability because 

each backend may require different information to properly create the 

SYCL object. Otherwise, the same make_device, make_context, and 

make_buffer functions are used for both OpenCL and Level Zero backend 

interoperability.
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Notice also that ownership is handled differently by each backend. 

For the OpenCL backend, the SYCL implementation uses the reference 

counting provided by OpenCL to manage the lifetimes of the native 

backend objects. For the Level Zero backend, the SYCL implementation 

must be explicitly told whether it should take ownership of the native 

backend object, or whether our application will keep ownership. If the 

SYCL implementation takes ownership of the native backend object, 

then the native backend object will be destroyed when the SYCL object is 

destroyed; otherwise, our application is responsible for freeing the native 

backend object directly.

 Using Existing Libraries with SYCL
Backend interoperability can also be used to extract native backend 

objects from SYCL objects. This can be useful to use existing low-level 

libraries or other helper functions with our SYCL applications. There are 

two methods to do this: the first uses get_native free functions to get 

native backend objects from SYCL objects. The second uses a host_task 

and an interop_handle to get native backend objects from SYCL objects 

from code that is scheduled by the SYCL runtime.

 Getting Backend Objects with Free Functions

For example, let’s say we have an optimized OpenCL library that we 

would like to use with our SYCL application. We can call the backend 

interoperability get_native functions to get native OpenCL objects from 

our SYCL objects, which can then be used with the OpenCL library. For 

simplicity, the code in Figure 20-5 just performs a query and allocates 

some memory with the native OpenCL objects, but they could also be used 

to perform more complicated operations like creating command queues, 

compiling programs, and executing kernels.
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cl_device_id openclDevice =
get_native<backend::opencl>(d);

cl_context openclContext = get_native<backend::opencl>(c);

// Query the device name from OpenCL:
size_t sz = 0;
clGetDeviceInfo(openclDevice, CL_DEVICE_NAME, 0, nullptr,

&sz);
std::string openclDeviceName(sz, ' ');
clGetDeviceInfo(openclDevice, CL_DEVICE_NAME, sz,

&openclDeviceName[0], nullptr);
std::cout << "Device name from OpenCL is: "

<< openclDeviceName << "\n";

// Allocate some memory from OpenCL:
cl_mem openclBuffer = clCreateBuffer(

openclContext, 0, sizeof(int), nullptr, nullptr);

// Clean up OpenCL objects when done:
clReleaseDevice(openclDevice);
clReleaseContext(openclContext);
clReleaseMemObject(openclBuffer);

Figure 20-5. Extracting OpenCL objects from SYCL objects using 
get_native free functions

The same get_native functions are also added for the Level Zero 

backend as part of the sycl_ext_oneapi_backend_level_zero extension, 

as shown in Figure 20-6.
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ze_device_handle_t level0Device =
get_native<backend::ext_oneapi_level_zero>(d);

ze_context_handle_t level0Context =
get_native<backend::ext_oneapi_level_zero>(c);

// Query the device name from Level Zero:
ze_device_properties_t level0DeviceProps = {};
level0DeviceProps.stype =

ZE_STRUCTURE_TYPE_DEVICE_PROPERTIES;

zeDeviceGetProperties(level0Device, &level0DeviceProps);

std::cout << "Device name from SYCL is: "
<< d.get_info<info::device::name>() << "\n";

std::cout << "Device name from Level Zero is: "
<< level0DeviceProps.name << "\n";

// Allocate some memory from Level Zero:
void* level0Ptr = nullptr;
ze_host_mem_alloc_desc_t level0HostAllocDesc = {};
level0HostAllocDesc.stype =

ZE_STRUCTURE_TYPE_HOST_MEM_ALLOC_DESC;
zeMemAllocHost(level0Context, &level0HostAllocDesc,

sizeof(int), 0, &level0Ptr);

// Clean up Level Zero objects when done:
zeMemFree(level0Context, level0Ptr);

Figure 20-6. Extracting Level Zero objects from SYCL objects using 
get_native free functions

 Getting Backend Objects via an Interop Handle

Using the get_native free functions is an effective way to get backend- 

specific objects for large sections of code that will use backend APIs 

directly. In many cases, though, we only want to perform a specific 

operation in the SYCL task graph using a backend API. In these cases, 

we can perform the backend-specific operation using a SYCL host_task 

with a special interop_handle parameter. The interop_handle represents 

the state of the SYCL runtime when the host task is invoked and provides 

access to native backend objects representing the SYCL queue, device, 

context, and any buffers that were captured for the host task.
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Figure 20-7 shows how to use the interop_handle to get native 

OpenCL objects from a host_task that is scheduled by the SYCL runtime. 

For simplicity, this sample also only performs some queries using the 

native OpenCL objects, but real application code would commonly 

enqueue a kernel or call into a library using the native OpenCL objects. 

Because these operations are performed from a host task, they will be 

properly scheduled with any other operations in the SYCL queue.

q.submit([&](handler& h) {
accessor a{b, h};
h.host_task([=](interop_handle ih) {
// Get the OpenCL device from the interop handle:
auto openclDevice =

ih.get_native_device<backend::opencl>();

// Query the device name from the OpenCL device:
size_t sz = 0;
clGetDeviceInfo(openclDevice, CL_DEVICE_NAME, 0,

nullptr, &sz);
std::string openclDeviceName(sz, ' ');
clGetDeviceInfo(openclDevice, CL_DEVICE_NAME, sz,

&openclDeviceName[0], nullptr);
std::cout << "Device name from OpenCL is: "

<< openclDeviceName << "\n";

// Get the OpenCL buffer from the interop handle:
auto openclMem =

ih.get_native_mem<backend::opencl>(a)[0];

// Query the size of the OpenCL buffer:
clGetMemObjectInfo(openclMem, CL_MEM_SIZE, sizeof(sz),

&sz, nullptr);
std::cout << "Buffer size from OpenCL is: " << sz

<< " bytes\n";
});

});

Figure 20-7. Extracting OpenCL objects from SYCL objects using an 
interop_handle

Notice that when getting native OpenCL objects for our accessor, 

the get_native_mem member function of the interop_handle returns a 

vector of cl_mem memory objects. This is a requirement in the SYCL 2020 
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specification, where the return type of member functions of the interop_

handle must match the get_native free functions, but for the interop_

handle usage we can simply use the first element of the vector.

As with the get_native free functions, similar functionality may also 

be provided for other SYCL backends via extensions. Figure 20-8 shows 

how to perform similar operations with the Level Zero backend using the 

sycl_ext_oneapi_backend_level_zero extension.

q.submit([&](handler& h) {
accessor a{b, h};
h.host_task([=](interop_handle ih) {
// Get the Level Zero device from the interop handle:
auto level0Device = ih.get_native_device<

backend::ext_oneapi_level_zero>();

// Query the device name from Level Zero:
ze_device_properties_t level0DeviceProps = {};
level0DeviceProps.stype =

ZE_STRUCTURE_TYPE_DEVICE_PROPERTIES;
zeDeviceGetProperties(level0Device,

&level0DeviceProps);
std::cout << "Device name from Level Zero is: "

<< level0DeviceProps.name << "\n";

// Get the Level Zero context and memory allocation
// from the interop handle:
auto level0Context = ih.get_native_context<

backend::ext_oneapi_level_zero>();
auto ptr =

ih.get_native_mem<backend::ext_oneapi_level_zero>(
a);

// Query the size of the memory allocation:
size_t sz = 0;
zeMemGetAddressRange(level0Context, ptr, nullptr,

&sz);
std::cout << "Buffer size from Level Zero is: " << sz

<< " bytes\n";
});

});

Figure 20-8. Extracting OpenCL objects from SYCL objects using an 
interop_handle
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 Using Backend Interoperability for Kernels
This section describes how to use backend interoperability to compile 

kernels and manipulate kernel bundles. This is an area that was 

significantly redesigned in SYCL 2020 to increase robustness and to add 

the flexibility that is required to support different SYCL backends.

Earlier versions of SYCL supported two interoperability mechanisms 

for kernels. The first mechanism enabled creation of a kernel from an 

API-defined handle. The second enabled creation of a kernel from an API- 

defined source or intermediate representation, such as OpenCL C source 

or SPIR-V intermediate representation. These two mechanisms still exist in 

SYCL 2020, though the syntax for both mechanisms has been updated and 

now uses backend interoperability.

 Interoperability with API-Defined Kernel Objects
With this form of interoperability, the kernel objects themselves are 

created using the low-level API and then imported into SYCL using 

backend interoperability. The code in Figure 20-9 shows how get an 

OpenCL context from a SYCL context, how to create an OpenCL kernel 

using this OpenCL context, and then how to create and use a SYCL kernel 

from the OpenCL kernel object.
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// Get the native OpenCL context from the SYCL context:
auto openclContext = get_native<backend::opencl>(c);
const char* kernelSource =

R"CLC(
kernel void add(global int* data) {

int index = get_global_id(0);
data[index] = data[index] + 1;

}
)CLC";

// Create an OpenCL kernel using this context:
cl_program p = clCreateProgramWithSource(

openclContext, 1, &kernelSource, nullptr, nullptr);
clBuildProgram(p, 0, nullptr, nullptr, nullptr,

nullptr);
cl_kernel k = clCreateKernel(p, "add", nullptr);

// Create a SYCL kernel from the OpenCL kernel:
auto sk = make_kernel<backend::opencl>(k, c);

// Use the OpenCL kernel with a SYCL queue:
q.submit([&](handler& h) {
accessor data_acc{data_buf, h};

h.set_args(data_acc);
h.parallel_for(size, sk);

});

// Clean up OpenCL objects when done:
clReleaseContext(openclContext);
clReleaseProgram(p);
clReleaseKernel(k);

Figure 20-9. Kernel created from an OpenCL kernel object

Because the SYCL compiler does not have visibility into a SYCL kernel 

that was created using the low-level API directly, any kernel arguments 

must explicitly be passed using the set_arg() or set_args() interface. 

Additionally, the SYCL runtime and the low-level API kernel must agree on 

a convention to pass objects as kernel arguments. This convention should 

be described as part of the backend interoperability specification. In this 

example, the accessor data_acc is passed as the global pointer kernel 

argument data.
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the SyCl 2020 standard leaves the precise semantics of set_arg() 
and set_args() interfaces to be defined by each SyCl backend 
specification. this allows flexibility but is another way how the code 
using backend interoperability that we write is likely to be specific to 
the backends we target.

 Interoperability with Non-SYCL 
Source Languages
With this form of interoperability, the contents of the kernel are described 

as source code or as an intermediate representation that is not defined by 

SYCL. This form of interoperability allows reuse of kernel libraries written 

in other source languages or use of domain-specific languages (DSLs) that 

generate code in an intermediate representation.

Previous versions of SYCL included functions like build_with_source 

to directly create a SYCL program from an API-defined source language 

but this functionality was removed in SYCL 2020. When a backend directly 

supports an API-defined source language, such as the OpenCL C kernel 

used by the OpenCL backend in Figure 20-9, this removal is not a problem, 

but what should we do if a backend does not directly support a specific 

source language?
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Some SYCL implementations may provide an explicit online compiler 

to compile from a source language that cannot be used directly by a 

backend to a different format supported by a backend. Figure 20-10 shows 

how to use the experimental sycl_ext_intel_online_compiler extension 

to compile from OpenCL C source, which is not supported by the Level 

Zero backend, to SPIR-V intermediate representation, which is supported 

by the Level Zero backend. Using this method, a kernel can be used by any 

backend so long as it can be compiled by the online compiler into a format 

supported by the backend.

CAUTION, EXPERIMENTAL EXTENSION!

the sycl_ext_intel_online_compiler extension is an experimental 

extension, so it is subject to change or removal! We have included it in this 

book because it provides a way to achieve similar functionality as the previous 

SyCl build_with_source function and because it is a convenient way 

to demonstrate how domain-specific languages may interface with SyCl 

backends to execute kernels.
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// Compile OpenCL C kernel source to SPIR-V intermediate 
// representation using the online compiler: 
const char* kernelSource = 
    R"CLC( 
        kernel void add(global int* data) { 
            int index = get_global_id(0); 
            data[index] = data[index] + 1; 
        } 
    )CLC"; 
online_compiler<source_language::opencl_c> compiler(d); 
std::vector<byte> spirv = 
    compiler.compile(kernelSource); 
 
// Get the native Level Zero context and device: 
auto level0Context = 
    get_native<backend::ext_oneapi_level_zero>(c); 
auto level0Device = 
    get_native<backend::ext_oneapi_level_zero>(d); 
 
// Create a Level Zero kernel using this context: 
ze_module_handle_t level0Module = nullptr; 
ze_module_desc_t moduleDesc = {}; 
moduleDesc.stype = ZE_STRUCTURE_TYPE_MODULE_DESC; 
moduleDesc.format = ZE_MODULE_FORMAT_IL_SPIRV; 
moduleDesc.inputSize = spirv.size(); 
moduleDesc.pInputModule = spirv.data(); 
zeModuleCreate(level0Context, level0Device, &moduleDesc, 
               &level0Module, nullptr); 
 
ze_kernel_handle_t level0Kernel = nullptr; 
ze_kernel_desc_t kernelDesc = {}; 
kernelDesc.stype = ZE_STRUCTURE_TYPE_KERNEL_DESC; 
kernelDesc.pKernelName = "add"; 
zeKernelCreate(level0Module, &kernelDesc, 
               &level0Kernel); 
 
// Create a SYCL kernel from the Level Zero kernel: 
auto skb = 
    make_kernel_bundle<backend::ext_oneapi_level_zero, 
                       bundle_state::executable>( 
        {level0Module}, c); 
auto sk = make_kernel<backend::ext_oneapi_level_zero>( 
    {skb, level0Kernel}, c); 
 
// Use the Level Zero kernel with a SYCL queue: 
q.submit([&](handler& h) { 
  accessor data_acc{data_buf, h}; 
 
  h.set_args(data_acc); 
  h.parallel_for(size, sk); 
}); 

Figure 20-10. Kernel created using SPIR-V and the online compiler
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In this example, the kernel source string is represented as a C++ raw 

string literal in the same file as the SYCL host API calls, but there is no 

requirement that this is the case, and some applications may read the 

kernel source string from a file or even generate it just-in-time.

As before, because the SYCL compiler does not have visibility into 

a SYCL kernel written in an API-defined source language, any kernel 

arguments must explicitly be passed using the set_arg() or set_args() 

interface.

 Backend Interoperability Hints and Tips
This section describes practical hints and tips to effectively use backend 

interoperability.

 Choosing a Device for a Specific Backend
The first requirement to properly use backend interoperability is to choose 

a SYCL device associated with the required SYCL backend. There are 

several ways to accomplish this.

The first is to integrate the required SYCL backend into existing custom 

device selection logic, by querying the associated backend while scoring 

each device. If our application is already using custom device selection 

logic, this should be a straightforward addition. This mechanism is also 

portable because it uses only standard SYCL queries.

For applications that do not already use custom device selection logic, 

we can write a short C++ lambda expression to iterate over all devices 

to find a device with the requested backend, as shown in Figure 20-11. 

Because this version of find_device does not request a specific device 

type, it is effectively a replacement for the standard default_selector_v.
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#include <iostream>
#include <sycl/sycl.hpp>
using namespace sycl;

int main() {
auto find_device = [](backend b,

info::device_type t =
info::device_type::all) {

for (auto d : device::get_devices(t)) {
if (d.get_backend() == b) {
return d;

}
}
throw sycl::exception(errc::runtime,

"Could not find a device with "
"the requested backend!");

};

try {
device d{find_device(backend::opencl)};
std::cout << "Found an OpenCL SYCL device: "

<< d.get_info<info::device::name>() << "\n";
} catch (const sycl::exception &e) {
std::cout << "No OpenCL SYCL devices were found.\n";

}

try {
device d{find_device(backend::ext_oneapi_level_zero)};
std::cout << "Found a Level Zero SYCL device: "

<< d.get_info<info::device::name>() << "\n";
} catch (const sycl::exception &e) {
std::cout << "No Level Zero SYCL devices were found.\n";

}

return 0;
}

Example Output:
Found an OpenCL SYCL device: pthread-12th Gen Intel(R) Core(TM) i9-12900K
Found a Level Zero SYCL device: Intel(R) UHD Graphics 770 [0x4680]

Figure 20-11. Finding a SYCL device with a specific backend

Finally, for fast prototyping some SYCL implementations can use 

external mechanisms, such as environment variables, to influence the 

SYCL devices they enumerate. As an example, the DPC++ SYCL runtime 

can use the ONEAPI_DEVICE_SELECTOR environment variable to limit 

enumerated devices to specific device types or associated device backends 

(refer to Chapter 13). This is not an ideal solution for production code 
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because it requires external configuration, but it is a useful mechanism for 

prototype code to ensure that an application is using a specific device from 

a specific backend.

 Be Careful About Contexts!
Recall from Chapters 6 and 13 that many SYCL objects, such as kernels 

and USM allocations, are generally not accessible by a SYCL context if 

they were created in a different SYCL context. This is still true when using 

backend interoperability; therefore, a backend-specific context created 

using a backend API generally will not have access to objects created 

in a different SYCL context (and vice versa) even if the SYCL context is 

associated with the same backend.

To safely share objects between SYCL and a backend, we should always 

either create our SYCL context from a native backend context using  

make_context, or we should get a native backend context from a SYCL 

context using get_native.

always create a SyCl context from a native backend context or get a 
native backend context from a SyCl context to safely share objects 
between SyCl and a backend!

 Access Low-Level API-Specific Features
Occasionally a cutting-edge feature will be available in a low-level API 

before it is available in SYCL, even as a SYCL extension. Some features 

may even be so backend-specific or so device-specific that they will 

never be exposed through SYCL. For example, some native backend APIs 

may provide access to queues with specific properties or unique kernel 

instructions for specific accelerator hardware. Although we hope and 

expect these cases to be rare, when these types of features exist, we may 

still gain access to them using backend interoperability.
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 Support for Other Backends
The examples in this chapter demonstrated backend interoperability 

with OpenCL and Level Zero backends, but SYCL is a growing ecosystem 

and SYCL implementations are regularly adding support for additional 

backends and devices. For example, several SYCL implementations 

supporting CUDA and HIP backends already have some support for 

interoperability with these backends. Check the documentation for a SYCL 

implementation to determine which SYCL backends are supported and 

whether they support backend interoperability!

 Summary
In this chapter, we discovered how each SYCL object is associated with 

an underlying SYCL backend and how to query the SYCL backends in a 

system. We described how backend interoperability provides a mechanism 

for our SYCL application to directly interact with an underlying backend 

API. We discussed how this enables us to incrementally add SYCL to an 

application that is directly using a backend API, or to reuse libraries or 

utility functions written specifically for a backend API. We also discussed 

how backend interoperability reduces application portability, by restricting 

which SYCL devices the application will run on.

We specifically explored how backend interoperability for kernels 

provides similar functionality in SYCL 2020 that was present in earlier 

versions of SYCL. We examined how an online compiler extension can 

enable the use of some source languages for kernels, even if they are not 

directly understood by some SYCL backends.
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Finally, we reviewed practical hints and tips to effectively use backend 

interoperability in our programs, such as how to choose a SYCL device 

for a specific SYCL backend, how to set up a SYCL context for backend 

interoperability, and how backend interoperability can provide access to 

features even if they have not been added to SYCL.

Open Access  This chapter is licensed under the terms of 

the Creative Commons Attribution 4.0 International License 

(https://creativecommons.org/licenses/by/4.0/), which permits use, 

sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and 

the source, provide a link to the Creative Commons license and indicate if 

changes were made.

The images or other third party material in this chapter are included 

in the chapter’s Creative Commons license, unless indicated otherwise 

in a credit line to the material. If material is not included in the chapter’s 

Creative Commons license and your intended use is not permitted by 

statutory regulation or exceeds the permitted use, you will need to obtain 

permission directly from the copyright holder.
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CHAPTER 21

Migrating CUDA Code
Many readers of this book have likely encountered data parallel code 

written in CUDA. Some readers may even be CUDA experts! In this chapter 

we will describe some of the similarities between CUDA and SYCL, some 

of the differences, and useful tools and techniques to help migrate CUDA 

code effectively and efficiently to C++ with SYCL.

 Design Differences Between CUDA 
and SYCL
Before we dive into the details, it is first instructive to identify key design 

differences between CUDA and SYCL. This can provide useful background 

to inform why some differences exist, to understand which differences may 

disappear in time and which differences are likely to remain.

 Multiple Targets vs. Single Device Targets
One of the biggest design differences between CUDA and SYCL is the 

universe of devices they are designed to support. CUDA is designed to 

support GPU devices from a single device vendor, so most CUDA devices 

look relatively similar. As an example, all CUDA devices currently include 

texture sampling hardware and all CUDA devices currently support the 

same maximum work-group size. This reduces complexity, but also 

reduces where a CUDA application may run.
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By contrast, SYCL is designed to support a diverse set of heterogeneous 

accelerators, including different devices from different device vendors. 

This flexibility gives SYCL programs the freedom to take advantage of the 

computing resources in a modern heterogeneous system; however, this 

flexibility does come at a modest cost. For example, as SYCL programmers 

we may need to enumerate the devices in the system, examine their 

properties, and choose which device or devices are best suited to run 

different parts of our program.

Of course, if our SYCL program does not intend to utilize all the 

computing resources in our system, various shortcuts exist to reduce code 

verbosity, such as standard device selectors. Figure 21-1 shows a basic 

SYCL sample that uses a queue for the default device, chosen by the SYCL 

implementation.

// Declare an in-order SYCL queue for the default device
queue q{property::queue::in_order()};
std::cout << "Running on device: "

<< q.get_device().get_info<info::device::name>()
<< "\n";

int* buffer = malloc_host<int>(count, q);
q.fill(buffer, 0, count);

q.parallel_for(count, [=](auto id) {
buffer[id] = id;

}).wait();

Figure 21-1. Running a kernel on the default SYCL device

This SYCL code is very similar to the equivalent CUDA code, shown in 

Figure 21-2.
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// The CUDA kernel is a separate function
__global__ void TestKernel(int* dst) {
auto id = blockIdx.x * blockDim.x + threadIdx.x;
dst[id] = id;

}

int main() {
// CUDA uses device zero by default
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, 0);
std::cout << "Running on device: " << deviceProp.name << "\n";

int* buffer = nullptr;
cudaMallocHost(&buffer, count * sizeof(int));
cudaMemset(buffer, 0, count * sizeof(int));

TestKernel<<<count / 256, 256>>>(buffer);
cudaDeviceSynchronize();
// ...

Figure 21-2. Running a kernel on the default CUDA device

Real-world SYCL code is usually more complicated. For example, 

many SYCL applications will enumerate and choose a specific device or 

a combination of devices to run on (refer to Chapter 2) by searching for 

specific device characteristics (refer to Chapter 12). Concise options exist 

when this complexity is not needed or desired, though, and SYCL is well 

designed to support the additional complexity when it is required.

 Aligning to C++ vs. Extending C++
Another important design difference between CUDA and SYCL is how they 

interact with other programming languages, especially C++. SYCL code is 

standard C++ code, without any language extensions. By learning to read, 

understand, and write C++ code, we are also able to read and understand 

SYCL code. Similarly, if a compiler can parse C++ code, it can also parse 

SYCL code.
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CUDA made a different decision. Instead, CUDA extends C++ by 

adding new keywords and a special syntax to execute kernels. At times, 

the language extensions can be more concise, but they are also one more 

syntax to learn and remember, and the language extensions mean that 

CUDA code can only be compiled by a CUDA-enabled compiler.

To see this design difference in practice, notice how the SYCL example 

in Figure 21-1 uses a standard C++ lambda expression to represent the 

kernel code and a standard C++ function call to submit the kernel for 

execution. The CUDA example in Figure 21-2 instead uses a special  

__global__ keyword to identify the kernel code and a special <<< >>> 

syntax to submit the kernel for execution.

 Terminology Differences Between CUDA 
and SYCL
Now that we understand some of the key design differences between SYCL 

and CUDA we are almost ready to start examining specific similarities 

and differences. We have one more bit of background to take care of first, 

though: because CUDA and SYCL often use different terms for similar 

concepts, we need a decoder so we can meaningfully compare the two 

APIs, such as the summary in Figure 21-3.
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Concept SYCL Term CUDA Term
A function that is executed in 

parallel on a device.

Kernel Kernel

The N-dimensional parallel 

index space.

Range (generally), or

ND-Range (with 

grouping)

Grid (always has 

grouping)

A kernel instance executing at 

a point in the parallel index 

space.

Work-Item Thread

An application-de�ined group 

of kernel instances in the 

parallel index space that can 

communicate and 

synchronize.

Work-Group Block

An implementation-de�ined 

group of kernel instances

with additional

communication and 

synchronization capabilities.

Sub-Group Warp

Memory used to exchange 

data among instances in a 

group.

Local Memory Shared Memory

Function used to synchronize 

instances in a group.

group_barrier() __syncthreads(),

__syncwarp(),

coop_group.sync()
Queue Stream

Figure 21-3. CUDA and SYCL decoder ring

Unlike the rest of this book where SYCL terminology was used 

consistently, this chapter may use the CUDA terms and the SYCL terms 

interchangeably.

 Similarities and Differences
This section describes some of the syntactic and behavioral similarities 

between SYCL and CUDA as well as places where SYCL and CUDA differ.
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 Execution Model
Fundamentally, both SYCL and CUDA use the same data-parallel kernel 

execution model introduced in Chapter 4 and described throughout this 

book. The terminology may be slightly different, for example, SYCL refers 

to an ND-range and CUDA refers to a grid, but we can use our decoder ring 

in Figure 21-3 to translate key concepts from SYCL to CUDA and vice versa.

 In-Order vs. Out-of-Order Queues

Despite the many execution model similarities, several differences do 

exist. One difference is that CUDA streams are unconditionally in-order. 

This means that any kernel or memory operation submitted to a CUDA 

stream must complete before the next submitted kernel or memory copy 

operation can start. SYCL queues instead are out-of-order by default but 

may optionally be in-order by passing the in_order queue property when 

the SYCL queue is created (refer to Chapter 8).

An in-order CUDA stream is simpler because it does not require 

explicit scheduling or dependence management. This simplicity means 

that CUDA applications typically do not use mechanisms like accessors 

or depends_on to order operations in a stream. The in-order semantics 

also constrain execution, though, and do not offer any opportunity for 

overlapping execution of two commands in a single stream. Because a 

CUDA application cannot overlap execution of two commands in a single 

stream, when a CUDA application would like to (potentially) execute 

commands simultaneously, it will submit the commands to different 

CUDA streams, because commands in different CUDA streams may 

execute simultaneously.

This same pattern of submitting to multiple in-order queues to 

potentially execute kernels or memory operations simultaneously works 

in SYCL also, and many SYCL implementations and SYCL devices are 
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optimized to handle this case. Out-of-order SYCL queues provide an 

alternative mechanism to overlap execution with just a single queue, 

though, and many SYCL implementations and SYCL devices are optimized 

to handle this case as well.

Ultimately, whether to use multiple in-order SYCL queues or 

fewer out-of-order SYCL queues is a matter of personal preference and 

programming style, and we can choose whichever option makes the most 

sense for our SYCL programs. The SYCL examples in this chapter create 

in-order SYCL queues to stay as close to the equivalent CUDA examples as 

possible.

 Contiguous Dimension

Another difference that is likely to confuse novice and expert CUDA 

programmers alike concerns multidimensional SYCL ranges or CUDA 

grids: SYCL aligns its convention with multidimensional arrays in standard 

C++, so the last dimension is the contiguous dimension, also known as 

the unit-stride dimension or the fastest moving dimension. CUDA instead 

aligns to graphics conventions, so the first dimension is the contiguous 

dimension. Because of this difference, multidimensional SYCL ranges will 

appear to be transposed compared to the equivalent CUDA code, and the 

highest dimension of a SYCL id will correspond to the x-component of the 

comparable CUDA built-in variables, not the lowest dimension.

To demonstrate this difference, consider the CUDA example in 

Figure 21-4. In this example, each CUDA thread exchanges its value of 

threadIdx.x with its neighbor. Because the x-component is the fastest 

moving component in CUDA, we do not expect a CUDA thread’s value to 

match its neighbor thread’s value.
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__global__ void ExchangeKernel(int* dst) {
auto index = get_global_linear_id(); // helper function
auto fastest = threadIdx.x;
auto neighbor = __shfl_xor_sync(0xFFFFFFFF, fastest, 1);
dst[index] = neighbor;

}
...
dim3 threadsPerBlock(16, 2);
ExchangeKernel<<<1, threadsPerBlock>>>(buffer);
cudaDeviceSynchronize();

Figure 21-4. x-component is the contiguous dimension in CUDA

The equivalent SYCL example is shown in Figure 21-5. Notice that in 

the SYCL example the ND-range is {2, 16} rather than (16, 2) in the 

CUDA example, so the parallel index space appears to be transposed. The 

SYCL example also describes the ND-range as a {2, 16} global range 

divided into work-groups of size {2, 16}, whereas the CUDA example 

describes a grid of one block with (16, 2) CUDA threads per block.

Additionally, notice that each SYCL work-item exchanges the value of 

its item.get_local_id(1) (not item.get_local_id(0)!) with its neighbor, 

because the last dimension is the fastest moving component in SYCL. In 

this SYCL example, we also do not expect a SYCL work-item’s value to 

match its neighbor work-item’s value.

q.parallel_for(nd_range<2>{{2, 16}, {2, 16}},
[=](auto item) {

auto index = item.get_global_linear_id();
auto fastest = item.get_local_id(1);
auto sg = item.get_sub_group();
auto neighbor =

permute_group_by_xor(sg, fastest, 1);
buffer[index] = neighbor;

})
.wait();

Figure 21-5. Last dimension is the contiguous dimension in SYCL
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 Sub-Group Sizes (Warp Sizes)

There are a few more differences we can spot if we look carefully at these 

examples, specifically relating to the function used to exchange data with a 

neighbor.

The CUDA example uses the function __shfl_xor_sync(0xFFFFFFFF, 

fastest, 1) to exchange data with a neighbor. For this function, the first 

argument 0xFFFFFFFF is a bitfield mask indicating the set of CUDA threads 

participating in the call. For CUDA devices, a 32-bit mask is sufficient, 

because the warp size is currently 32 for all CUDA devices.

The SYCL example uses the function permute_group_by_xor(sg, 

fastest, 1) to exchange data with its neighbor. For this function, the first 

argument describes the set of work-items participating in the call. In this 

case, sg represents the entire sub-group. Because the set of work-items is 

specified by a group object rather than a bitfield mask, it can represent sets 

of arbitrary sizes. This flexibility is desirable because the sub-group size 

may be less than or greater than 32 for some SYCL devices.

In this specific case, the CUDA example can be rewritten to use the 

more modern CUDA cooperative groups syntax rather than the older  

__shfl_xor_sync syntax. The CUDA cooperative groups equivalent is 

shown in Figure 21-6. This version looks a lot more like the SYCL kernel 

and is a good example how the later versions of CUDA and SYCL 2020 are 

growing even closer together.

__global__ void ExchangeKernelCoopGroups(int* dst) {
namespace cg = cooperative_groups;
auto index = cg::this_grid().thread_rank();
auto fastest = threadIdx.x;
auto warp = cg::tiled_partition<32>(cg::this_thread_block());
auto neighbor = warp.shfl_xor(fastest, 1);
dst[index] = neighbor;

}

Figure 21-6. Exchanging data with CUDA cooperative groups
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 Forward Progress Guarantees

We can find one more difference if we look very carefully at the examples 

in Figures 21-4 and 21-5, although this difference is more subtle. Once 

again, the difference is related to the __shfl_xor_sync function used to 

exchange data with a neighbor, and in this case the difference is implied by 

the _sync suffix on the function. The _sync suffix indicates this function is 

synchronizing the CUDA threads, though this naturally may lead us to ask, 

why may the CUDA threads be unsynchronized in the first place, before 

calling this function?

In Chapters 15 and 16, we developed a mental model for a data- 

parallel kernel executing on a CPU or GPU where a group of work-items is 

processed simultaneously, in lockstep, using SIMD instructions. While this 

is a useful mental model for CPUs and GPUs from many vendors, it is not 

the only way a data-parallel kernel may be executed using SYCL or CUDA, 

and one of the cases where this mental model breaks is for newer CUDA 

devices supporting a feature called independent thread scheduling.

For CUDA devices with independent thread scheduling, the individual 

CUDA threads make progress independently, rather than as a group. These 

additional forward progress guarantees enable code patterns to execute 

safely on a CUDA device that may not execute correctly on a SYCL device 

without the stronger forward progress guarantees. The _sync suffix on the 

__shfl_xor_sync function was added in CUDA to clearly indicate that the 

function requires synchronization and to specify the CUDA threads that 

are synchronizing using the 32-bit mask.

Forward progress guarantees are an active topic in the SYCL 

community, and it is very likely that a future version of SYCL will add 

queries to determine the forward progress capabilities of a device, along 

with properties to specify the forward progress requirements of a kernel. 

For now, though, we should be aware that a syntactically correct SYCL 

program that was ported from CUDA may not execute correctly on all 

SYCL devices due to independent thread scheduling.
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 Barriers

One final, subtle execution model difference we should be aware of 

concerns the CUDA __syncthreads function compared to the SYCL 

group_barrier equivalent. The CUDA __syncthreads function 

synchronizes all non-exited CUDA threads in the thread block, whereas the 

SYCL group_barrier function synchronizes all work-items in the work- 

group. This means that a CUDA kernel will run correctly if some CUDA 

threads early exit before calling __syncthreads, but there is no guarantee 

that a SYCL kernel like the one shown in Figure 21-7 will run correctly.

std::cout << "WARNING: May deadlock on some devices!\n";
q.parallel_for(nd_range<1>{64, 64}, [=](auto item) {

int id = item.get_global_id(0);
if (id >= count) {

return; // early exit
}
group_barrier(item.get_group());
buffer[id] = id;

}).wait();

Figure 21-7. Possible SYCL barrier deadlock

In this case, the fix is straightforward: the range check can be moved 

after the group_barrier, or in this specific case, the group_barrier can 

be removed entirely. This is not always the case though, and other kernels 

may require restructuring to ensure all work-items always reach or always 

skip a group_barrier.

 Memory Model
Fundamentally, both CUDA and SYCL use a similar weakly-ordered 

memory model. Luckily there are only a few memory model differences we 

need to keep in mind when we are migrating a CUDA kernel to SYCL.
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 Barriers

By default, the CUDA __syncthreads barrier function and the SYCL 

group_barrier barrier function has the same effects on the memory 

model, assuming the group passed to the SYCL group_barrier is a work- 

group. Likewise, the CUDA __syncwarp barrier function has the same 

effects as the SYCL group_barrier barrier function, assuming the group 

passed to the SYCL group_barrier is a sub-group.

The SYCL group_barrier accepts an optional parameter to specify the 

fence_scope for the barrier, but in most cases, this can be omitted. A wider 

scope can be passed to group_barrier, such as memory_scope::device, 

but this usually is not required, and it may cause the SYCL group_barrier 

to be more expensive than the CUDA __syncthreads barrier.

The code in Figure 21-8 shows the equivalent barrier syntax for CUDA 

and SYCL. Notice how the newer CUDA cooperative groups syntax using 

this_thread_block and tiled_partition has a sync function that is even 

closer to the SYCL group_barrier. This is another good example how later 

versions of CUDA and SYCL 2020 are becoming more and more similar.

 Atomics and Fences

Both CUDA and SYCL support similar atomic operations, though as with 

barriers there are a few important differences we should be aware of. The 

most important difference concerns the default atomic memory order. 

q.parallel_for(nd_range<1>{16, 16}, [=](auto item) {
// Equivalent of __syncthreads, or
// this_thread_block().sync():
group_barrier(item.get_group());

// Equivalent of __syncwarp, or
// tiled_partition<32>(this_thread_block()).sync():
group_barrier(item.get_sub_group());

}).wait();

Figure 21-8. CUDA and SYCL barrier equivalents
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Many CUDA programs are written using an older C-like atomic syntax 

where the atomic function takes a pointer to memory, like atomicAdd. 

These atomic functions are relaxed atomics and operate at device scope. 

There are also suffixed versions of these atomic functions that operate at 

a different scope, such as atomicAdd_system and atomicAdd_block, but 

these are uncommon.

The SYCL atomic syntax is a little different and is based on 

std::atomic_ref from C++20 (refer to Chapter 19 for details about the 

SYCL atomic_ref class and how it compares to std::atomic_ref). If we 

want our SYCL atomic to be equivalent to the CUDA atomicAdd function, 

we will want to declare our SYCL atomic_ref to have a similar memory_

order::relaxed memory order and memory_scope::device scope, as 

shown in Figure 21-9.

q.parallel_for(count, [=](auto id) {
// The SYCL atomic_ref must specify the default order
// and default scope as part of the atomic_ref type. To
// match the behavior of the CUDA atomicAdd we want a
// relaxed atomic with device scope:
atomic_ref<int, memory_order::relaxed,

memory_scope::device>
aref(*buffer);

// When no memory order is specified, the defaults are
// used:
aref.fetch_add(1);

// We can also specify the memory order and scope as
// part of the atomic operation:
aref.fetch_add(1, memory_order::relaxed,

memory_scope::device);
});

Figure 21-9. CUDA and SYCL atomic equivalents
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Newer CUDA code may use the cuda::atomic_ref class from the 

CUDA C++ Standard Library. The cuda::atomic_ref class looks more like 

the SYCL atomic_ref class, but there are some important differences to be 

aware of with it, also:

• The scope is optional for a CUDA atomic_ref, but 

defaults to the entire system if unspecified. The SYCL 

atomic_ref must specify an atomic scope in all cases.

• The default atomic order for a CUDA atomic_ref 

is unconditionally sequential consistency, whereas 

the SYCL atomic_ref may specify a different default 

atomic order. By specifying a default atomic order, our 

SYCL code can be more concise and use convenience 

operators like += even when the atomic order is 

something other than sequential consistency.

There is one final concern we need to keep in mind when our code or 

algorithm requires atomics: some atomic operations and atomic scopes 

are not required by the SYCL specification and may not be supported by 

all SYCL devices. This is also true for CUDA devices, but it is especially 

important to remember for SYCL due to the diversity of SYCL devices. 

Please refer to Chapter 12 for more detail on how to query properties of a 

SYCL device and to Chapter 19 for descriptions of the atomic capabilities 

that may be supported by a SYCL device or context.

 Other Differences
This section describes a few other miscellaneous differences to keep in 

mind when we are porting CUDA code to SYCL.
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 Item Classes vs. Built-In Variables

One of the bigger stylistic differences between CUDA and SYCL is the way 

kernel instances identify their location in the N-dimensional parallel index 

space. Recall from Chapter 4 that every SYCL kernel must take an item, 

an nd_item, an id, or in some cases an integral argument identifying the 

work-item in the parallel index space. The item and nd_item classes can 

also be used to query information about the parallel index space itself, 

such as the global range, the local range, and the different groups that the 

work-item belongs to.

CUDA kernels do not include any arguments to identify the CUDA 

thread in the parallel index space. Instead, CUDA threads use built-in 

variables such as blockIdx and threadIdx to identify the location in the 

parallel index space and built-in variables such as gridDim and blockDim 

to represent information about the parallel index space itself. Newer CUDA 

kernels that use cooperative groups can also construct certain cooperative 

groups implicitly by calling built-in functions like this_thread_block.

This is usually only a syntactic difference that does not functionally 

affect the code we can write, though it does mean that SYCL kernels may 

pass an item or an nd_item to called functions in more cases, say if a called 

function needs to know the work-item index.

 Contexts

Another conceptual difference between CUDA and SYCL is the idea of a 

SYCL context. Recall that a SYCL context is an object that stores the state 

of a SYCL application for a set of SYCL devices. As an example, a SYCL 

context may store information about memory allocations or compiled 

programs. Contexts are an important concept to a SYCL application 

because a single SYCL application may support devices from multiple 

vendors, perhaps using multiple backend APIs.
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In most cases our SYCL programs can be blissfully unaware that 

contexts exist, and most of the example programs in this book do not 

create or manipulate contexts. If we do choose to create additional SYCL 

contexts in our programs though, either implicitly or explicitly, we need 

to be careful not to use context-specific SYCL objects from one context 

with a different SYCL context. At best, careless use of multiple contexts 

may cause our programs to run inefficiently, say if we end up compiling 

our SYCL kernels multiple times, once for each context. At worst, mixing 

SYCL objects across contexts may result in undefined behavior, causing 

our programs to become non-portable or executing improperly on some 

backends or devices.

For completeness, note that CUDA has a concept of contexts as well, 

though CUDA contexts are only exposed by the lower-level CUDA driver 

APIs. Most CUDA programs do not create or manipulate contexts, either.

 Error Checking

One final difference to consider relates to error checking and error 

handling. Because of CUDA’s C heritage, errors in CUDA are returned via 

error codes from CUDA function calls. For most CUDA functions, a failing 

error code indicates an error in the function returning the error, such as 

an incorrect parameter to the function. For some other CUDA functions 

though, like cudaDeviceSynchronize, the error value can also return 

asynchronous errors that occurred on the device.

SYCL also has synchronous and asynchronous errors, though both 

types of errors are reported using SYCL exceptions rather than return 

values from SYCL functions. Please refer to Chapter 5 for more information 

about error detection and error handling in SYCL.
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 Features in CUDA That Aren’t In SYCL… Yet!
So far, we have described cases where features are in both CUDA and SYCL 

but are expressed differently. This section describes several features that 

are in CUDA but that do not (currently) have equivalents in SYCL. This is 

not an exhaustive list, but it is intended to describe some of the features 

that are commonly used by CUDA applications that may require more 

effort when migrating to SYCL.

Please note that vendor-specific features are an important part of the 

standardization process, regardless of whether they are extensions to a 

standard or defined in a completely vendor-specific API. Vendor-specific 

features provide important implementation experience and allow a feature to 

prove its value before it is refined and incorporated into a standard. Many of 

these features are already in active development for inclusion into the SYCL 

standard, and some may already be available as extensions to the standard.

GET INVOLVED! 

Feedback from users and developers is another important part of the 

standardization process. if you have an idea for a new feature, or if you have 

found an extension or a feature from another api valuable, please consider 

becoming involved! SYCL is an open standard and many SYCL implementations 

are open source, making it easy to participate in the growing SYCL community.

 Global Variables
Although programmers are told early on to never use global variables, 

sometimes a global variable is the right tool for the job. We might choose 

to use a global variable to store a useful constant, or a lookup table, or 

some other value that we would like to be accessible to all the work-items 

executing our data parallel kernel.
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CUDA supports global variables in different address spaces and 

therefore with different lifetimes. For example, a CUDA program can 

declare a __device__ global variable in the global memory space that is 

unique for each device. These global variables can be set by or read from 

the host and accessed by all the CUDA threads executing a kernel. A CUDA 

program can also declare a __shared__ global variable in the CUDA shared 

memory space (remember, this is the equivalent of a variable declared in 

SYCL local memory) that is unique for every CUDA block and can only be 

accessed by the CUDA threads in that block.

SYCL does not support global variables in device code yet, though 

there are extensions in the works to provide similar functionality.

 Cooperative Groups
As described earlier in this chapter, recent versions of CUDA support 

cooperative groups, which provide an alternative syntax for collective 

operations like barriers and shuffle functions. The SYCL group object 

and the SYCL group algorithms library have many similarities to CUDA 

cooperative groups, but some key differences remain.

The biggest difference is that the SYCL group functions currently 

work only on the predefined SYCL work-group and sub-group classes, 

whereas CUDA cooperative groups are more flexible. For example, a 

CUDA program may create fixed-size tiled_partition groups that divide 

an existing group into a set of smaller groups, or a CUDA program may 

represent the set of CUDA threads in a CUDA warp that are currently active 

as a coalesced_group.

A CUDA program may additionally create cooperative groups that are 

larger than a work-group. For example, a CUDA program may create a 

grid_group representing all the CUDA threads in the grid (equivalently, all 

the work-items in the global range), or a cluster_group representing all 

the CUDA threads in a thread block cluster. To effectively use these newer 
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and larger groups, a CUDA kernel must be launched using special host API 

functions to ensure that all the CUDA threads in a grid may cooperate, or 

to specify the thread block cluster dimensions.

SYCL does not support all the cooperative group types in CUDA yet, 

though there are extensions in the works to add additional group types to 

SYCL. The introduction of the group object and group algorithms in SYCL 

2020 has SYCL well positioned to support this functionality.

 Matrix Multiplication Hardware
The final feature we will describe in this section is access to matrix 

multiplication hardware, also referred to as matrix multiply and 

accumulate (MMA) hardware, tensor cores, or systolic arrays. These are 

all different names for dedicated hardware engines that are purpose- 

built to accelerate the matrix multiplication operations that are key to 

many artificial intelligence (AI) workloads. If we want to customize these 

workloads, it is important that we have access to matrix multiplication 

hardware in our data parallel kernels to achieve peak performance.

CUDA provides access to matrix multiplication hardware via warp 

matrix multiplication and accumulation (WMMA) functions. These 

functions effectively allow the CUDA threads in a warp (equivalently, 

work-items in a sub-group) to cooperate to perform a matrix multiply 

and accumulate operation on smaller matrix tiles. The elements of these 

matrix tiles can be 32-bit floats or 64-bit doubles for some devices and 

algorithms, but more commonly use lower-precision types like as 8-bit 

chars, 16-bit halfs, or specialized AI types like bfloat16s (bf16).

Both CUDA and SYCL are actively evolving their support for matrix 

multiplication hardware. This is a good example of how different vendors 

will add support for their vendor-specific functionality via vendor-specific 

mechanisms initially, then a feature will be refined, and common best 

practices will be added to the standard.
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 Porting Tools and Techniques
Luckily, when we choose to migrate an application from CUDA to SYCL, it 

does not need to be a manual process, and we can use tools to automate 

parts of the migration. This section will describe one of these tools and 

techniques to assist with migration.

 Migrating Code with dpct and SYCLomatic
In this section we will describe the DPC++ Compatibility Tool (dpct) and 

the related open source SYCLomatic tool. We will use dpct to automatically 

migrate a CUDA sample to SYCL, though the concepts described in this 

section apply equally well to SYCLomatic.

Figure 21-10 shows the important parts of the simple CUDA sample 

we will be migrating. This sample reverses blocks of a buffer. This is not a 

very useful sample in practice, but it has interesting cases that our auto- 

migration tool will need to handle, such as a CUDA shared memory global 

variable, a barrier, a device query, memory allocation and initialization, 

the kernel dispatch itself, and some basic error checking.
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__shared__ int scratch[256];
__global__ void Reverse(int* ptr, size_t size) {
auto gid = blockIdx.x * blockDim.x + threadIdx.x;
auto lid = threadIdx.x;

scratch[lid] = ptr[gid];
__syncthreads();
ptr[gid] = scratch[256 - lid - 1];

}

int main() {
std::array<int, size> data;
std::iota(data.begin(), data.end(), 0);

cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, 0);
std::cout << "Running on device: " << deviceProp.name << "\n";

int* ptr = nullptr;
cudaMalloc(&ptr, size * sizeof(int));
cudaMemcpy(ptr, data.data(), size * sizeof(int),

cudaMemcpyDefault);
Reverse<<<size / 256, 256>>>(ptr, size);
cudaError_t result = cudaDeviceSynchronize();
if (result != cudaSuccess) {

std::cout << "An error occurred!\n";
}
// ...

Figure 21-10. A simple CUDA program we will 
automatically migrate

 Running dpct

Because this is a simple example, we can simply invoke dpct and pass 

the CUDA source file we would like to migrate. For more complicated 

scenarios, dpct can be invoked as part of the application build process to 

identify the CUDA source files to migrate. Please refer to the links at the 

end of this chapter for more information and additional training material.
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When we run dpct on our sample CUDA source file, we may see 

output like that shown in Figure 21-11. We can make several observations 

from this output. First, our file was processed successfully, which is great! 

There were a few warnings though, indicating cases that dpct was not 

able to able to migrate. For our example, all three warnings are due to the 

error checking differences between CUDA and SYCL. For our program, 

dpct was able to generate SYCL code that will behave correctly when the 

program does not generate an error, but it was not able to migrate the error 

checking.

The error checking warning is a good example how migration tools 

like dpct and SYCLomatic will not be able to migrate everything. We 

should expect to review and adjust the migrated code to address any 

migration issues, or to otherwise improve the migrated SYCL code for 

maintainability, portability, or performance.

$ dpct source_file.cu 
NOTE: Could not auto-detect compilation database for file 
'source_file.cu' in '/path/to/your/file' or any parent directory.
The directory "dpct_output" is used as "out-root"
Processing: /path/to/your/file/source_file.cu
/path/to/your/file/source_file.cu:38:5: warning: DPCT1001:0: The 
statement could not be removed.

std::cout << "An error occurred!\n";
^

/path/to/your/file/source_file.cu:37:3: warning: DPCT1000:1: Error 
handling if-stmt was detected but could not be rewritten.
if (result != cudaSuccess) {
^

/path/to/your/file/source_file.cu:36:24: warning: DPCT1003:2: Migrated
API does not return error code. (*, 0) is inserted. You may need to 
rewrite this code.
cudaError_t result = cudaDeviceSynchronize();

^
Processed 1 file(s) in -in-root folder "/path/to/your/file"

Figure 21-11. Sample dpct output when migrating this 
CUDA program
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For this example, though, we can use the migrated code as-is. 

Figure 21-12 shows how to compile our migrated code using the DPC++ 

compiler with NVIDIA GPU support and then shows successful execution 

of our migrated program on an Intel GPU, an Intel CPU, and an NVIDIA 

GPU. Note, if we were to run the migrated program on a different system 

with different devices, the output may look different, or it may fail to run if 

the selected device does not exist in the system.

$ icpx -fsycl -fsycl-targets=spir64,nvptx64-nvidia-cuda \
migrated.cpp -o migrated

$ ./migrated 
Running on device: Intel(R) UHD Graphics 770
Success.
$ ONEAPI_DEVICE_SELECTOR=opencl:cpu ./migrated 
Running on device: 12th Gen Intel(R) Core(TM) i9-12900K
Success.
$ ONEAPI_DEVICE_SELECTOR=ext_oneapi_cuda:gpu ./migrated 
Running on device: NVIDIA GeForce RTX 3060
Success.

Figure 21-12. Compiling and running our migrated CUDA program

 Examining the dpct Output

If we examine the migrated output, we can see that dpct handled many 

of the differences described in this chapter. For example, in the generated 

SYCL kernel shown in Figure 21-13, we see that the __shared__ global 

variable scratch was turned into a local memory accessor and passed 

into the kernel. We can also see that the built-in variables blockIdx and 

threadIdx were replaced by calls into an instance of the nd_item class and 

that the differing conventions for the contiguous dimension were properly 

handled, for example, by replacing the use of threadIdx.x with a call to 

item_gt1.get_local_id(2).
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void Reverse(int *ptr, size_t size,
const sycl::nd_item<3> &item_ct1,
int *scratch) {

auto gid =
item_ct1.get_group(2) * item_ct1.get_local_range(2) +
item_ct1.get_local_id(2);

auto lid = item_ct1.get_local_id(2);

scratch[lid] = ptr[gid];
item_ct1.barrier(sycl::access::fence_space::local_space);
ptr[gid] = scratch[256 - lid - 1];

}

Figure 21-13. SYCL kernel migrated from CUDA

We can also see that dpct handled some of the host code differences by 

using several dpct utility functions, such as for the migrated device query 

shown in Figure 21-14. These helper functions are intended to be used by 

migrated code only. For portability and maintainability, we should prefer 

to use standard SYCL APIs directly for our additional development.

dpct::device_info deviceProp;
dpct::dev_mgr::instance().get_device(0).get_device_info(

deviceProp);
std::cout << "Running on device: "

<< deviceProp.get_name() << "\n";

Figure 21-14. SYCL device name query migrated from CUDA

In general, though, the SYCL code that dpct generates is readable and 

the mapping between the CUDA code and the migrated SYCL code is clear. 

Even though additional hand-editing is often required, using automated 

tools like dpct or SYCLomatic can save time and reduce errors during 

migration.
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 Summary
In this chapter, we described how to migrate an application from CUDA to 

SYCL to enable an application to run on any SYCL device, including CUDA 

devices by using SYCL compilers with CUDA support.

We started by looking at the many similarities between CUDA 

and SYCL programs, terminology aside. We saw how CUDA and SYCL 

fundamentally use the same kernel-based approach to parallelism, 

with a similar execution model and memory model, making it relatively 

straightforward to migrate a CUDA program to SYCL. We also explored 

a few places where CUDA and SYCL have subtle syntactic or behavioral 

differences and are therefore good to keep in mind as we are migrating our 

CUDA applications to SYCL. We also described several features that are in 

CUDA but are not in SYCL (yet!), and we described how vendor-specific 

features are an important part of the standardization process.

Finally, we examined several tools to automate parts of the migration 

process and we used the dpct tool to automatically migrate a simple 

CUDA example to SYCL. We saw how the tool migrated most of the code 

automatically, producing functionally correct and readable code. We were 

able to run the migrated SYCL example on different SYCL devices after 

migration, even though additional reviewing and editing may be required 

for more complex applications.
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 For More Information
Migrating CUDA code to SYCL is a popular topic and there are many other 

resources available to learn more. Here are two resources the authors have 

found helpful:

• General information and tutorials showing how to 

migrate from CUDA to SYCL (tinyurl.com/cuda2sycl)

• Getting Started Guide for the DPC++ Compatibility 

Tool (tinyurl.com/startDPCpp)

Open Access  This chapter is licensed under the terms of 

the Creative Commons Attribution 4.0 International License 

(https://creativecommons.org/licenses/by/4.0/), which permits use, 

sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and 

the source, provide a link to the Creative Commons license and indicate if 

changes were made.

The images or other third party material in this chapter are included 

in the chapter’s Creative Commons license, unless indicated otherwise 

in a credit line to the material. If material is not included in the chapter’s 

Creative Commons license and your intended use is not permitted by 

statutory regulation or exceeds the permitted use, you will need to obtain 

permission directly from the copyright holder.

Chapter 21  Migrating CUDa CoDe

https://creativecommons.org/licenses/by/4.0/


605

 EPILOGUE

Future Direction 
of SYCL
Take a moment now to feel the peace and calm of knowing that we have 

covered programming using C++ with SYCL. All the pieces have fallen 

into place.

We’ve endeavored to ensure that the code samples in previous chapters 

use standard SYCL 2020 functionality and execute on a wide range of 

hardware, and the few places we used extensions (e.g., interoperability and 

FPGA-specific extensions), we call it out. However, the future-looking code 

shown in this epilogue does not compile with any compiler as of mid-2023.

In this epilogue, we speculate on the future. Our crystal ball can be a 

bit difficult to read—this epilogue comes without any warranty. Some of 

the predictions we made in the first edition of this book came true, but 

others did not.

This epilogue provides a sneak peek of upcoming SYCL features and 

DPC++ extensions that we are very excited about. We offer no guarantees 

that the code samples printed in this epilogue compile: some may already 

be compatible with a compiler released after the book, while others may 

compile only after some massaging of syntax. Some features may be 

released as extensions or incorporated into future versions of SYCL, while 

others may remain experimental features indefinitely. The code samples 

in the GitHub repository associated with this book may be updated to 

use new syntax as it evolves. Likewise, we will have an erratum for the 
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book, which may get additions made from time to time. We recommend 

checking for updates in these two places (code repository and book 

errata—links can be found early in Chapter 1).

 Closer Alignment with C++11, C++14, 
and C++17
Maintaining close alignment between SYCL and C++ has two advantages. 

First, it enables SYCL to leverage the newest and greatest features of C++ 

to improve developer productivity. Second, it increases the chances of 

heterogeneous programming features introduced in SYCL successfully 

influencing the future direction of C++.

SYCL 1.2.1 was based on C++11, and many of the biggest improvements 

to the interfaces of SYCL 2020 are only possible because of language 

features introduced in C++14 (e.g., generic lambdas) and C++17 (e.g., class 

template argument deduction—CTAD). We expect SYCL and C++ to grow 

closer over time, and there are several exciting efforts already underway.

The C++ Standard Template Library (STL) contains several algorithms 

which correspond to the parallel patterns discussed in Chapter 17. The 

algorithms in the STL typically apply to sequences specified by pairs of 

iterators and—starting with C++17—support an execution policy argument 

denoting whether they should be executed sequentially or in parallel. 

The standard allows for implementations to define their own execution 

policies, too, and the oneAPI DPC++ Library (oneDPL) covered in Chapter 

18 leverages such a custom execution policy to enable algorithms to 

execute on SYCL devices. The result is a high-productivity approach to 

programming heterogeneous devices—if an application can be expressed 

solely using functionality of the STL algorithms, oneDPL makes it possible 

to make use of the accelerators in our systems without writing a single line 

of SYCL kernel code! There are still open questions about how the STL 

algorithms should interact with certain SYCL concepts (e.g., buffers), and 
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how to ensure that all the standard library classes we might want (e.g., 

std::complex, std::atomic) are available in device code, but oneDPL is 

the first step on a long path toward unifying our host and device code.

 Adopting Features from C++20, C++23 
and Beyond
The SYCL specification deliberately trails behind C++ to ensure that the 

features it uses have broad compiler support. However, SYCL committee 

members—many of whom are also involved in ISO C++ committees—are 

keeping a close eye on how future versions of C++ are developing.

Adopting C++ or SYCL features we discuss here that are not finalized 

yet into a specification could be a mistake—features may change 

significantly before making it into a standard. Nevertheless, there are a 

number of features under discussion that may change the way that future 

SYCL programs look and behave which are worth discussing.

Some of the features in SYCL 2020 were informed by C++20 (e.g., 

std::atomic_ref) and others were pre-adopted into the sycl:: 

namespace (e.g., std::bit_cast, std::span). As we move toward 

the next official release of SYCL, we expect to align with C++20 more 

closely and incorporate the most useful parts of it. For example, C++20 

introduced some additional thread synchronization routines in the form 

of std::latch and std::barrier; we already explored in Chapter 19 how 

similar interfaces could be used to define device-wide barriers, and it 

may make sense to reexamine sub-group and work-group barriers in the 

context of the new C++20 syntax as well.

One of the most exciting features in C++23 is mdspan, a non-owning 

view of data that provides both multidimensional array syntax for pointers 

and an AccessorPolicy as an extension point for controlling access to 

the underlying data. These semantics are very similar to those of SYCL 
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accessors, and mdspan would enable accessor-like syntax to be used for 

both buffers and USM allocations, as shown in Figure EP-1.

queue q; 
constexpr int N = 4; 
constexpr int M = 2; 
int* data = malloc_shared<int>(N * M, q); 
 
stdex::mdspan<int, N, M> view{data}; 
q.parallel_for(range<2>{N, M}, [=](id<2> idx) { 
   int i = idx[0]; 
   int j = idx[1]; 
   view(i, j) = i * M + j; 
 }).wait(); 

Figure EP-1. Attaching accessor-like indexing to a USM pointer 
using mdspan

Hopefully it is only a matter of time until SYCL officially supports 

mdspan. In the meantime, we recommend that interested readers 

experiment with the open source production-quality reference 

implementation available as part of the Kokkos project.

 Mixing SPMD and SIMD Programming
Another exciting, proposed feature for C++ is the std::simd class template, 

which seeks to provide a portable interface for explicit vector parallelism 

in C++. Adopting this interface would provide a clear distinction between 

the two different uses of vector types described in Chapter 11: uses of 

vector types for programmer convenience and uses of vector types by ninja 

programmers for low-level performance tuning. The presence of support 

for both SPMD and SIMD programming styles within the same language 

also raises some interesting questions: how should we declare which style 

a kernel uses, and should we be able to mix and match styles within the 

same kernel?
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We have started to explore potential answers to this question in the 

form of a DPC++ extension (sycl_ext_oneapi_invoke_simd), which provides 

a new invoke_simd function (modelled on std::invoke) that allows 

developers to call explicitly vectorized (SIMD) code from within an SPMD 

kernel. The call to invoke_simd acts as a clear boundary between the two 

execution models implied by the two programming styles and defines 

how data should flow between them. The code in Figure EP-2 shows a 

very simple example of invoke_simd’s usage, calling out to a function that 

expects to receive a combination of scalar and vector (simd) arguments.

Figure EP-2. A simple example of invoking a SIMD function from a 
SPMD kernel

The approach taken by invoke_simd has several advantages. First, 

there can be no nasty surprises— functions with a different execution 

model are invoked explicitly, and the user is responsible for describing 

how to marshal data back and forth. Second, the mechanism allows 
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for fine-grained specialization—it is possible to write just a few lines of 

explicitly vectorized code (e.g., for performance tuning) without having 

to throw away the rest of our SPMD code. Finally, it is straightforward to 

extend—invoke_simd itself can be extended to support new groups or 

new argument mappings via simple overloading, and similar invoke_* 

functions could be introduced to handle interoperability with different 

contexts (e.g., code written in a language that isn’t SYCL).

 Address Spaces
The introduction of generic address space support in SYCL 2020 has the 

potential to greatly simplify many codes, by allowing us to use regular 

C++ pointers without worrying about what kind of memory is being used. 

Many modern architectures provide hardware support for the generic 

address space, and so we can expect code using regular C++ pointers to 

work across a wide variety of machines and with minimal performance 

overhead.

However, there are some (older, or more special purpose) architectures 

on which generic address space support is a more complicated story. 

Some hardware may use different instructions to access different kinds 

of memory, requiring compilers to identify a concrete address space at 

compile time (i.e., to generate the correct instructions). There may also 

be SYCL backends incapable of representing a generic address space 

(e.g., OpenCL 1.2). SYCL 2020 makes allowances for such hardware and 

backends via a set of inference rules for deducing address spaces.

The address space deduction rules were inherited from SYCL 1.2.1, and 

the SYCL 2020 specification includes a note that the rules will be revisited 

in a future version of SYCL. Although it is unclear at the time of writing 

exactly how these rules will change, SYCL’s long-term thinking is clear: in 

most cases, we should not be concerned with address space management 

and should trust the compiler and hardware to do the right thing.
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 Specialization Mechanism
There are plans to introduce compile-time queries enabling kernels to 

be specialized based on properties (aspects) of the targeted device (e.g., 

the device type, support for a specific extension, the size of work-group 

local memory, the sub-group size selected by the compiler). Such queries 

require a new kind of constant expression not currently present in C++—

they are not necessarily constexpr when the host code is compiled but 

become constexpr when the target device becomes known.

The exact mechanism used to expose this “device-constant 

expression” concept is still being designed. We expect it to build on the 

specialization constants feature introduced in SYCL 2020 and to look and 

behave similarly to the code shown in Figure EP-3.

 Compile-Time Properties
SYCL allows the behavior of certain classes (e.g., buffers, accessors) to be 

modified by passing a property list into the constructor. These properties 

are already very powerful, but their power is limited by the fact that the 

properties passed to a constructor are not known until runtime. Allowing 

for certain properties to be declared at compile time has the potential to 

h.parallel_for(range{1}, [=](id<1> idx) { 
  if_device_has<aspect::cpu>([&]() { 
    /* Code specialized for CPUs */ 
    out << "On a CPU!" << endl; 
  }).else_if_device_has<aspect::gpu>([&]() { 
    /* Code specialized for GPUs */ 
    out << "On a GPU!" << endl; 
  }); 
}); 

Figure EP-3. Specializing kernel code based on device aspects at 
kernel compile time
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significantly improve performance, by reducing the number of runtime 

checks and by enabling compilers to aggressively specialize both host and 

device code in the presence of specific properties.

The DPC++ compiler supports an experimental extension for compile- 

time properties (sycl_ext_oneapi_properties), and it already enables a 

wide variety of other extensions:

• Pointers annotated with information extending beyond 

just address spaces, which could inform the future of 

sycl::multi_ptr (sycl_ext_oneapi_annotated_ptr)

• Kernel configuration controls, which could replace 

C++ attributes and increase the capabilities of library- 

only SYCL implementations (sycl_ext_oneapi_kernel_

properties)

• Descriptions of desired memory behavior and access 

controls (sycl_ext_oneapi_device_global, sycl_ext_

oneapi_prefetch)

Our early experience with compile-time properties has been very 

positive, and we’re finding more and more potential use cases for them all 

the time. Given their wide applicability, we are keen to see some version of 

compile-time properties adopted in a future SYCL specification.

 Summary
There is already a lot of excitement around SYCL, and this is just the 

beginning! We (as a community) have a long path ahead of us, and 

it will take significant continued effort to distill the best practices for 

heterogeneous programming and to design new language features 

that strike the desired balance between performance, portability, and 

productivity.
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We need your help! If your favorite feature of C++ (or any other 

programming language) is missing from SYCL, please reach out to us. 

Together, we can shape the future direction of SYCL and C++.

 For More Information
• Khronos SYCL Registry, www.khronos.org/

registry/SYCL

• H. Carter Edwards et al., “mdspan: A Non-Owning 

Multidimensional Array Reference,” wg21.link/p0009

• D. Hollman et al., “Production-Quality mdspan 

Implementation,” github.com/kokkos/mdspan

• Intel DPC++ Compiler Extensions,  tinyurl.com/

syclextend
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Unit-stride/fastest moving 
dimension, 585–586

Unpack pattern, 359, 379–380

V
vec class, 267, 273
Vectors

convenience types, 268
address escaping, 284
compilers, 281
hardware 

implementation, 280
hardware instruction, 282
implicit, 282
kernel execution, 281
memory access, 283
parallelism, 281, 282
SIMD/SPMD 

instructions, 281
work-items, 282

CPU SIMD
AOS (Array-of-Struct) 

structures, 442–444
computational 

complexity, 448
data type impact, 444–446
destination register, 441
execution model, 437–440
gather/scatter 

instructions, 445

hardware, 436–448
instruction stream, 436
masking and cost, 440–442
single_task, 446–448
sub-group barrier, 438
unit-stride vector, 444
work-items/work-group, 438

data collection, 268–269
elements/element type, 274
explicit code, 269
implicit, 270
instruction/clock cycle, 270
interoperability/backend-native 

functions, 276
load() member function, 274
load/store operations, 274–276
memory layout, 281
NumElements  

parameter, 274
scalar operations, 267
SIMD mappings, 269
SIMD types, 284–285
store() member function, 274
sub-group barriers and 

shuffles, 269–271
swizzled_vec__ class, 279
swizzle operations, 276–279
swizzles, 273
SYCL 1.2.1 specification, 268
vec class, 274
work-item, 270

Virtual functions, 17
Vote functions, 242
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W, X
wait, 7, 19, 20, 39
wait_and_throw, 39, 148
Warp matrix multiplication and 

accumulation 
(WMMA), 597

Websites, 313
Work-group, 113

Work-group barriers, 115
Work-group local memory, 115
Work-item, 113
Write-after-Read (WAR), 202

Y, Z
“Y” pattern, 204, 205, 211
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