
Data Parallel C++
Programming Accelerated Systems Using
C++ and SYCL
—
Second Edition
—
James Reinders
Ben Ashbaugh
James Brodman
Michael Kinsner
John Pennycook
Xinmin Tian
Foreword by Erik Lindahl, GROMACS and
Stockholm University

Data Parallel C++
Programming Accelerated

Systems Using C++ and SYCL

Second Edition

James Reinders
Ben Ashbaugh
James Brodman
Michael Kinsner
John Pennycook
Xinmin Tian

Foreword by Erik Lindahl, GROMACS and
Stockholm University

Data Parallel C++: Programming Accelerated Systems Using C++ and SYCL, Second Edition

ISBN-13 (pbk): 978-1-4842-9690-5 ISBN-13 (electronic): 978-1-4842-9691-2
https://doi.org/10.1007/978-1-4842-9691-2

Copyright © 2023 by Intel Corporation

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on
microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this book are included in the book’s Creative Commons license, unless indicated
otherwise in a credit line to the material. If material is not included in the book’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of
a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such,
is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Intel, the Intel logo, Intel Optane, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries. OpenCL
and the OpenCL logo are trademarks of Apple Inc. in the U.S. and/or other countries. OpenMP and the OpenMP logo are
trademarks of the OpenMP Architecture Review Board in the U.S. and/or other countries. SYCL, the SYCL logo, Khronos and
the Khronos Group logo are trademarks of the Khronos Group Inc. The open source DPC++ compiler is based on a published
Khronos SYCL specification. The current conformance status of SYCL implementations can be found at https://www.khronos.
org/conformance/adopters/conformant-products/sycl.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests are measured using specific computer systems, components, software, operations and functions. Any change
to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you
in fully evaluating your contemplated purchases, including the performance of that product when combined with other
products. For more complete information visit https://www.intel.com/benchmarks. Performance results are based on testing
as of dates shown in configuration and may not reflect all publicly available security updates. See configuration disclosure for
details. No product or component can be absolutely secure. Intel technologies’ features and benefits depend on system
configuration and may require enabled hardware, software or service activation. Performance varies depending on system
configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at
www.intel.com.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the
authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The
publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermot
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 NY Plaza, New York, NY 10004.
Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit https://www.springeronline.com.
Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM
Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint, paperback, or audio rights,
please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and licenses are also
available for most titles. For more information, reference our Print and eBook Bulk Sales web page at https://www.apress.com/
bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers on the Github
repository: https://github.com/Apress/Data-Parallel-CPP. For more detailed information, please visit https://www.apress.
com/gp/services/source-code.

Paper in this product is recyclable

James Reinders
Beaverton, OR, USA

Ben Ashbaugh
Folsom, CA, USA

James Brodman
Marlborough, MA, USA

Michael Kinsner
Halifax, NS, Canada

John Pennycook
San Jose, CA, USA

Xinmin Tian
Fremont, CA, USA

https://doi.org/10.1007/978-1-4842-9691-2

iii

Table of Contents
About the Authors ��xix

Preface ��xxi

Foreword �� xxv

Acknowledgments ��� xxix

Chapter 1: Introduction���1

Read the Book, Not the Spec ��2

SYCL 2020 and DPC++ ���3

Why Not CUDA? ���4

Why Standard C++ with SYCL? ��5

Getting a C++ Compiler with SYCL Support ���5

Hello, World! and a SYCL Program Dissection ���6

Queues and Actions ��7

It Is All About Parallelism ��8

Throughput ��8

Latency ��9

Think Parallel ���9

Amdahl and Gustafson ��10

Scaling ���11

Heterogeneous Systems ��11

Data-Parallel Programming ���13

iv

Key Attributes of C++ with SYCL ��14

Single-Source ��14

Host ���15

Devices ��15

Kernel Code ���16

Asynchronous Execution ���18

Race Conditions When We Make a Mistake ���19

Deadlock ��22

C++ Lambda Expressions ���23

Functional Portability and Performance Portability ���������������������������������������26

Concurrency vs� Parallelism ��28

Summary���30

Chapter 2: Where Code Executes ��31

Single-Source ���31

Host Code ��33

Device Code ���34

Choosing Devices ��36

Method#1: Run on a Device of Any Type ���37

Queues ��37

Binding a Queue to a Device When Any Device Will Do ���������������������������������41

Method#2: Using a CPU Device for Development, Debugging,
and Deployment ��42

Method#3: Using a GPU (or Other Accelerators) ��45

Accelerator Devices ���46

Device Selectors ��46

Method#4: Using Multiple Devices ��50

Table of ConTenTs

v

Method#5: Custom (Very Specific) Device Selection ��51

Selection Based on Device Aspects ���51

Selection Through a Custom Selector ���53

Creating Work on a Device ��54

Introducing the Task Graph ��54

Where Is the Device Code? ��56

Actions ���60

Host tasks ��63

Summary���65

Chapter 3: Data Management ���67

Introduction ���68

The Data Management Problem ���69

Device Local vs� Device Remote ���69

Managing Multiple Memories ���70

Explicit Data Movement ���70

Implicit Data Movement���71

Selecting the Right Strategy ��71

USM, Buffers, and Images ���72

Unified Shared Memory ��72

Accessing Memory Through Pointers ��73

USM and Data Movement ��74

Buffers ��77

Creating Buffers ��78

Accessing Buffers ��78

Access Modes ���80

Table of ConTenTs

vi

Ordering the Uses of Data ���80

In-order Queues ���83

Out-of-Order Queues ���84

Choosing a Data Management Strategy ��92

Handler Class: Key Members ��93

Summary���96

Chapter 4: Expressing Parallelism ��97

Parallelism Within Kernels ��98

Loops vs� Kernels ��99

Multidimensional Kernels ���101

Overview of Language Features ���102

Separating Kernels from Host Code ��102

Different Forms of Parallel Kernels ���103

Basic Data-Parallel Kernels ��105

Understanding Basic Data-Parallel Kernels ���105

Writing Basic Data-Parallel Kernels ��107

Details of Basic Data-Parallel Kernels ���109

Explicit ND-Range Kernels ��112

Understanding Explicit ND-Range Parallel Kernels �������������������������������������113

Writing Explicit ND-Range Data-Parallel Kernels ��121

Details of Explicit ND-Range Data- Parallel Kernels �������������������������������������122

Mapping Computation to Work-Items ���127

One-to-One Mapping ���128

Many-to-One Mapping ���128

Choosing a Kernel Form ��130

Summary���132

Table of ConTenTs

vii

Chapter 5: Error Handling ���135

Safety First ��135

Types of Errors ��136

Let’s Create Some Errors! ���138

Synchronous Error ���139

Asynchronous Error ���139

Application Error Handling Strategy ��140

Ignoring Error Handling ���141

Synchronous Error Handling ��143

Asynchronous Error Handling ��144

The Asynchronous Handler ��145

Invocation of the Handler ��148

Errors on a Device ���149

Summary���150

Chapter 6: Unified Shared Memory ���153

Why Should We Use USM? ��153

Allocation Types ��154

Device Allocations ���154

Host Allocations ���155

Shared Allocations ���155

Allocating Memory ��156

What Do We Need to Know? ��156

Multiple Styles ���157

Deallocating Memory���164

Allocation Example ��165

Table of ConTenTs

viii

Data Management ���165

Initialization ���165

Data Movement ���166

Queries ��174

One More Thing ���177

Summary���178

Chapter 7: Buffers���179

Buffers ��180

Buffer Creation ��181

What Can We Do with a Buffer?���188

Accessors ��189

Accessor Creation��192

What Can We Do with an Accessor? ��198

Summary���199

Chapter 8: Scheduling Kernels and Data Movement ������������������������201

What Is Graph Scheduling? ���202

How Graphs Work in SYCL ��202

Command Group Actions ���203

How Command Groups Declare Dependences ��203

Examples ���204

When Are the Parts of a Command Group Executed? ����������������������������������213

Data Movement ���213

Explicit Data Movement ���213

Implicit Data Movement���214

Synchronizing with the Host ���216

Summary���218

Table of ConTenTs

ix

Chapter 9: Communication and Synchronization �����������������������������221

Work-Groups and Work-Items ���221

Building Blocks for Efficient Communication ��223

Synchronization via Barriers ���223

Work-Group Local Memory ��225

Using Work-Group Barriers and Local Memory ���227

Work-Group Barriers and Local Memory in ND-Range Kernels �������������������231

Sub-Groups ���235

Synchronization via Sub-Group Barriers ���236

Exchanging Data Within a Sub-Group ��237

A Full Sub-Group ND-Range Kernel Example ��239

Group Functions and Group Algorithms ��241

Broadcast ��241

Votes ��242

Shuffles ���243

Summary���246

Chapter 10: Defining Kernels ��249

Why Three Ways to Represent a Kernel? ��249

Kernels as Lambda Expressions ���251

Elements of a Kernel Lambda Expression ���251

Identifying Kernel Lambda Expressions ��254

Kernels as Named Function Objects ���255

Elements of a Kernel Named Function Object ���256

Kernels in Kernel Bundles ���259

Interoperability with Other APIs ��264

Summary���264

Table of ConTenTs

x

Chapter 11: Vectors and Math Arrays���267

The Ambiguity of Vector Types ��268

Our Mental Model for SYCL Vector Types ��269

Math Array (marray) ��271

Vector (vec) ���273

Loads and Stores ���274

Interoperability with Backend-Native Vector Types �������������������������������������276

Swizzle Operations ��276

How Vector Types Execute ��280

Vectors as Convenience Types ��280

Vectors as SIMD Types ��284

Summary���286

Chapter 12: Device Information and Kernel Specialization ��������������289

Is There a GPU Present? ��290

Refining Kernel Code to Be More Prescriptive ��291

How to Enumerate Devices and Capabilities ��293

Aspects ��296

Custom Device Selector ��298

Being Curious: get_info<> ��300

Being More Curious: Detailed Enumeration Code ��301

Very Curious: get_info plus has() ���303

Device Information Descriptors���303

Device-Specific Kernel Information Descriptors ���303

The Specifics: Those of “Correctness” ��304

Device Queries���305

Kernel Queries ���306

Table of ConTenTs

xi

The Specifics: Those of “Tuning/Optimization” ���307

Device Queries���307

Kernel Queries ���308

Runtime vs� Compile-Time Properties ��308

Kernel Specialization ��309

Summary���312

Chapter 13: Practical Tips ��313

Getting the Code Samples and a Compiler ���313

Online Resources ��313

Platform Model��314

Multiarchitecture Binaries ���315

Compilation Model ���316

Contexts: Important Things to Know ���319

Adding SYCL to Existing C++ Programs ���321

Considerations When Using Multiple Compilers ���322

Debugging ���323

Debugging Deadlock and Other Synchronization Issues �����������������������������325

Debugging Kernel Code ���326

Debugging Runtime Failures ���327

Queue Profiling and Resulting Timing Capabilities ��������������������������������������330

Tracing and Profiling Tools Interfaces ��334

Initializing Data and Accessing Kernel Outputs ��335

Multiple Translation Units ��344

Performance Implication of Multiple Translation Units ��������������������������������345

When Anonymous Lambdas Need Names ��345

Summary���346

Table of ConTenTs

xii

Chapter 14: Common Parallel Patterns ���349

Understanding the Patterns ��350

Map��351

Stencil ���352

Reduction ��354

Scan���356

Pack and Unpack ���358

Using Built-In Functions and Libraries ��360

The SYCL Reduction Library ��360

Group Algorithms ���366

Direct Programming ��370

Map��370

Stencil ���371

Reduction ��373

Scan���374

Pack and Unpack ���377

Summary���380

For More Information ���381

Chapter 15: Programming for GPUs ��383

Performance Caveats ��383

How GPUs Work���384

GPU Building Blocks ��384

Simpler Processors (but More of Them) ��386

Simplified Control Logic (SIMD Instructions) ���391

Switching Work to Hide Latency ��398

Offloading Kernels to GPUs ���400

SYCL Runtime Library ��400

GPU Software Drivers ��401

Table of ConTenTs

xiii

GPU Hardware ���402

Beware the Cost of Offloading! ��403

GPU Kernel Best Practices ��405

Accessing Global Memory ���405

Accessing Work-Group Local Memory ���409

Avoiding Local Memory Entirely with Sub-Groups ��������������������������������������412

Optimizing Computation Using Small Data Types ��412

Optimizing Math Functions ��413

Specialized Functions and Extensions ��414

Summary���414

For More Information ���415

Chapter 16: Programming for CPUs ��417

Performance Caveats ��418

The Basics of Multicore CPUs ���419

The Basics of SIMD Hardware ���422

Exploiting Thread-Level Parallelism ��428

Thread Affinity Insight ���431

Be Mindful of First Touch to Memory ���435

SIMD Vectorization on CPU ��436

Ensure SIMD Execution Legality ��437

SIMD Masking and Cost ��440

Avoid Array of Struct for SIMD Efficiency ��442

Data Type Impact on SIMD Efficiency ��444

SIMD Execution Using single_task ��446

Summary���448

Table of ConTenTs

xiv

Chapter 17: Programming for FPGAs ��451

Performance Caveats ��452

How to Think About FPGAs ��452

Pipeline Parallelism ���456

Kernels Consume Chip “Area” ���459

When to Use an FPGA ��460

Lots and Lots of Work ��460

Custom Operations or Operation Widths ��461

Scalar Data Flow ���462

Low Latency and Rich Connectivity ���463

Customized Memory Systems ���464

Running on an FPGA ���465

Compile Times ���467

The FPGA Emulator ��469

FPGA Hardware Compilation Occurs “Ahead- of-Time” ��������������������������������470

Writing Kernels for FPGAs ���471

Exposing Parallelism ���472

Keeping the Pipeline Busy Using ND-Ranges ��475

Pipelines Do Not Mind Data Dependences! ���478

Spatial Pipeline Implementation of a Loop ��481

Loop Initiation Interval ���483

Pipes ��489

Custom Memory Systems ��495

Some Closing Topics ���498

FPGA Building Blocks ��498

Clock Frequency ��500

Summary���501

Table of ConTenTs

xv

Chapter 18: Libraries ��503

Built-In Functions ��504

Use the sycl:: Prefix with Built-In Functions ��506

The C++ Standard Library ��507

oneAPI DPC++ Library (oneDPL) ���510

SYCL Execution Policy ���511

Using oneDPL with Buffers ��513

Using oneDPL with USM ��517

Error Handling with SYCL Execution Policies ��519

Summary���520

Chapter 19: Memory Model and Atomics ���523

What’s in a Memory Model? ���525

Data Races and Synchronization ���526

Barriers and Fences ��529

Atomic Operations ���531

Memory Ordering ���532

The Memory Model ���534

The memory_order Enumeration Class ���536

The memory_scope Enumeration Class ��538

Querying Device Capabilities ���540

Barriers and Fences ��542

Atomic Operations in SYCL ��543

Using Atomics with Buffers ���548

Using Atomics with Unified Shared Memory ���550

Using Atomics in Real Life ��550

Computing a Histogram ���551

Implementing Device-Wide Synchronization ���553

Table of ConTenTs

xvi

Summary���556

For More Information ���557

Chapter 20: Backend Interoperability ���559

What Is Backend Interoperability? ��559

When Is Backend Interoperability Useful? ��561

Adding SYCL to an Existing Codebase ���562

Using Existing Libraries with SYCL ��564

Using Backend Interoperability for Kernels ���569

Interoperability with API-Defined Kernel Objects ��569

Interoperability with Non-SYCL Source Languages �������������������������������������571

Backend Interoperability Hints and Tips ���574

Choosing a Device for a Specific Backend ��574

Be Careful About Contexts! ��576

Access Low-Level API-Specific Features ��576

Support for Other Backends ��577

Summary���577

Chapter 21: Migrating CUDA Code ��579

Design Differences Between CUDA and SYCL ���579

Multiple Targets vs� Single Device Targets ��579

Aligning to C++ vs� Extending C++ ���581

Terminology Differences Between CUDA and SYCL ��582

Similarities and Differences ��583

Execution Model ��584

Memory Model���589

Other Differences ��592

Table of ConTenTs

xvii

Features in CUDA That Aren’t In SYCL… Yet! ��595

Global Variables ���595

Cooperative Groups ���596

Matrix Multiplication Hardware ���597

Porting Tools and Techniques ��598

Migrating Code with dpct and SYCLomatic ���598

Summary���603

For More Information ��604

 Epilogue: Future Direction of SYCL ���605

Index ���615

Table of ConTenTs

xix

About the Authors

James Reinders is an Engineer at Intel Corporation with more than four

decades of experience in parallel computing and is an author/coauthor/

editor of more than ten technical books related to parallel programming.

James has a passion for system optimization and teaching. He has had the

great fortune to help make contributions to several of the world’s fastest

computers (#1 on the TOP500 list) as well as many other supercomputers

and software developer tools.

Ben Ashbaugh is a Software Architect at Intel Corporation where he has

worked for over 20 years developing software drivers and compilers for

Intel graphics products. For the past ten years, Ben has focused on parallel

programming models for general-purpose computation on graphics

processors, including SYCL and the DPC++ compiler. Ben is active in the

Khronos SYCL, OpenCL, and SPIR working groups, helping define industry

standards for parallel programming, and he has authored numerous

extensions to expose unique Intel GPU features.

James Brodman is a Principal Engineer at Intel Corporation working on

runtimes and compilers for parallel programming, and he is one of the

architects of DPC++. James has a Ph.D. in Computer Science from the

University of Illinois at Urbana-Champaign.

xx

Michael Kinsner is a Principal Engineer at Intel Corporation developing

parallel programming languages and compilers for a variety of

architectures. Michael contributes extensively to spatial architectures and

programming models and is an Intel representative within The Khronos

Group where he works on the SYCL and OpenCL industry standards for

parallel programming. Mike has a Ph.D. in Computer Engineering from

McMaster University and is passionate about programming models that

cross architectures while still enabling performance.

John Pennycook is a Software Enabling and Optimization Architect

at Intel Corporation, focused on enabling developers to fully utilize

the parallelism available in modern processors. John is experienced

in optimizing and parallelizing applications from a range of scientific

domains, and previously served as Intel’s representative on the steering

committee for the Intel eXtreme Performance User’s Group (IXPUG).

John has a Ph.D. in Computer Science from the University of Warwick.

His research interests are varied, but a recurring theme is the ability to

achieve application “performance portability” across different hardware

architectures.

Xinmin Tian is an Intel Fellow and Compiler Architect at Intel Corporation

and serves as Intel’s representative on the OpenMP Architecture Review

Board (ARB). Xinmin has been driving OpenMP offloading, vectorization,

and parallelization compiler technologies for Intel architectures. His

current focus is on LLVM-based OpenMP offloading, SYCL/DPC++

compiler optimizations for CPUs/GPUs, and tuning HPC/AI application

performance. He has a Ph.D. in Computer Science from Tsinghua

University, holds 27 US patents, has published over 60 technical papers

with over 1300+ citations of his work, and has coauthored two books that

span his expertise.

abouT The auThors

xxi

Preface

If you are new to parallel programming that is okay. If you have never

heard of SYCL or the DPC++ compilerthat is also okay

Compared with programming in CUDA, C++ with SYCL offers

portability beyond NVIDIA, and portability beyond GPUs, plus a tight

alignment to enhance modern C++ as it evolves too. C++ with SYCL offers

these advantages without sacrificing performance.

C++ with SYCL allows us to accelerate our applications by harnessing

the combined capabilities of CPUs, GPUs, FPGAs, and processing devices

of the future without being tied to any one vendor.

SYCL is an industry-driven Khronos Group standard adding

advanced support for data parallelism with C++ to exploit accelerated

(heterogeneous) systems. SYCL provides mechanisms for C++ compilers

that are highly synergistic with C++ and C++ build systems. DPC++ is an

open source compiler project based on LLVM that adds SYCL support.

All examples in this book should work with any C++ compiler supporting

SYCL 2020 including the DPC++ compiler.

If you are a C programmer who is not well versed in C++, you are in

good company. Several of the authors of this book happily share that

they picked up much of C++ by reading books that utilized C++ like this

one. With a little patience, this book should also be approachable by C

programmers with a desire to write modern C++ programs.

 Second Edition
With the benefit of feedback from a growing community of SYCL users, we

have been able to add content to help learn SYCL better than ever.

xxii

This edition teaches C++ with SYCL 2020. The first edition preceded

the SYCL 2020 specification, which differed only slightly from what the

first edition taught (the most obvious changes for SYCL 2020 in this edition

are the header file location, the device selector syntax, and dropping an

explicit host device).

Important resources for updated sYCl information, including any
known book errata, include the book Github (https://github.
com/Apress/data-parallel-CPP), the Khronos Group sYCl
standards website (www.khronos.org/sycl), and a key sYCl
education website (https://sycl.tech).

Chapters 20 and 21 are additions encouraged by readers of the first

edition of this book.

We added Chapter 20 to discuss backend interoperability. One of

the key goals of the SYCL 2020 standard is to enable broad support for

hardware from many vendors with many architectures. This required

expanding beyond the OpenCL-only backend support of SYCL 1.2.1. While

generally “it just works,” Chapter 20 explains this in more detail for those

who find it valuable to understand and interface at this level.

For experienced CUDA programmers, we have added Chapter 21 to

explicitly connect C++ with SYCL concepts to CUDA concepts both in

terms of approach and vocabulary. While the core issues of expressing

heterogeneous parallelism are fundamentally similar, C++ with SYCL offers

many benefits because of its multivendor and multiarchitecture approach.

Chapter 21 is the only place we mention CUDA terminology; the rest of this

book teaches using C++ and SYCL terminology with its open multivendor,

multiarchitecture approaches. In Chapter 21, we strongly encourage

looking at the open source tool “SYCLomatic” (github.com/oneapi-src/

SYCLomatic), which helps automate migration of CUDA code. Because it

PrefaCe

https://github.com/Apress/data-parallel-CPP
https://github.com/Apress/data-parallel-CPP
http://www.khronos.org/sycl
https://sycl.tech
https://github.com/oneapi-src/SYCLomatic
https://github.com/oneapi-src/SYCLomatic

xxiii

is helpful, we recommend it as the preferred first step in migrating code.

Developers using C++ with SYCL have been reporting strong results on

NVIDIA, AMD, and Intel GPUs on both codes that have been ported from

CUDA and original C++ with SYCL code. The resulting C++ with SYCL

offers portability that is not possible with NVIDIA CUDA.

The evolution of C++, SYCL, and compilers including DPC++

continues. Prospects for the future are discussed in the Epilogue, after

we have taken a journey together to learn how to create programs for

heterogeneous systems using C++ with SYCL.

It is our hope that this book supports and helps grow the SYCL

community and helps promote data-parallel programming in C++

with SYCL.

 Structure of This Book
This book takes us on a journey through what we need to know to be an

effective programmer of accelerated/heterogeneous systems using C++

with SYCL.

 Chapters 1–4: Lay Foundations
Chapters 1–4 are important to read in order when first approaching C++

with SYCL.

Chapter 1 lays the first foundation by covering core concepts that are

either new or worth refreshing in our minds.

Chapters 2–4 lay a foundation of understanding for data-parallel

programming in C++ with SYCL. When we finish reading Chapters 1–4,

we will have a solid foundation for data-parallel programming in C++.

Chapters 1–4 build on each other and are best read in order.

PrefaCe

xxiv

 Chapters 5–12: Build on Foundations
With the foundations established, Chapters 5–12 fill in vital details by

building on each other to some degree while being easy to jump between

as desired. All these chapters should be valuable to all users of C++

with SYCL.

 Chapters 13–21: Tips/Advice for SYCL in Practice
These final chapters offer advice and details for specific needs. We

encourage at least skimming them all to find content that is important to

your needs.

 Epilogue: Speculating on the Future
The book concludes with an Epilogue that discusses likely and potential

future directions for C++ with SYCL, and the Data Parallel C++ compiler

for SYCL.

We wish you the best as you learn to use C++ with SYCL.

PrefaCe

xxv

Foreword

SYCL 2020 is a milestone in parallel computing. For the first time we have

a modern, stable, feature-complete, and portable open standard that can

target all types of hardware, and the book you hold in your hand is the

premier resource to learn SYCL 2020.

Computer hardware development is driven by our needs to solve

larger and more complex problems, but those hardware advances are

largely useless unless programmers like you and me have languages that

allow us to implement our ideas and exploit the power available with

reasonable effort. There are numerous examples of amazing hardware,

and the first solutions to use them have often been proprietary since it

saves time not having to bother with committees agreeing on standards.

However, in the history of computing, they have eventually always ended

up as vendor lock-in—unable to compete with open standards that allow

developers to target any hardware and share code—because ultimately the

resources of the worldwide community and ecosystem are far greater than

any individual vendor, not to mention how open software standards drive

hardware competition.

Over the last few years, my team has had the tremendous privilege

of contributing to shaping the emerging SYCL ecosystem through our

development of GROMACS, one of the world’s most widely used scientific

HPC codes. We need our code to run on every supercomputer in the

world as well as our laptops. While we cannot afford to lose performance,

we also depend on being part of a larger community where other teams

invest effort in libraries we depend on, where there are open compilers

available, and where we can recruit talent. Since the first edition of this

book, SYCL has matured into such a community; in addition to several

xxvi

vendor-provided compilers, we now have a major community-driven

implementation1 that targets all hardware, and there are thousands of

developers worldwide sharing experiences, contributing to training

events, and participating in forums. The outstanding power of open

source—whether it is an application, a compiler, or an open standard—is

that we can peek under the hood to learn, borrow, and extend. Just as we

repeatedly learn from the code in the Intel-led LLVM implementation,2

the community-driven implementation from Heidelberg University, and

several other codes, you can use our public repository3 to compare CUDA

and SYCL implementations in a large production codebase or borrow

solutions for your needs—because when you do so, you are helping to

further extend our community.

Perhaps surprisingly, data-parallel programming as a paradigm is

arguably far easier than classical solutions such as message-passing

communication or explicit multithreading—but it poses special challenges

to those of us who have spent decades in the old paradigms that focus on

hardware and explicit data placement. On a small scale, it was trivial for

us to explicitly decide how data is moved between a handful of processes,

but as the problem scales to thousands of units, it becomes a nightmare to

manage the complexity without introducing bugs or having the hardware

sit idle waiting for data. Data-parallel programming with SYCL solves

this by striking the balance of primarily asking us to explicitly express the

inherent parallelism of our algorithm, but once we have done that, the

compiler and drivers will mostly handle the data locality and scheduling

over tens of thousands of functional units. To be successful in data-parallel

programming, it is important not to think of a computer as a single unit

executing one program, but as a collection of units working independently

1 Community-driven implementation from Heidelberg University: tinyurl.com/
HeidelbergSYCL
2 DPC++ compiler project: github.com/intel/llvm
3 GROMACS: gitlab.com/gromacs/gromacs/

foreword

https://tinyurl.com/HeidelbergSYCL
https://tinyurl.com/HeidelbergSYCL
https://github.com/intel/llvm
https://gitlab.com/gromacs/gromacs/

xxvii

to solve parts of a large problem. As long as we can express our problem as

an algorithm where each part does not have dependencies on other parts,

it is in theory straightforward to implement it, for example, as a parallel

for-loop that is executed on a GPU through a device queue. However, for

more practical examples, our problems are frequently not large enough

to use an entire device efficiently, or we depend on performing tens of

thousands of iterations per second where latency in device drivers starts

to be a major bottleneck. While this book is an outstanding introduction to

performance-portable GPU programming, it goes far beyond this to show

how both throughput and latency matter for real-world applications, how

SYCL can be used to exploit unique features both of CPUs, GPUs, SIMD

units, and FPGAs, but it also covers the caveats that for good performance

we need to understand and possibly adapt code to the characteristics of

each type of hardware. Doing so, it is not merely a great tutorial on data-

parallel programing, but an authoritative text that anybody interested in

programming modern computer hardware in general should read.

One of SYCL’s key strengths is the close alignment to modern C++.

This can seem daunting at first; C++ is not an easy language to fully master

(I certainly have not), but Reinders and coauthors take our hand and lead

us on a path where we only need to learn a handful of C++ concepts to get

started and be productive in actual data-parallel programming. However,

as we become more experienced, SYCL 2020 allows us to combine this

with the extreme generality of C++17 to write code that can be dynamically

targeted to different devices, or relying on heterogeneous parallelism that

uses CPU, GPU, and network units in parallel for different tasks. SYCL is

not a separate bolted-on solution to enable accelerators but instead holds

great promise to be the general way we express data parallelism in C++.

The SYCL 2020 standard now includes several features previously only

available as vendor extensions, for example, Unified Shared Memory,

sub-groups, atomic operations, reductions, simpler accessors, and many

other concepts that make code cleaner, and facilitates both development

as well as porting from standard C++17 or CUDA to have your code target

foreword

xxviii

more diverse hardware. This book provides a wonderful and accessible

introduction to all of them, and you will also learn how SYCL is expected to

evolve together with the rapid development C++ is undergoing.

This all sounds great in theory, but how portable is SYCL in practice?

Our application is an example of a codebase that is quite challenging to

optimize since data access patterns are random, the amount of data to

process in each step is limited, we need to achieve thousands of iterations

per second, and we are limited both by memory bandwidth, floating-point,

and integer operations—it is an extreme opposite of a simple data-parallel

problem. We spent over two decades writing assembly SIMD instructions

and native implementations for several GPU architectures, and our

very first encounters with SYCL involved both pains with adapting to

differences and reporting performance regressions to driver and compiler

developers. However, as of spring 2023, our SYCL kernels can achieve

80–100% of native performance on all GPU architectures not only from a

single codebase but even a single precompiled binary.

SYCL is still young and has a rapidly evolving ecosystem. There are

a few things not yet part of the language, but SYCL is unique as the only

performance-portable standard available that successfully targets all

modern hardware. Whether you are a beginner wanting to learn parallel

programming, an experienced developer interested in data-parallel

programming, or a maintainer needing to port 100,000 lines of proprietary

API code to an open standard, this second edition is the only book you will

need to become part of this community.

Erik Lindahl

Professor of Biophysics

Dept. Biophysics & Biochemistry

Science for Life Laboratory

Stockholm University

foreword

xxix

Acknowledgments

We have been blessed with an outpouring of community input for this

second edition of our book. Much inspiration came from interactions with

developers as they use SYCL in production, classes, tutorials, workshops,

conferences, and hackathons. SYCL deployments that include NVIDIA

hardware, in particular, have helped us enhance the inclusiveness and

practical tips in our teaching of SYCL in this second edition.

The SYCL community has grown a great deal—and consists of

engineers implementing compilers and tools, and a much larger group of

users that adopt SYCL to target hardware of many types and vendors. We

are grateful for their hard work, and shared insights.

We thank the Khronos SYCL Working Group that has worked diligently

to produce a highly functional specification. In particular, Ronan Keryell

has been the SYCL specification editor and a longtime vocal advocate

for SYCL.

We are in debt to the numerous people who gave us feedback from

the SYCL community in all these ways. We are also deeply grateful for

those who helped with the first edition a few years ago, many of whom we

named in the acknowledgement of that edition.

The first edition received feedback via GitHub,1 which we did review

but we were not always prompt in acknowledging (imagine six coauthors

all thinking “you did that, right?”). We did benefit a great deal from that

feedback, and we believe we have addressed all the feedback in the

samples and text for this edition. Jay Norwood was the most prolific at

commenting and helping us—a big thank you to Jay from all the authors!

1 github.com/apress/data-parallel-CPP

https://github.com/apress/data-parallel-CPP
https://github.com/apress/data-parallel-CPP

xxx

Other feedback contributors include Oscar Barenys, Marcel Breyer, Jeff

Donner, Laurence Field, Michael Firth, Piotr Fusik, Vincent Mierlak, and

Jason Mooneyham. Regardless of whether we recalled your name here or

not, we thank everyone who has provided feedback and helped refine our

teaching of C++ with SYCL.

For this edition, a handful of volunteers tirelessly read draft

manuscripts and provided insightful feedback for which we are incredibly

grateful. These reviewers include Aharon Abramson, Thomas Applencourt,

Rod Burns, Joe Curley, Jessica Davies, Henry Gabb, Zheming Jin, Rakshith

Krishnappa, Praveen Kundurthy, Tim Lewis, Eric Lindahl, Gregory Lueck,

Tony Mongkolsmai, Ruyman Reyes Castro, Andrew Richards, Sanjiv Shah,

Neil Trevett, and Georg Viehöver.

We all enjoy the support of our family and friends, and we cannot

thank them enough. As coauthors, we have enjoyed working as a team

challenging each other and learning together along the way. We appreciate

our collaboration with the entire Apress team in getting this book

published.

We are sure that there are more than a few people whom we have failed

to mention explicitly who have positively impacted this book project. We

thank all who helped us.

As you read this second edition, please do provide feedback if you find

any way to improve it. Feedback via GitHub can open up a conversation,

and we will update the online errata and book samples as needed.

Thank you all, and we hope you find this book invaluable in your

endeavors.

aCKnowledGmenTs

https://github.com/apress/data-parallel-CPP

1

CHAPTER 1

Introduction
We have undeniably entered the age of accelerated computing. In order to

satisfy the world’s insatiable appetite for more computation, accelerated

computing drives complex simulations, AI, and much more by providing

greater performance and improved power efficiency when compared with

earlier solutions.

Heralded as a “New Golden Age for Computer Architecture,”1 we are

faced with enormous opportunity through a rich diversity in compute

devices. We need portable software development capabilities that are

not tied to any single vendor or architecture in order to realize the full

potential for accelerated computing.

SYCL (pronounced sickle) is an industry-driven Khronos Group

standard adding advanced support for data parallelism with C++ to

support accelerated (heterogeneous) systems. SYCL provides mechanisms

for C++ compilers to exploit accelerated (heterogeneous) systems in a way

that is highly synergistic with modern C++ and C++ build systems. SYCL is

not an acronym; SYCL is simply a name.

1 A New Golden Age for Computer Architecture by John L. Hennessy, David
A. Patterson; Communications of the ACM, February 2019, Vol. 62 No. 2,
Pages 48-60.

© Intel Corporation 2023
J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-9691-2_1

https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/abstract
https://doi.org/10.1007/978-1-4842-9691-2_1

2

ACCELERATED VS. HETEROGENEOUS

These terms go together. Heterogeneous is a technical description

acknowledging the combination of compute devices that are programmed

differently. Accelerated is the motivation for adding this complexity to systems

and programming. There is no guarantee of acceleration ever; programming

heterogeneous systems will only accelerate our applications when we do it

right. This book helps teach us how to do it right!

Data parallelism in C++ with SYCL provides access to all the compute

devices in a modern accelerated (heterogeneous) system. A single C++

application can use any combination of devices—including GPUs, CPUs,

FPGAs, and application-specific integrated circuits (ASICs)—that are

suitable to the problems at hand. No proprietary, single-vendor, solution

can offer us the same level of flexibility.

This book teaches us how to harness accelerated computing using

data-parallel programming using C++ with SYCL and provides practical

advice for balancing application performance, portability across compute

devices, and our own productivity as programmers. This chapter lays

the foundation by covering core concepts, including terminology, which

are critical to have fresh in our minds as we learn how to accelerate C++

programs using data parallelism.

 Read the Book, Not the Spec
No one wants to be told “Go read the spec!”—specifications are hard to

read, and the SYCL specification (www.khronos.org/sycl/) is no different.

Like every great language specification, it is full of precision but is light on

motivation, usage, and teaching. This book is a “study guide” to teach C++

with SYCL.

ChapTer 1 InTroduCTIon

https://www.khronos.org/sycl/

3

No book can explain everything at once. Therefore, this chapter does

what no other chapter will do: the code examples contain programming

constructs that go unexplained until future chapters. We should not get

hung up on understanding the coding examples completely in Chapter 1

and trust it will get better with each chapter.

 SYCL 2020 and DPC++
This book teaches C++ with SYCL 2020. The first edition of this book

preceded the SYCL 2020 specification, so this edition includes updates

including adjustments in the header file location (sycl instead of CL),

device selector syntax, and removal of an explicit host device.

DPC++ is an open source compiler project based on LLVM. It is

our hope that SYCL eventually be supported by default in the LLVM

community and that the DPC++ project will help make that happen. The

DPC++ compiler offers broad heterogeneous support that includes GPU,

CPU, and FPGA. All examples in this book work with the DPC++ compiler

and should work with any C++ compiler supporting SYCL 2020.

Important resources for updated SYCL information, including any
known book errata, include the book Github (github.com/Apress/
data-parallel-CPP), the Khronos Group SYCL standards website
(www.khronos.org/sycl), and a key SYCL education website
(sycl.tech).

As of publication time, no C++ compiler claims full conformance or

compliance with the SYCL 2020 specification. Nevertheless, the code in

this book works with the DPC++ compiler and should work with other C++

compilers that have most of SYCL 2020 implemented. We use only standard

C++ with SYCL 2020 excepting for a few DPC++-specific extensions that

ChapTer 1 InTroduCTIon

https://github.com/Apress/data-parallel-CPP
https://github.com/Apress/data-parallel-CPP
https://www.khronos.org/sycl
https://sycl.tech

4

are clearly called out in Chapter 17 (Programming for FPGAs) to a small

degree, Chapter 20 (Backend Interoperability) when connecting to Level

Zero backends, and the Epilogue when speculating on the future.

 Why Not CUDA?
Unlike CUDA, SYCL supports data parallelism in C++ for all vendors and

all types of architectures (not just GPUs). CUDA is focused on NVIDIA

GPU support only, and efforts (such as HIP/ROCm) to reuse it for GPUs

by other vendors have limited ability to succeed despite some solid

success and usefulness. With the explosion of accelerator architectures,

only SYCL offers the support we need for harnessing this diversity and

offering a multivendor/multiarchitecture approach to help with portability

that CUDA does not offer. To more deeply understand this motivation,

we highly recommend reading (or watching the video recording of their

excellent talk) “A New Golden Age for Computer Architecture” by industry

legends John L. Hennessy and David A. Patterson. We consider this a

must-read article.

Chapter 21, in addition to addressing topics useful for migrating code

from CUDA to C++ with SYCL, is valuable for those experienced with

CUDA to bridge some terminology and capability differences. The most

significant capabilities beyond CUDA come from the ability for SYCL to

support multiple vendors, multiple architectures (not just GPUs), and

multiple backends even for the same device. This flexibility answers the

question “Why not CUDA?”

SYCL does not involve any extra overhead compared with CUDA or

HIP. It is not a compatibility layer—it is a generalized approach that is open

to all devices regardless of vendor and architecture while simultaneously

being in sync with modern C++. Like other open multivendor and

multiarchitecture techniques, such as OpenMP and OpenCL, the ultimate

proof is in the implementations including options to access hardware-

specific optimizations when absolutely needed.

ChapTer 1 InTroduCTIon

https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/abstract

5

 Why Standard C++ with SYCL?
As we will point out repeatedly, every program using SYCL is first and

foremost a C++ program. SYCL does not rely on any language changes

to C++. SYCL does take C++ programming places it cannot go without

SYCL. We have no doubt that all programming for accelerated computing

will continue to influence language standards including C++, but we do

not believe the C++ standard should (or will) evolve to displace the need

for SYCL any time soon. SYCL has a rich set of capabilities that we spend

this book covering that extend C++ through classes and rich support for

new compiler capabilities necessary to meet needs (already existing today)

for multivendor and multiarchitecture support.

 Getting a C++ Compiler with SYCL Support
All examples in this book compile and work with all the various

distributions of the DPC++ compiler and should compile with other C++

compilers supporting SYCL (see “SYCL Compilers in Development” at

www.khronos.org/sycl). We are careful to note the very few places where

extensions are used that are DPC++ specific at the time of publication.

The authors recommend the DPC++ compiler for a variety of reasons,

including our close association with the DPC++ compiler. DPC++ is an

open source compiler project to support SYCL. By using LLVM, the DPC++

compiler project has access to backends for numerous devices. This has

already resulted in support for Intel, NVIDIA, and AMD GPUs, numerous

CPUs, and Intel FPGAs. The ability to extend and enhance support openly

for multiple vendors and multiple architecture makes LLVM a great choice

for open source efforts to support SYCL.

There are distributions of the DPC++ compiler, augmented with

additional tools and libraries, available as part of a larger project to

offer broad support for heterogeneous systems, which include libraries,

ChapTer 1 InTroduCTIon

https://www.khronos.org/sycl

6

debuggers, and other tools, known as the oneAPI project. The oneAPI

tools, including the DPC++ compiler, are freely available (www.oneapi.io/

implementations).

 Hello, World! and a SYCL
Program Dissection
Figure 1-1 shows a sample SYCL program. Compiling and running it

results in the following being printed:

Hello, world! (and some additional text left to experience by running it)

We will completely understand this example by the end of Chapter 4.

Until then, we can observe the single include of <sycl/sycl.hpp> (line 2)

that is needed to define all the SYCL constructs. All SYCL constructs live

inside a namespace called sycl.

1. #include <iostream>
2. #include <sycl/sycl.hpp>
3. using namespace sycl;
4.
5. const std::string secret{
6. "Ifmmp-!xpsme\"\012J(n!tpssz-!Ebwf/!"
7. "J(n!bgsbje!J!dbo(u!ep!uibu/!.!IBM\01"};
8.
9. const auto sz = secret.size();
10.
11. int main() {
12. queue q;
13.
14. char* result = malloc_shared<char>(sz, q);
15. std::memcpy(result, secret.data(), sz);
16.
17. q.parallel_for(sz, [=](auto& i) {
18. result[i] -= 1;
19. }).wait();
20.
21. std::cout << result << "\n";
22. free(result, q);
23. return 0;
24. }

Figure 1-1. Hello data-parallel programming

ChapTer 1 InTroduCTIon

https://www.oneapi.io/implementations/
https://www.oneapi.io/implementations/

7

• Line 3 lets us avoid writing sycl:: over and over.

• Line 12 instantiates a queue for work requests directed

to a particular device (Chapter 2).

• Line 14 creates an allocation for data shared with the

device (Chapter 3).

• Line 15 copies the secret string into device memory,

where it will be processed by the kernel.

• Line 17 enqueues work to the device (Chapter 4).

• Line 18 is the only line of code that will run on the

device. All other code runs on the host (CPU).

Line 18 is the kernel code that we want to run on devices. That kernel

code decrements a single character. With the power of parallel_for(),

that kernel is run on each character in our secret string in order to decode

it into the result string. There is no ordering of the work required, and it is

run asynchronously relative to the main program once the parallel_for

queues the work. It is critical that there is a wait (line 19) before looking at

the result to be sure that the kernel has completed, since in this example

we are using a convenient feature (Unified Shared Memory, Chapter 6).

Without the wait, the output may occur before all the characters have been

decrypted. There is more to discuss, but that is the job of later chapters.

 Queues and Actions
Chapter 2 discusses queues and actions, but we can start with a simple

explanation for now. Queues are the only connection that allows an

application to direct work to be done on a device. There are two types

of actions that can be placed into a queue: (a) code to execute and (b)

memory operations. Code to execute is expressed via either single_task

or parallel_for (used in Figure 1-1). Memory operations perform copy

ChapTer 1 InTroduCTIon

8

operations between host and device or fill operations to initialize memory.

We only need to use memory operations if we seek more control than

what is done automatically for us. These are all discussed later in the

book starting with Chapter 2. For now, we should be aware that queues

are the connection that allows us to command a device, and we have

a set of actions available to put in queues to execute code and to move

around data. It is also very important to understand that requested actions

are placed into a queue without waiting. The host, after submitting an

action into a queue, continues to execute the program, while the device

will eventually, and asynchronously, perform the action requested via

the queue.

QUEUES CONNECT US TO DEVICES

We submit actions into queues to request computational work and data

movement.

actions happen asynchronously.

 It Is All About Parallelism
Since programming in C++ for data parallelism is all about parallelism,

let’s start with this critical concept. The goal of parallel programming is

to compute something faster. It turns out there are two aspects to this:

increased throughput and reduced latency.

 Throughput
Increasing throughput of a program comes when we get more work done

in a set amount of time. Techniques like pipelining may stretch out the

time necessary to get a single work-item done, to allow overlapping of

ChapTer 1 InTroduCTIon

9

work that leads to more work-per-unit-of-time being done. Humans

encounter this often when working together. The very act of sharing work

involves overhead to coordinate that often slows the time to do a single

item. However, the power of multiple people leads to more throughput.

Computers are no different—spreading work to more processing cores

adds overhead to each unit of work that likely results in some delays, but

the goal is to get more total work done because we have more processing

cores working together.

 Latency
What if we want to get one thing done faster—for instance, analyzing

a voice command and formulating a response? If we only cared about

throughput, the response time might grow to be unbearable. The concept

of latency reduction requires that we break up an item of work into

pieces that can be tackled in parallel. For throughput, image processing

might assign whole images to different processing units—in this case,

our goal may be optimizing for images per second. For latency, image

processing might assign each pixel within an image to different processing

cores—in this case, our goal may be maximizing pixels per second from a

single image.

 Think Parallel
Successful parallel programmers use both techniques in their

programming. This is the beginning of our quest to Think Parallel.

We want to adjust our minds to think first about where parallelism

can be found in our algorithms and applications. We also think about how

different ways of expressing the parallelism affect the performance we

ultimately achieve. That is a lot to take in all at once. The quest to Think

Parallel becomes a lifelong journey for parallel programmers. We can learn

a few tips here.

ChapTer 1 InTroduCTIon

10

 Amdahl and Gustafson
Amdahl’s Law, stated by the supercomputer pioneer Gene Amdahl in

1967, is a formula to predict the theoretical maximum speed-up when

using multiple processors. Amdahl lamented that the maximum gain from

parallelism is limited to (1/(1-p)) where p is the fraction of the program

that runs in parallel. If we only run two-thirds of our program in parallel,

then the most that program can speed up is a factor of 3. We definitely

need that concept to sink in deeply! This happens because no matter how

fast we make that two-thirds of our program run, the other one-third still

takes the same time to complete. Even if we add 100 GPUs, we will only get

a factor of 3 increase in performance.

For many years, some viewed this as proof that parallel computing

would not prove fruitful. In 1988, John Gustafson wrote an article titled

“Reevaluating Amdahl’s Law.” He observed that parallelism was not used

to speed up fixed workloads, but it was used to allow work to be scaled

up. Humans experience the same thing. One delivery person cannot

deliver a single package faster with the help of many more people and

trucks. However, a hundred people and trucks can deliver one hundred

packages more quickly than a single driver with a truck. Multiple drivers

will definitely increase throughput and will also generally reduce latency

for package deliveries. Amdahl’s Law tells us that a single driver cannot

deliver one package faster by adding ninety-nine more drivers with their

own trucks. Gustafson noticed the opportunity to deliver one hundred

packages faster with these extra drivers and trucks.

This emphasizes that parallelism is most useful because the size of

problems we tackle keep growing in size year after year. Parallelism would

not nearly as important to study if year after year we only wanted to run the

same size problems faster. This quest to solve larger and larger problems

fuels our interest in exploiting data parallelism, using C++ with SYCL, for

the future of computer (heterogeneous/accelerated systems).

ChapTer 1 InTroduCTIon

11

 Scaling
The word “scaling” appeared in our prior discussion. Scaling is a measure

of how much a program speeds up (simply referred to as “speed-up”)

when additional computing is available. Perfect speed-up happens if

one hundred packages are delivered in the same time as one package,

by simply having one hundred trucks with drivers instead of a single

truck and driver. Of course, it does not reliably work that way. At some

point, there is a bottleneck that limits speed-up. There may not be one

hundred places for trucks to dock at the distribution center. In a computer

program, bottlenecks often involve moving data around to where it will

be processed. Distributing to one hundred trucks is similar to having to

distribute data to one hundred processing cores. The act of distributing

is not instantaneous. Chapter 3 starts our journey of exploring how to

distribute data to where it is needed in a heterogeneous system. It is critical

that we know that data distribution has a cost, and that cost affects how

much scaling we can expect from our applications.

 Heterogeneous Systems
For our purposes, a heterogeneous system is any system which contains

multiple types of computational devices. For instance, a system with both

a central processing unit (CPU) and a graphics processing unit (GPU) is a

heterogeneous system. The CPU is often just called a processor, although

that can be confusing when we speak of all the processing units in a

heterogeneous system as compute processors. To avoid this confusion,

SYCL refers to processing units as devices. An application always runs on

a host that in turn sends work to devices. Chapter 2 begins the discussion

of how our main application (host code) will steer work (computations) to

particular devices in a heterogeneous system.

ChapTer 1 InTroduCTIon

12

A program using C++ with SYCL runs on a host and issues kernels of

work to devices. Although it might seem confusing, it is important to know

that the host will often be able to serve as a device. This is valuable for two

key reasons: (1) the host is most often a CPU that will run a kernel if no

accelerator is present—a key promise of SYCL for application portability

is that a kernel can always be run on any system even those without

accelerators—and (2) CPUs often have vector, matrix, tensor, and/or

AI processing capabilities that are accelerators that kernels map well to

run upon.

Host code invokes code on devices. The capabilities of the host are
very often available as a device also, to provide both a back- up
device and to offer any acceleration capabilities the host has for
processing kernels as well. our host is most often a Cpu, and as such
it may be available as a CPU device. There is no guarantee by SYCL of
a CPU device, only that there is at least one device available to be the
default device for our application.

While heterogeneous describes the system from a technical

standpoint, the reason to complicate our hardware and software is to

obtain higher performance. Therefore, the term accelerated computing is

popular for marketing heterogeneous systems or their components. We

like to emphasize that there is no guarantee of acceleration. Programming

of heterogeneous systems will only accelerate our applications when we do

it right. This book helps teach us how to do it right!

GPUs have evolved to become high-performance computing (HPC)

devices and therefore are sometimes referred to as general-purpose GPUs,

or GPGPUs. For heterogeneous programming purposes, we can simply

assume we are programming such powerful GPGPUs and refer to them

as GPUs.

ChapTer 1 InTroduCTIon

13

Today, the collection of devices in a heterogeneous system can include

CPUs, GPUs, FPGAs (field-programmable gate arrays), DSPs (digital signal

processors), ASICs (application-specific integrated circuits), and AI chips

(graph, neuromorphic, etc.).

The design of such devices will involve duplication of compute

processors (multiprocessors) and increased connections (increased

bandwidth) to data sources such as memory. The first of these,

multiprocessing, is particularly useful for raising throughput. In our

analogy, this was done by adding additional drivers and trucks. The latter

of these, higher bandwidth for data, is particularly useful for reducing

latency. In our analogy, this was done with more loading docks to enable

trucks to be fully loaded in parallel.

Having multiple types of devices, each with different architectures and

therefore different characteristics, leads to different programming and

optimization needs for each device. That becomes the motivation for C++

with SYCL and the majority of what this book has to teach.

SYCL was created to address the challenges of C++ data- parallel
programming for heterogeneous (accelerated) systems.

 Data-Parallel Programming
The phrase “data-parallel programming” has been lingering unexplained

ever since the title of this book. Data-parallel programming focuses on

parallelism that can be envisioned as a bunch of data to operate on in

parallel. This shift in focus is like Gustafson vs. Amdahl. We need one

hundred packages to deliver (effectively lots of data) in order to divide

up the work among one hundred trucks with drivers. The key concept

comes down to what we should divide. Should we process whole images

ChapTer 1 InTroduCTIon

14

or process them in smaller tiles or process them pixel by pixel? Should

we analyze a collection of objects as a single collection or a set of smaller

groupings of objects or object by object?

Choosing the right division of work and mapping that work onto

computational resources effectively is the responsibility of any parallel

programmer using C++ with SYCL. Chapter 4 starts this discussion, and it

continues through the rest of the book.

 Key Attributes of C++ with SYCL
Every program using SYCL is first and foremost a C++ program. SYCL does

not rely on any language changes to C++.

C++ compilers with SYCL support will optimize code based on built-

in knowledge of the SYCL specification as well as implement support so

heterogeneous compilations “just work” within traditional C++ build

systems.

Next, we will explain the key attributes of C++ with SYCL: single-source

style, host, devices, kernel code, and asynchronous task graphs.

 Single-Source
Programs are single-source, meaning that the same translation unit2

contains both the code that defines the compute kernels to be executed

on devices and also the host code that orchestrates execution of those

compute kernels. Chapter 2 begins with a more detailed look at this

capability. We can still divide our program source into different files and

translation units for host and device code if we want to, but the key is that

we don’t have to!

2 We could just say “file,” but that is not entirely correct here. A translation unit
is the actual input to the compiler, made from the source file after it has been
processed by the C preprocessor to inline header files and expand macros.

ChapTer 1 InTroduCTIon

15

 Host
Every program starts by running on a host, and most of the lines of code

in a program are usually for the host. Thus far, hosts have always been

CPUs. The standard does not require this, so we carefully describe it as

a host. This seems unlikely to be anything other than a CPU because the

host needs to fully support C++17 in order to support all C++ with SYCL

programs. As we will see shortly, devices (accelerators) do not need to

support all of C++17.

 Devices
Using multiple devices in a program is what makes it heterogeneous

programming. That is why the word device has been recurring in this

chapter since the explanation of heterogeneous systems a few pages ago.

We already learned that the collection of devices in a heterogeneous

system can include GPUs, FPGAs, DSPs, ASICs, CPUs, and AI chips, but is

not limited to any fixed list.

Devices are the targets to gain acceleration. The idea of offloading

computations is to transfer work to a device that can accelerate completion

of the work. We have to worry about making up for time lost moving

data—a topic that needs to constantly be on our minds.

 Sharing Devices

On a system with a device, such as a GPU, we can envision two or more

programs running and wanting to use a single device. They do not need to

be programs using SYCL. Programs can experience delays in processing by

the device if another program is currently using it. This is really the same

philosophy used in C++ programs in general for CPUs. Any system can be

overloaded if we run too many active programs on our CPU (mail, browser,

virus scanning, video editing, photo editing, etc.) all at once.

ChapTer 1 InTroduCTIon

16

On supercomputers, when nodes (CPUs + all attached devices) are

granted exclusively to a single application, sharing is not usually a concern.

On non-supercomputer systems, we can just note that the performance

of a program may be impacted if there are multiple applications using the

same devices at the same time.

Everything still works, and there is no programming we need to do

differently.

 Kernel Code
Code for a device is specified as kernels. This is a concept that is not

unique to C++ with SYCL: it is a core concept in other offload acceleration

languages including OpenCL and CUDA. While it is distinct from loop-

oriented approaches (such as commonly used with OpenMP target

offloads), it may resemble the body of code within the innermost loop

without requiring the programmer to write the loop nest explicitly.

Kernel code has certain restrictions to allow broader device support

and massive parallelism. The list of features not supported in kernel code

includes dynamic polymorphism, dynamic memory allocations (therefore

no object management using new or delete operators), static variables,

function pointers, runtime type information (RTTI), and exception

handling. No virtual member functions, and no variadic functions, are

allowed to be called from kernel code. Recursion is not allowed within

kernel code.

ChapTer 1 InTroduCTIon

17

VIRTUAL FUNCTIONS?

While we will not discuss it further in this book, the dpC++ compiler project does

have an experimental extension (visible in the open source project, of course) to

implement some support for virtual functions within kernels. Thanks to the nature

of offloading to accelerator efficiently, virtual functions cannot be supported well

without some restrictions, but many users have expressed interest in seeing

SYCL offer such support even with some restrictions. The beauty of open source,

and the open SYCL specification, is the opportunity to participate in experiments

that can inform the future of C++ and SYCL specifications. Visit the dpC++

project (github.com/intel/llvm) for more information.

Chapter 3 describes how memory allocations are done before and

after kernels are invoked, thereby making sure that kernels stay focused

on massively parallel computations. Chapter 5 describes handling of

exceptions that arise in connection with devices.

The rest of C++ is fair game in a kernel, including functors, lambda

expressions, operator overloading, templates, classes, and static

polymorphism. We can also share data with the host (see Chapter 3) and

share the read-only values of (non-global) host variables (via lambda

expression captures).

 Kernel: Vector Addition (DAXPY)

Kernels should feel familiar to any programmer who has worked on

computationally complex code. Consider implementing DAXPY, which

stands for “double-precision A times X Plus Y.” A classic for decades.

Figure 1-2 shows DAXPY implemented in modern Fortran, C/C++, and

SYCL. Amazingly, the computation lines (line 3) are virtually identical.

Chapters 4 and 10 explain kernels in detail. Figure 1-2 should help remove

any concerns that kernels are difficult to understand—they should feel

familiar even if the terminology is new to us.

ChapTer 1 InTroduCTIon

https://github.com/intel/llvm

18

1. ! Fortran loop
2. do i = 1, n
3. z(i) = alpha * x(i) + y(i)
4. end do

1. // C/C++ loop
2. for (int i=0;i<n;i++) {
3. z[i] = alpha * x[i] + y[i];
4. }

1. // SYCL kernel
2. q.parallel_for(range{n},[=](id<1> i) {
3. z[i] = alpha * x[i] + y[i];
4. }).wait();

Figure 1-2. DAXPY computations in Fortran, C/C++, and SYCL

 Asynchronous Execution
The asynchronous nature of programming using C++ with SYCL must not

be missed. Asynchronous programming is critical to understand for two

reasons: (1) proper use gives us better performance (better scaling), and

(2) mistakes lead to parallel programming errors (usually race conditions)

that make our applications unreliable.

The asynchronous nature comes about because work is transferred to

devices via a “queue” of requested actions. The host program submits a

requested action into a queue, and the program continues without waiting

for any results. This no waiting is important so that we can try to keep

computational resources (devices and the host) busy all the time. If we had

to wait, that would tie up the host instead of allowing the host to do useful

work. It would also create serial bottlenecks when the device finished, until

we queued up new work. Amdahl’s Law, as discussed earlier, penalizes us

for time spent not doing work in parallel. We need to construct our programs

to be moving data to and from devices while the devices are busy and keep

all the computational power of the devices and host busy any time work is

available. Failure to do so will bring the full curse of Amdahl’s Law upon us.

ChapTer 1 InTroduCTIon

19

Chapter 3 starts the discussion on thinking of our program as an

asynchronous task graph, and Chapter 8 greatly expands upon this

concept.

 Race Conditions When We Make a Mistake
In our first code example (Figure 1-1), we specifically did a “wait” on

line 19 to prevent line 21 from writing out the value from result before it

was available. We must keep this asynchronous behavior in mind. There

is another subtle thing done in that same code example—line 15 uses

std::memcpy to load the input. Since std::memcpy runs on the host, line

17 and later do not execute until line 15 has completed. After reading

Chapter 3, we could be tempted to change this to use q.memcpy (using

SYCL). We have done exactly that in Figure 1-3 on line 7. Since that is a

queue submission, there is no guarantee that it will execute before line

9. This creates a race condition, which is a type of parallel programming

bug. A race condition exists when two parts of a program access the same

data without coordination. Since we expect to write data using line 7 and

then read it in line 9, we do not want a race that might have line 9 execute

before line 7 completes! Such a race condition would make our program

unpredictable—our program could get different results on different runs

and on different systems. A fix for this would be to explicitly wait for

q.memcpy to complete before proceeding by adding .wait() to the end of

line 7. That is not the best fix. We could have used event dependences to

solve this (Chapter 8). Creating the queue as an ordered queue would also

add an implicit dependence between the memcpy and the parallel_for.

As an alternative, in Chapter 7, we will see how a buffer and accessor

programming style can be used to have SYCL manage the dependences

and waits automatically for us.

ChapTer 1 InTroduCTIon

20

1. // ...we are changing one line from Figure 1-1
2. char* result = malloc_shared<char>(sz, q);
3.
4. // Introduce potential data race! We don't define a
5. // dependence to ensure correct ordering with later
6. // operations.
7. q.memcpy(result, secret.data(), sz);
8.
9. q.parallel_for(sz, [=](auto& i) {
10. result[i] -= 1;
11. }).wait();
12.
13. // ...

Figure 1-3. Adding a race condition to illustrate a point about being
asynchronous

RACE CONDITIONS DO NOT ALWAYS CAUSE A PROGRAM TO FAIL

an astute reader noticed that the code in Figure 1-3 did not fail on every

system they tried. using a Gpu with partition_max_sub_devices==0 did

not fail because it was a small Gpu not capable of running the parallel_for

until the memcpy had completed. regardless, the code is flawed because the

race condition exists even if it does not universally cause a failure at runtime.

We call it a race—sometimes we win, and sometimes we lose. Such coding

flaws can lay dormant until the right combination of compile and runtime

environments lead to an observable failure.

Adding a wait() forces host synchronization between the memcpy and

the kernel, which goes against the previous advice to keep the device busy

all the time. Much of this book covers the different options and trade-offs

that balance program simplicity with efficient use of our systems.

ChapTer 1 InTroduCTIon

21

OUT-OF-ORDER QUEUES VS. IN-ORDER QUEUES

We will use out-of-order queues in this book because of their potential

performance benefits, but it is important to know that support for in-order

queues does exist. In-order is simply an attribute we can request when

creating a queue. Cuda programmers will know that Cuda streams are

unconditionally in-order. SYCL queues instead are out-of-order by default but

may optionally be in-order by passing the in_order queue property when the

SYCL queue is created (refer to Chapter 8). Chapter 21 provides information on

this and other considerations for programmers coming from using Cuda.

For assistance with detecting data race conditions in a program,

including kernels, tools such as Intel Inspector (available with the oneAPI

tools mentioned previously in “Getting a DPC++ Compiler”) can be

helpful. The sophisticated methods used by such tools often do not work

on all devices. Detecting race conditions may be best done by having all

the kernels run on a CPU, which can be done as a debugging technique

during development work. This debugging tip is discussed as Method#2 in

Chapter 2.

TO TEACH THE CONCEPT OF DEADLOCK, THE DINING PHILOSOPHERS
PROBLEM IS A CLASSIC ILLUSTRATION OF A SYNCHRONIZATION

PROBLEM IN COMPUTER SCIENCE

Imagine a group of philosophers sitting around a circular table, with a single

chopstick placed between each philosopher. every philosopher needs two

chopsticks to eat their meal, and they always pick up chopsticks one at a time.

regrettably, if all philosophers first grab the chopstick to their left and then

hold it waiting for the chopstick from their right, we have a problem if they

all get hungry at the same time. Specifically, they will end up all waiting for a

chopstick that will never be available.

ChapTer 1 InTroduCTIon

22

poor algorithm design (grab left, then wait until grab right) in this case can

result in deadlock and all the philosophers starving to death. That is sad.

discussing the numerous ways to design an algorithm that starves fewer

philosophers to death, or hopefully is fair and feeds them all (none starve), is a

topic that is fun to consider and has been written about many times.

realizing how easy it is to make such programming errors, looking for them

when debugging, and gaining a feel for how to avoid them are all essential

experiences on the journey to become an effective parallel programmer.

 Deadlock
Deadlocks are bad, and we will emphasize that understanding

concurrency vs. parallelism (see last section of this chapter) is essential to

understanding how to avoid deadlock.

Deadlock occurs when two or more actions (processes, threads,

kernels, etc.) are blocked, each waiting for the other to release a resource

or complete a task, resulting in a standstill. In other words, our application

will never complete. Every time we use a wait, synchronization, or lock, we

can create deadlocks. Lack of synchronization can lead to deadlock, but

more often it manifests as a race condition (see prior section).

Deadlocks can be difficult to debug. We will revisit this in the

“Concurrency vs. Parallelism” section at the end of this chapter.

Chapter 4 will tell us “lambda expressions not considered harmful.”
We should be comfortable with lambda expressions in order to use
dpC++, SYCL, and modern C++ well.

ChapTer 1 InTroduCTIon

23

 C++ Lambda Expressions
A feature of modern C++ that is heavily used by parallel programming

techniques is the lambda expression. Kernels (the code to run on a device)

can be expressed in multiple ways, the most common one being a lambda

expression. Chapter 10 discusses all the various forms that a kernel can

take, including lambda expressions. Here we have a refresher on C++

lambda expressions plus some notes regarding use to define kernels.

Chapter 10 expands on the kernel aspects after we have learned more

about SYCL in the intervening chapters.

The code in Figure 1-3 has a lambda expression. We can see it because

it starts with the very definitive [=]. In C++, lambdas start with a square

bracket, and information before the closing square bracket denotes how to

capture variables that are used within the lambda but not explicitly passed

to it as parameters. For kernels in SYCL, the capture must be by value

which is denoted by the inclusion of an equals sign within the brackets.

Support for lambda expressions was introduced in C++11. They are

used to create anonymous function objects (although we can assign them

to named variables) that can capture variables from the enclosing scope.

The basic syntax for a C++ lambda expression is

[capture-list] (params) -> ret { body }

where

• capture-list is a comma-separated list of captures.

We capture a variable by value by listing the variable

name in the capture-list. We capture a variable by

reference by prefixing it with an ampersand, for

example, &v. There are also shorthands that apply to

ChapTer 1 InTroduCTIon

24

all in-scope automatic variables: [=] is used to capture

all automatic variables used in the body by value and

the current object by reference, [&] is used to capture

all automatic variables used in the body as well as the

current object by reference, and [] captures nothing.

With SYCL, [=] is always used because no variable

is allowed to be captured by reference for use in a

kernel. Global variables are not captured in a lambda,

per the C++ standard. Non-global static variables can

be used in a kernel but only if they are const. The

few restrictions noted here allow kernels to behave

consistently across different device architectures and

implementations.

• params is the list of function parameters, just like for

a named function. SYCL provides for parameters to

identify the element(s) the kernel is being invoked to

process: this can be a unique id (one-dimensional) or a

2D or 3D id. These are discussed in Chapter 4.

• ret is the return type. If ->ret is not specified, it is

inferred from the return statements. The lack of a

return statement, or a return with no value, implies a

return type of void. SYCL kernels must always have a

return type of void, so we should not bother with this

syntax to specify a return type for kernels.

• body is the function body. For a SYCL kernel, the

contents of this kernel have some restrictions (see

earlier in this chapter in the “Kernel Code” section).

ChapTer 1 InTroduCTIon

25

Figure 1-4 shows a C++ lambda expression that captures one variable,

i, by value and another, j, by reference. It also has a parameter k0 and

another parameter l0 that is received by reference. Running the example

will result in the output shown in Figure 1-5.

int i = 1, j = 10, k = 100, l = 1000;

auto lambda = [i, &j](int k0, int& l0) -> int {
 j = 2 * j;
 k0 = 2 * k0;
 l0 = 2 * l0;
 return i + j + k0 + l0;
};

print_values(i, j, k, l);
std::cout << "First call returned " << lambda(k, l)
 << "\n";
print_values(i, j, k, l);
std::cout << "Second call returned " << lambda(k, l)
 << "\n";
print_values(i, j, k, l);

Figure 1-4. Lambda expression in C++ code

i == 1
j == 10
k == 100
l == 1000
First call returned 2221
i == 1
j == 20
k == 100
l == 2000
Second call returned 4241
i == 1
j == 40
k == 100
l == 4000

Figure 1-5. Output from the lambda expression demonstration code
in Figure 1-4

ChapTer 1 InTroduCTIon

26

We can think of a lambda expression as an instance of a function

object, but the compiler creates the class definition for us. For example, the

lambda expression we used in the preceding example is analogous to an

instance of a class as shown in Figure 1-6. Wherever we use a C++ lambda

expression, we can substitute it with an instance of a function object like

the one shown in Figure 1-6.

Whenever we define a function object, we need to assign it a name

(Functor in Figure 1-6). Lambda expressions expressed inline (as in

Figure 1-4) are anonymous because they do not need a name.

 Functional Portability
and Performance Portability
Portability is a key objective for using C++ with SYCL; however, nothing

can guarantee it. All a language and compiler can do is to make portability

a little easier for us to achieve in our applications when we want to do so.

It is true that higher-level (more abstract) programming—such as domain-

specific languages, libraries, and frameworks—can offer more portability

class Functor {
public:
Functor(int i, int &j) : my_i{i}, my_jRef{j} {}

int operator()(int k0, int &l0) {
my_jRef = 2 * my_jRef;
k0 = 2 * k0;
l0 = 2 * l0;
return my_i + my_jRef + k0 + l0;

}

private:
int my_i;
int &my_jRef;

};

Figure 1-6. Function object instead of a lambda expression (more on
this in Chapter 10)

ChapTer 1 InTroduCTIon

27

in large part because they allow less prescriptive programming. Since we

are focused on data-parallel programming in C++ in this book, we assume

a desire to have more control and with that comes more responsibility to

understand how our coding affects portability.

Portability is a complex topic and includes the concept of functional

portability as well as performance portability. With functional portability,

we expect our program to compile and run equivalently on a wide variety

of platforms. With performance portability, we would like our program to

get reasonable performance on a wide variety of platforms. While that is

a pretty soft definition, the converse might be clearer—we do not want to

write a program that runs superfast on one platform only to find that it is

unreasonably slow on another. In fact, we would prefer that it got the most

out of any platform upon which it is run. Given the wide variety of devices

in a heterogeneous system, performance portability requires nontrivial

effort from us as programmers.

Fortunately, SYCL defines a way to code that can improve performance

portability. First of all, a generic kernel can run everywhere. In a limited

number of cases, this may be enough. More commonly, several versions

of important kernels may be written for different types of devices.

Specifically, a kernel might have a generic GPU and a generic CPU version.

Occasionally, we may want to specialize our kernels for a specific device

such as a specific GPU. When that occurs, we can write multiple versions

and specialize each for a different GPU model. Or we can parameterize

one version to use attributes of a GPU to modify how our GPU kernel runs

to adapt to the GPU that is present.

While we are responsible for devising an effective plan for performance

portability ourselves as programmers, SYCL defines constructs to allow

us to implement a plan. As mentioned before, capabilities can be layered

by starting with a kernel for all devices and then gradually introducing

additional, more specialized kernel versions as needed. This sounds great,

but the overall flow for a program can have a profound impact as well

because data movement and overall algorithm choice matter. Knowing

ChapTer 1 InTroduCTIon

28

that gives insight into why no one should claim that C++ with SYCL (or

other programming solution) solves performance portability. However, it

is a tool in our toolkit to help us tackle these challenges.

 Concurrency vs. Parallelism
The terms concurrent and parallel are not necessarily equivalent, although

they are sometimes misconstrued as such. Any discussion of these terms

is further complicated by the fact that various sources rarely agree on the

same definitions.

Consider these definitions from the Sun Microsystems Multithreaded

Programming Guide:3

• Concurrency: A condition that exists when at least two

threads are making progress

• Parallelism: A condition that exists when two threads

are executing simultaneously

To fully appreciate the difference between these concepts, we need

to seek an intuitive understanding of what matters here. The following

observations can help us gain that understanding:

• Executing simultaneously can be faked: Even without

hardware support for doing more than one thing at a

time, software can fake doing multiple things at once

by multiplexing. Multiplexing is a good example of

concurrency without parallelism.

3 The authors are fans of this programming guide’s coverage of the
fundamentals that never go away. It is online at docs.oracle.com/cd/
E19253-01/816-5137/816-5137.pdf.

ChapTer 1 InTroduCTIon

https://tinyurl.com/SunMTguide
https://tinyurl.com/SunMTguide

29

• Hardware resources are limited: Hardware is never

infinitely “wide” because hardware always has a finite

number of execution resources (e.g., processors, cores,

execution units). When hardware can execute each of

our threads using dedicated resources, we have both

concurrency and parallelism.

When we as programmers say, “do X, Y and Z at the same time,” we

often do not actually care whether hardware provides concurrency or

parallelism. We probably do not want our program (with three tasks) to

fail to launch on a machine that can only run two of them simultaneously.

We would prefer that as many tasks as possible are processed in parallel,

repeatedly stepping through batches of tasks until they are all complete.

But sometimes, we do care. And mistakes in our thinking can have

disastrous effects (like “deadlock”). Imagine that our example from the

last paragraph was modified such that the last thing a task (X, Y, or Z)

does is “wait until all the tasks are done.” Our program will run just fine

if the number of tasks never exceeds the limits of the hardware. But if

we break our tasks into batches, a task in our first batch will wait forever.

Unfortunately, that means our application never finishes.

This is a common mistake that is easy to make, which is why we are

emphasizing these concepts. Even expert programmers must focus to try to

avoid this—and we all find that we will need to debug issues when we miss

something in our thinking. These concepts are not simple, and the C++

specification includes a lengthy section detailing the precise conditions

in which threads are guaranteed to make progress. All we can do in this

introductory section is highlight the importance of understanding these

concepts as much as we can.

Developing an intuitive grasp of these concepts is important for

effective programming of heterogeneous and accelerated systems. We all

need to give ourselves time to gain such intuition—it does not happen all

at once.

ChapTer 1 InTroduCTIon

30

 Summary
This chapter provided terminology needed for understanding C++ with

SYCL and provided refreshers on key aspects of parallel programming and

C++ that are critical to SYCL. Chapters 2, 3, and 4 expand on three keys to

data-parallel programming while using C++ with SYCL: devices need to be

given work to do (send code to run on them), be provided with data (send

data to use on them), and have a method of writing code (kernels).

Open Access This chapter is licensed under the terms of

the Creative Commons Attribution 4.0 International License

(https://creativecommons.org/licenses/by/4.0/), which permits use,

sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter's Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter's

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

ChapTer 1 InTroduCTIon

https://creativecommons.org/licenses/by/4.0/

31

CHAPTER 2

Where Code Executes
Parallel programming is not really about driving in the fast lane. It is

actually about driving fast in all the lanes. This chapter is all about

enabling us to put our code everywhere that we can. We choose to enable

all the compute resources in a heterogeneous system whenever it makes

sense. Therefore, we need to know where those compute resources are

hiding (find them) and put them to work (execute our code on them).

We can control where our code executes—in other words, we can

control which devices are used for which kernels. C++ with SYCL provides

a framework for heterogeneous programming in which code can execute

on a mixture of a host CPU and devices. The mechanisms which determine

where code executes are important for us to understand and use.

This chapter describes where code can execute, when it will execute,

and the mechanisms used to control the locations of execution. Chapter

3 will describe how to manage data so it arrives where we are executing

our code, and then Chapter 4 returns to the code itself and discusses the

writing of kernels.

 Single-Source
C++ with SYCL programs are single-source, meaning that the same

translation unit (typically a source file and its headers) contains both the

code that defines the compute kernels to be executed on SYCL devices and

© Intel Corporation 2023
J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-9691-2_2

https://doi.org/10.1007/978-1-4842-9691-2_2

32

also the host code that orchestrates execution of those kernels. Figure 2-1

shows these two code paths graphically, and Figure 2-2 provides an

example application with the host and device code regions marked.

Combining both device and host code into a single-source file

(or translation unit) can make it easier to understand and maintain a

heterogeneous application. The combination also provides improved

language type safety and can lead to more compiler optimizations of

our code.

Figure 2-1. Single-source code contains both host code (runs on
CPU) and device code (runs on SYCL devices)

Chapter 2 Where Code exeCutes

33

#include <array>
#include <iostream>
#include <sycl/sycl.hpp>
using namespace sycl;

int main() {
constexpr int size = 16;
std::array<int, size> data;

// Create queue on implementation-chosen default device
queue q;

// Create buffer using host allocated "data" array
buffer B{data};

q.submit([&](handler& h) {

accessor A{B, h};
h.parallel_for(size, [=](auto& idx) {

A[idx] = idx;

});
});

// Obtain access to buffer on the host
// Will wait for device kernel to execute to generate data
host_accessor A{B};
for (int i = 0; i < size; i++)

std::cout << "data[" << i << "] = " << A[i] << "\n";

return 0;
}

Host

code

Device

code

Host

code

Figure 2-2. Simple SYCL program

 Host Code
Applications contain C++ host code, which is executed by the CPU(s) on

which the operating system has launched the application. Host code is the

backbone of an application that defines and controls assignment of work

to available devices. It is also the interface through which we define the

data and dependences that should be managed by the SYCL runtime.

Chapter 2 Where Code exeCutes

34

Host code is standard C++ augmented with SYCL-specific constructs

and classes that may be implementable as a C++ library. This makes

it easier to reason about what is allowed in host code (anything that is

allowed in C++) and can simplify integration with build systems.

The host code in an application orchestrates data movement and

compute offload to devices but can also perform compute-intensive work

itself and can use libraries like any C++ application.

 Device Code
Devices correspond to accelerators or processors that are conceptually

independent from the CPU that is executing host code. An implementation

may also expose the host processor as a device, as described later in

this chapter, but the host processor and devices should be thought of as

logically independent from each other. The host processor runs native

C++ code, while devices run device code which includes some additional

features and restrictions.

Queues are the mechanism through which work is submitted to a

device for future execution. There are three important properties of device

code to understand:

 1. It executes asynchronously from the host code.
The host program submits device code to a device,

and the runtime tracks and starts that work only

when all dependences for execution are satisfied

(more on this in Chapter 3). The host program

execution carries on before the submitted work

is started on a device, providing the property that

Chapter 2 Where Code exeCutes

35

execution on devices is asynchronous to host

program execution, unless we explicitly tie the

two together. As a side effect of this asynchronous

execution, work on a device isn’t guaranteed to start

until the host program forces execution to begin

through various mechanisms that we cover in later

chapters, such as host accessors and blocking queue

wait operations.

 2. There are restrictions on device code to make it

possible to compile and achieve performance on

accelerator devices. For example, dynamic memory

allocation and runtime type information (RTTI)

are not supported within device code, because

they would lead to performance degradation on

many accelerators. The small set of device code

restrictions is covered in detail in Chapter 10.

 3. Some functions and queries defined by SYCL are
available only within device code, because they

only make sense there, for example, work-item

identifier queries that allow an executing instance of

device code to query its position in a larger data-

parallel range (described in Chapter 4).

In general, we will refer to work that is submitted to queues as actions.

Actions include execution of device code on a device, but in Chapter 3 we

will learn that actions also include memory movement commands. In this

chapter, since we are concerned with the device code aspect of actions, we

will be specific in mentioning device code much of the time.

Chapter 2 Where Code exeCutes

36

 Choosing Devices
To explore the mechanisms that let us control where device code will

execute, we’ll look at five use cases:

Method#1: Running device code somewhere when

we don’t care which device is used. This is often the

first step in development because it is the simplest.

Method#2: Explicitly running device code on a CPU

device, which is often used for debugging because

most development systems have an accessible

CPU. CPU debuggers are also typically very rich in

features.

Method#3: Dispatching device code to a GPU or

other accelerator.

Method#4: Dispatching device code to a

heterogeneous set of devices, such as a GPU and

an FPGA.

Method#5: Selecting specific devices from a more

general class of devices, such as a specific type of

FPGA from a collection of available FPGA types.

developers will typically debug their code as much as possible with
Method#2 and only move to Methods #3–#5 when code has been
tested as much as is practical with Method#2.

Chapter 2 Where Code exeCutes

37

 Method#1: Run on a Device of Any Type
When we don’t care where our device code will run, it is easy to let the

runtime pick for us. This automatic selection is designed to make it easy to

start writing and running code, when we don’t yet care about what device

is chosen. This device selection does not take into account the code to be

run, so should be considered an arbitrary choice which likely won’t be

optimal.

Before talking about choice of a device, even one that the

implementation has selected for us, we should first cover the mechanism

through which a program interacts with a device: the queue.

 Queues
A queue is an abstraction to which actions are submitted for execution

on a single device. A simplified definition of the queue class is given

in Figures 2-3 and 2-4. Actions are usually the launch of data-parallel

compute, although other commands are also available such as manual

control of data motion for when we want more control than the

automatic movement provided by the SYCL runtime. Work submitted

to a queue can execute after prerequisites tracked by the runtime are

met, such as availability of input data. These prerequisites are covered in

Chapters 3 and 8.

Chapter 2 Where Code exeCutes

38

class queue {
public:
// Create a queue associated with a default
// (implementation chosen) device.
queue(const property_list & = {});

queue(const async_handler &, const property_list & = {});

// Create a queue using a DeviceSelector.
// A DeviceSelector is a callable that ranks
// devices numerically. There are a few SYCL-defined
// device selectors available such as
// cpu_selector_v and gpu_selector_v.
template <typename DeviceSelector>
explicit queue(const DeviceSelector &deviceSelector,

const property_list &propList = {});

// Create a queue associated with an explicit device to
// which the program already holds a reference.
queue(const device &, const property_list & = {});

// Create a queue associated with a device in a specific
// SYCL context. A device selector may be used in place
// of a device.
queue(const context &, const device &,

const property_list & = {});
};

Figure 2-3. Simplified definition of some constructors of the
queue class

Chapter 2 Where Code exeCutes

39

class queue {
public:
// Submit a command group to this queue.
// The command group may be a lambda expression or
// function object. Returns an event reflecting the status
// of the action performed in the command group.
template <typename T>
event submit(T);

// Wait for all previously submitted actions to finish
// executing.
void wait();

// Wait for all previously submitted actions to finish
// executing. Pass asynchronous exceptions to an
// async_handler function.
void wait_and_throw();

};

Figure 2-4. Simplified definition of some key member functions in
the queue class

A queue is bound to a single device, and that binding occurs on

construction of the queue. It is important to understand that work

submitted to a queue is executed on the single device to which that queue

is bound. Queues cannot be mapped to collections of devices because that

would create ambiguity on which device should perform work. Similarly,

a queue cannot spread the work submitted to it across multiple devices.

Instead, there is an unambiguous mapping between a queue and the

device on which work submitted to that queue will execute, as shown in

Figure 2-5.

Chapter 2 Where Code exeCutes

40

Figure 2-5. A queue is bound to a single device. Work submitted to
the queue executes on that device

Multiple queues may be created in a program, in any way that we

desire for application architecture or programming style. For example,

multiple queues may be created to each bind with a different device or to

be used by different threads in a host program. Multiple different queues

can be bound to a single device, such as a GPU, and submissions to those

different queues will result in the combined work being performed on

the device. An example of this is shown in Figure 2-6. Conversely, as we

mentioned previously, a queue cannot be bound to more than one device

because there must not be any ambiguity on where an action is being

requested to execute. If we want a queue that will load balance work across

multiple devices, for example, then we can create that abstraction in

our code.

Chapter 2 Where Code exeCutes

41

Figure 2-6. Multiple queues can be bound to a single device

Because a queue is bound to a specific device, queue construction

is the most common way in code to choose the device on which actions

submitted to the queue will execute. Selection of the device when

constructing a queue is achieved through a device selector abstraction.

 Binding a Queue to a Device When Any
Device Will Do
Figure 2-7 is an example where the device that a queue should bind to

is not specified. The default queue constructor that does not take any

arguments (as in Figure 2-7) simply chooses some available device

behind the scenes. SYCL guarantees that at least one device will always be

available, so some device will always be selected by this default selection

mechanism. In many cases the selected device may happen to be a CPU

which is also executing the host program, although this is not guaranteed.

Chapter 2 Where Code exeCutes

42

#include <iostream>
#include <sycl/sycl.hpp>
using namespace sycl;

int main() {
// Create queue on whatever default device that the
// implementation chooses. Implicit use of
// default_selector_v
queue q;

std::cout << "Selected device: "
<< q.get_device().get_info<info::device::name>()
<< "\n";

return 0;
}

Sample Outputs (one line per run depending on system):
Selected device: NVIDIA GeForce RTX 3060
Selected device: AMD Radeon RX 5700 XT
Selected device: Intel(R) Data Center GPU Max 1100
Selected device: Intel(R) FPGA Emulation Device
Selected device: AMD Ryzen 5 3600 6-Core Processor
Selected device: Intel(R) UHD Graphics 770
Selected device: Intel(R) Xeon(R) Gold 6128 CPU @ 3.40GHz
Selected device: 11th Gen Intel(R) Core(TM) i9-11900KB @ 3.30GHz
many more possible… these are only examples

Figure 2-7. Implicit default device selector through default
construction of a queue

Using the trivial queue constructor is a simple way to begin application

development and to get device code up and running. More control over

selection of the device bound to a queue can be added as it becomes

relevant for our application.

 Method#2: Using a CPU Device for
Development, Debugging, and Deployment
A CPU device can be thought of as enabling the host CPU to act as if it was

an independent device, allowing our device code to execute regardless

of the accelerators available in a system. We always have some processor

running the host program, so a CPU device is therefore usually available to

Chapter 2 Where Code exeCutes

43

our application (very occasionally a CPU might not be exposed as a SYCL

device by an implementation, for a variety of reasons). Using a CPU device

for code development has a few advantages:

 1. Development of device code on less capable

systems that don’t have any accelerators: One

common use is development and testing of device

code on a local system, before deploying to an HPC

cluster for performance testing and optimization.

 2. Debugging of device code with non-accelerator

tooling: Accelerators are often exposed through

lower-level APIs that may not have debug tooling as

advanced as is available for host CPUs. With this in

mind, a CPU device often supports debugging using

standard tools familiar to developers.

 3. Backup if no other devices are available, to

guarantee that device code can be executed

functionally: A CPU device may not have

performance as a primary goal, or may not

match the architecture for which kernel code

was optimized, but can often be considered as a

functional backup to ensure that device code can

always execute in any application.

It should not be a surprise to find that multiple CPU devices are

available to a SYCL application, with some aimed at ease of debugging

while others may be focused on execution performance. Device aspects

can be used to differentiate between these different CPU devices, as

described later in this chapter.

When considering use of a CPU device for development and debugging

of device code, some consideration should be given to differences between

the CPU and a target accelerator architecture (e.g., GPU). Especially

Chapter 2 Where Code exeCutes

44

when optimizing code performance, and particularly when using more

advanced features such as sub-groups, there can be some differences in

functionality and performance across architectures. For example, the sub-

group size may change when moving to a new device. Most development

and debugging can typically occur on a CPU device, sometimes followed

by final tuning and debugging on the target device architecture.

A CPU device is functionally like a hardware accelerator in that a

queue can bind to it and it can execute device code. Figure 2-8 shows how

the CPU device is a peer to other accelerators that might be available in a

system. It can execute device code, in the same way that a GPU or FPGA is

able to, and can have one or more queues constructed that bind to it.

Figure 2-8. A CPU device can execute device code like any
accelerator

An application can choose to create a queue that is bound to a CPU

device by explicitly passing cpu_selector_v to a queue constructor, as

shown in Figure 2-9.

Chapter 2 Where Code exeCutes

45

#include <iostream>
#include <sycl/sycl.hpp>
using namespace sycl;

int main() {
// Create queue to use the CPU device explicitly
queue q{cpu_selector_v};

std::cout << "Selected device: "
<< q.get_device().get_info<info::device::name>()
<< "\n";

std::cout
<< " -> Device vendor: "
<< q.get_device().get_info<info::device::vendor>()
<< "\n";

return 0;
}

Example Output:
Selected device: Intel(R) Xeon(R) Gold 6128 CPU @ 3.40GHz
-> Device vendor: Intel(R) Corporation

Figure 2-9. Selecting the host device using the cpu_selector_v

Even when not specifically requested (e.g., using cpu_selector_v), the

CPU device might happen to be chosen by the default selector as occurred

in the output in Figure 2-7.

A few variants of device selectors are defined to make it easy for us

to target a type of device. The cpu_selector_v is one example of these

selectors, and we’ll get into others in the coming sections.

 Method#3: Using a GPU (or
Other Accelerators)
GPUs are showcased in the next example, but any type of accelerator

applies equally. To make it easy to target common classes of accelerators,

devices are grouped into several broad categories, and SYCL provides

built-in selector classes for them. To choose from a broad category of

device type such as “any GPU available in the system,” the corresponding

code is very brief, as described in this section.

Chapter 2 Where Code exeCutes

46

 Accelerator Devices
In the terminology of the SYCL specification, there are a few broad groups

of accelerator types:

 1. CPU devices.

 2. GPU devices.

 3. Accelerators, which capture devices that don’t

identify as either a CPU device or a GPU. This

includes FPGA and DSP devices.

A device from any of these categories is easy to bind to a queue using

built-in selectors, which can be passed to queue (and some other class)

constructors.

 Device Selectors
Classes that must be bound to a specific device, such as the queue class,

have constructors that can accept a DeviceSelector. A DeviceSelector

is a callable taking a const reference to a device, and which ranks

it numerically so that the runtime can choose a device with the

highest ranking. For example, one queue constructor which accepts a

DeviceSelector is queue(const DeviceSelector &deviceSelector,

const property_list &propList = {});

There are four built-in selectors for the broad classes of common devices.

default_selector_v any device of the implementation’s choosing

cpu_selector_v select a device that identifies itself as a Cpu in

device queries

gpu_selector_v select a device that identifies itself as a Gpu in

device queries

accelerator_selector_v select a device that identifies itself as an

“accelerator,” which includes FpGas

Chapter 2 Where Code exeCutes

47

One additional selector included in DPC++ (not available in

SYCL) is available by including the header "sycl/ext/intel/fpga_

extensions.hpp".

ext::intel::fpga_selector_v select a device that identifies itself as an FpGa

A queue can be constructed using one of the built-in selectors, such as

queue myQueue{ gpu_selector_v{} };

Figure 2-10 shows a complete example using the GPU selector, and

Figure 2-11 shows the corresponding binding of a queue with an available

GPU device.

Figure 2-12 shows an example using a variety of built-in selectors and

demonstrates use of device selectors with another class (device) that

accepts a device selector on construction.

#include <iostream>
#include <sycl/sycl.hpp>
using namespace sycl;

int main() {
// Create queue bound to an available GPU device
queue q{gpu_selector_v};

std::cout << "Selected device: "
<< q.get_device().get_info<info::device::name>()
<< "\n";

std::cout
<< " -> Device vendor: "
<< q.get_device().get_info<info::device::vendor>()
<< "\n";

return 0;
}

Example Output:
Selected device: AMD Radeon RX 5700 XT
-> Device vendor: AMD Corporation

Figure 2-10. GPU device selector example

Chapter 2 Where Code exeCutes

48

Figure 2-11. Queue bound to a GPU device available to the
application

Chapter 2 Where Code exeCutes

49

#include <iostream>
#include <string>
#include <sycl/ext/intel/fpga_extensions.hpp> // For fpga_selector_v
#include <sycl/sycl.hpp>
using namespace sycl;

void output_dev_info(const device& dev,
const std::string& selector_name) {

std::cout << selector_name << ": Selected device: "
<< dev.get_info<info::device::name>() << "\n";

std::cout << " -> Device vendor: "
<< dev.get_info<info::device::vendor>() << "\n";

}

int main() {
output_dev_info(device{default_selector_v},

"default_selector_v");
output_dev_info(device{cpu_selector_v}, "cpu_selector_v");
output_dev_info(device{gpu_selector_v}, "gpu_selector_v");
output_dev_info(device{accelerator_selector_v},

"accelerator_selector_v");
output_dev_info(device{ext::intel::fpga_selector_v},

"fpga_selector_v");

return 0;
}

Example Output:
default_selector_v: Selected device: Intel(R) UHD Graphics [0x9a60]

-> Device vendor: Intel(R) Corporation
cpu_selector_v: Selected device: 11th Gen Intel(R) Core(TM) i9-11900KB @ 3.30GHz

-> Device vendor: Intel(R) Corporation
gpu_selector_v: Selected device: Intel(R) UHD Graphics [0x9a60]

-> Device vendor: Intel(R) Corporation
accelerator_selector_v: Selected device: Intel(R) FPGA Emulation Device

-> Device vendor: Intel(R) Corporation
fpga_selector_v: Selected device: pac_a10 : Intel PAC Platform (pac_ee00000)

-> Device vendor: Intel Corp

Figure 2-12. Example device identification output from various
classes of device selectors and demonstration that device selectors
can be used for construction of more than just a queue (in this case,
construction of a device class instance)

 When Device Selection Fails

If a GPU selector is used when creating an object such as a queue and if

there are no GPU devices available to the runtime, then the selector throws

a runtime_error exception. This is true for all device selector classes in

that if no device of the required class is available, then a runtime_error

Chapter 2 Where Code exeCutes

50

exception is thrown. It is reasonable for complex applications to catch that

error and instead acquire a less desirable (for the application/algorithm)

device class as an alternative. Exceptions and error handling are discussed

in more detail in Chapter 5.

 Method#4: Using Multiple Devices
As shown in Figures 2-5 and 2-6, we can construct multiple queues in an

application. We can bind these queues to a single device (the sum of work

to the queues is funneled into the single device), to multiple devices, or to

some combination of these. Figure 2-13 provides an example that creates

one queue bound to a GPU and another queue bound to an FPGA. The

corresponding mapping is shown graphically in Figure 2-14.

#include <iostream>
#include <sycl/ext/intel/fpga_extensions.hpp> // For fpga_selector_v
#include <sycl/sycl.hpp>
using namespace sycl;

int main() {
queue my_gpu_queue(gpu_selector_v);
queue my_fpga_queue(ext::intel::fpga_selector_v);

std::cout << "Selected device 1: "
<< my_gpu_queue.get_device()

.get_info<info::device::name>()
<< "\n";

std::cout << "Selected device 2: "
<< my_fpga_queue.get_device()

.get_info<info::device::name>()
<< "\n";

return 0;
}

Example Output:
Selected device 1: Intel(R) UHD Graphics [0x9a60]
Selected device 2: pac_a10 : Intel PAC Platform (pac_ee00000)

Figure 2-13. Creating queues to both GPU and FPGA devices

Chapter 2 Where Code exeCutes

51

Figure 2-14. GPU + FPGA device selector example: One queue is
bound to a GPU and another to an FPGA

 Method#5: Custom (Very Specific)
Device Selection
We will now look at how to write a custom selector. In addition to examples

in this chapter, there are a few more examples shown in Chapter 12. The

built-in device selectors are intended to let us get code up and running

quickly. Real applications usually require specialized selection of a device,

such as picking a desired GPU from a set of GPU types available in a

system. The device selection mechanism is easily extended to arbitrarily

complex logic, so we can write whatever code is required to choose the

device that we prefer.

 Selection Based on Device Aspects
SYCL defines properties of devices known as aspects. For example, some

aspects that a device might exhibit (return true on aspect queries) are gpu,

host_debuggable, fp64, and online_compiler. Please refer to the “Device

Chapter 2 Where Code exeCutes

52

Aspects” section of the SYCL specification for a full list of standard aspects,

and their definitions.

To select a device using aspects defined in SYCL, the aspect_selector

can be used as shown in Figure 2-15. In the form of aspect_selector

taking a comma-delimited group of aspects, all aspects must be exhibited

by a device for the device to be selected. An alternate form of aspect_

selector takes two std::vectors. The first vector contains aspects that

must be present in a device, and the second vector contains aspects that

must not be present in a device (lists negative aspects). Figure 2-15 shows

an example of using both of these forms of aspect_selector.

#include <iostream>
#include <sycl/sycl.hpp>
using namespace sycl;

int main() {
// In the aspect_selector form taking a comma seperated
// group of aspects, all aspects must be present for a
// device to be selected.
queue q1{aspect_selector(aspect::fp16, aspect::gpu)};

// In the aspect_selector form that takes two vectors, the
// first vector contains aspects that a device must
// exhibit, and the second contains aspects that must NOT
// be exhibited.
queue q2{aspect_selector(

std::vector{aspect::fp64, aspect::fp16},
std::vector{aspect::gpu, aspect::accelerator})};

std::cout
<< "First selected device is: "
<< q1.get_device().get_info<info::device::name>()
<< "\n";

std::cout
<< "Second selected device is: "
<< q2.get_device().get_info<info::device::name>()
<< "\n";

return 0;
}

Example Output:
First selected device is: Intel(R) UHD Graphics [0x9a60]
Second selected device is: 11th Gen Intel(R) Core(TM) i9-11900KB @ 3.30GHz

Figure 2-15. Aspect selector

Chapter 2 Where Code exeCutes

53

Some aspects may be used to infer performance characteristics of a

device. For example, any device with the emulated aspect may not perform

as well as a device of the same type, which is not emulated, but may

instead exhibit other aspects related to improved debuggability.

 Selection Through a Custom Selector
When existing aspects aren’t sufficient for selection of a specific device,

a custom device selector may be defined. Such a selector is simply a

C++ callable (e.g., a function or lambda) that takes a const Device& as a

parameter and that returns an integer score for the specific device. The

SYCL runtime invokes the selector on all available root devices that can be

found and chooses the device for which the selector returned the highest

score (which must be nonnegative for selection to occur).

In cases where there is a tie for the highest score, the SYCL runtime will

choose one of the tied devices. No device for which the selector returned

a negative number will be chosen by the runtime, so returning a negative

number from a selector guarantees that the device will not be selected.

 Mechanisms to Score a Device

We have many options to create an integer score corresponding to a

specific device, such as the following:

 1. Return a positive value for a specific device class.

 2. String match on a device name and/or device

vendor strings.

 3. Compute anything that we can imagine leading

to an integer value, based on device or platform

queries.

For example, one possible approach to select a specific Intel Arria

FPGA accelerator board is shown in Figure 2-16.

Chapter 2 Where Code exeCutes

54

int my_selector(const device &dev) {
if (dev.get_info<info::device::name>().find("pac_a10") !=

std::string::npos &&
dev.get_info<info::device::vendor>().find("Intel") !=

std::string::npos) {
return 1;

}
return -1;

}

Example Output:
Selected device is: pac_a10 : Intel PAC Platform (pac_ee00000)

Figure 2-16. Custom selector for a specific Intel Arria FPGA
accelerator board

Chapter 12 has more discussion and examples for device selection and

discusses the get_info method in more depth.

 Creating Work on a Device
Applications usually contain a combination of both host code and device

code. There are a few class members that allow us to submit device code

for execution, and because these work dispatch constructs are the only

way to submit device code, they allow us to easily distinguish device code

from host code.

The remainder of this chapter introduces some of the work dispatch

constructs, with the goal to help us understand and identify the division

between device code and host code that executes natively on the host

processor.

 Introducing the Task Graph
A fundamental concept in the SYCL execution model is a graph of nodes.

Each node (unit of work) in this graph contains an action to be performed

Chapter 2 Where Code exeCutes

55

on a device, with the most common action being a data-parallel device

kernel invocation. Figure 2-17 shows an example graph with four nodes,

where each node can be thought of as a device kernel invocation.

Figure 2-17. The task graph defines actions to perform
(asynchronously from the host program) on one or more devices and
also dependences that determine when an action is safe to execute

The nodes in Figure 2-17 have dependence edges defining when it is

legal for a node’s work to begin execution. The dependence edges are most

commonly generated automatically from data dependences, although

there are ways for us to manually add additional custom dependences

when we want to. Node B in the graph, for example, has a dependence

edge from node A. This edge means that node A must complete execution,

and most likely (depending on specifics of the dependence) make

generated data available on the device where node B will execute before

node B’s action is started. The runtime controls resolution of dependences

and triggering of node executions completely asynchronously from the

Chapter 2 Where Code exeCutes

56

host program’s execution. The graph of nodes defining an application will

be referred to in this book as the task graph and is covered in more detail

in Chapter 3.

 Where Is the Device Code?
There are multiple mechanisms that can be used to define code that will

be executed on a device, but a simple example shows how to identify such

code. Even if the pattern in the example appears complex at first glance,

the pattern remains the same across all device code definitions so quickly

becomes second nature.

The code passed as the final argument to the parallel_for, defined

as a lambda expression in Figure 2-18, is the device code to be executed

on a device. The parallel_for in this case is the construct that lets us

distinguish device code from host code. The parallel_for is one of a

small set of device dispatch mechanisms, all members of the handler

class, that define the code to be executed on a device. A simplified

definition of the handler class is given in Figure 2-19.

q.submit([&](handler& h) {
accessor acc{B, h};

h.parallel_for(size,
[=](auto& idx) { acc[idx] = idx; });

});

Device

code

Command

group

Figure 2-18. Submission of device code

Chapter 2 Where Code exeCutes

57

class handler {
public:
// Specify event(s) that must be complete before the action
// defined in this command group executes.
void depends_on(std::vector<event> & events);

// Guarantee that the memory object accessed by the accessor
// is updated on the host after this action executes.
template <typename AccessorT>
void update_host(AccessorT acc);

// Submit a memset operation writing
// to the specified pointer.
// Return an event representing this operation.
event memset(void *ptr, int value, size_t count);

// Submit a memcpy operation copying from src to dest.
// Return an event representing this operation.
event memcpy(void *dest, const void *src, size_t count);

// Copy to/from an accessor and host memory.
// Accessors are required to have appropriate correct
// permissions. Pointer can be a raw pointer or
// shared_ptr.
template <typename SrcAccessorT, typename DestPointerT>
void copy(SrcAccessorT src, DestPointerT dest);

template <typename SrcPointerT, typename DestAccessorT>
void copy(SrcPointerT src, DestAccessorT dest);

// Copy between accessors.
// Accessors are required to have appropriate correct
// permissions.
template <typename SrcAccessorT, typename DestAccessorT>
void copy(SrcAccessorT src, DestAccessorT dest);

// Submit different forms of kernel for execution.
template <typename KernelName, typename KernelType>
void single_task(KernelType kernel);

template <typename KernelName, typename KernelType,
int Dims>

void parallel_for(range<Dims> num_work_items,
KernelType kernel);

template <typename KernelName, typename KernelType,int Dims>
void parallel_for(nd_range<Dims> execution_range,

KernelType kernel);

template <typename KernelName, typename KernelType, int Dims>
void parallel_for_work_group(range<Dims> num_groups,

KernelType kernel);

template <typename KernelName, typename KernelType, int Dims>
void parallel_for_work_group(range<Dims> num_groups,

range<Dims> group_size,
KernelType kernel);

};

Figure 2-19. Simplified definition of member functions in the
handler class

Chapter 2 Where Code exeCutes

58

In addition to calling members of the handler class to submit device

code, there are also members of the queue class that allow work to be

submitted. The queue class members shown in Figure 2-20 are shortcuts

that simplify certain patterns, and we will see these shortcuts used in

future chapters.

Chapter 2 Where Code exeCutes

59

class queue {
public:
// Submit a memset operation writing to the specified
// pointer. Return an event representing this operation.
event memset(void* ptr, int value, size_t count);

// Submit a memcpy operation copying from src to dest.
// Return an event representing this operation.
event memcpy(void* dest, const void* src, size_t count);

// Submit different forms of kernel for execution.
// Return an event representing the kernel operation.
template <typename KernelName, typename KernelType>
event single_task(KernelType kernel);

template <typename KernelName, typename KernelType,
int Dims>

event parallel_for(range<Dims> num_work_items,
KernelType kernel);

template <typename KernelName, typename KernelType,
int Dims>

event parallel_for(nd_range<Dims> execution_range,
KernelType kernel);

// Submit different forms of kernel for execution.
// Wait for the specified event(s) to complete
// before executing the kernel.
// Return an event representing the kernel operation.
template <typename KernelName, typename KernelType>
event single_task(const std::vector<event>& events,

KernelType kernel);

template <typename KernelName, typename KernelType,
int Dims>

event parallel_for(range<Dims> num_work_items,
const std::vector<event>& events,
KernelType kernel);

template <typename KernelName, typename KernelType,
int Dims>

event parallel_for(nd_range<Dims> execution_range,
const std::vector<event>& events,
KernelType kernel);

};

Figure 2-20. Simplified definition of member functions in the queue
class that act as shorthand notation for equivalent functions in the
handler class

Chapter 2 Where Code exeCutes

60

 Actions
The code in Figure 2-18 contains a parallel_for, which defines work to be

performed on a device. The parallel_for is within a command group (CG)

submitted to a queue, and the queue defines the device on which the work is to

be performed. Within the command group, there are two categories of code:

 1. Host code that sets up dependences defining when

it is safe for the runtime to start execution of the

work defined in (2), such as creation of accessors to

buffers (described in Chapter 3)

 2. At most one call to an action that either queues

device code for execution or performs a manual

memory operation such as copy

The handler class contains a small set of member functions that

define the action to be performed when a task graph node is executed.

Figure 2-21 summarizes these actions.

Work Type Actions
(handler class methods)

Summary

Device code
execution

single_task Execute a single instance of a
device function.

parallel_for
Multiple forms are available to
launch device code with different
combinations of work sizes.

Explicit
memory

operation

copy

Copy data between locations
specified by accessor, pointer,
and/or shared_ptr. The copy
occurs as part of the SYCL task
graph (described later), including
dependence tracking.

update_host Trigger update of host data
backing of a buffer object.

fill Initialize data in a buffer to a
specified value.

Figure 2-21. Actions that invoke device code or perform explicit
memory operations

Chapter 2 Where Code exeCutes

61

At most one action from Figure 2-21 may be called within a command

group (it is an error to call more than one), and only a single command

group can be submitted to a queue per submit call. The result of this is

that a single (or potentially no) operation from Figure 2-21 exists per task

graph node, to be executed when the node dependences are met and the

runtime determines that it is safe to execute.

a command group must have at most one action within it, such as a
kernel launch or explicit memory operation.

The idea that code is executed asynchronously in the future is the

critical difference between code that runs on the CPU as part of the host

program and device code that will run in the future when dependences

are satisfied. A command group usually contains code from each category,

with the code that defines dependences running as part of the host

program (so that the runtime knows what the dependences are) and

device code running in the future once the dependences are satisfied.

There are three classes of code in Figure 2-22:

 1. Host code: Drives the application, including

creating and managing data buffers and submitting

work to queues to form new nodes in the task graph

for asynchronous execution.

 2. Host code within a command group: This code is

run on the processor that the host code is executing

on and executes immediately, before the submit call

returns. This code sets up the node dependences by

creating accessors, for example. Any arbitrary CPU

code can execute here, but best practice is to restrict

it to code that configures the node dependences.

Chapter 2 Where Code exeCutes

62

 3. An action: Any action listed in Figure 2-21 can be

included in a command group, and it defines the

work to be performed asynchronously in the future

when node requirements are met (set up by (2)).

#include <array>
#include <iostream>
#include <sycl/sycl.hpp>
using namespace sycl;

int main() {
constexpr int size = 16;
std::array<int, size> data;
buffer B{data};

queue q{}; // Select any device for this queue

std::cout << "Selected device is: "
<< q.get_device().get_info<info::device::name>()
<< "\n";

q.submit([&](handler& h) {
accessor acc{B, h};
h.parallel_for(size,

[=](auto& idx) { acc[idx] = idx; });
});

return 0;
}

Device code runs in the future

when dependences are met.

Host code

Host code

Immediate code to set

up task graph node.

Figure 2-22. Submission of device code

To understand when code in an application will run, note that

anything passed to an action listed in Figure 2-21 that initiates device

code execution, or an explicit memory operation listed in Figure 2-21, will

execute asynchronously in the future when the SYCL task graph (described

later) node dependences have been satisfied. All other code runs as part of

the host program immediately, as expected in typical C++ code.

It is important to note that although device code can start running

(asynchronously) when task graph node dependences have been met,

device code is not guaranteed to start running at that point. The only way

to be sure that device code will start executing is to have the host program

wait for (block on) results from the device code execution, through

mechanisms such as host accessors or queue wait operations, which we

Chapter 2 Where Code exeCutes

63

cover in later chapters. Without such host blocking operations, the SYCL

and lower-level runtimes make decisions on when to start execution of

device code, possibly optimizing for objectives other than “run as soon as

possible” such as optimizing for power or congestion.

 Host tasks
In general, the code executed by an action submitted to a queue (such

as through parallel_for) is device code, following a few language

restrictions that allow it to run efficiently on many architectures. There is

one important deviation, though, which is accessed through a handler

method named host_task. This method allows arbitrary C++ code to be

submitted as an action in the task graph, to be executed on the host once

any task graph dependences have been satisfied.

Host tasks are important in some programs for two reasons:

 1. Arbitrary C++ can be included, even std::cout or

printf. This can be important for easy debugging,

interoperability with lower-level APIs such as

OpenCL, or for incrementally enabling the use of

accelerators in existing code.

 2. Host tasks execute asynchronously as part of

the task graph, instead of synchronously with

the host program. Although a host program

can launch additional threads or use other task

parallelism approaches, host tasks integrate with

the dependence tracking mechanisms of the SYCL

runtime. This can be very convenient and may result

in higher performance when device and host code

need to be interspersed.

Chapter 2 Where Code exeCutes

64

#include <array>
#include <iostream>
#include <sycl/sycl.hpp>
using namespace sycl;
constexpr int N = 4;

int main() {
queue q ;
int* A = malloc_shared<int>(N, q);

std::cout << "Selected device: "
<< q.get_device().get_info<info::device::name>()
<< "\n";

// Initialize values in the shared allocation
auto eA = q.submit([&](handler& h) {
h.parallel_for(N, [=](auto& idx) { A[idx] = idx; });

});

// Use a host task to output values on the host as part of
// task graph. depends_on is used to define a dependence
// on previous device code having completed. Here the host
// task is defined as a lambda expression.
q.submit([&](handler& h) {
h.depends_on(eA);
h.host_task([=]() {
for (int i = 0; i < N; i++)

std::cout << "host_task @ " << i << " = " << A[i]
<< "\n";

});
});

// Wait for work to be completed in the queue before
// accessing the shared data in the host program.
q.wait();

for (int i = 0; i < N; i++)
std::cout << "main @ " << i << " = " << A[i] << "\n";

free(A, q);

return 0;
}

Example Output:
Selected device: NVIDIA GeForce RTX 3060
host_task @ 0 = 0
host_task @ 1 = 1
host_task @ 2 = 2
host_task @ 3 = 3
main @ 0 = 0
main @ 1 = 1
main @ 2 = 2
main @ 3 = 3

Figure 2-23. A simple host_task

Chapter 2 Where Code exeCutes

65

Figure 2-23 demonstrates a simple host task, which outputs text using

std::cout when the task graph dependences have been met. Remember

that the host task is executed asynchronously from the rest of the host

program. This is a powerful part of the task graph mechanism in which the

SYCL runtime schedules work when it is safe to do so, without interaction

from the host program which may instead continue with other work.

Also note that the code body of the host task does not need to follow any

restrictions that are imposed on device code (described in Chapter 10).

The example in Figure 2-23 is based on events (described in Chapter

3) to create a dependence between the device code submission and a later

host task, but host tasks can also be used with accessors (also covered

in Chapter 3) through a special accessor template parameterization of

target::host_task (Chapter 7).

 Summary
In this chapter we provided an overview of queues, selection of the

device with which a queue will be associated, and how to create custom

device selectors. We also overviewed the code that executes on a device

asynchronously when dependences are met vs. the code that executes as

part of the C++ application host code. Chapter 3 describes how to control

data movement.

Chapter 2 Where Code exeCutes

66

Open Access This chapter is licensed under the terms of

the Creative Commons Attribution 4.0 International License

(https://creativecommons.org/licenses/by/4.0/), which permits use,

sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter's Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter's

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 2 Where Code exeCutes

https://creativecommons.org/licenses/by/4.0/

67

CHAPTER 3

Data Management
Supercomputer architects often lament the need to “feed the beast.” The

phrase “feed the beast” refers to the “beast” of a computer we create when

we use lots of parallelism and feeding data to it becomes a key challenge

to solve.

Feeding a SYCL program on a heterogeneous machine requires

some care to ensure data is where it needs to be when it needs to be

there. In a large program, that can be a lot of work. In a preexisting C++

program, it can be a nightmare just to sort out how to manage all the data

movements needed.

We will carefully explain the two ways to manage data: Unified Shared

Memory (USM) and buffers. USM is pointer based, which is familiar to C++

programmers. Buffers offer a higher-level abstraction. Choice is good.

We need to control the movement of data, and this chapter covers

options to do exactly that.

In Chapter 2, we studied how to control where code executes. Our

code needs data as input and produces data as output. Since our code

may run on multiple devices and those devices do not necessarily share

memory, we need to manage data movement. Even when data is shared,

such as with USM, synchronization and coherency are concepts we need

to understand and manage.

A logical question might be “Why doesn’t the compiler just do

everything automatically for us?” While a great deal can be handled for

us automatically, performance is usually suboptimal if we do not assert

© Intel Corporation 2023
J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-9691-2_3

https://doi.org/10.1007/978-1-4842-9691-2_3

68

ourselves as programmers. In practice, for best performance, we will need

to concern ourselves with code placement (Chapter 2) and data movement

(this chapter) when writing heterogeneous programs.

This chapter provides an overview of managing data, including

controlling the ordering of data usage. It complements the prior chapter,

which showed us how to control where code runs. This chapter helps us

efficiently make our data appear where we have asked the code to run,

which is important not only for correct execution of our application but

also to minimize execution time and power consumption.

 Introduction
Compute is nothing without data. The whole point of accelerating a

computation is to produce an answer more quickly. This means that

one of the most important aspects of data-parallel computations is how

they access data and introducing accelerator devices into a machine

further complicates the picture. In traditional single-socket CPU-based

systems, we have a single memory. Accelerator devices often have their

own attached memories that cannot be directly accessed from the host.

Consequently, parallel programming models that support discrete devices

must provide mechanisms to manage these multiple memories and move

data between them.

In this chapter, we present an overview of the various mechanisms for

data management. We introduce Unified Shared Memory and the buffer

abstractions for data management and describe the relationship between

kernel execution and data movement.

Chapter 3 Data ManageMent

69

 The Data Management Problem
Historically, one of the advantages of shared memory models for parallel

programming is that they provide a single, shared view of memory. Having

this single view of memory simplifies life. We are not required to do

anything special to access memory from parallel tasks (aside from proper

synchronization to avoid data races). While some types of accelerator

devices (e.g., integrated GPUs) share memory with a host CPU, many

discrete accelerators have their own local memories separate from that of

the CPU as seen in Figure 3-1.

Figure 3-1. Multiple discrete memories

 Device Local vs. Device Remote
Programs running on a device generally perform better when reading

and writing data using memory attached directly to the device rather than

remote memories. We refer to accesses to a directly attached memory as

local accesses. Accesses to another device’s memory are remote accesses.

Remote accesses tend to be slower than local accesses because they must

travel over data links with lower bandwidth and/or higher latency. This

means that it is often advantageous to colocate both a computation and

the data that it will use. To accomplish this, we must somehow ensure that

data is copied or migrated between different memories in order to move it

closer to where computation occurs.

Chapter 3 Data ManageMent

70

Figure 3-2. Data movement and kernel execution

 Managing Multiple Memories
Managing multiple memories can be accomplished, broadly, in two ways:

explicitly through our program or implicitly by the SYCL runtime library.

Each method has its advantages and drawbacks, and we may choose one

or the other depending on circumstances or personal preference.

 Explicit Data Movement
One option for managing multiple memories is to explicitly copy data

between different memories. Figure 3-2 shows a system with a discrete

accelerator where we must first copy any data that a kernel will require

from the host memory to accelerator memory. After the kernel computes

results, we must copy these results back to the host before the host

program can use that data.

The primary advantage of explicit data movement is that we have full

control over when data is transferred between different memories. This

is important because overlapping computation with data transfer can be

essential to obtain the best performance on some hardware.

The drawback of explicit data movement is that specifying all data

movements can be tedious and error prone. Transferring an incorrect

amount of data or not ensuring that all data has been transferred before

Chapter 3 Data ManageMent

71

a kernel begins computing can lead to incorrect results. Getting all of

the data movement correct from the beginning can be a very time-

consuming task.

 Implicit Data Movement
The alternative to program-controlled explicit data movements are

implicit data movements controlled by a parallel runtime or driver. In this

case, instead of requiring explicit copies between different memories, the

parallel runtime is responsible for ensuring that data is transferred to the

appropriate memory before it is used.

The advantage of implicit data movement is that it requires less effort

to get an application to take advantage of faster memory attached directly

to the device. All the heavy lifting is done automatically by the runtime.

This also reduces the opportunity to introduce errors into the program

since the runtime will automatically identify both when data transfers

must be performed and how much data must be transferred.

The drawback of implicit data movement is that we have less or no

control over the behavior of the runtime’s implicit mechanisms. The

runtime will provide functional correctness but may not move data in an

optimal fashion that ensures maximal overlap of computation with data

transfer, and this could have a negative impact on program performance.

 Selecting the Right Strategy
Picking the best strategy for a program can depend on many different

factors. Different strategies might be appropriate for different phases of

program development. We could even decide that the best solution is to

mix and match the explicit and implicit methods for different pieces of

the program. We might choose to begin using implicit data movement

to simplify porting an application to a new device. As we begin tuning

the application for performance, we might start replacing implicit

Chapter 3 Data ManageMent

72

data movement with explicit in performance-critical parts of the code.

Future chapters will cover how data transfers can be overlapped with

computation in order to optimize performance.

 USM, Buffers, and Images
There are three abstractions for managing memory: Unified Shared

Memory (USM), buffers, and images. USM is a pointer-based approach

that should be familiar to C/C++ programmers. One advantage of USM is

easier integration with existing C++ code that operates on pointers. Buffers,

as represented by the buffer template class, describe one-, two-, or three-

dimensional arrays. They provide an abstract view of memory that can be

accessed on either the host or a device. Buffers are not directly accessed by

the program and are instead used through accessor objects. Images act as

a special type of buffer that provides extra functionality specific to image

processing. This functionality includes support for special image formats,

reading of images using sampler objects, and more. Buffers and images are

powerful abstractions that solve many problems but rewriting all interfaces

in existing code to accept buffers or accessors can be time-consuming.

Since the interface for buffers and images is largely the same, the rest of

this chapter will only focus on USM and buffers.

 Unified Shared Memory
USM is one tool available to us for data management. USM is a pointer-

based approach that should be familiar to C and C++ programmers who

use malloc or new to allocate data. USM simplifies life when porting

existing C/C++ code that makes heavy use of pointers. Devices that

support USM support a unified virtual address space. Having a unified

virtual address space means that any pointer value returned by a USM

Chapter 3 Data ManageMent

73

allocation routine on the host will be a valid pointer value on the device.

We do not have to manually translate a host pointer to obtain the “device

version”—we see the same pointer value on both the host and device.

A more detailed description of USM can be found in Chapter 6.

 Accessing Memory Through Pointers
Since not all memories are created equal when a system contains both

host memory and some number of device-attached local memories, USM

defines three different types of allocations: device, host, and shared. All

types of allocations are performed on the host. Figure 3-3 summarizes the

characteristics of each allocation type.

Figure 3-3. USM allocation types

A device allocation occurs in device-attached memory. Such an

allocation can be read from and written to on a device but is not directly

accessible from the host. We must use explicit copy operations to move

data between regular allocations in host memory and device allocations.

A host allocation occurs in host memory that is accessible both on the

host and on a device. This means the same pointer value is valid both in

host code and in device kernels. However, when such a pointer is accessed,

the data always comes from host memory. If it is accessed on a device, the

Chapter 3 Data ManageMent

74

data does not migrate from the host to device-local memory. Instead, data

is typically sent over a bus, such as PCI Express (PCI-E), that connects the

device to the host.

A shared allocation is accessible on both the host and the device. In

this regard, it is very similar to a host allocation, but it differs in that data

can now migrate between host memory and device-local memory. This

means that accesses on a device, after the migration has occurred, happen

from much faster device-local memory instead of remotely accessing

host memory though a higher-latency connection. Typically, this is

accomplished through mechanisms inside the runtime and lower-level

drivers that are hidden from us.

 USM and Data Movement
USM supports both explicit and implicit data movement strategies, and

different allocation types map to different strategies. Device allocations

require us to explicitly move data between host and device, while host and

shared allocations provide implicit data movement.

 Explicit Data Movement in USM

Explicit data movement with USM is accomplished with device allocations

and a special memcpy() found in the queue and handler classes. We

enqueue memcpy() operations (actions) to transfer data either from the

host to the device or from the device to the host.

Figure 3-4 contains one kernel that operates on a device allocation.

Data is copied between host_array and device_array before and after

the kernel executes using memcpy() operations. Calls to wait() on the

queue ensure that the copy to the device has completed before the kernel

executes and ensure that the kernel has completed before the data is

copied back to the host. We will learn how we can eliminate these calls

later in this chapter.

Chapter 3 Data ManageMent

75

#include <array>
#include <sycl/sycl.hpp>
using namespace sycl;
constexpr int N = 42;

int main() {
queue q;

std::array<int, N> host_array;
int *device_array = malloc_device<int>(N, q);

for (int i = 0; i < N; i++) host_array[i] = N;

// We will learn how to simplify this example later
q.submit([&](handler &h) {

// copy host_array to device_array
h.memcpy(device_array, &host_array[0], N * sizeof(int));

});
q.wait();

q.submit([&](handler &h) {
h.parallel_for(N, [=](id<1> i) { device_array[i]++; });

});
q.wait();

q.submit([&](handler &h) {
// copy device_array back to host_array
h.memcpy(&host_array[0], device_array, N * sizeof(int));

});
q.wait();

free(device_array, q);
return 0;

}

Figure 3-4. USM explicit data movement

 Implicit Data Movement in USM

Implicit data movement with USM is accomplished with host and shared

allocations. With these types of allocations, we do not need to explicitly

insert copy operations to move data between host and device. Instead,

we simply access the pointers inside a kernel, and any required data

movement is performed automatically without programmer intervention

Chapter 3 Data ManageMent

76

(as long as your device supports these allocations). This greatly simplifies

porting of existing codes: at most we need to simply replace any malloc or

new with the appropriate USM allocation functions (as well as the calls to

free to deallocate memory), and everything should just work.

In Figure 3-5, we create two arrays, host_array and shared_array,

that are host and shared allocations, respectively. While both host and

shared allocations are directly accessible in host code, we only initialize

#include <sycl/sycl.hpp>
using namespace sycl;
constexpr int N = 42;

int main() {
queue q;
int *host_array = malloc_host<int>(N, q);
int *shared_array = malloc_shared<int>(N, q);

for (int i = 0; i < N; i++) {
// Initialize host_array on host
host_array[i] = i;

}

// We will learn how to simplify this example later
q.submit([&](handler &h) {

h.parallel_for(N, [=](id<1> i) {
// access shared_array and host_array on device
shared_array[i] = host_array[i] + 1;

});
});
q.wait();

for (int i = 0; i < N; i++) {
// access shared_array on host
host_array[i] = shared_array[i];

}

free(shared_array, q);
free(host_array, q);
return 0;

}

Figure 3-5. USM implicit data movement

Chapter 3 Data ManageMent

77

host_array here. Similarly, it can be directly accessed inside the kernel,

performing remote reads of the data. The runtime ensures that shared_

array is available on the device before the kernel accesses it and that it is

moved back when it is later read by the host code, all without programmer

intervention.

 Buffers
The other abstraction provided for data management is the buffer object.

Buffers are a data abstraction that represent one or more objects of a given

C++ type. Elements of a buffer object can be a scalar data type (such as an

int, float, or double), a vector data type (Chapter 11), or a user-defined

class or structure. SYCL 2020 defines a new notion, device copyable, that

expands upon the notion of trivially copyable with additions to the set of

permissible types. In particular, if the templated types in common C++

classes such as std::array, std::pair, std::tuple, or std::span are

themselves device copyable, then those C++ class specializations built

using those types are also device copyable. Take care that your data types

are device copyable before using them with buffers!

While a buffer itself is a single object, the C++ type encapsulated by the

buffer could be an array that contains multiple objects. Buffers represent

data objects rather than specific memory addresses, so they cannot be

directly accessed like regular C++ arrays. Indeed, a buffer object might

map to multiple different memory locations on several different devices,

or even on the same device, for performance reasons. Instead, we use

accessor objects to read and write to buffers.

A more detailed description of buffers can be found in Chapter 7.

Chapter 3 Data ManageMent

78

 Creating Buffers
Buffers can be created in a variety of ways. The simplest method is to

simply construct a new buffer with a range that specifies the size of the

buffer. However, creating a buffer in this fashion does not initialize its data,

meaning that we must first initialize the buffer through other means before

attempting to read useful data from it.

Buffers can also be created from existing data on the host. This is done

by invoking one of the several constructors that take either a pointer to

an existing host allocation, a set of InputIterators, or a container that

has certain properties. Data is copied during buffer construction from the

existing host allocation into the buffer object’s host memory. A buffer may

also be created from a backend-specific object using SYCL interoperability

features (e.g., from an OpenCL cl_mem object). See the chapter on

interoperability for more details on how to do this.

 Accessing Buffers
Buffers may not be directly accessed by the host and device (except

through advanced and infrequently used mechanisms not described here).

Instead, we must create accessors in order to read and write to buffers.

Accessors provide the runtime with information about how we plan to use

the data in buffers, allowing it to correctly schedule data movement.

Chapter 3 Data ManageMent

79

#include <array>
#include <sycl/sycl.hpp>
using namespace sycl;
constexpr int N = 42;

int main() {
std::array<int, N> my_data;
for (int i = 0; i < N; i++) my_data[i] = 0;

{
queue q;
buffer my_buffer(my_data);

q.submit([&](handler &h) {
// create an accessor to update
// the buffer on the device
accessor my_accessor(my_buffer, h);

h.parallel_for(N, [=](id<1> i) { my_accessor[i]++; });
});

// create host accessor
host_accessor host_accessor(my_buffer);

for (int i = 0; i < N; i++) {
// access myBuffer on host
std::cout << host_accessor[i] << " ";

}
std::cout << "\n";

}

// myData is updated when myBuffer is
// destroyed upon exiting scope
for (int i = 0; i < N; i++) {
std::cout << my_data[i] << " ";

}
std::cout << "\n";

}

Figure 3-6. Buffers and accessors

Access Mode Description
read Read-only access.

write Write-only access.

Previous contents are not

discarded in case of

Figure 3-7. Buffer access modes

Chapter 3 Data ManageMent

80

 Access Modes
When creating an accessor, we can inform the runtime how we are going

to use it to provide more information for optimizations. We do this by

specifying an access mode. Access modes are defined in the access_mode

enum class described in Figure 3-7. In the code example shown in

Figure 3-6, the accessor my_accessor is created with the default access

mode, access_mode::read_write. This lets the runtime know that we

intend to both read and write to the buffer through my_accessor. Access

modes are how the runtime is able to optimize implicit data movement.

For example, access_mode::read tells the runtime that the data needs

to be available on the device before this kernel can begin executing. If a

kernel only reads data through an accessor, there is no need to copy data

back to the host after the kernel has completed as we haven’t modified

it. Likewise, access_mode::write lets the runtime know that we will

modify the contents of a buffer and may need to copy the results back after

computation has ended.

Creating accessors with the proper modes gives the runtime more

information about how we use data in our program. The runtime uses

accessors to order the uses of data, but it can also use this data to optimize

scheduling of kernels and data movement. The access modes and

optimization tags are described in greater detail in Chapter 7.

 Ordering the Uses of Data
Kernels can be viewed as asynchronous tasks that are submitted for

execution. These tasks must be submitted to a queue where they are

scheduled for execution on a device. In many cases, kernels must execute

Chapter 3 Data ManageMent

81

in a specific order so that the correct result is computed. If obtaining

the correct result requires task A to execute before task B, we say that a

dependence1 exists between tasks A and B.

However, kernels are not the only form of task that must be scheduled.

Any data that is accessed by a kernel needs to be available on the device

before the kernel can start executing. These data dependences can create

additional tasks in the form of data transfers from one device to another.

Data transfer tasks may be either explicitly coded copy operations or more

commonly implicit data movements performed by the runtime.

If we take all the tasks in a program and the dependences that exist

between them, we can use this to visualize the information as a graph. This

task graph is specifically a directed acyclic graph (DAG) where the nodes

are the tasks and the edges are the dependences. The graph is directed

because dependences are one-way: task A must happen before task B. The

graph is acyclic because it cannot contain any cycles or paths from a node

that lead back to itself.

In Figure 3-8, task A must execute before tasks B and C. Likewise, B

and C must execute before task D. Since B and C do not have a dependence

between each other, the runtime is free to execute them in any order (or

even in parallel) as long as task A has already executed. Therefore, the

possible legal orderings of this graph are A ⇒ B ⇒ C ⇒ D, A ⇒ C ⇒ B ⇒ D,

and even A ⇒ {B,C} ⇒ D if B and C can concurrently execute.

1 Note that you may see “dependence” and “dependences” sometimes spelled
“dependency” and “dependencies” in other texts. They mean the same thing,
but we are favoring the spelling used in several important papers on data flow
analysis. See https://dl.acm.org/doi/pdf/10.1145/75277.75280 and https://
dl.acm.org/doi/pdf/10.1145/113446.113449.

Chapter 3 Data ManageMent

https://dl.acm.org/doi/pdf/10.1145/75277.75280
https://dl.acm.org/doi/pdf/10.1145/113446.113449
https://dl.acm.org/doi/pdf/10.1145/113446.113449

82

Figure 3-8. Simple task graph

Tasks may have a dependence with a subset of all tasks. In these cases,

we only want to specify the dependences that matter for correctness. This

flexibility gives the runtime latitude to optimize the execution order of the

task graph. In Figure 3-9, we extend the earlier task graph from Figure 3-8

to add tasks E and F where E must execute before F. However, tasks E and F

have no dependences with nodes A, B, C, and D. This allows the runtime to

choose from many possible legal orderings to execute all the tasks.

Figure 3-9. Task graph with disjoint dependences

Chapter 3 Data ManageMent

83

There are two different ways to model the execution of tasks, such as

a launch of a kernel, in a queue: the queue could either execute tasks in

the order of submission, or it could execute tasks in any order subject to

any dependences that we define. There are several mechanisms for us to

define the dependences needed for correct ordering.

 In-order Queues
The simplest option to order tasks is to submit them to an in-order queue

object. An in-order queue executes tasks in the order in which they were

submitted as seen in Figure 3-10. Their intuitive task ordering means

that in-order queues an advantage of simplicity but a disadvantage of

serializing tasks even if no dependences exist between independent tasks.

In-order queues are useful when bringing up applications because they

are simple, intuitive, deterministic on execution ordering, and suitable for

many codes.

#include <sycl/sycl.hpp>
using namespace sycl;
constexpr int N = 4;

int main() {
queue q{property::queue::in_order()};

q.submit([&](handler& h) {
h.parallel_for(N, [=](id<1> i) { /*...*/ }); // Task A

});
q.submit([&](handler& h) {
h.parallel_for(N, [=](id<1> i) { /*...*/ }); // Task B

});
q.submit([&](handler& h) {
h.parallel_for(N, [=](id<1> i) { /*...*/ }); // Task C

});

return 0;
}

Figure 3-10. In-order queue usage

Chapter 3 Data ManageMent

84

 Out-of-Order Queues
Since queue objects are out-of-order queues (unless created with the in-

order queue property), they must provide ways to order tasks submitted to

them. Queues order tasks by letting us inform the runtime of dependences

between them. These dependences can be specified, either explicitly or

implicitly, using command groups. We will consider them separately in the

following sections.

A command group is an object that specifies a task and its

dependences. Command groups are typically written as C++ lambda

expressions passed as an argument to the submit() method of a queue

object. This lambda’s only parameter is a reference to a handler object.

The handler object is used inside the command group to specify actions,

create accessors, and specify dependences.

 Explicit Dependences with Events

Explicit dependences between tasks look like the examples we have

seen (Figure 3-8) where task A must execute before task B. Expressing

dependences in this way focuses on explicit ordering based on the

computations that occur rather than on the data accessed by the

computations. Note that expressing dependences between computations

is primarily relevant for codes that use USM since codes that use buffers

express most dependences via accessors. In Figures 3-4 and 3-5, we simply

tell the queue to wait for all previously submitted tasks to finish before we

continue. Instead, we can express task dependences through event objects.

When submitting a command group to a queue, the submit() method

returns an event object. These events can then be used in two ways.

First, we can synchronize through the host by explicitly calling the

wait() method on an event. This forces the runtime to wait for the

task that generated the event to finish executing before host program

execution may continue. Explicitly waiting on events can be very

Chapter 3 Data ManageMent

85

useful for debugging an application but wait() can overly constrain

the asynchronous execution of tasks since it halts all execution on the

host thread. Similarly, one could also call wait() on a queue object,

which would block execution on the host until all enqueued tasks have

completed. This can be a useful tool if we do not want to keep track of all

the events returned by enqueued tasks.

This brings us to the second way that events can be used. The handler

class contains a method named depends_on(). This method accepts

either a single event or a vector of events and informs the runtime that

the command group being submitted requires the specified events to

complete before the action within the command group may execute.

Figure 3-11 shows an example of how depends_on() may be used to

order tasks.

#include <sycl/sycl.hpp>
using namespace sycl;
constexpr int N = 4;

int main() {
queue q;

auto eA = q.submit([&](handler &h) {
h.parallel_for(N, [=](id<1> i) { /*...*/ }); // Task A

});
eA.wait();
auto eB = q.submit([&](handler &h) {
h.parallel_for(N, [=](id<1> i) { /*...*/ }); // Task B

});
auto eC = q.submit([&](handler &h) {
h.depends_on(eB);
h.parallel_for(N, [=](id<1> i) { /*...*/ }); // Task C

});
auto eD = q.submit([&](handler &h) {
h.depends_on({eB, eC});
h.parallel_for(N, [=](id<1> i) { /*...*/ }); // Task D

});

return 0;
}

Figure 3-11. Using events and depends_on

Chapter 3 Data ManageMent

86

 Implicit Dependences with Accessors

Implicit dependences between tasks are created from data dependences.

Data dependences between tasks take three forms, shown in Figure 3-12.

Figure 3-12. Three forms of data dependences

Data dependences are expressed to the runtime in two ways: accessors

and program order. Both must be used for the runtime to properly

compute data dependences. This is illustrated in Figures 3-13 and 3-14.

Chapter 3 Data ManageMent

87

#include <array>
#include <sycl/sycl.hpp>
using namespace sycl;
constexpr int N = 42;

int main() {
std::array<int, N> a, b, c;
for (int i = 0; i < N; i++) {
a[i] = b[i] = c[i] = 0;

}

queue q;

// We will learn how to simplify this example later
buffer a_buf{a};
buffer b_buf{b};
buffer c_buf{c};

q.submit([&](handler &h) {
accessor a(a_buf, h, read_only);
accessor b(b_buf, h, write_only);
h.parallel_for(// computeB

N, [=](id<1> i) { b[i] = a[i] + 1; });
});

q.submit([&](handler &h) {
accessor a(a_buf, h, read_only);
h.parallel_for(// readA

N, [=](id<1> i) {
// Useful only as an example
int data = a[i];

});
});

q.submit([&](handler &h) {
// RAW of buffer B
accessor b(b_buf, h, read_only);
accessor c(c_buf, h, write_only);
h.parallel_for(// computeC

N, [=](id<1> i) { c[i] = b[i] + 2; });
});

// read C on host
host_accessor host_acc_c(c_buf, read_only);
for (int i = 0; i < N; i++) {
std::cout << host_acc_c[i] << " ";

}
std::cout << "\n";
return 0;

}

Figure 3-13. Read-after-Write

Chapter 3 Data ManageMent

88

Figure 3-14. RAW task graph

In Figures 3-13 and 3-14, we execute three kernels—computeB, readA,

and computeC—and then read the final result back on the host. The

command group for kernel computeB creates two accessors, a and b. These

accessors use access tags read_only and write_only for optimization to

specify that we do not use the default access mode, access_mode::read_

write. We will learn more about access tags in Chapter 7. Kernel computeB

reads buffer a_buf and writes to buffer b_buf. Buffer a_buf must be copied

from the host to the device before the kernel begins execution.

Kernel readA also creates a read-only accessor for buffer a_buf. Since

kernel readA is submitted after kernel computeB, this creates a Read-after-

Read (RAR) scenario. However, RARs do not place extra restrictions on the

runtime, and the kernels are free to execute in any order. Indeed, a runtime

might prefer to execute kernel readA before kernel computeB or even

execute both at the same time. Both require buffer a_buf to be copied to

the device, but kernel computeB also requires buffer b_buf to be copied in

case any existing values are not overwritten by computeB and which might

be used by later kernels. This means that the runtime could execute kernel

readA while the data transfer for buffer b_buf occurs and also shows that

Chapter 3 Data ManageMent

89

even if a kernel will only write to a buffer, the original content of the buffer

may still be moved to the device because there is no guarantee that all

values in the buffer will be written by a kernel (see Chapter 7 for tags that

let us optimize in these cases).

Kernel computeC reads buffer b_buf, which we computed in kernel

computeB. Since we submitted kernel computeC after we submitted kernel

computeB, this means that kernel computeC has a RAW data dependence

on buffer b_buf. RAW dependences are also called true dependences

or flow dependences, as data needs to flow from one computation to

another in order to compute the correct result. Finally, we also create a

RAW dependence on buffer c_buf between kernel computeC and the host

since the host wants to read C after the kernel has finished. This forces the

runtime to copy buffer c_buf back to the host. Since there were no writes

to buffer a_buf on devices, the runtime does not need to copy that buffer

back to the host because the host has an up-to-date copy already.

Chapter 3 Data ManageMent

90

#include <array>
#include <sycl/sycl.hpp>
using namespace sycl;
constexpr int N = 42;

int main() {
std::array<int, N> a, b;
for (int i = 0; i < N; i++) {

a[i] = b[i] = 0;
}

queue q;
buffer a_buf{a};
buffer b_buf{b};

q.submit([&](handler &h) {
accessor a(a_buf, h, read_only);
accessor b(b_buf, h, write_only);
h.parallel_for(// computeB

N, [=](id<1> i) { b[i] = a[i] + 1; });
});

q.submit([&](handler &h) {
// WAR of buffer A
accessor a(a_buf, h, write_only);
h.parallel_for(// rewriteA

N, [=](id<1> i) { a[i] = 21 + 21; });
});

q.submit([&](handler &h) {
// WAW of buffer B
accessor b(b_buf, h, write_only);
h.parallel_for(// rewriteB

N, [=](id<1> i) { b[i] = 30 + 12; });
});

host_accessor host_acc_a(a_buf, read_only);
host_accessor host_acc_b(b_buf, read_only);
for (int i = 0; i < N; i++) {
std::cout << host_acc_a[i] << " " << host_acc_b[i]

<< " ";
}
std::cout << "\n";
return 0;

}

Figure 3-15. Write-after-Read and Write-after-Write

Chapter 3 Data ManageMent

91

Figure 3-16. WAR and WAW task graph

In Figures 3-15 and 3-16, we again execute three kernels: computeB,

rewriteA, and rewriteB. Kernel computeB once again reads buffer

a_buf and writes to buffer b_buf, kernel rewriteA writes to buffer a_buf,

and kernel rewriteB writes to buffer b_buf. Kernel rewriteA could

theoretically execute earlier than kernel computeB since less data needs to

be transferred before the kernel is ready, but it must wait until after kernel

computeB finishes since there is a WAR dependence on buffer a_buf.

 In this example, kernel computeB requires the original value of A

from the host, and it would read the wrong values if kernel rewriteA

executed before kernel computeB. WAR dependences are also called anti-

dependences. RAW dependences ensure that data properly flows in the

correct direction, while WAR dependences ensure existing values are not

overwritten before they are read. The WAW dependence on buffer b_buf

found in kernel rewrite functions similarly. If there were any reads of buffer

b_buf submitted in between kernels computeB and rewriteB, they would

result in RAW and WAR dependences that would properly order the tasks.

However, there is an implicit dependence between kernel rewriteB and

the host in this example since the final data must be written back to the

host. We will learn more about what causes this writeback in Chapter 7.

The WAW dependence, also called an output dependence, ensures that the

final output will be correct on the host.

Chapter 3 Data ManageMent

92

 Choosing a Data Management Strategy
Selecting the right data management strategy for our applications is largely

a matter of personal preference. Indeed, we may begin with one strategy

and switch to another as our program matures. However, there are a few

useful guidelines to help us to pick a strategy that will serve our needs.

The first decision to make is whether we want to use explicit or

implicit data movement since this greatly affects what we need to do

to our program. Implicit data movement is generally an easier place to

start because all the data movement is handled for us, letting us focus on

expression of the computation.

If we decide that we’d rather have full control over all data movement

from the beginning, then explicit data movement using USM device

allocations is where we want to start. We just need to be sure to add all the

necessary copies between host and devices!

When selecting an implicit data movement strategy, we still have a

choice of whether to use buffers or USM host or shared pointers. Again,

this choice is a matter of personal preference, but there are a few questions

that could help guide us to one over the other. If we’re porting an existing

C/C++ program that uses pointers, USM might be an easier path since

most code won’t need to change. If data representation hasn’t guided

us to a preference, another question we can ask is how we would like to

express our dependences between kernels. If we prefer to think about data

dependences between kernels, choose buffers. If we prefer to think about

dependences as performing one computation before another and want

to express that using an in-order queue or with explicit events or waiting

between kernels, choose USM.

When using USM pointers (with either explicit or implicit data

movement), we have a choice of which type of queue we want to use. In-

order queues are simple and intuitive, but they constrain the runtime and

may limit performance. Out-of-order queues are more complex, but they

Chapter 3 Data ManageMent

93

give the runtime more freedom to reorder and overlap execution. The out-

of- order queue class is the right choice if our program will have complex

dependences between kernels. If our program simply runs many kernels

one after another, then an in-order queue will be a better option for us.

 Handler Class: Key Members
We have shown a number of ways to use the handler class. Figures 3-17

and 3-18 provide a more detailed explanation of the key members of this

very important class. We have not yet used all these members, but they will

be used later in the book. This is as good a place as any to lay them out.

A closely related class, the queue class, is similarly explained at the end

of Chapter 2.

Chapter 3 Data ManageMent

94

class handler {
...

// Specifies event(s) that must be complete before the
// action defined in this command group executes.
void depends_on({event / std::vector<event> & });

// Enqueues a memcpy from Src to Dest.
// Count bytes are copied.
void memcpy(void* Dest, const void* Src, size_t Count);

// Enqueues a memcpy from Src to Dest.
// Count elements are copied.
template <typename T>
void copy(const T* Src, T* Dest, size_t Count);

// Enqueues a memset operation on the specified pointer.
// Writes the first byte of Value into Count bytes.
void memset(void* Ptr, int Value, size_t Count)

// Enques a fill operation on the specified pointer.
// Fills Pattern into Ptr Count times.
template <typename T>
void fill(void* Ptr, const T& Pattern, size_t Count);

// Submits a kernel of one work-item for execution.
template <typename KernelName, typename KernelType>
void single_task(KernelType KernelFunc);

// Submits a kernel with NumWork-items work-items for
// execution.
template <typename KernelName, typename KernelType,

int Dims>
void parallel_for(range<Dims> NumWork - items,

KernelType KernelFunc);

// Submits a kernel for execution over the supplied
// nd_range.
template <typename KernelName, typename KernelType,

int Dims>
void parallel_for(nd_range<Dims> ExecutionRange,

KernelType KernelFunc);
...

};

Figure 3-17. Simplified definition of the non-accessor members of the
handler class

Chapter 3 Data ManageMent

95

class handler {
...
// Specifies event(s) that must be complete before the
// action. Copy to/from an accessor.
// Valid combinations:
// Src: accessor, Dest: shared_ptr
// Src: accessor, Dest: pointer
// Src: shared_ptr Dest: accessor
// Src: pointer Dest: accessor
// Src: accesssor Dest: accessor
template <typename T_Src, typename T_Dst, int Dims,

access::mode AccessMode,
access::target AccessTarget,
access::placeholder IsPlaceholder =

access::placeholder::false_t>
void copy(accessor<T_Src, Dims, AccessMode,

AccessTarget, IsPlaceholder> Src,
shared_ptr_class<T_Dst> Dst);

void copy(shared_ptr_class<T_Src> Src,
accessor<T_Dst, Dims, AccessMode, AccessTarget,

IsPlaceholder>
Dst);

void copy(accessor<T_Src, Dims, AccessMode, AccessTarget,
IsPlaceholder> Src,

T_Dst *Dst);
void copy(const T_Src *Src,

accessor<T_Dst, Dims, AccessMode, AccessTarget,
IsPlaceholder> Dst);

template <typename T_Src, int Dims_Src,
access::mode AccessMode_Src,
access::target AccessTarget_Src, typename T_Dst,
int Dims_Dst, access::mode AccessMode_Dst,
access::target AccessTarget_Dst,
access::placeholder IsPlaceholder_Src =

access::placeholder::false_t,
access::placeholder IsPlaceholder_Dst =

access::placeholder::false_t>
void copy(accessor<T_Src, Dims_Src, AccessMode_Src,

AccessTarget_Src, IsPlaceholder_Src> Src,
accessor<T_Dst, Dims_Dst, AccessMode_Dst,

AccessTarget_Dst, IsPlaceholder_Dst> Dst);

// Provides a guarantee that the memory object accessed by
// the accessor is updated on the host after this action
// executes.
template <typename T, int Dims, access::mode AccessMode,

access::target AccessTarget,
access::placeholder IsPlaceholder =

access::placeholder::false_t>
void update_host(accessor<T, Dims, AccessMode,

AccessTarget, IsPlaceholder> Acc);
...

};

Figure 3-18. Simplified definition of the accessor members of the
handler class

Chapter 3 Data ManageMent

96

 Summary
In this chapter, we have introduced the mechanisms that address the

problems of data management and how to order the uses of data.

Managing access to different memories is a key challenge when using

accelerator devices, and we have different options to suit our needs.

We provided an overview of the different types of dependences that can

exist between the uses of data, and we described how to provide information

about these dependences to queues so that they properly order tasks.

This chapter provided an overview of Unified Shared Memory and

buffers. We explore all the modes and behaviors of USM in greater detail

in Chapter 6. Chapter 7 explores buffers more deeply, including all the

different ways to create buffers and control their behavior. Chapter 8

revisits the scheduling mechanisms for queues that control the ordering of

kernel executions and data movements.

Open Access This chapter is licensed under the terms of

the Creative Commons Attribution 4.0 International License

(https://creativecommons.org/licenses/by/4.0/), which permits use,

sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter’s Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter’s

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 3 Data ManageMent

https://creativecommons.org/licenses/by/4.0/

97

CHAPTER 4

Expressing
Parallelism
We already know how to place code (Chapter 2) and data (Chapter 3) on a

device—all we must do now is engage in the art of deciding what to do with

it. To that end, we now shift to fill in a few things that we have conveniently

left out or glossed over so far. This chapter marks the transition from

simple teaching examples toward real-world parallel code and expands

upon details of the code samples we have casually shown in prior chapters.

Writing our first program in a new parallel language may seem like a

daunting task, especially if we are new to parallel programming. Language

specifications are not written for application developers and often assume

some familiarity with terminology; they do not contain answers to

questions like these:

• Why is there more than one way to express parallelism?

• Which method of expressing parallelism should I use?

• How much do I really need to know about the

execution model?

This chapter seeks to address these questions and more. We introduce

the concept of a data-parallel kernel, discuss the strengths and weaknesses

of the different kernel forms using working code examples, and highlight

the most important aspects of the kernel execution model.

© Intel Corporation 2023
J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-9691-2_4

https://doi.org/10.1007/978-1-4842-9691-2_4

98

 Parallelism Within Kernels
Parallel kernels have emerged in recent years as a powerful means

of expressing data parallelism. The primary design goals of a kernel-

based approach are portability across a wide range of devices and high

programmer productivity. As such, kernels are typically not hard-coded

to work with a specific number or configuration of hardware resources

(e.g., cores, hardware threads, SIMD [single instruction, multiple data]

instructions). Instead, kernels describe parallelism in terms of abstract

concepts that an implementation (i.e., the combination of compiler and

runtime) can then map to the hardware parallelism available on a specific

target device. Although this mapping is implementation-defined, we can

(and should) trust implementations to select a mapping that is sensible

and capable of effectively exploiting hardware parallelism.

Exposing a great deal of parallelism in a hardware-agnostic way

ensures that applications can scale up (or down) to fit the capabilities of

different platforms, but…

Guaranteeing functional portability is not the same as guaranteeing
high performance!

There is a significant amount of diversity in the devices supported,

and we must remember that different architectures are designed and

optimized for different use cases. Whenever we hope to achieve the

highest levels of performance on a specific device, we should always

expect that some additional manual optimization work will be required—

regardless of the programming language we are using! Examples of such

device-specific optimizations include blocking for a particular cache size,

choosing a work grain size that amortizes scheduling overheads, making

use of specialized instructions or hardware units, and, most importantly,

choosing an appropriate algorithm. Some of these examples will be

revisited in Chapters 15, 16, and 17.

Chapter 4 expressinG parallelism

99

Striking the right balance between performance, portability, and

productivity during application development is a challenge that we must

all face—and a challenge that this book cannot address in its entirety.

However, we hope to show that C++ with SYCL provides all the tools

required to maintain both generic portable code and optimized target-

specific code using a single high-level programming language. The rest is

left as an exercise to the reader!

 Loops vs. Kernels
An iterative loop is an inherently serial construct: each iteration of the

loop is executed sequentially (i.e., in order). An optimizing compiler may

be able to determine that some or all iterations of a loop can execute in

parallel, but it must be conservative—if the compiler is not smart enough

or does not have enough information to prove that parallel execution

is always safe, it must preserve the loop’s sequential semantics for

correctness.

for (int i = 0; i < N; ++i) {
c[i] = a[i] + b[i];

}

Figure 4-1. Expressing a vector addition as a serial loop

Consider the loop in Figure 4-1, which describes a simple vector

addition. Even in a simple case like this, proving that the loop can be

executed in parallel is not trivial: parallel execution is only safe if c does

not overlap a or b, which in the general case cannot be proven without

a runtime check! In order to address situations like this, languages have

added features enabling us to provide compilers with extra information

that may simplify analysis (e.g., asserting that pointers do not overlap

Chapter 4 expressinG parallelism

100

with restrict) or to override all analysis altogether (e.g., declaring that

all iterations of a loop are independent or defining exactly how the loop

should be scheduled to parallel resources).

The exact meaning of a parallel loop is somewhat ambiguous—due to

overloading of the term by different parallel programming languages and

runtimes—but many common parallel loop constructs represent compiler

transformations applied to sequential loops. Such programming models

enable us to write sequential loops and only later provide information

about how different iterations can be executed safely in parallel. These

models are very powerful, integrate well with other state-of-the-art

compiler optimizations, and greatly simplify parallel programming, but

do not always encourage us to think about parallelism at an early stage of

development.

A parallel kernel is not a loop and does not have iterations. Rather, a

kernel describes a single operation, which can be instantiated many times

and applied to different input data; when a kernel is launched in parallel,

multiple instances of that operation may be executed simultaneously.

launch N kernel instances {
int id =

get_instance_id(); // unique identifier in [0, N)
c[id] = a[id] + b[id];

}

Figure 4-2. Loop rewritten (in pseudocode) as a parallel kernel

Figure 4-2 shows our simple loop example rewritten as a kernel using

pseudocode. The opportunity for parallelism in this kernel is clear and

explicit: the kernel can be executed in parallel by any number of instances,

and each instance independently applies to a separate piece of data. By

writing this operation as a kernel, we are asserting that it is safe to run in

parallel (and that it ideally should be run in parallel).

Chapter 4 expressinG parallelism

101

In short, kernel-based programming is not a way to retrofit parallelism

into existing sequential codes, but a methodology for writing explicitly

parallel applications.

the sooner that we can shift our thinking from parallel loops to
kernels, the easier it will be to write effective parallel programs using
C++ with sYCl.

 Multidimensional Kernels
The parallel constructs of many other languages are one-dimensional,

mapping work directly to a corresponding one-dimensional hardware

resource (e.g., number of hardware threads). Parallel kernels in SYCL are a

higher-level concept than this, and their dimensionality is more reflective

of the problems that our codes are typically trying to solve (in a one-, two-,

or three-dimensional space).

However, we must remember that the multidimensional indexing

provided by parallel kernels is a programmer convenience that may

be implemented on top of an underlying one-dimensional space.

Understanding how this mapping behaves can be an important part of

certain optimizations (e.g., tuning memory access patterns).

One important consideration is which dimension is contiguous or unit-

stride (i.e., which locations in the multidimensional space are next to each

other in a one-dimensional mapping). All multidimensional quantities

related to parallelism in SYCL use the same convention: dimensions are

numbered from 0 to N-1, where dimension N-1 corresponds to the contiguous

dimension. Wherever a multidimensional quantity is written as a list (e.g., in

constructors) or a class supports multiple subscript operators, this numbering

applies left to right (starting with dimension 0 on the left). This convention is

consistent with the behavior of multidimensional arrays in standard C++.

Chapter 4 expressinG parallelism

102

An example of mapping a two-dimensional space to a linear index

using the SYCL convention is shown in Figure 4-3. We are of course free

to break from this convention and adopt our own methods of linearizing

indices, but must do so carefully—breaking from the SYCL convention may

have a negative performance impact on devices that benefit from stride-

one accesses.

Figure 4-3. Two-dimensional range of size (2, 8) mapped to
linear indices

If an application requires more than three dimensions, we must take

responsibility for mapping between multidimensional and linear indices

manually, using modulo arithmetic or other techniques.

 Overview of Language Features
Once we have decided to write a parallel kernel, we must decide what

type of kernel we want to launch and how to represent it in our program.

There are a multitude of ways to express parallel kernels, and we need to

familiarize ourselves with each of these options if we want to master the

language.

 Separating Kernels from Host Code
We have several alternative ways to separate host and device code, which

we can mix and match within an application: C++ lambda expressions or

function objects, kernels defined via an interoperability interface

Chapter 4 expressinG parallelism

103

(e.g., OpenCL C source strings), or binaries. Some of these options were

already covered in Chapter 2, and the others will be covered in detail in

Chapters 10 and 20.

The fundamental concepts of expressing parallelism are shared by all

these options. For consistency and brevity, all the code examples in this

chapter express kernels using C++ lambda expressions.

LAMBDA EXPRESSIONS NOT CONSIDERED HARMFUL

there is no need to fully understand everything that the C++ specification

says about lambda expressions in order to get started with sYCl—all we need

to know is that the body of the lambda expression represents the kernel and

that variables captured (by value) will be passed to the kernel as arguments.

there is no performance impact arising from the use of lambda expressions

instead of more verbose mechanisms for defining kernels. a C++ compiler

with sYCl support always understands when a lambda expression represents

the body of a parallel kernel and can optimize for parallel execution

accordingly.

For a refresher on C++ lambda expressions, with notes about their use in

sYCl, see Chapter 1. For more specific details on using lambda expressions to

define kernels, see Chapter 10.

 Different Forms of Parallel Kernels
There are three different kernel forms in SYCL, supporting different

execution models and syntax. It is possible to write portable kernels using

any of the kernel forms, and kernels written in any form can be tuned to

achieve high performance on a wide variety of device types. However,

Chapter 4 expressinG parallelism

104

there will be times when we may want to use a specific form to make a

specific parallel algorithm easier to express or to make use of an otherwise

inaccessible language feature.

The first form is used for basic data-parallel kernels and offers

the gentlest introduction to writing kernels. With basic kernels, we

sacrifice control over low-level features like scheduling to make the

expression of the kernel as simple as possible. How the individual kernel

instances are mapped to hardware resources is controlled entirely by the

implementation, and so as basic kernels grow in complexity, it becomes

harder and harder to reason about their performance.

The second form extends basic kernels to provide access to low-level

performance-tuning features. This second form is known as ND-range

(N-dimensional range) data parallel for historical reasons, and the most

important thing to remember is that it enables certain kernel instances to

be grouped together, allowing us to exert some control over data locality

and the mapping between individual kernel instances and the hardware

resources that will be used to execute them.

The third form offers an experimental alternative syntax for expressing

ND-range kernels using syntax similar to nested parallel loops. This third

form is referred to as hierarchical data parallel, referring to the hierarchy of

the nested constructs that appear in user source code. Compiler support

for this syntax is still immature, and many SYCL implementations do not

implement hierarchical data-parallel kernels as efficiently as the other

two forms. The syntax is also incomplete, in the sense that there are many

performance-enabling features of SYCL that are incompatible with or

inaccessible from hierarchical kernels. Hierarchical parallelism in SYCL

is in the process of being updated, and the SYCL specification includes

a note recommending that new codes refrain from using hierarchical

parallelism until the feature is ready; in keeping with the spirit of this note,

the remainder of this book teaches only basic and ND-range parallelism.

Chapter 4 expressinG parallelism

105

We will revisit how to choose between the different kernel forms

again at the end of this chapter once we have discussed their features in

more detail.

 Basic Data-Parallel Kernels
The most basic form of parallel kernel is appropriate for operations that

are embarrassingly parallel (i.e., operations that can be applied to every

piece of data completely independently and in any order). By using this

form, we give an implementation complete control over the scheduling of

work. It is thus an example of a descriptive programming construct—we

describe that the operation is embarrassingly parallel, and all scheduling

decisions are made by the implementation.

Basic data-parallel kernels are written in a single program, multiple

data (SPMD) style—a single “program” (the kernel) is applied to multiple

pieces of data. Note that this programming model still permits each

instance of the kernel to take different paths through the code, because of

data-dependent branches.

One of the greatest strengths of a SPMD programming model is that it

allows the same “program” to be mapped to multiple levels and types of

parallelism, without any explicit direction from us. Instances of the same

program could be pipelined, packed together and executed with SIMD

instructions, distributed across multiple hardware threads, or a mix of

all three.

 Understanding Basic Data-Parallel Kernels
The execution space of a basic parallel kernel is referred to as its execution

range, and each instance of the kernel is referred to as an item. This is

represented diagrammatically in Figure 4-4.

Chapter 4 expressinG parallelism

106

Figure 4-4. Execution space of a basic parallel kernel, shown for a 2D
range of 64 items

The execution model of basic data-parallel kernels is very simple: it

allows for completely parallel execution but does not guarantee or require

it. Items can be executed in any order, including sequentially on a single

hardware thread (i.e., without any parallelism)! Kernels that assume that

all items will be executed in parallel (e.g., by attempting to synchronize

items) could therefore very easily cause programs to hang on some

devices.

However, to guarantee correctness, we must always write our kernels

under the assumption that they could be executed in parallel. For example,

it is our responsibility to ensure that concurrent accesses to memory are

appropriately guarded by atomic memory operations (see Chapter 19) to

prevent race conditions.

Chapter 4 expressinG parallelism

107

 Writing Basic Data-Parallel Kernels
Basic data-parallel kernels are expressed using the parallel_for function.

Figure 4-5 shows how to use this function to express a vector addition,

which is our take on “Hello, world!” for parallel accelerator programming.

h.parallel_for(range{N}, [=](id<1> idx) {
c[idx] = a[idx] + b[idx];

});

Figure 4-5. Expressing a vector addition kernel with parallel_for

The function only takes two arguments: the first is a range (or integer)

specifying the number of items to launch in each dimension, and the

second is a kernel function to be executed for each index in the range.

There are several different classes that can be accepted as arguments to

a kernel function, and which should be used depends on which class

exposes the functionality required—we’ll revisit this later.

Figure 4-6 shows a very similar use of this function to express a matrix

addition, which is (mathematically) identical to vector addition except

with two-dimensional data. This is reflected by the kernel—the only

difference between the two code snippets is the dimensionality of the

range and id classes used! It is possible to write the code this way because

a SYCL accessor can be indexed by a multidimensional id. As strange

as it looks, this can be very powerful, enabling us to write generic kernels

templated on the dimensionality of our data.

h.parallel_for(range{N, M}, [=](id<2> idx) {
c[idx] = a[idx] + b[idx];

});

Figure 4-6. Expressing a matrix addition kernel with parallel_for

It is more common in C/C++ to use multiple indices and multiple

subscript operators to index multidimensional data structures, and this

explicit indexing is also supported by accessors. Using multiple indices

Chapter 4 expressinG parallelism

108

in this way can improve readability when a kernel operates on data of

different dimensionalities simultaneously or when the memory access

patterns of a kernel are more complicated than can be described by using

an item’s id directly.

For example, the matrix multiplication kernel in Figure 4-7 must

extract the two individual components of the index in order to be able to

describe the dot product between rows and columns of the two matrices.

In the authors’ opinion, consistently using multiple subscript operators

(e.g., [j][k]) is more readable than mixing multiple indexing modes and

constructing two-dimensional id objects (e.g., id(j,k)), but this is simply

a matter of personal preference.

The examples in the remainder of this chapter all use multiple

subscript operators, to ensure that there is no ambiguity in the

dimensionality of the buffers being accessed.

h.parallel_for(range{N, N}, [=](id<2> idx) {
int j = idx[0];
int i = idx[1];
for (int k = 0; k < N; ++k) {

c[j][i] +=
a[j][k] * b[k][i]; // or c[idx] += a[id(j,k)]

// * b[id(k,i)];
}

});

Figure 4-7. Expressing a naïve matrix multiplication kernel for
square matrices, with parallel_for

Chapter 4 expressinG parallelism

109

Figure 4-8. Mapping matrix multiplication work to items in the
execution range

The diagram in Figure 4-8 shows how the work in our matrix

multiplication kernel is mapped to individual items. Note that the number

of items is derived from the size of the output range and that the same

input values may be read by multiple items: each item computes a single

value of the C matrix, by iterating sequentially over a (contiguous) row of

the A matrix and a (noncontiguous) column of the B matrix.

 Details of Basic Data-Parallel Kernels
The functionality of basic data-parallel kernels is exposed via three C++

classes: range, id, and item. We have already seen the range and id

classes a few times in previous chapters, but we revisit them here with a

different focus.

 The range Class

A range represents a one-, two-, or three-dimensional range. The

dimensionality of a range is a template argument and must therefore be

known at compile time, but its size in each dimension is dynamic and is

passed to the constructor at runtime. Instances of the range class are used

to describe both the execution ranges of parallel constructs and the sizes of

buffers.

Chapter 4 expressinG parallelism

110

A simplified definition of the range class, showing the constructors and

various methods for querying its extent, is shown in Figure 4-9.

template <int Dimensions = 1>
class range {
public:
// Construct a range with one, two or three dimensions
range(size_t dim0);
range(size_t dim0, size_t dim1);
range(size_t dim0, size_t dim1, size_t dim2);

// Return the size of the range in a specific dimension
size_t get(int dimension) const;
size_t &operator[](int dimension);
size_t operator[](int dimension) const;

// Return the product of the size of each dimension
size_t size() const;

// Arithmetic operations on ranges are also supported
};

Figure 4-9. Simplified definition of the range class

 The id Class

An id represents an index into a one-, two-, or three-dimensional range.

The definition of id is similar in many respects to range: its dimensionality

must also be known at compile time, and it may be used to index an

individual instance of a kernel in a parallel construct or an offset into

a buffer.

As shown by the simplified definition of the id class in Figure 4-10,

an id is conceptually nothing more than a container of one, two, or three

integers. The operations available to us are also very simple: we can query

the component of an index in each dimension, and we can perform simple

arithmetic to compute new indices.

Chapter 4 expressinG parallelism

111

Although we can construct an id to represent an arbitrary index, to

obtain the id associated with a specific kernel instance, we must accept

it (or an item containing it) as an argument to a kernel function. This id

(or values returned by its member functions) must be forwarded to any

function in which we want to query the index—there are not currently any

free functions for querying the index at arbitrary points in a program, but

this may be simplified in a future version of SYCL.

Each instance of a kernel accepting an id knows only the index in the

range that it has been assigned to compute and knows nothing about the

range itself. If we want our kernel instances to know about their own index

and the range, we need to use the item class instead.

template <int Dimensions = 1>
class id {
public:
// Construct an id with one, two or three dimensions
id(size_t dim0);
id(size_t dim0, size_t dim1);
id(size_t dim0, size_t dim1, size_t dim2);

// Return the component of the id in a specific dimension
size_t get(int dimension) const;
size_t &operator[](int dimension);
size_t operator[](int dimension) const;

// Arithmetic operations on ids are also supported
};

Figure 4-10. Simplified definition of the id class

 The item Class

An item represents an individual instance of a kernel function,

encapsulating both the execution range of the kernel and the instance’s

index within that range (using a range and an id, respectively). Like range

and id, its dimensionality must be known at compile time.

Chapter 4 expressinG parallelism

112

A simplified definition of the item class is given in Figure 4-11. The

main difference between item and id is that item exposes additional

functions to query properties of the execution range (e.g., its size) and a

convenience function to compute a linearized index. As with id, the only

way to obtain the item associated with a specific kernel instance is to

accept it as an argument to a kernel function.

template <int Dimensions = 1, bool WithOffset = true>
class item {
public:
// Return the index of this item in the kernel's execution
// range
id<Dimensions> get_id() const;
size_t get_id(int dimension) const;
size_t operator[](int dimension) const;

// Return the execution range of the kernel executed by
// this item
range<Dimensions> get_range() const;
size_t get_range(int dimension) const;

// Return the offset of this item (if WithOffset == true)
id<Dimensions> get_offset() const;

// Return the linear index of this item
// e.g. id(0) * range(1) * range(2) + id(1) * range(2) +
// id(2)
size_t get_linear_id() const;

};

Figure 4-11. Simplified definition of the item class

 Explicit ND-Range Kernels
The second form of parallel kernel replaces the flat execution range of

basic data-parallel kernels with an execution range where items belong

to groups. This form is most appropriate for cases where we would like

to express some notion of locality within our kernels. Different behaviors

Chapter 4 expressinG parallelism

113

are defined and guaranteed for different types of groups, giving us more

insight into and/or control over how work is mapped to specific hardware

platforms.

These explicit ND-range kernels are thus an example of a more

prescriptive parallel construct—we prescribe a mapping of work to each

type of group, and the implementation must obey that mapping. However,

it is not completely prescriptive, as the groups themselves may execute in

any order and an implementation retains some freedom over how each

type of group is mapped to hardware resources. This combination of

prescriptive and descriptive programming enables us to design and tune

our kernels for locality without destroying their portability.

Like basic data-parallel kernels, ND-range kernels are written in a

SPMD style where all work-items execute the same kernel “program”

applied to multiple pieces of data. The key difference is that each program

instance can query its position within the groups that contain it and

can access additional functionality specific to each type of group (see

Chapter 9).

 Understanding Explicit ND-Range
Parallel Kernels
The execution range of an ND-range kernel is divided into work-groups,

sub-groups, and work-items. The ND-range represents the total execution

range, which is divided into work-groups of uniform size (i.e., the work-

group size must divide the ND-range size exactly in each dimension). Each

work-group can be further divided by the implementation into sub-groups.

Understanding the execution model defined for work-items and each type

of group is an important part of writing correct and portable programs.

Figure 4-12 shows an example of an ND-range of size (8, 8, 8) divided

into 8 work-groups of size (4, 4, 4). Each work-group contains 16 one-

dimensional sub-groups of 4 work-items. Pay careful attention to the

Chapter 4 expressinG parallelism

114

numbering of the dimensions: sub-groups are always one-dimensional,

and so dimension 2 of the ND-range and work-group becomes dimension

0 of the sub-group.

Figure 4-12. Three-dimensional ND-range divided into work-groups,
sub-groups, and work-items

The exact mapping from each type of group to hardware resources

is implementation-defined, and it is this flexibility that enables programs

to execute on a wide variety of hardware. For example, work-items could

be executed completely sequentially, executed in parallel by hardware

threads and/or SIMD instructions, or even executed by a hardware

pipeline specifically configured for a kernel.

In this chapter, we are focused only on the semantic guarantees of the

ND-range execution model in terms of a generic target platform, and we

will not cover its mapping to any one platform. See Chapters 15, 16, and 17

for details of the hardware mapping and performance recommendations

for GPUs, CPUs, and FPGAs, respectively.

Chapter 4 expressinG parallelism

115

 Work-Items

Work-items represent the individual instances of a kernel function. In the

absence of other groupings, work-items can be executed in any order and

cannot communicate or synchronize with each other except by way of

atomic memory operations to global memory (see Chapter 19).

 Work-Groups

The work-items in an ND-range are organized into work-groups. Work-

groups can execute in any order, and work-items in different work-groups

cannot communicate with each other except by way of atomic memory

operations to global memory (see Chapter 19). However, the work-items

within a work-group have some scheduling guarantees when certain

constructs are used, and this locality provides some additional capabilities:

 1. Work-items in a work-group have access to work-

group local memory, which may be mapped to

a dedicated fast memory on some devices (see

Chapter 9).

 2. Work-items in a work-group can synchronize

using work-group barriers and guarantee memory

consistency using work-group memory fences (see

Chapter 9).

 3. Work-items in a work-group have access to group

functions, providing implementations of common

communication routines (see Chapter 9) and group

algorithms, providing implementations of common

parallel patterns such as reductions and scans (see

Chapter 14).

Chapter 4 expressinG parallelism

116

The number of work-items in a work-group is typically configured

for each kernel at runtime, as the best grouping will depend upon both

the amount of parallelism available (i.e., the size of the ND-range) and

properties of the target device. We can determine the maximum number of

work-items per work-group supported by a specific device using the query

functions of the device class (see Chapter 12), and it is our responsibility

to ensure that the work-group size requested for each kernel is valid.

There are some subtleties in the work-group execution model that are

worth emphasizing.

First, although the work-items in a work-group are scheduled to a

single compute unit, there need not be any relationship between the

number of work-groups and the number of compute units. In fact, the

number of work-groups in an ND-range can be many times larger than the

number of work-groups that a given device can execute simultaneously!

We may be tempted to try and write kernels that synchronize across

work-groups by relying on very clever device-specific scheduling, but we

strongly recommend against doing this—such kernels may appear to work

today, but they are not guaranteed to work with future implementations

and are highly likely to break when moved to a different device.

Second, although the work-items in a work-group are scheduled

such that they can cooperate with one another, they are not required to

provide any specific forward progress guarantees—executing the work-

items within a work-group sequentially between barriers and collectives

is a valid implementation. Communication and synchronization between

work-items in the same work-group is only guaranteed to be safe when

performed using the barrier and collective functions provided, and hand-

coded synchronization routines may deadlock.

Chapter 4 expressinG parallelism

117

THINKING IN WORK-GROUPS

Work-groups are similar in many respects to the concept of a task in other

programming models (e.g., threading Building Blocks): tasks can execute

in any order (controlled by a scheduler); it’s possible (and even desirable) to

oversubscribe a machine with tasks; and it’s often not a good idea to try and

implement a barrier across a group of tasks (as it may be very expensive or

incompatible with the scheduler). if we’re already familiar with a task-based

programming model, we may find it useful to think of work-groups as though

they are data-parallel tasks.

 Sub-Groups

On many modern hardware platforms, subsets of the work-items in a

work-group known as sub-groups are executed with additional scheduling

guarantees. For example, the work-items in a sub-group could be

executed simultaneously as a result of compiler vectorization, and/or the

sub-groups themselves could be executed with strong forward progress

guarantees because they are mapped to independent hardware threads.

When working with a single platform, it is tempting to bake

assumptions about these execution models into our codes, but this makes

them inherently unsafe and non-portable—they may break when moving

between different compilers or even when moving between different

generations of hardware from the same vendor!

Defining sub-groups as a core part of the language gives us a safe

alternative to making assumptions that may later prove to be device-

specific. Leveraging sub-group functionality also allows us to reason about

the execution of work-items at a low level (i.e., close to hardware) and is

key to achieving very high levels of performance across many platforms.

Chapter 4 expressinG parallelism

118

As with work-groups, the work-items within a sub-group can

synchronize, guarantee memory consistency, or execute common parallel

patterns via group functions and group algorithms. However, there is no

equivalent of work-group local memory for sub-groups (i.e., there is no

sub-group local memory). Instead, the work-items in a sub-group can

exchange data directly—without explicit memory operations—using a

subset of the group algorithms colloquially known as “shuffle” operations

(Chapter 9).

WHY “SHUFFLE”?

the “shuffle” operations in languages like OpenCl, CUDa, and spir-V all

include “shuffle” in their name (e.g., sub_group_shuffle, __shfl, and

OpGroupNonUniformShuffle). sYCl adopts a different naming convention

to avoid confusion with the std::shuffle function defined in C++ (which

randomly reorders the contents of a range).

Some aspects of sub-groups are implementation-defined and outside

of our control. However, a sub-group has a fixed (one-dimensional) size for

a given combination of device, kernel, and ND-range, and we can query

this size using the query functions of the kernel class (see Chapters 10 and

12). By default, the number of work-items per sub-group is also chosen

by the implementation—we can override this behavior by requesting a

particular sub-group size at compile time but must ensure that the sub-

group size we request is compatible with the device.

Like work-groups, the work-items in a sub-group are not required to

provide any specific forward progress guarantees—an implementation is

free to execute each work-item in a sub-group sequentially and only switch

between work-items when a sub-group collective function is encountered.

However, on some devices, all sub-groups within a work-group are

guaranteed to execute (make progress) eventually, which is a cornerstone

Chapter 4 expressinG parallelism

119

of several producer–consumer patterns. This is currently implementation-

defined behavior, and so we cannot rely on sub-groups to make progress

if we want our kernels to remain portable. We expect a future version of

SYCL to provide device queries describing the progress guarantees of

sub-groups.

When writing kernels for a specific device, the mapping of work-

items to sub-groups is known, and our codes can often take advantage of

properties of this mapping to improve performance. However, a common

mistake is to assume that because our code works on one device, it will

work on all devices. Figures 4-13 and 4-14 show just two of the possibilities

when mapping work-items in a multidimensional kernel with a range of

{4, 4} to sub-groups, for a maximum sub-group size of 8. The mapping

in Figure 4-13 produces two sub-groups of eight work-items, while the

mapping in Figure 4-14 produces four sub-groups of four work-items!

Figure 4-13. One possible sub-group mapping, where the sub-group
size is permitted to be larger than the extent of the highest-numbered
(contiguous) dimension of the work-group, and so the sub-group
appears to “wrap around”

Chapter 4 expressinG parallelism

120

Figure 4-14. Another possible sub-group mapping, where the sub-
group size is not permitted to be larger than the extent of the highest-
numbered (contiguous) dimension of the work-group

SYCL does not currently provide a way to query how work-items are

mapped to sub-groups nor a mechanism to request a specific mapping.

The best ways to write portable code using sub-groups are using one-

dimensional work-groups or using multidimensional work-groups where

the highest-numbered dimension is divisible by the kernel’s required sub-

group size.

THINKING IN SUB-GROUPS

if we are coming from a programming model that requires us to think about

explicit vectorization, it may be useful to think of each sub-group as a set of

work-items packed into a simD register, where each work-item in the sub-

group corresponds to a simD lane. When multiple sub-groups are in flight

simultaneously and a device guarantees they will make forward progress, this

mental model extends to treating each sub-group as though it were a separate

stream of vector instructions executing in parallel.

Chapter 4 expressinG parallelism

121

 Writing Explicit ND-Range Data-Parallel Kernels

Figure 4-15 reimplements the matrix multiplication kernel that we saw

previously using the ND-range parallel kernel syntax, and the diagram in

Figure 4-16 shows how the work in this kernel is mapped to the work-items

in each work-group. Grouping our work-items in this way ensures locality

of access and hopefully improves cache hit rates: for example, the work-

group in Figure 4-16 has a local range of (4, 4) and contains 16 work-items,

but only accesses four times as much data as a single work-item—in other

words, each value we load from memory can be reused four times.

Figure 4-16. Mapping matrix multiplication to work-groups and
work-items

range global{N, N};
range local{B, B};
h.parallel_for(nd_range{global, local},

[=](nd_item<2> it) {
int j = it.get_global_id(0);
int i = it.get_global_id(1);

for (int k = 0; k < N; ++k) {
c[j][i] += a[j][k] * b[k][i];

}
});

Figure 4-15. Expressing a naïve matrix multiplication kernel with
ND-range parallel_for

Chapter 4 expressinG parallelism

122

So far, our matrix multiplication example has relied on a hardware

cache to optimize repeated accesses to the A and B matrices from work-

items in the same work-group. Such hardware caches are commonplace

on traditional CPU architectures and are becoming increasingly common

on GPU architectures, but several architectures have explicitly managed

“scratchpad” memories that can deliver higher performance (e.g., via

lower latency). ND-range kernels can use local accessors to describe

allocations that should be placed in work-group local memory, and an

implementation is then free to map these allocations to special memory

(where it exists). Usage of this work-group local memory will be covered in

Chapter 9.

 Details of Explicit ND-Range
Data- Parallel Kernels
ND-range data-parallel kernels use different classes compared to basic

data-parallel kernels: range is replaced by nd_range, and item is replaced

by nd_item. There are also two new classes, representing the different

types of groups to which a work-item may belong: functionality tied to

work-groups is encapsulated in the group class, and functionality tied to

sub-groups is encapsulated in the sub_group class.

 The nd_range Class

An nd_range represents a grouped execution range using two instances

of the range class: one denoting the global execution range and another

denoting the local execution range of each work-group. A simplified

definition of the nd_range class is given in Figure 4-17.

It may be a little surprising that the nd_range class does not mention

sub-groups at all: the sub-group range is not specified during construction

and cannot be queried. There are two reasons for this omission. First, sub-

groups are a low-level implementation detail that can be ignored for many

Chapter 4 expressinG parallelism

123

kernels. Second, there are several devices supporting exactly one valid

sub-group size and specifying this size everywhere would be unnecessarily

verbose. All functionality related to sub-groups is encapsulated in a

dedicated class that will be discussed shortly.

template <int Dimensions = 1>
class nd_range {
public:
// Construct an nd_range from global and work-group local
// ranges
nd_range(range<Dimensions> global,

range<Dimensions> local);

// Return the global and work-group local ranges
range<Dimensions> get_global_range() const;
range<Dimensions> get_local_range() const;

// Return the number of work-groups in the global range
range<Dimensions> get_group_range() const;

};

Figure 4-17. Simplified definition of the nd_range class

 The nd_item Class

An nd_item is the ND-range form of an item, again encapsulating the

execution range of the kernel and the item’s index within that range. Where

nd_item differs from item is in how its position in the range is queried and

represented, as shown by the simplified class definition in Figure 4-18. For

example, we can query the item’s index in the (global) ND-range using the

get_global_id() function or the item’s index in its (local) parent work-

group using the get_local_id() function.

The nd_item class also provides functions for obtaining handles to

classes describing the group and sub-group that an item belongs to. These

classes provide an alternative interface for querying an item’s index in an

ND-range.

Chapter 4 expressinG parallelism

124

template <int Dimensions = 1>
class nd_item {
public:
// Return the index of this item in the kernel's execution
// range
id<Dimensions> get_global_id() const;
size_t get_global_id(int dimension) const;
size_t get_global_linear_id() const;

// Return the execution range of the kernel executed by
// this item
range<Dimensions> get_global_range() const;
size_t get_global_range(int dimension) const;

// Return the index of this item within its parent
// work-group
id<Dimensions> get_local_id() const;
size_t get_local_id(int dimension) const;
size_t get_local_linear_id() const;

// Return the execution range of this item's parent
// work-group
range<Dimensions> get_local_range() const;
size_t get_local_range(int dimension) const;

// Return a handle to the work-group
// or sub-group containing this item
group<Dimensions> get_group() const;
sub_group get_sub_group() const;

};

Figure 4-18. Simplified definition of the nd_item class

 The group Class

The group class encapsulates all functionality related to work-groups, and

a simplified definition is shown in Figure 4-19.

Chapter 4 expressinG parallelism

125

template <int Dimensions = 1>
class group {
public:
// Return the index of this group in the kernel's
// execution range
id<Dimensions> get_id() const;
size_t get_id(int dimension) const;
size_t get_linear_id() const;

// Return the number of groups in the kernel's execution
// range
range<Dimensions> get_group_range() const;
size_t get_group_range(int dimension) const;

// Return the number of work-items in this group
range<Dimensions> get_local_range() const;
size_t get_local_range(int dimension) const;

};

Figure 4-19. Simplified definition of the group class

Many of the functions that the group class provides each have

equivalent functions in the nd_item class: for example, calling group.

get_group_id() is equivalent to calling item.get_group_id(), and calling

group.get_local_range() is equivalent to calling item.get_local_

range(). If we are not using any group functions or algorithms, should

we still use the group class? Wouldn’t it be simpler to use the functions in

nd_item directly, instead of creating an intermediate group object? There

is a trade-off here: using group requires us to write slightly more code, but

that code may be easier to read. For example, consider the code snippet in

Figure 4-20: it is clear that body expects to be called by all work-items in the

group, and it is clear that the range returned by get_local_range() in the

body of the parallel_for is the range of the group. The same code could

very easily be written using only nd_item, but it would likely be harder for

readers to follow.

Chapter 4 expressinG parallelism

126

void body(group& g);

h.parallel_for(nd_range{global, local}, [=](nd_item<1> it) {
group<1> g = it.get_group();
range<1> r = g.get_local_range();
...
body(g);

});

Figure 4-20. Using the group class to improve readability

Another powerful option enabled by the group class is the ability to

write generic group functions that accept any type of group via a template

argument. Although SYCL does not (yet) define an official Group “concept”

(in the C++20 sense), the group and sub_group classes expose a common

interface, allowing templated SYCL functions to be constrained using traits

like sycl::is_group_v. Today, the primary advantages of this generic

form of coding are the ability to support work-groups with an arbitrary

number of dimensions, and the ability to allow the caller of a function to

decide whether the function should divide work across the work-items

in a work-group or the work-items in a sub-group. However, the SYCL

group interface has been designed to be extensible, and we expect a

larger number of classes representing different groupings of work-items to

appear in future versions of SYCL.

 The sub_group Class

The sub_group class encapsulates all functionality related to sub-

groups, and a simplified definition is shown in Figure 4-21. Unlike with

work-groups, the sub_group class is the only way to access sub-group

functionality; none of its functions are duplicated in nd_item.

Chapter 4 expressinG parallelism

127

class sub_group {
public:
// Return the index of the sub-group
id<1> get_group_id() const;

// Return the number of sub-groups in this item's parent
// work-group
range<1> get_group_range() const;

// Return the index of the work-item in this sub-group
id<1> get_local_id() const;

// Return the number of work-items in this sub-group
range<1> get_local_range() const;

// Return the maximum number of work-items in any
// sub-group in this item's parent work-group
range<1> get_max_local_range() const;

};

Figure 4-21. Simplified definition of the sub_group class

Note that there are separate functions for querying the number of

work-items in the current sub-group and the maximum number of work-

items in any sub-group within the work-group. Whether and how these

differ depends on exactly how sub-groups are implemented for a specific

device, but the intent is to reflect any differences between the sub-group

size targeted by the compiler and the runtime sub-group size. For example,

very small work-groups may contain fewer work-items than the compile-

time sub-group size, or sub-groups of different sizes may be used to handle

work-groups and dimensions that are not divisible by the sub-group size.

 Mapping Computation to Work-Items
Most of the code examples so far have assumed that each instance of a

kernel function corresponds to a single operation on a single piece of

data. This is a straightforward way to write kernels, but such a one-to-one

mapping is not dictated by SYCL or any of the kernel forms—we always

Chapter 4 expressinG parallelism

128

have complete control over the assignment of data (and computation) to

individual work-items and making this assignment parameterizable can be

a good way to improve performance portability.

 One-to-One Mapping
When we write kernels such that there is a one-to-one mapping of work

to work-items, those kernels must always be launched with a range or

nd_range with a size exactly matching the amount of work that needs to

be done. This is the most obvious way to write kernels, and in many cases,

it works very well—we can trust an implementation to map work-items to

hardware efficiently.

However, when tuning for performance on a specific combination of

system and implementation, it may be necessary to pay closer attention

to low-level scheduling behaviors. The scheduling of work-groups to

compute resources is implementation-defined and could potentially be

dynamic (i.e., when a compute resource completes one work-group, the

next work-group it executes may come from a shared queue). The impact

of dynamic scheduling on performance is not fixed, and its significance

depends upon factors including the execution time of each instance of the

kernel function and whether the scheduling is implemented in software

(e.g., on a CPU) or hardware (e.g., on a GPU).

 Many-to-One Mapping
The alternative is to write kernels with a many-to-one mapping of work

to work-items. The meaning of the range changes subtly in this case: the

range no longer describes the amount of work to be done, but rather

the number of workers to use. By changing the number of workers and

the amount of work assigned to each worker, we can fine-tune work

distribution to maximize performance.

Chapter 4 expressinG parallelism

129

Writing a kernel of this form requires two changes:

 1. The kernel must accept a parameter describing the

total amount of work.

 2. The kernel must contain a loop assigning work to

work-items.

A simple example of such a kernel is given in Figure 4-22. Note that

the loop inside the kernel has a slightly unusual form—the starting index

is the work-item’s index in the global range, and the stride is the total

number of work-items. This round-robin scheduling of data to work-items

ensures that all N iterations of the loop will be executed by a work-item,

but also that linear work-items access contiguous memory locations (to

improve cache locality and vectorization behavior). Work can be similarly

distributed across groups or the work-items in individual groups to further

improve locality.

size_t N = ...; // amount of work
size_t W = ...; // number of workers
h.parallel_for(range{W}, [=](item<1> it) {
for (int i = it.get_id()[0]; i < N;

i += it.get_range()[0]) {
output[i] = function(input[i]);

}
});

Figure 4-22. Kernel with separate data and execution ranges

These work distribution patterns are common, and we expect that

future versions of SYCL will introduce syntactic sugar to simplify the

expression of work distribution in ND-range kernels.

Chapter 4 expressinG parallelism

130

 Choosing a Kernel Form
Choosing between the different kernel forms is largely a matter of personal

preference and heavily influenced by prior experience with other parallel

programming models and languages.

The other main reason to choose a specific kernel form is that it

is the only form to expose certain functionality required by a kernel.

Unfortunately, it can be difficult to identify which functionality will

be required before development begins—especially while we are still

unfamiliar with the different kernel forms and their interaction with

various classes.

We have constructed two guides based on our own experience to

help us navigate this complex space. These guides should be considered

initial suggestions and are definitely not intended to replace our own

experimentation—the best way to choose between the different kernel

forms will always be to spend some time writing in each of them,

in order to learn which form is the best fit for our application and

development style.

The first guide is the flowchart in Figure 4-23, which selects a kernel

form based on

 1. Whether we have previous experience with parallel

programming

 2. Whether we are writing a new code from scratch or

are porting an existing parallel program written in a

different language

 3. Whether our kernel is embarrassingly parallel or

reuses data between different instances of the kernel

function

Chapter 4 expressinG parallelism

131

 4. Whether we are writing a new kernel in SYCL to

maximize performance, to improve the portability of

our code, or because it provides a more productive

means of expressing parallelism than lower-level

languages

Figure 4-23. Helping choose the right form for our kernel

Chapter 4 expressinG parallelism

132

The second guide is the set of features exposed to each of the kernel

forms. Work-groups, sub-groups, group barriers, group-local memory,

group functions (e.g., broadcast), and group algorithms (e.g., scan, reduce)

are only available to ND-range kernels, and so we should prefer ND-

range kernels in situations where we are interested in expressing complex

algorithms or fine-tuning for performance.

The features available to each kernel form should be expected to

change as the language evolves, but we expect the basic trend to remain

the same: basic data-parallel kernels will not expose locality-aware

features and explicit ND-range kernels will expose all performance-

enabling features.

 Summary
This chapter introduced the basics of expressing parallelism in C++ with

SYCL and discussed the strengths and weaknesses of each approach to

writing data-parallel kernels.

SYCL provides support for many forms of parallelism, and we hope

that we have provided enough information to prepare readers to dive in

and start coding!

We have only scratched the surface, and a deeper dive into many of

the concepts and classes introduced in this chapter is forthcoming: the

usage of local memory, barriers, and communication routines are covered

in Chapter 9; different ways of defining kernels besides using lambda

expressions are discussed in Chapters 10 and 20; detailed mappings of the

ND-range execution model to specific hardware are explored in Chapters

15, 16, and 17; and best practices for expressing common parallel patterns

using SYCL are presented in Chapter 14.

Chapter 4 expressinG parallelism

133

Open Access This chapter is licensed under the terms of

the Creative Commons Attribution 4.0 International License

(https://creativecommons.org/licenses/by/4.0/), which permits use,

sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter’s Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter’s

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 4 expressinG parallelism

https://creativecommons.org/licenses/by/4.0/

135

CHAPTER 5

Error Handling
Error handling is a key capability of C++. This chapter discusses the unique

error handling challenges when offloading work to a device (accelerator)

and how these challenges are made fully manageable to us by SYCL.

Detecting and dealing with unexpected conditions and errors can be

helpful during application development (think: the other programmer who

works on the project who does make mistakes), but more importantly play

a critical role in stable and safe production applications and libraries. We

devote this chapter to describing the error handling mechanisms available

in C++ with SYCL so that we can understand what our options are and how

to architect applications if we care about detecting and managing errors.

This chapter overviews synchronous and asynchronous errors in SYCL,

describes the behavior of an application if we do nothing in our code to

handle errors, and dives into the SYCL-specific mechanisms that allow us

to handle asynchronous errors.

 Safety First
A core aspect of C++ error handling is that if we do nothing to handle an

error that has been detected (thrown), then the application will terminate

and indicate that something went wrong. This behavior allows us to write

applications without focusing on error management and still be confident

that errors will somehow be signaled to a developer or user. We’re not

suggesting that we should ignore error handling, of course! Production

applications should be written with error management as a core part of

© Intel Corporation 2023
J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-9691-2_5

https://doi.org/10.1007/978-1-4842-9691-2_5

136

the architecture, but applications often start development without such

a focus. C++ aims to make code which doesn’t handle errors still able to

observe many errors, even when they are not dealt with explicitly.

Since SYCL is data parallel C++, the same philosophy holds: if we

do nothing in our code to manage errors and an error is detected, an

abnormal termination of the program will occur to let us know that

something bad happened. Production applications should of course

consider error management as a core part of the software architecture, not

only reporting but often also recovering from error conditions.

If we don’t add any error management code and an error occurs, we
will still see an abnormal program termination which is an indication
to dig deeper.

 Types of Errors
C++ provides a framework for notification and handling of errors through

its exception mechanism. Heterogeneous programming requires an

additional level of error management beyond this because some errors

occur on a device or when trying to launch work on a device. These errors

are typically decoupled in time from the host program’s execution, and

as such they don’t integrate cleanly with regular C++ exception handling

mechanisms. To solve this, there are additional mechanisms to make

asynchronous errors as manageable and controllable as typical C++

exceptions.

Figure 5-1 shows two components of a typical application: (1) the host

code that runs sequentially and submits work to the task graph for future

execution and (2) the task graph which runs asynchronously from the

host program and executes kernels or other actions on devices when the

Chapter 5 error handlIng

137

necessary dependences are met. The example shows a parallel_for as

the operation that executes asynchronously as part of the task graph, but

other operations are possible as well as discussed in Chapters 3, 4, and 8.

#include <iostream>
#include <sycl/sycl.hpp>
using namespace sycl;

int main() {
constexpr int size = 16;
buffer<int> b{range{size}};

// Create queue on any available device
queue q;

q.submit([&](handler& h) {
accessor a{b, h};

h.parallel_for(size, [=](auto& idx) {
a[idx] = idx;

});
});

// Obtain access to buffer on the host
// Will wait for device kernel to execute to generate data
host_accessor a{b};
for (int i = 0; i < size; i++)
std::cout << "data[" << i << "] = " << a[i] << "\n";

return 0;
}

Figure 5-1. Separation of host program and task graph executions

The distinction between the left and right (host and task graph)

sides of Figure 5-1 is the key to understanding the differences between

synchronous and asynchronous errors.

Synchronous errors occur when an error condition can be detected

as the host program executes an operation, such as an API call or object

construction. They can be detected before an instruction on the left side

of the figure completes, and the error can be thrown immediately by the

operation that caused the error. We can wrap specific instructions on the

left side of the diagram with a try-catch construct, expecting that errors

Chapter 5 error handlIng

138

occurring as a result of operations within the try will be detected before

the try block ends (and therefore caught). The C++ exception mechanism

is designed to handle exactly these types of errors.

Asynchronous errors occur as part of the right side of Figure 5-1,

where an error is only detected when an operation in the task graph is

executed. By the time that an asynchronous error is detected as part of task

graph execution, the host program has typically already moved on with

its execution, so there is no code to wrap with a try-catch construct to

catch these errors. There is instead an asynchronous exception handling

framework in SYCL to handle these errors that occur at seemingly random

and uncontrolled times relative to host program execution.

 Let’s Create Some Errors!
As examples for the remainder of this chapter and to allow us to

experiment, we’ll create both synchronous and asynchronous errors in the

following examples.

#include <sycl/sycl.hpp>
using namespace sycl;

int main() {
buffer<int> b{range{16}};

// ERROR: Create sub-buffer larger than size of parent
// buffer. An exception is thrown from within the buffer
// constructor.
buffer<int> b2(b, id{8}, range{16});

return 0;
}

Example Output:
terminate called after throwing an instance of 'sycl::_V1::invalid_object_error'
what(): Requested sub-buffer size exceeds the size of the parent buffer -30

(PI_ERROR_INVALID_VALUE)
Aborted

Figure 5-2. Creating a synchronous error

Chapter 5 error handlIng

139

 Synchronous Error
In Figure 5-2, a sub-buffer is created from a buffer but with an illegal size

(larger than the original buffer). The constructor of the sub-buffer detects

this error and throws an exception before the constructor’s execution

completes. This is a synchronous error because it occurs as part of

(synchronously with) the host program’s execution. The error is detectable

before the constructor returns, so the error may be handled immediately at

its point of origin or detection in the host program.

Our code example doesn’t do anything to catch and handle C++

exceptions, so the default C++ uncaught exception handler calls

std::terminate for us, signaling that something went wrong.

 Asynchronous Error
Generating an asynchronous error is a bit trickier because

implementations work hard to detect and report errors synchronously

whenever possible. Synchronous errors are easier to debug because

they occur at a specific point of origin in the host program, so are

preferred by implementations whenever possible. One way to generate

an asynchronous error for our demonstration purpose is to throw an

exception inside a host task, which executes asynchronously as part of

the task graph. Figure 5-3 demonstrates such an exception. Asynchronous

errors can occur and be reported in many situations, so note that this host

task example shown in Figure 5-3 is only one possibility and in no way a

requirement for asynchronous errors.

Chapter 5 error handlIng

140

#include <sycl/sycl.hpp>
using namespace sycl;

// Our example asynchronous handler function
auto handle_async_error = [](exception_list elist) {
for (auto &e : elist) {
try {
std::rethrow_exception(e);

} catch (...) {
std::cout << "Caught SYCL ASYNC exception!!\n";

}
}

};

void say_device(const queue &Q) {
std::cout << "Device : "

<< Q.get_device().get_info<info::device::name>()
<< "\n";

}

class something_went_wrong {}; // Example exception type

int main() {
queue q{cpu_selector_v, handle_async_error};
say_device(q);

q.submit([&](handler &h) {
h.host_task([]() { throw(something_went_wrong{}); });

}).wait();

return 0;
}

Example output:
Device : Intel(R) Xeon(R) Gold 6128 CPU @ 3.40GHz
Caught SYCL ASYNC exception!!

Figure 5-3. Creating an asynchronous error

 Application Error Handling Strategy
The C++ exception features are designed to cleanly separate the point

in a program where an error is detected from the point where it may

be handled, and this concept fits very well with both synchronous and

Chapter 5 error handlIng

141

asynchronous errors in SYCL. Through the throw and catch mechanisms,

a hierarchy of handlers can be defined which can be important in

production applications.

Building an application that can handle errors in a consistent

and reliable way requires a strategy up front and a resulting software

architecture built for error management. C++ provides flexible tools to

implement many alternative strategies, but such architecture is beyond the

scope of this chapter. There are many books and other references devoted

to this topic, so we encourage looking to them for full coverage of C++ error

management strategies.

This said, error detection and reporting doesn’t always need to

be production-scale. Errors in a program can be reliably detected and

reported through minimal code if the goal is simply to detect errors

during execution and to report them (but not necessarily to recover from

them). The following sections cover first what happens if we ignore error

handling and do nothing (the default behavior isn’t all that bad!), followed

by recommended error reporting that is simple to implement in basic

applications.

 Ignoring Error Handling
C++ and SYCL are designed to tell us that something went wrong even

when we don’t handle errors explicitly. The default result of unhandled

synchronous or asynchronous errors is abnormal program termination

which an operating system should tell us about. The following two

examples mimic the behavior that will occur if we do not handle a

synchronous and an asynchronous error, respectively.

Figure 5-4 shows the result of an unhandled C++ exception, which

could be an unhandled SYCL synchronous error, for example. We can

use this code to test what a particular operating system will report in

such a case.

Chapter 5 error handlIng

142

#include <iostream>

class something_went_wrong {};

int main() {
std::cout << "Hello\n";

throw(something_went_wrong{});
}

Example output:
Hello
terminate called after throwing an instance of 'something_went_wrong'
Aborted

Figure 5-4. Unhandled exception in C++

Figure 5-5 shows example output from std::terminate being called,

which will be the result of an unhandled SYCL asynchronous error in

our application. We can use this code to test what a particular operating

system will report in such a case.

#include <iostream>

int main() {
std::cout << "Hello\n";

std::terminate();
}

Example output:
Hello
terminate called without an active exception
Aborted

Figure 5-5. std::terminate is called when a SYCL asynchronous
exception isn’t handled

Although we should probably handle errors in our programs, uncaught

exceptions will eventually be caught and the program terminated, which is

better than exceptions being silently lost!

Chapter 5 error handlIng

143

 Synchronous Error Handling
We keep this section very short because SYCL synchronous errors are just

C++ exceptions. Most of the additional error mechanisms added in SYCL

relate to asynchronous errors which we cover in the next section, but

synchronous errors are important because implementations try to detect

and report as many errors synchronously as possible, since they are easier

to reason about and handle.

Synchronous errors defined by SYCL are of type sycl::exception, a

class derived from std::exception, which allows us to catch the SYCL

errors specifically though a try-catch structure such as what we see in

Figure 5-6.

try {
// Do some SYCL work

} catch (sycl::exception &e) {
// Do something to output or handle the exception
std::cout << "Caught sync SYCL exception: " << e.what()

<< "\n";
return 1;

}

Figure 5-6. Pattern to catch sycl::exception specifically

On top of the C++ error handling mechanisms, SYCL adds a

sycl::exception type for the exceptions thrown by the runtime.

Everything else is standard C++ exception handling, so will be familiar to

most developers.

A slightly more complete example is provided in Figure 5-7, where

additional classes of exception are handled.

Chapter 5 error handlIng

144

#include <sycl/sycl.hpp>
using namespace sycl;

int main() {
try {

buffer<int> b{range{16}};

// ERROR: Create sub-buffer larger than size of parent
// buffer. An exception is thrown from within the buffer
// constructor.
buffer<int> b2(b, id{8}, range{16});

} catch (sycl::exception &e) {
// Do something to output or handle the exception
std::cout << "Caught synchronous SYCL exception: "

<< e.what() << "\n";
return 1;

} catch (std::exception &e) {
std::cout << "Caught std exception: " << e.what()

<< "\n";
return 2;

} catch (...) {
std::cout << "Caught unknown exception\n";
return 3;

}

return 0;
}

Example output:
Caught synchronous SYCL exception: Requested sub-buffer
size exceedsthe size of the parent buffer -30
(PI_ERROR_INVALID_VALUE)

Figure 5-7. Pattern to catch exceptions from a block of code

 Asynchronous Error Handling
Asynchronous errors are detected by the SYCL runtime (or an underlying

backend), and the errors occur independently of execution of commands

in the host program. The errors are stored in lists internal to the SYCL

Chapter 5 error handlIng

145

runtime and only released for processing at specific points that the

programmer can control. There are two topics that we need to discuss to

cover handling of asynchronous errors:

 1. What the handler should do, when invoked on

outstanding asynchronous errors to process

 2. When the asynchronous handler is invoked

 The Asynchronous Handler
The asynchronous handler is a function that the application defines, which

is registered with SYCL contexts and/or queues. At the times defined by the

next section, if there are any unprocessed asynchronous exceptions that

are available to be handled, then the asynchronous handler is invoked by

the SYCL runtime and passed a list of these exceptions.

The asynchronous handler is passed to a context or queue constructor

as a std::function and can be defined in ways such as a regular function,

lambda expression, or function object, depending on our preference. The

handler must accept a sycl::exception_list argument, such as in the

example handler shown in Figure 5-8.

// Our simple asynchronous handler function
auto handle_async_error = [](exception_list elist) {
for (auto& e : elist) {

try {
std::rethrow_exception(e);

} catch (sycl::exception& e) {
std::cout << "ASYNC EXCEPTION!!\n";
std::cout << e.what() << "\n";

}
}

};

Figure 5-8. Example asynchronous handler implementation defined
as a lambda

Chapter 5 error handlIng

146

In Figure 5-8, the std::rethrow_exception followed by catch of

a specific exception type provides filtering of the type of exception, in

this case to only sycl::exception. We can also use alternative filtering

approaches in C++ or just choose to handle all exceptions regardless of

the type.

The handler is associated with a queue or context (low-level detail

covered more in Chapter 6) at construction time. For example, to register

the handler defined in Figure 5-8 with a queue that we are creating, we

could write

queue my_queue{ gpu_selector_v, handle_async_error };

Likewise, to register the handler defined in Figure 5-8 with a context

that we are creating, we could write

context my_context{ handle_async_error };

Most applications do not need contexts to be explicitly created or

managed (they are created behind the scenes for us automatically), so

if an asynchronous handler is going to be used, most developers should

associate such handlers with queues that are being constructed for specific

devices (and not explicit contexts).

In defining asynchronous handlers, most developers should define
them on queues unless already explicitly managing contexts for other
reasons.

If an asynchronous handler is not defined for a queue or the queue’s

parent context and an asynchronous error occurs on that queue (or in the

context) that must be processed, then the default asynchronous handler

is invoked. The default handler operates as if it was coded as shown in

Figure 5-9.

Chapter 5 error handlIng

147

// Our simple asynchronous handler function
auto handle_async_error = [](exception_list elist) {
for (auto& e : elist) {

try {
std::rethrow_exception(e);

} catch (sycl::exception& e) {
// Print information about the asynchronous exception

} catch (...) {
// Print information about non-sycl::exception

}
}

// Terminate abnormally to make clear to user that
// something unhandled happened
std::terminate();

};

Example output:
Device : Intel(R) Xeon(R) Gold 6128 CPU @ 3.40GHz
terminate called without an active exception
Aborted

Figure 5-9. Example of how the default asynchronous
handler behaves

The default handler should display some information to the user on

any errors in the exception list and then will end the application through

std::terminate, which should cause the operating system to report that

termination was abnormal.

What we put within an asynchronous handler is up to us. It can range

from logging of an error to application termination to recovery of the

error condition so that an application can continue executing normally.

The common case is to report any details of the error available by calling

sycl::exception::what(), followed by termination of the application.

Although it’s up to us to decide what an asynchronous handler does

internally, a common mistake is to print an error message (that may be

missed in the noise of other messages from the program), followed by

completion of the handler function. Unless we have error management

principles in place that allow us to recover a known program state and

Chapter 5 error handlIng

148

to be confident that it’s safe to continue execution, we should consider

terminating the application within our asynchronous handler function(s).

This reduces the chance that incorrect results will appear from a program

where an error was detected, but where the application was inadvertently

allowed to continue with execution regardless. In many programs,

abnormal termination is the preferred result once we have detected an

asynchronous exception.

Consider terminating applications within an asynchronous handler,
after outputting information about the error, if comprehensive error
recovery and management mechanisms are not in place.

 Invocation of the Handler
The asynchronous handler is called by the runtime at specific times. Errors

aren’t reported immediately as they occur because management of errors

and safe application programming (particularly multithreaded) would

become more difficult and expensive (e.g., additional synchronizations

between host and device) if that was the case. The asynchronous handler

is instead called at the following very specific times:

 1. When the host program calls queue::throw_

asynchronous() on a specific queue

 2. When the host program calls queue::wait_and_

throw() on a specific queue

 3. When the host program calls event::wait_and_

throw() on a specific event

 4. When a queue is destroyed

 5. When a context is destroyed

Chapter 5 error handlIng

149

Methods 1–3 provide a mechanism for a host program to control

when asynchronous exceptions are handled, so that thread safety and

other details specific to an application can be managed. They effectively

provide controlled points at which asynchronous exceptions enter the

host program control flow and can be processed almost as if they were

synchronous errors.

If a user doesn’t explicitly call one of the methods 1–3, then

asynchronous errors are commonly reported during program teardown

when queues and contexts are destroyed. This is often enough to signal to

a user that something went wrong and that program results shouldn’t be

trusted.

Relying on error detection during program teardown doesn’t work

in all cases, though. For example, if a program will only terminate when

some algorithm convergence criteria are achieved and if those criteria

are only achievable by successful execution of device kernels, then an

asynchronous exception may signal that the algorithm will never converge

and begin the teardown (where the error would be noticed). In these cases,

and also in production applications where more complete error handling

strategies are in place, it makes sense to invoke throw_asynchronous() or

wait_and_throw() at regular and controlled points in the program (e.g.,

before checking whether algorithm convergence has occurred).

 Errors on a Device
The error detection and handling mechanisms discussed in this chapter

have been host-based. They are mechanisms through which the host

program can detect and deal with something that may have gone wrong

either in the host program or potentially during execution of kernels on

devices. What we have not covered is how to signal, from within the device

code that we write, that something has gone wrong. This omission is not a

mistake, but quite intentional.

Chapter 5 error handlIng

150

SYCL explicitly disallows C++ exception handling mechanisms (such

as throw) within device code, because there are performance costs for

some types of devices that we usually don’t want to pay. If we detect that

something has gone wrong within our device code, we should signal the

error using existing non-exception-based techniques. For example, we

could write to a buffer that logs errors or returns some invalid result from

our numeric calculation that we define to mean that an error occurred.

The right strategy in these cases is very application specific.

 Summary
In this chapter, we introduced synchronous and asynchronous errors,

covered the default behavior to expect if we do nothing to manage

errors that might occur, and covered the mechanisms used to handle

asynchronous errors at controlled points in our application. Error

management strategies are a major topic in software engineering and a

significant percentage of the code written in many applications. SYCL

integrates with the C++ knowledge that we already have when it comes

to error handling and provides flexible mechanisms to integrate with

whatever our preferred error management strategy is.

Chapter 5 error handlIng

151

Open Access This chapter is licensed under the terms of

the Creative Commons Attribution 4.0 International License

(https://creativecommons.org/licenses/by/4.0/), which permits use,

sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter’s Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter’s

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 5 error handlIng

https://creativecommons.org/licenses/by/4.0/

153

CHAPTER 6

Unified Shared
Memory
The next two chapters provide a deeper look into how to manage data.

There are two different approaches that complement each other: Unified

Shared Memory (USM) and buffers. USM exposes a different level of

abstraction for memory than buffers—USM uses pointers, and buffers are

a higher-level interface. This chapter focuses on USM. The next chapter

will focus on buffers.

Unless we specifically know that we want to use buffers, USM is a good

place to start. USM is a pointer-based model that allows memory to be

read and written through regular C++ pointers.

 Why Should We Use USM?
Since USM is based on C++ pointers, it is a natural place to start for

existing pointer-based C++ codes. Existing functions that take pointers

as parameters continue to work without modification. In the majority of

cases, the only changes required are to replace existing calls to malloc or

new with USM-specific allocation routines that we will discuss later in this

chapter.

© Intel Corporation 2023
J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-9691-2_6

https://doi.org/10.1007/978-1-4842-9691-2_6

154

 Allocation Types
While USM is based on C++ pointers, not all pointers are created equal. USM

defines three different types of allocations, each with unique semantics.

A device may not support all types (or even any type) of USM allocation.

We will learn how to query what a device supports later. The three types of

allocations and their characteristics are summarized in Figure 6-1.

Figure 6-1. USM allocation types

 Device Allocations
This first type of allocation is what we need in order to have a pointer into

a device’s attached memory, such as (G)DDR or HBM. Device allocations

can be read from or written to by kernels running on a specific device,

but they cannot be directly accessed from code executing on the host

(and usually not by devices either). Trying to access a device allocation

on the host can result in either incorrect data or a program crashing due

to an error. We must copy data between host and device using the explicit

USM memcpy mechanisms, which specify how much data must be copied

between two places, that will be covered later in this chapter.

Chapter 6 Unified Shared MeMory

155

 Host Allocations
This second type of allocation is easier to use than device allocations since

we do not have to manually copy data between the host and the device.

Host allocations are allocations in host memory that are accessible on both

the host and the device. These allocations, while accessible on the device,

cannot migrate to the device’s attached memory. Instead, kernels may

remotely read from or write to this memory, often over a slower bus such as

PCI Express (or really not differently at all if it’s a CPU device or integrated

GPU device). This trade-off between convenience and performance is

something that we must take into consideration. Despite the higher access

costs that host allocations can incur, there are still valid reasons to use

them. Examples include rarely accessed data, large data sets that cannot

fit inside device-attached memory, or that a device may not support

alternatives like shared allocations which are described next.

 Shared Allocations
The final type of allocation combines attributes of both device and host

allocations, combining the programmer convenience of host allocations

with the greater performance afforded by device allocations. Like host

allocations, shared allocations are accessible on both the host and device.

The difference between them is that shared allocations are free to migrate

between host memory and device-attached memory, automatically,

without our intervention. If an allocation has migrated to the device,

any kernel executing on that device accessing it will do so with greater

performance than remotely accessing it from the host. However, shared

allocations do not give us all the benefits without any drawbacks.

Automatic migration can be implemented in a variety of ways. No

matter which way the runtime chooses to implement shared allocations,

they usually pay a price of increased latency. With device allocations, we

know exactly how much memory needs to be copied and can schedule the

Chapter 6 Unified Shared MeMory

156

copy to begin as early as possible. The automatic migration mechanisms

cannot see the future and, in some cases, do not begin moving data until a

kernel tries to access it. The kernel must then wait, or block, until the data

movement has completed before it can continue executing. In other cases,

the runtime may not know exactly how much data the kernel will access

and might conservatively move a larger amount of data than is required,

also increasing latency for the kernel.

We should also note that while shared allocations can migrate, it does

not necessarily mean that all implementations of SYCL will migrate them.

We expect most implementations to implement shared allocations with

migration, but some devices may prefer to implement them identically to

host allocations. In such an implementation, the allocation is still visible

on both host and device, but we may not see the performance gains that a

migrating implementation could provide.

 Allocating Memory
USM allows us to allocate memory in a variety of different ways that cater

to different needs and preferences. However, before we go over all the

methods in greater detail, we should discuss how USM allocations differ

from regular C++ allocations.

 What Do We Need to Know?
Regular C++ programs can allocate memory in multiple ways: new, malloc,

or allocators. No matter which syntax we prefer, memory allocation is

ultimately performed by the system allocator in the host operating system.

When we allocate memory in C++, the only concerns are “How much

memory do we need?” and “How much memory is available to allocate?”

However, USM requires extra information before an allocation can be

performed.

Chapter 6 Unified Shared MeMory

157

First, USM allocation needs to specify which type of allocation is

desired: device, host, or shared. It is important to request the right type

of allocation in order to obtain the desired behavior. Next, every USM

allocation must specify a context object against which the allocation will

be made. Most of the examples in the book instead pass a queue object

(which then provides the context). The context object hasn’t had a lot of

discussion in this book up to this point, so it’s worth saying a little about

it here. A context represents a device or set of devices on which we can

execute kernels. We can think of a context as a convenient place for the

runtime to stash some state about what it’s doing. Programmers are not

likely to directly interact with contexts outside of passing them around

in most SYCL programs. We do offer a few tips regarding contexts in

Chapter 13.

USM allocations are not guaranteed to be usable across different

contexts—it is important that all USM allocations, queues, and kernels

share the same context object. Typically, we can obtain this context from

the queue being used to submit work to a device.

Finally, device allocations (and some shared allocations) also require

that we specify which device will provide the memory for the allocation.

This is important since we do not want to oversubscribe the memory of

our devices (unless the device is able to support this—we will say more

about that later in the chapter when we discuss migration of data). USM

allocation routines can be distinguished from their C++ analogues by the

addition of these extra parameters.

 Multiple Styles
Sometimes, trying to please everyone with a single option proves to be an

impossible task, just as some people prefer coffee over tea, or emacs over

vi. If we ask programmers what an allocation interface should look like,

we will get several different answers back. USM embraces this diversity of

Chapter 6 Unified Shared MeMory

158

choice and provides several different flavors of allocation interfaces. These

different flavors are C-style, C++-style, and C++ allocator–style. We will now

discuss each and point out their similarities and differences.

 Allocations à la C

The first style of allocation functions (listed in Figure 6-2, later used

in examples shown in Figures 6-6 and 6-7) is modeled after memory

allocation in C: malloc functions that take a number of bytes to allocate

and return a void * pointer. This style of function is type agnostic. We

must specify the total number of bytes to allocate, which means if we want

to allocate N objects of type X, one must ask for N * sizeof(X) total bytes.

The returned pointer is of type void *, which means that we must then

cast it to an appropriate pointer to type X. This style is very simple but can

be verbose due to the size calculations and typecasting required.

We can further divide this style of allocation into two categories:

named functions and single function. The distinction between these two

flavors is how we specify the desired type of USM allocation. With the

named functions (malloc_device, malloc_host, and malloc_shared),

the type of USM allocation is encoded in the function name. The single

function malloc requires the type of USM allocation to be specified as an

additional parameter. Neither flavor is better than the other, and the choice

of which to use is governed by our preference.

We cannot move on without briefly mentioning alignment. Each

version of malloc also has an aligned_alloc counterpart. The malloc

functions return memory aligned to the default behavior of our device. On

success it will return a legal pointer with a valid alignment, but there may

be cases where we would prefer to manually specify an alignment. In these

cases, we should use one of the aligned_alloc variants that also require

us to specify the desired alignment for the allocation. Legal alignments

are powers of two. It’s worth noting that on many devices, allocations are

Chapter 6 Unified Shared MeMory

159

maximally aligned to correspond to features of the hardware, so while we

may ask for allocations to be 4-, 8-, 16-, or 32-byte aligned, we might in

practice see larger alignments that give us what we ask for and then some.

// Named Functions
void *malloc_device(size_t size, const device &dev,

const context &ctxt);
void *malloc_device(size_t size, const queue &q);
void *aligned_alloc_device(size_t alignment, size_t size,

const device &dev,
const context &ctxt);

void *aligned_alloc_device(size_t alignment, size_t size,
const queue &q);

void *malloc_host(size_t size, const context &ctxt);
void *malloc_host(size_t size, const queue &q);
void *aligned_alloc_host(size_t alignment, size_t size,

const context &ctxt);
void *aligned_alloc_host(size_t alignment, size_t size,

const queue &q);

void *malloc_shared(size_t size, const device &dev,
const context &ctxt);

void *malloc_shared(size_t size, const queue &q);
void *aligned_alloc_shared(size_t alignment, size_t size,

const device &dev,
const context &ctxt);

void *aligned_alloc_shared(size_t alignment, size_t size,
const queue &q);

// Single Function
void *malloc(size_t size, const device &dev,

const context &ctxt, usm::alloc kind);
void *malloc(size_t size, const queue &q, usm::alloc kind);
void *aligned_alloc(size_t alignment, size_t size,

const device &dev, const context &ctxt,
usm::alloc kind);

void *aligned_alloc(size_t alignment, size_t size,
const queue &q, usm::alloc kind);

Figure 6-2. C-style USM allocation functions

Chapter 6 Unified Shared MeMory

160

 Allocations à la C++

The next flavor of USM allocation functions (listed in Figure 6-3) is very

similar to the first but with more of a C++ look and feel. We once again

have both named and single function versions of the allocation routines as

well as our default and user-specified alignment versions. The difference

is that now our functions are C++ templated functions that allocate Count

objects of type T and return a pointer of type T *. Taking advantage of

modern C++ simplifies things, since we no longer need to manually

calculate the total size of the allocation in bytes or cast the returned

pointer to the appropriate type. This also tends to yield a more compact

and less error-prone expression in code. However, we should note that

unlike “new” in C++, malloc-style interfaces do not invoke constructors for

the objects being allocated—we are simply allocating enough bytes to fit

that type.

This flavor of allocation is a good place to start for new codes written

with USM in mind. The previous C-style is a good starting point for existing

C++ codes that already make heavy use of C or C++ malloc, to which we

will add the use of USM.

Chapter 6 Unified Shared MeMory

161

// Named Functions
template <typename T>
T *malloc_device(size_t Count, const device &Dev,

const context &Ctxt);
template <typename T>
T *malloc_device(size_t Count, const queue &Q);
template <typename T>
T *aligned_alloc_device(size_t Alignment, size_t Count,

const device &Dev,
const context &Ctxt);

template <typename T>
T *aligned_alloc_device(size_t Alignment, size_t Count,

const queue &Q);

template <typename T>
T *malloc_host(size_t Count, const context &Ctxt);
template <typename T>
T *malloc_host(size_t Count, const queue &Q);
template <typename T>
T *aligned_alloc_host(size_t Alignment, size_t Count,

const context &Ctxt);
template <typename T>
T *aligned_alloc_host(size_t Alignment, size_t Count,

const queue &Q);

template <typename T>
T *malloc_shared(size_t Count, const device &Dev,

const context &Ctxt);
template <typename T>
T *malloc_shared(size_t Count, const queue &Q);
template <typename T>
T *aligned_alloc_shared(size_t Alignment, size_t Count,

const device &Dev,
const context &Ctxt);

template <typename T>
T *aligned_alloc_shared(size_t Alignment, size_t Count,

const queue &Q);

// Single Function
template <typename T>
T *malloc(size_t Count, const device &Dev,

const context &Ctxt, usm::alloc Kind);
template <typename T>
T *malloc(size_t Count, const queue &Q, usm::alloc Kind);
template <typename T>
T *aligned_alloc(size_t Alignment, size_t Count,

const device &Dev, const context &Ctxt,
usm::alloc Kind);

template <typename T>
T *aligned_alloc(size_t Alignment, size_t Count,

const queue &Q, usm::alloc Kind);

Figure 6-3. C++-style USM allocation functions

Chapter 6 Unified Shared MeMory

162

 C++ Allocators

The final flavor of USM allocation (Figure 6-4) embraces modern C++

even more than the previous flavor. This flavor is based on the C++

allocator interface, which defines objects that are used to perform

memory allocations either directly or indirectly inside a container such as

std::vector. This allocator flavor is most useful if our code makes heavy

use of container objects that can hide the details of memory allocation and

deallocation from the user, simplifying code and reducing the opportunity

for bugs.

Chapter 6 Unified Shared MeMory

163

template <typename T, usm::alloc AllocKind,
size_t Alignment = 0>

class usm_allocator {
public:
using value_type = T;
using propagate_on_container_copy_assignment =

std::true_type;
using propagate_on_container_move_assignment =

std::true_type;
using propagate_on_container_swap = std::true_type;

public:
template <typename U>
struct rebind {
typedef usm_allocator<U, AllocKind, Alignment> other;

};

usm_allocator() = delete;
usm_allocator(const context& syclContext,

const device& syclDevice,
const property_list& propList = {});

usm_allocator(const queue& syclQueue,
const property_list& propList = {});

usm_allocator(const usm_allocator& other);
usm_allocator(usm_allocator&&) noexcept;
usm_allocator& operator=(const usm_allocator&);
usm_allocator& operator=(usm_allocator&&);

template <class U>
usm_allocator(usm_allocator<U, AllocKind,

Alignment> const&) noexcept;

/// Allocate memory
T* allocate(size_t count);

/// Deallocate memory
void deallocate(T* Ptr, size_t count);

/// Equality Comparison
///
/// Allocators only compare equal if they are of the same
/// USM kind, alignment, context, and device
template <class U, usm::alloc AllocKindU,

size_t AlignmentU>
friend bool operator==(

const usm_allocator<T, AllocKind, Alignment>&,
const usm_allocator<U, AllocKindU, AlignmentU>&);

/// Inequality Comparison
/// Allocators only compare unequal if they are not of the
/// same USM kind, alignment, context, or device
template <class U, usm::alloc AllocKindU,

size_t AlignmentU>
friend bool operator!=(

const usm_allocator<T, AllocKind, Alignment>&,
const usm_allocator<U, AllocKindU, AlignmentU>&);

};

Figure 6-4. C++ allocator–style USM allocation functions

Chapter 6 Unified Shared MeMory

164

 Deallocating Memory
Whatever a program allocates must eventually be deallocated. USM

defines a free method to deallocate memory allocated by one of the

malloc or aligned_malloc functions. This free method also takes the

context in which the memory was allocated as an extra parameter. The

queue can also be substituted for the context. If memory was allocated

with a C++ allocator object, it should also be deallocated using that object.

#include <sycl/sycl.hpp>
using namespace sycl;
constexpr int N = 42;

int main() {
queue q;

// Allocate N floats

// C-style
float *f1 = static_cast<float *>(malloc_shared(

N * sizeof(float), q.get_device(), q.get_context()));

// C++-style
float *f2 = malloc_shared<float>(N, q);

// C++-allocator-style
usm_allocator<float, usm::alloc::shared> alloc(q);
float *f3 = alloc.allocate(N);

// Free our allocations
free(f1, q.get_context());
free(f2, q);
alloc.deallocate(f3, N);

return 0;
}

Figure 6-5. Three styles for allocation

Chapter 6 Unified Shared MeMory

165

 Allocation Example
In Figure 6-5, we show how to perform the same allocation using the

three styles just described. In this example, we allocate N single-precision

floating-point numbers as shared allocations. The first allocation f1 uses

the C-style void * returning malloc routines. For this allocation, we

explicitly pass the device and context that we obtain from the queue. We

must also cast the result back to a float *. The second allocation f2 does

the same thing but using the C++-style templated malloc. Since we pass

the type of our elements, float, to the allocation routine, we only need to

specify how many floats we want to allocate, and we do not need to cast

the result. We also use the form that takes the queue instead of the device

and context, yielding a very simple and compact statement. The third

allocation f3 uses the USM C++ allocator class. We instantiate an allocator

object of the proper type and then perform the allocation using that object.

Finally, we show how to properly deallocate each allocation.

 Data Management
Now that we understand how to allocate memory using USM, we will

discuss how data is managed. We can look at this in two pieces: data

initialization and data movement.

 Initialization
Data initialization concerns filling our memory with values before we

perform computations on it. One example of a common initialization

pattern is to fill an allocation with zeroes before it is used. If we were to do

this using USM allocations, we could do it in a variety of ways. First, we

could write a kernel to do this. If our data set is particularly large or the

initialization requires complex calculations, this is a reasonable way to

Chapter 6 Unified Shared MeMory

166

go since the initialization can be performed in parallel (and it makes the

initialized data ready to go on the device). Second, we could implement

this as a loop in host code over all the elements of an allocation that sets

each to zero. However, there is potentially a problem with this approach.

A loop would work fine for host and shared allocations since these are

accessible on the host. However, since device allocations are not accessible

on the host, a loop in host code would not be able to write to them. This

brings us to the third option.

The memset function is designed to efficiently implement this

initialization pattern. USM provides a version of memset that is a member

function of both the handler and queue classes. It takes three arguments:

the pointer representing the base address of the memory we want to set, a

byte value representing the byte pattern to set, and the number of bytes to

set to that pattern. Unlike a loop on the host, memset happens in parallel

and also works with device allocations.

While memset is a useful operation, the fact that it only allows us to

specify a byte pattern to fill into an allocation is rather limiting. USM also

provides a fill method (as a member of the handler and queue classes)

that lets us fill memory with an arbitrary pattern. The fill method is a

function templated on the type of the pattern we want to write into the

allocation. Template it with an int, and we can fill an allocation with the

32-bit integer number “42”. Similar to memset, fill takes three arguments:

the pointer to the base address of the allocation to fill, the value to fill, and

the number of times we want to write that value into the allocation.

 Data Movement
Data movement is probably the most important aspect of USM to

understand. If the right data is not in the right place at the right time, our

program will produce incorrect results. USM defines two strategies that we

Chapter 6 Unified Shared MeMory

167

can use to manage data: explicit and implicit. The choice of which strategy

we want to use is related to the types of USM allocations our hardware

supports or that we want to use.

 Explicit

The first strategy USM offers is explicit data movement (Figure 6-6).

Here, we must explicitly copy data between the host and device. We can

do this by invoking the memcpy method, found on both the handler and

queue classes. The memcpy method takes three arguments: a pointer to the

destination memory, a pointer to the source memory, and the number of

bytes to copy between host and device. We do not need to specify in which

direction the copy is meant to happen—this is implicit in the source and

destination pointers.

The most common usage of explicit data movement is copying to

or from device allocations in USM since they are not accessible on the

host. Having to insert explicit copying of data does require effort on our

part. Additionally, it can be a source of bugs: copies could be accidentally

omitted, an incorrect amount of data could be copied, or the source or

destination pointer could be incorrect.

However, explicit data movement does not only come with

disadvantages. It gives us large advantage: total control over data

movement. Control over both how much data is copied and when the data

gets copied is very important for achieving the best performance in some

applications. Ideally, we can overlap computation with data movement

whenever possible, ensuring that the hardware runs with high utilization.

The other types of USM allocations, host and shared, are both

accessible on host and device and do not need to be explicitly copied to

the device. This leads us to the other strategy for data movement in USM.

Chapter 6 Unified Shared MeMory

168

#include <array>
#include <sycl/sycl.hpp>
using namespace sycl;
constexpr int N = 42;

int main() {
queue q;

std::array<int, N> host_array;
int* device_array = malloc_device<int>(N, q);
for (int i = 0; i < N; i++) host_array[i] = N;

q.submit([&](handler& h) {
// copy host_array to device_array
h.memcpy(device_array, &host_array[0], N * sizeof(int));

});
q.wait(); // needed for now (we learn a better way later)

q.submit([&](handler& h) {
h.parallel_for(N, [=](id<1> i) { device_array[i]++; });

});
q.wait(); // needed for now (we learn a better way later)

q.submit([&](handler& h) {
// copy device_array back to host_array
h.memcpy(&host_array[0], device_array, N * sizeof(int));

});
q.wait(); // needed for now (we learn a better way later)

free(device_array, q);
return 0;

}

Figure 6-6. USM explicit data movement example

Chapter 6 Unified Shared MeMory

169

 Implicit

The second strategy that USM provides is implicit data movement

(example usage shown in Figure 6-7). In this strategy, data movement

happens implicitly, that is, without requiring input from us. With implicit

data movement, we do not need to insert calls to memcpy since we can

directly access the data through the USM pointers wherever we want to use

it. Instead, it becomes the job of the system to ensure that the data will be

available in the correct location when it is being used.

With host allocations, one could argue whether they really cause

data movement. Since, by definition, they always remain pointers to host

memory, the memory represented by a given host pointer cannot be stored

on the device. However, data movement does occur as host allocations

are accessed on the device. Instead of the memory being migrated to the

device, the values we read or write are transferred over the appropriate

interface to or from the kernel. This can be useful for streaming kernels

where the data does not need to remain resident on the device.

Implicit data movement mostly concerns USM shared allocations.

This type of allocation is accessible on both host and device and, more

importantly, can migrate between host and device. The key point is that

this migration happens automatically, or implicitly, simply by accessing

the data in a different location. Next, we will discuss several things to think

about when it comes to data migration for shared allocations.

Chapter 6 Unified Shared MeMory

170

Migration

With explicit data movement, we control how much data movement

occurs. With implicit data movement, the system handles this for us, but it

might not do it as efficiently. The SYCL runtime is not an oracle—it cannot

predict what data an application will access before it does it. Additionally,

pointer analysis remains a very difficult problem for compilers, which

may not be able to accurately analyze and identify every allocation that

might be used inside a kernel. Consequently, implementations of the

mechanisms for implicit data movement may make different decisions

based on the capabilities of the device that supports USM, which affects

both how shared allocations can be used and how they perform.

If a device is very capable, it might be able to migrate memory on

demand. In this case, data movement would occur after the host or

#include <sycl/sycl.hpp>
using namespace sycl;
constexpr int N = 42;

int main() {
queue q;

int* host_array = malloc_host<int>(N, q);
int* shared_array = malloc_shared<int>(N, q);
for (int i = 0; i < N; i++) host_array[i] = i;

q.submit([&](handler& h) {
h.parallel_for(N, [=](id<1> i) {

// access shared_array and host_array on device
shared_array[i] = host_array[i] + 1;

});
});
q.wait();

free(shared_array, q);
free(host_array, q);
return 0;

}

Figure 6-7. USM implicit data movement example

Chapter 6 Unified Shared MeMory

171

device attempts to access an allocation that is not currently in the desired

location. On-demand data greatly simplifies programming as it provides

the desired semantic that a USM shared pointer can be accessed anywhere

and just work. If a device cannot support on-demand migration

(Chapter 12 explains how to query a device for capabilities), it might still

be able to guarantee the same semantics with extra restrictions on how

shared pointers can be used.

The restricted form of USM shared allocations governs when and

where shared pointers may be accessed and how large shared allocations

can be. If a device cannot migrate memory on demand, that means the

runtime must be conservative and assume that a kernel might access

any allocation in its device-attached memory. This brings a couple of

consequences.

First, it means that the host and device should not try to access a

shared allocation at the same time. Applications should instead alternate

access in phases. The host can access an allocation, then a kernel can

compute using that data, and finally the host can read the results. Without

this restriction, the host is free to access different parts of an allocation

than a kernel is currently touching. Such concurrent access typically

happens at the granularity of a device memory page. The host could access

one page, while the device accesses another. Atomically accessing the

same piece of data will be covered in Chapter 19. Programmers may query

whether a device is limited by this restriction, and we will learn more

about the device query mechanism later.

The next consequence of this restricted form of shared allocations is

that allocations are limited by the total amount of memory attached to a

device. If a device cannot migrate memory on demand, it cannot migrate

data to the host to make room to bring in different data. If a device does

support on-demand migration, it is possible to oversubscribe its attached

memory, allowing a kernel to compute on more data than the device’s

memory could normally contain, although this flexibility may come with a

performance penalty due to extra data movement.

Chapter 6 Unified Shared MeMory

172

Fine-Grained Control

When a device supports on-demand migration of shared allocations, data

movement occurs after memory is accessed in a location where it is not

currently resident. However, a kernel can stall while waiting for the data

movement to complete. The next statement it executes may even cause

more data movement to occur and introduce additional latency to the

kernel execution.

SYCL gives us a way to modify the performance of the automatic

migration mechanisms. It does this by defining two functions: prefetch

and mem_advise. Figure 6-8 shows a simple utilization of each. These

functions let us give hints to the runtime about how kernels will access

data so that the runtime can choose to start moving data before a kernel

tries to access it. Note that this example uses the queue shortcut methods

that directly invoke parallel_for on the queue object instead of inside a

lambda passed to the submit method (a command group).

Chapter 6 Unified Shared MeMory

173

#include <sycl/sycl.hpp>
using namespace sycl;

// Appropriate values depend on your HW
constexpr int BLOCK_SIZE = 42;
constexpr int NUM_BLOCKS = 2500;
constexpr int N = NUM_BLOCKS * BLOCK_SIZE;

int main() {
queue q;
int *data = malloc_shared<int>(N, q);
int *read_only_data = malloc_shared<int>(BLOCK_SIZE, q);

for (int i = 0; i < N; i++) {
data[i] = -i;

 }

// Never updated after initialization
for (int i = 0; i < BLOCK_SIZE; i++) {

read_only_data[i] = i;
 }

// Mark this data as "read only" so the runtime can copy
// it to the device instead of migrating it from the host.
// Real values will be documented by your backend.
int HW_SPECIFIC_ADVICE_RO = 0;
q.mem_advise(read_only_data, BLOCK_SIZE,

HW_SPECIFIC_ADVICE_RO);
event e = q.prefetch(data, BLOCK_SIZE * sizeof(int));

for (int b = 0; b < NUM_BLOCKS; b++) {
q.parallel_for(range{BLOCK_SIZE}, e, [=](id<1> i) {

data[b * BLOCK_SIZE + i] += read_only_data[i];
});
if ((b + 1) < NUM_BLOCKS) {

// Prefetch next block
e = q.prefetch(data + (b + 1) * BLOCK_SIZE,

BLOCK_SIZE * sizeof(int));
 }
 }
q.wait();

free(data, q);
free(read_only_data, q);
return 0;

}

Figure 6-8. Fine-grained control via prefetch and mem_advise

Chapter 6 Unified Shared MeMory

174

The simplest way for us to do this is by invoking prefetch. This

function is invoked as a member function of the handler or queue class

and takes a base pointer and number of bytes. This lets us inform the

runtime that certain data is about to be used on a device so that it can

eagerly start migrating it. Ideally, we would issue these prefetch hints early

enough such that by the time the kernel touches the data, it is already

resident on the device, eliminating the latency we previously described.

The other function provided by SYCL is mem_advise. This function

allows us to provide device-specific hints about how memory will be used

in kernels. An example of such possible advice that we could specify is that

the data will only be read in a kernel, not written. In that case, the system

could realize it could copy, or duplicate, the data on the device, so that the

host’s version does not need to be updated after the kernel is complete.

However, the advice passed to mem_advise is specific to a particular device,

so be sure to check the documentation for hardware before using this

function.

 Queries
Finally, not all devices support every feature of USM. We should not

assume that all USM features are available if we want our programs to

be portable across different devices. USM defines several things that we

can query. These queries can be separated into two categories: pointer

queries and device capability queries. Figure 6-9 shows a simple utilization

of each.

The pointer queries in USM answer two questions. The first question

is “What type of USM allocation does this pointer point to?” The get_

pointer_type function takes a pointer and SYCL context and returns

a result of type usm::alloc, which can have four possible values: host,

device, shared, or unknown. The second question is “What device was this

USM pointer allocated against?” We can pass a pointer and a context to the

Chapter 6 Unified Shared MeMory

175

function get_pointer_device and get back a device object. This is mostly

used with device or shared USM allocations since it does not make much

sense with host allocations. The SYCL specification states that when used

with host allocations, the first device in the context is returned—this is

not for any particular reason other than to avoid throwing an exception,

which would seem a bit odd for code that may be templated on USM

allocation type.

The second type of query provided by USM concerns the capabilities

of a device. USM has its own list of device aspects that can be queried by

calling has on a device object. These queries can be used to test which

types of USM allocations are supported by a device. Additionally, we can

query if shared allocations may be concurrently accessed by the host and

device. The full list of queries is shown in Figure 6-10. In Chapter 12, we

will look at the query mechanism in more detail.

Chapter 6 Unified Shared MeMory

176

#include <sycl/sycl.hpp>
using namespace sycl;
namespace dinfo = info::device;
constexpr int N = 42;

template <typename T>
void foo(T data, id<1> i) {
data[i] = N;

}

int main() {
queue q;
auto dev = q.get_device();
auto ctxt = q.get_context();
bool usm_shared = dev.has(aspect::usm_shared_allocations);
bool usm_device = dev.has(aspect::usm_device_allocations);
bool use_USM = usm_shared || usm_device;

if (use_USM) {
int *data;
if (usm_shared) {
data = malloc_shared<int>(N, q);

} else /* use device allocations */ {
data = malloc_device<int>(N, q);

 }
std::cout << "Using USM with "

<< ((get_pointer_type(data, ctxt) ==
usm::alloc::shared)

? "shared"
: "device")

<< " allocations on "
<< get_pointer_device(data, ctxt)

 .get_info<dinfo::name>()
<< "\n";

q.parallel_for(N, [=](id<1> i) { foo(data, i); });
q.wait();
free(data, q);

} else /* use buffers */ {
buffer<int, 1> data{range{N}};
q.submit([&](handler &h) {

accessor a(data, h);
h.parallel_for(N, [=](id<1> i) { foo(a, i); });

});
q.wait();

 }
return 0;

}

Figure 6-9. Queries on USM pointers and devices

Chapter 6 Unified Shared MeMory

177

Aspect Description
aspect::usm_device_allocations This device supports device allocations

aspect::usm_host_allocations This device supports host allocations

aspect::usm_atomic_host_allocations This device supports host allocations

that may be modi�ied atomically by the

device

aspect::shared_allocations This device supports shared allocations

aspect::atomic_shared_allocations This device supports shared allocations

and the host and device may

concurrently access and atomically

modify shared allocations

aspect::usm_system_allocations This device supports using allocations

Figure 6-10. USM device aspects

 One More Thing
There is one more form of USM that we haven’t covered. The forms of

USM we have described in this chapter all require the use of special

allocation functions. While not a huge burden, this represents a change

from traditional C++ code that uses the system allocator in the form of

malloc or the new operator. While some devices today, such as CPUs, may

not need this requirement, most accelerator devices still need it. Thus,

we have described how to use the USM allocation functions in the name

of greater portability. However, we believe that we will soon see more

accelerator designs that support use of the system allocator. Such devices

will greatly simplify programs by freeing the programmer from worrying

about allocating the right type of USM memory or copying the correct

data at the appropriate time. In some sense, one can view eventual system

allocator support as the final evolution of USM—it would provide the

benefits of shared USM allocations without requiring the use of special

allocation functions.

Chapter 6 Unified Shared MeMory

178

 Summary
In this chapter, we’ve described Unified Shared Memory, a pointer-based

strategy for data management. We covered the three types of allocations

that USM defines. We discussed all the different ways that we can allocate

and deallocate memory with USM and how data movement can be either

explicitly controlled by us (the programmers) for device allocations or

implicitly controlled by the system for host or shared allocations. Finally,

we discussed how to query the different USM capabilities that a device

supports and how to query information about USM pointers in a program.

Since we have not discussed synchronization in this book in detail

yet, there is more on USM in later chapters when we discuss scheduling,

communications, and synchronization. Specifically, we cover these

additional considerations for USM in Chapters 8, 9, and 19.

In the next chapter, we will cover the second strategy for data

management: buffers.

Open Access This chapter is licensed under the terms of

the Creative Commons Attribution 4.0 International License

(https://creativecommons.org/licenses/by/4.0/), which permits use,

sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter’s Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter’s

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 6 Unified Shared MeMory

https://creativecommons.org/licenses/by/4.0/

179

CHAPTER 7

Buffers
In this chapter, we will learn about the buffer abstraction. We learned

about Unified Shared Memory (USM), the pointer-based strategy for data

management, in the previous chapter. USM forces us to think about where

memory lives and what should be accessible where. The buffer abstraction

is a higher-level model that hides this from the programmer. Buffers simply

represent data, and it becomes the job of the runtime to manage how the

data is stored and moved in memory.

This chapter presents an alternative approach to managing our data.

The choice between buffers and USM often comes down to personal

preference and the style of existing code, and applications are free to mix

and match the two styles in representation of different data within the

application.

USM simply exposes different abstractions for memory. USM has

pointers, and buffers are a higher-level abstraction. The abstraction level

of buffers allows the data contained within to be used on any device within

the application, where the runtime manages whatever is needed to make

that data available. The pointer-based model of USM is probably a better

fit for applications that use pointer-based data structures such as linked

lists, trees, or others. Buffers can also be trickier to retrofit into existing

codes that already use pointers. However, buffers are guaranteed to work

on every device in the system, while some devices may not support specific

(or any) modes of USM. Choices are good, so let’s dive into buffers.

© Intel Corporation 2023
J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-9691-2_7

https://doi.org/10.1007/978-1-4842-9691-2_7

180

We will look more closely at how buffers are created and used. A

discussion of buffers would not be complete without also discussing the

accessor. While buffers abstract how we represent and store data in a

program, we do not directly access the data using the buffer. Instead, we

use accessor objects that inform the runtime how we intend to use the

data we are accessing, and accessors are tightly coupled to the powerful

data dependence mechanisms within task graphs. After we cover all the

things we can do with buffers, we will also explore how to create and use

accessors in our programs.

 Buffers
A buffer is a high-level abstraction for data. Buffers are not necessarily

tied to a single location or virtual memory address. Indeed, the runtime

is free to use many different locations in memory (even across different

devices) to represent a buffer, but the runtime must be sure to always give

us a consistent view of the data. A buffer is accessible on the host and on

any device.

The buffer class is a template class with three template arguments,

as shown in Figure 7-1. The first template argument is the type of the

object that the buffer will contain. This type must be device copyable,

which extends the notion of trivially copyable as defined by C++. Types

that are trivially copyable are safe to copy byte by byte without using any

special copy or move constructors. Device copyable types extend this

notion recursively to certain C++ types like std::pair or std::tuple.

The next template argument is an integer describing the dimensionality

of the buffer. The final template argument is optional, and the default

template <typename T, int Dimensions, AllocatorT allocator>
class buffer;

Figure 7-1. Buffer class definition

Chapter 7 Buffers

181

value is usually what is used. This argument specifies a C++-style allocator

class that is used to perform any memory allocations on the host that are

needed for the buffer. First, we will examine the many ways that buffer

objects can be created.

 Buffer Creation
In the following figures, we show several ways in which buffer objects can

be created. Let’s walk through the example and look at each instance.

The first buffer we create in Figure 7-2, b1, is a two-dimensional buffer

of ten integers. We explicitly pass all template arguments, even explicitly

passing the default value of buffer_allocator<T> as the allocator type.

Since buffer_allocator is also a templated type, we must explicitly

specialize it just as we do the buffer by specifying buffer_allocator<int>.

However, using modern C++, we can express this much more compactly.

Buffer b2 is also a two-dimensional buffer of ten integers using the default

allocator. Here we make use of C++17’s class template argument deduction

(CTAD) to automatically infer template arguments. CTAD is an all-or-none

// Create a buffer of 2x5 ints using the default allocator
buffer<int, 2, buffer_allocator<int>> b1{range<2>{2, 5}};

// Create a buffer of 2x5 ints using the default allocator
// and CTAD for range
buffer<int, 2> b2{range{2, 5}};

// Create a buffer of 20 floats using a
// default-constructed std::allocator
buffer<float, 1, std::allocator<float>> b3{range{20}};

// Create a buffer of 20 floats using a passed-in
// allocator
std::allocator<float> myFloatAlloc;
buffer<float, 1, std::allocator<float>> b4{range(20),

myFloatAlloc};

Figure 7-2. Creating buffers, Part 1

Chapter 7 Buffers

182

tool—it must either infer every template argument for a class or infer none

of them. In this case, we use the fact that we are initializing b2 with a range

that takes two arguments to infer that it is a two-dimensional range. The

allocator template argument has a default value, so we do not need to

explicitly list it when creating the buffer.

With buffer b3, we create a buffer of 20 floats and use a default-

constructed std::allocator to allocate any necessary memory on the

host. When using a custom allocator type with a buffer, we often want to

pass an actual allocator object to the buffer to use instead of the default-

constructed one. Buffer b4 shows how to do this, taking the allocator object

after the range in the call to its constructor.

For the first four buffers in our example, we let the buffer allocate any

memory it needs and we do not initialize that data with any values at the

time of their creation. It is a common pattern to use buffers to effectively

wrap existing C++ allocations, which may already have been initialized

with data. We can do this by passing a source of initial values to the buffer

constructor. Doing so allows us to do several things, which we will see with

the next example.

// Create a buffer of 4 doubles and initialize it from a
// host pointer
double myDoubles[4] = {1.1, 2.2, 3.3, 4.4};
buffer b5{myDoubles, range{4}};

// Create a buffer of 5 doubles and initialize it from a
// host pointer to const double
const double myConstDbls[5] = {1.0, 2.0, 3.0, 4.0, 5.0};
buffer b6{myConstDbls, range{5}};

// Create a buffer from a shared pointer to int
auto sharedPtr = std::make_shared<int>(42);
buffer b7{sharedPtr, range{1}};

Figure 7-3. Creating buffers, Part 2

Chapter 7 Buffers

183

In Figure 7-3, buffer b5 creates a one-dimensional buffer of four

doubles. We pass the host pointer to the C array myDoubles to the buffer

constructor in addition to the range that specifies the size of the buffer.

Here we can make full use of CTAD to infer all the template arguments

of our buffer. The host pointer we pass points to doubles, which gives us

the data type of our buffer. The number of dimensions is automatically

inferred from the one-dimensional range, which itself is inferred because

it is created with only one number. Finally, the default allocator is used, so

we do not have to specify that.

Passing a host pointer has a few ramifications of which we should be

aware. By passing a pointer to host memory, we are promising the runtime

that we will not try to access the host memory during the lifetime of the

buffer. This is not (and cannot be) enforced by a SYCL implementation—

it is our responsibility to ensure that we do not break this contract. One

reason that we should not try to access this memory while the buffer is

alive is that the buffer may choose to use different memory on the host to

represent the buffer content, often for optimization reasons. If it does so,

the values will be copied into this new memory from the host pointer. If

subsequent kernels modify the buffer, the original host pointer will not

reflect the updated values until certain specified synchronization points.

We will talk more about when data gets written back to a host pointer later

in this chapter.

Buffer b6 is very similar to buffer b5 with one major difference. This

time, we are initializing the buffer with a pointer to const double. This

means that we can only read values through the host pointer and not write

them. However, the type for our buffer in this example is still double, not

const double since the deduction guides do not take const-ness into

consideration. This means that the buffer may be written to by a kernel,

but we must use a different mechanism to update the host after the buffer

has outlived its use (covered later in this chapter).

Chapter 7 Buffers

184

Buffers can also be initialized using C++ shared pointer objects. This

is useful if our application already uses shared pointers, as this method of

initialization will properly count the reference and ensure that the memory

is not deallocated. Buffer b7 creates a buffer containing a single integer and

initializes it using a shared pointer.

Containers are commonly used in modern C++ applications, with

examples including std::array, std::vector, std::list, or std::map.

We can initialize one-dimensional buffers using containers in two

different ways. The first way, as shown in Figure 7-4 by buffer b8, uses

input iterators. Instead of a host pointer, we pass two iterators to the buffer

constructor, one representing the beginning of the data and another

representing the end. The size of the buffer is computed as the number

of elements returned by incrementing the start iterator until it equals

the end iterator. This is useful for any data type that implements the C++

InputIterator interface. If the container object that provides the initial

values for a buffer is also contiguous, then we can use an even simpler

form to create the buffer. Buffer b9 creates a buffer from a vector simply by

passing the vector to the constructor. The size of the buffer is determined

by the size of the container being used to initialize it, and the type for the

buffer data comes from the type of the container data. Creating buffers

using this approach is common and recommended from containers such

as std::vector and std::array.

// Create a buffer of ints from an input iterator
std::vector<int> myVec;
buffer b8{myVec.begin(), myVec.end()};
buffer b9{myVec};

// Create a buffer of 2x5 ints and 2 non-overlapping
// sub-buffers of 5 ints.
buffer<int, 2> b10{range{2, 5}};
buffer b11{b10, id{0, 0}, range{1, 5}};
buffer b12{b10, id{1, 0}, range{1, 5}};

Figure 7-4. Creating buffers, Part 3

Chapter 7 Buffers

185

The final example of buffer creation illustrates another feature of

the buffer class. It is possible to create a sub-buffer, which is a view of a

buffer from another buffer. A sub-buffer requires three things: a reference

to a parent buffer, a base index, and the range of the sub-buffer. A sub-

buffer cannot be created from a sub-buffer. Multiple sub-buffers can be

created from the same buffer, and they are free to overlap. Buffer b10 is

created exactly like buffer b2, a two-dimensional buffer of integers with

five integers per row. Next, we create two sub-buffers from buffer b10,

sub- buffers b11 and b12. Sub-buffer b11 starts at index (0,0) and contains

every element in the first row. Similarly, sub-buffer b12 starts at index

(1,0) and contains every element in the second row. This yields two

disjoint sub-buffers. Since the sub-buffers do not overlap, different kernels

could operate on the different sub-buffers concurrently, but we will talk

more about scheduling execution graphs and dependences in the next

chapter.

Chapter 7 Buffers

186

queue q;
int my_ints[42];

// Create a buffer of 42 ints
buffer<int> b{range(42)};

// Create a buffer of 42 ints, initialize with a host
// pointer, and add the use_host_pointer property
buffer b1{my_ints,

range(42),
{property::buffer::use_host_ptr{}}};

// Create a buffer of 42 ints, initialize with a host
// pointer, and add the use_mutex property
std::mutex myMutex;
buffer b2{my_ints,

range(42),
{property::buffer::use_mutex{myMutex}}};

// Retrieve a pointer to the mutex used by this buffer
auto mutexPtr =

b2.get_property<property::buffer::use_mutex>()
.get_mutex_ptr();

// Lock the mutex until we exit scope
std::lock_guard<std::mutex> guard{*mutexPtr};

// Create a context-bound buffer of 42 ints, initialized
// from a host pointer
buffer b3{

my_ints,
range(42),
{property::buffer::context_bound{q.get_context()}}};

Figure 7-5. Buffer properties

 Buffer Properties

Buffers can also be created with special properties that alter their behavior.

In Figure 7-5, we will walk through an example of the three different

optional buffer properties and discuss how they might be used. Note that

these properties are relatively uncommon in most codes.

Chapter 7 Buffers

187

use_host_ptr

The first property that may be optionally specified during buffer creation

is use_host_ptr. When present, this property requires the buffer to not

allocate any memory on the host, and any allocator passed or specified

on buffer construction is effectively ignored. Instead, the buffer must use

the memory pointed to by a host pointer that is passed to the constructor.

Note that this does not require the device to use the same memory to hold

the buffer’s data. A device is free to cache the contents of a buffer in its

attached memory. Also note that this property may only be used when a

host pointer is passed to the constructor. This option can be useful when

the program wants full control over all host memory allocations—for

example, it allows programmers to try to minimize the memory footprint

of an application.

In our example in Figure 7-5, we create a buffer b as we saw in our

previous examples. We next create buffer b1 and initialize it with a pointer

to myInts. We also pass the property use_host_ptr, which means that

buffer b1 will only use the memory pointed to by myInts and not allocate

any additional temporary storage on the host.

use_mutex

The next property, use_mutex, concerns fine-grained sharing of memory

between buffers and host code. Buffer b2 is created using this property.

The property takes a reference to a mutex object that can later be queried

from the buffer as we see in the example. This property also requires a host

pointer be passed to the constructor, and it lets the runtime determine

when it is safe to access updated values in host code through the provided

host pointer. We cannot lock the mutex until the runtime guarantees that

the host pointer sees the latest value of the buffer. While this could be

combined with the use_host_ptr property, it is not required. use_mutex

is a mechanism that allows host code to access data within a buffer while

Chapter 7 Buffers

188

the buffer is still alive and without using the host accessor mechanism

(described later). In general, the host accessor mechanism should be

preferred unless we have a specific reason to use a mutex, particularly

because there are no guarantees on how long it will take before the mutex

will be successfully locked and the data ready for use by host code.

context_bound

The final property is shown in the creation of buffer b3 in our example.

Here, our buffer of 42 integers is created with the context_bound property.

The property takes a reference to a context object. Normally, a buffer is

free to be used on any device or context. However, if this property is used,

it locks the buffer to the specified context. Attempting to use the buffer

on another context will result in a runtime error. This could be useful

for debugging programs by identifying cases where a kernel might be

submitted to the wrong queue, for instance. In practice, we do not expect

to see this property used in many programs, and the ability for buffers

to be accessed on any device in any context is one of the most powerful

properties of the buffer abstraction (which this property undoes).

 What Can We Do with a Buffer?
Many things can be done with buffer objects. We can query characteristics

of a buffer, determine if and where any data is written back to host memory

after the buffer is destroyed, or reinterpret a buffer as one with different

characteristics. One thing that cannot be done, however, is to directly

access the data that a buffer represents. Instead, we must create accessor

objects to access the data, and we will learn all about this later in the

chapter.

Examples of things that can be queried about a buffer include its range,

the total number of data elements it represents, and the number of bytes

required to store its elements. We can also query which allocator object is

being used by the buffer and whether the buffer is a sub-buffer or not.

Chapter 7 Buffers

189

Updating host memory when a buffer is destroyed is an important

aspect to consider when using buffers. Depending on how a buffer is

created, host memory may or may not be updated with the results of a

computation after buffer destruction. If a buffer is created and initialized

from a host pointer to non-const data, that same pointer is updated

with the latest data when the buffer is destroyed. However, there is also a

way to update host memory regardless of how a buffer was created. The

set_final_data method is a template method of buffer that can accept

either a raw pointer, a C++ OutputIterator, or a std::weak_ptr. When

the buffer is destroyed, data contained by the buffer will be written to the

host using the supplied location. Note that if the buffer was created and

initialized from a host pointer to non-const data, it’s as if set_final_data

was called with that pointer. Technically, a raw pointer is a special case

of an OutputIterator. If the parameter passed to set_final_data is a

std::weak_ptr, the data is not written to the host if the pointer has expired

or has already been deleted. Whether or not writeback occurs can also be

controlled by the set_write_back method.

 Accessors
Data represented by a buffer cannot be directly accessed through the

buffer object. Instead, we must create accessor objects that allow us to

safely access a buffer’s data. Accessors inform the runtime where and

how we want to access data, allowing the runtime to ensure that the right

data is in the right place at the right time. This is a very powerful concept,

especially when combined with the task graph that schedules kernels for

execution based in part on data dependences.

Accessor objects are instantiated from the templated accessor class.

This class has five template parameters. The first parameter is the type

of the data being accessed. This should be the same as the type of data

Chapter 7 Buffers

190

being stored by the corresponding buffer. Similarly, the second parameter

describes the dimensionality of the data and buffer and defaults to a

value of one.

The next three template parameters are unique to accessors. The first

of these is the access mode. The access mode describes how we intend to

use an accessor in a program. The possible modes are listed in Figure 7-6.

We will learn how these modes are used to order the execution of kernels

and perform data movement in Chapter 8. The access mode parameter

does have a default value if none is specified or automatically inferred. If

we do not specify otherwise, accessors will default to read_write access

mode for non-const data types and read for const data types. These

defaults are always correct but providing more accurate information

may improve a runtime’s ability to perform optimizations. When starting

application development, it is safe and concise to simply not specify an

access mode, and we can then refine the access modes based on profiling

of performance-critical regions of the application.

Mode Description
read Read-only access
write

Figure 7-6. Access modes

Target Description
evice

Figure 7-7. Access targets

Chapter 7 Buffers

191

The next template parameter is the access target. Buffers are an

abstraction of data and do not describe where and how data is stored. The

access target describes where we are accessing data. The two possible

access targets are listed in Figure 7-7.

When using C++ with SYCL, there are only two targets: device and

host_task. The default template value is device, and this means that we

intend to access a buffer’s data on a device. This is reasonable as accessors

are most commonly used in operations on a device such as kernels or data

transfers. The other access target is host_task, which is used when a host

task needs to access a buffer’s data.

Devices may have different types of memories available. In particular,

many devices have some sort of fast local memory that is shared across

multiple work-items in a work-group. Prior versions of SYCL had special

access targets for local memory, but SYCL 2020 handles it in a different

way. We will learn how to use work-group local memory in Chapter 9. Prior

versions of SYCL also had a special access target for the host (outside of

host tasks, which are new to SYCL 2020). This has been replaced with the

new host_accessor class, which provides access to a buffer’s data in host

code. However, the access will remain valid for the lifetime of the host_

accessor. Given that a buffer is locked to the host while a host_accessor

is valid, one should take special care to limit the scope of host_accessor

objects.

The final template parameter governs whether an accessor is a

placeholder accessor or not. This is not a parameter that a programmer

is likely to ever directly set and is usually deduced by which constructor

call is used to create the accessor. A placeholder accessor is one that is

declared outside of a command group but meant to be used to access data

on a device inside a kernel. We will see what differentiates a placeholder

accessor from one that is not once we look at examples of accessor

creation.

Chapter 7 Buffers

192

While accessors can be extracted from a buffer object using its

get_access method, it’s simpler to directly create (construct) them. This

is the style we will use in upcoming examples since it is very simple to

understand and is compact.

 Accessor Creation
Figure 7-8 shows an example program with everything that we need to

get started with accessors. In this example, we have three buffers, A, B,

and C. The first parallel task we submit to the queue creates accessors to

each buffer and defines a kernel that uses these accessors to initialize the

buffers with some values. Each accessor is constructed with a reference

to the buffer it will access as well as the handler object defined by the

command group we’re submitting to the queue. This effectively binds the

accessor to the kernel we’re submitting as part of the command group.

Regular accessors are device accessors since they, by default, target global

buffers stored in device memory. This is the most common use case.

Chapter 7 Buffers

193

#include <cassert>
#include <sycl/sycl.hpp>
using namespace sycl;
constexpr int N = 42;

int main() {
queue q;
// Create 3 buffers of 42 ints
buffer<int> a_buf{range{N}};
buffer<int> b_buf{range{N}};
buffer<int> c_buf{range{N}};
accessor pc{c_buf};

q.submit([&](handler &h) {
accessor a{a_buf, h};
accessor b{b_buf, h};
accessor c{c_buf, h};
h.parallel_for(N, [=](id<1> i) {

a[i] = 1;
b[i] = 40;
c[i] = 0;

});
});
q.submit([&](handler &h) {
accessor a{a_buf, h};
accessor b{b_buf, h};
accessor c{c_buf, h};
h.parallel_for(N,

[=](id<1> i) { c[i] += a[i] + b[i]; });
});
q.submit([&](handler &h) {

h.require(pc);
h.parallel_for(N, [=](id<1> i) { pc[i]++; });

});

host_accessor result{c_buf};
for (int i = 0; i < N; i++) {

assert(result[i] == N);
}
return 0;

}

Figure 7-8. Simple accessor creation

Chapter 7 Buffers

194

The second task we submit also defines three accessors to the buffers.

We then use those accessors in the second kernel to add the elements of

buffers A and B into buffer C. Since this second task operates on the same

data as the first one, the runtime will execute this task after the first one is

complete. We will learn about this in detail in the next chapter.

The third task shows how we can use a placeholder accessor. The

accessor pC is declared at the beginning of the example in Figure 7-8 after

we create our buffers. Note that the constructor is not passed a handler

object since we don’t have one to pass. This lets us create a reusable

accessor object ahead of time. However, in order to use this accessor inside

a kernel, we need to bind it to a command group during submission. We

do this using the handler object’s require method. Once we have bound

our placeholder accessor to a command group, we can then use it inside a

kernel as we would any other accessor.

Finally, we create a host_accessor object in order to read the results

of our computations back on the host. Note that this is a different type

than we used inside our kernels. Note that the host accessor result in

this example also does not take a handler object since we once again

do not have one to pass. The special type for host accessors also lets

us disambiguate them from placeholders. An important aspect of host

accessors is that the constructor only completes when the data is available

for use on the host, which means that construction of a host accessor can

appear to take a long time. The constructor must wait for any kernels to

finish executing that produce the data to be copied as well as for the copy

itself to finish. Once the host accessor construction is complete, it is safe

to use the data that it accesses directly on the host, and we are guaranteed

that the latest version of the data is available to us on the host.

While this example is perfectly correct, we don’t say anything about

how we intend to use our accessors when we create them. Instead, we

use the default access mode, which is read_write, for the non-const

int data in our buffers. This is potentially overconservative and may

Chapter 7 Buffers

195

create unnecessary dependences between operations or superfluous

data movement. A runtime may be able to do a better job if it has more

information about how we plan to use the accessors we create. However,

before we go through an example where we do this, we should first

introduce one more tool—the deduction tag.

Deduction tags are a compact way to express the desired combination

of access mode and target for an accessor. Deduction tags, when used,

are passed as a parameter to an accessor’s constructor. The possible

tags are shown in Figure 7-9. When an accessor is constructed with a tag

parameter, C++ CTAD can then properly deduce the desired access mode

and target, providing an easy way to override the default values for those

template parameters. We could also manually specify the desired template

parameters, but tags provide a simpler, more compact way to get the same

result without spelling out fully templated accessors.

Tag value access_mode:: target::
read_only read device

read_write read_write device

write_only write device

read_only_host_task read host_task

Figure 7-9. Deduction tags

Let’s take our previous example and rewrite it to add deduction tags.

This new and improved example is shown in Figure 7-10.

Chapter 7 Buffers

196

#include <cassert>
#include <sycl/sycl.hpp>
using namespace sycl;
constexpr int N = 42;

int main() {
queue q;

// Create 3 buffers of 42 ints
buffer<int> buf_a{range{N}};
buffer<int> buf_b{range{N}};
buffer<int> buf_c{range{N}};

accessor pc{buf_c};

q.submit([&](handler &h) {
accessor a{buf_a, h, write_only, no_init};
accessor b{buf_b, h, write_only, no_init};
accessor c{buf_c, h, write_only, no_init};
h.parallel_for(N, [=](id<1> i) {

a[i] = 1;
b[i] = 40;
c[i] = 0;

});
});
q.submit([&](handler &h) {

accessor a{buf_a, h, read_only};
accessor b{buf_b, h, read_only};
accessor c{buf_c, h, read_write};
h.parallel_for(N,

[=](id<1> i) { c[i] += a[i] + b[i]; });
});
q.submit([&](handler &h) {

h.require(pc);
h.parallel_for(N, [=](id<1> i) { pc[i]++; });

});

host_accessor result{buf_c, read_only};

for (int i = 0; i < N; i++) {
assert(result[i] == N);

}
return 0;

}

Figure 7-10. Accessor creation with specified usage

Chapter 7 Buffers

197

We begin by declaring our buffers as we did in Figure 7-8. We also

create our placeholder accessor that we’ll use later. Let’s now look at the

first task we submit to the queue. Previously, we created our accessors by

passing a reference to a buffer and the handler object for the command

group. Now, we add two extra parameters to our constructor calls. The first

new parameter is a deduction tag. Since this kernel is writing the initial

values for our buffers, we use the write_only deduction tag. This lets the

runtime know that this kernel is producing new data and will not read

from the buffer.

The second new parameter is an optional accessor property, similar

to the optional properties for buffers that we saw earlier in the chapter.

The property we pass, no_init, lets the runtime know that the previous

contents of the buffer can be discarded. This is useful because it can let

the runtime eliminate unnecessary data movement. In this example, since

the first task is writing the initial values for our buffers, it’s unnecessary for

the runtime to copy the uninitialized host memory to the device before

the kernel executes. The no_init property is useful for this example, but

it should not be used for read–modify–write cases or kernels where only

some values in a buffer may be updated.

The second task we submit to our queue is identical to before, but now

we add deduction tags to our accessors. Here, we add the tags read_only

to accessors aA and aB to let the runtime know that we will only read the

values of buffers A and B through these accessors. The third accessor, aC,

gets the read_write deduction tag since we accumulate the sum of the

elements of A and B into C. We explicitly use the tag in the example to

be consistent, but this is unnecessary since the default access mode is

read_write.

The default usage is retained in the third task where we use our

placeholder accessor. This remains unchanged from the simplified

example we saw in Figure 7-8. Our final accessor, the host accessor result,

now receives a deduction tag when we create it. Since we only read the

final values on the host, we pass the read_only tag to the constructor. If we

Chapter 7 Buffers

198

rewrote the program in such a way that the host accessor was destroyed,

launching another kernel that operated on buffer C would not require it

to be written back to the device since the read_only tag lets the runtime

know that it will not be modified by the host.

 What Can We Do with an Accessor?
Many things can be done with an accessor object. However, the most

important thing we can do is spelled out in the accessor’s name—access

data. This is usually done through one of the accessor’s [] operators. We

use the [] operator in our examples in Figures 7-8 and 7-10. This operator

takes either an id object that can properly index multidimensional data or

a single size_t. The second case can be used when an accessor has more

than one dimension. In that case, it returns an object that is then meant to

be indexed again with [] until we arrive at a scalar value, and this would

be of the form a[i][j] in a two-dimensional case. Remember that the

ordering of accessor dimensions follows the convention of C++ where the

rightmost dimension is the unit-stride dimension (iterates “fastest”).

An accessor can also return a pointer to the underlying data. This

pointer can be accessed directly following normal C++ rules. Note that

there can be additional complexity involved with respect to the address

space of this pointer.

Many things can also be queried from an accessor object. Examples

include the number of elements accessible through the accessor, the size

in bytes of the region of the buffer it covers, or the range of data accessible.

Accessors provide a similar interface to C++ containers and may be

used in many situations where containers may be passed. The container

interface supported by accessors includes the data method, which is

equivalent to get_pointer, and several flavors of forward and backward

iterators.

Chapter 7 Buffers

199

 Summary
In this chapter, we have learned about buffers and accessors. Buffers

are an abstraction of data that hides the underlying details of memory

management from the programmer. They do this in order to provide a

simpler, higher-level abstraction. We went through several examples that

showed us the different ways to construct buffers as well as the different

optional properties that can be specified to alter their behavior. We learned

how to initialize a buffer with data from host memory as well as how to

write data back to host memory when we are done with a buffer.

Since we cannot access buffers directly, we learned how to access

the data in a buffer by using accessor objects. We learned the difference

between device accessors and host accessors. We discussed the different

access modes and targets and how they inform the runtime how and

where an accessor will be used by the program. We showed the simplest

way to use accessors using the default access modes and targets, and

we learned how to distinguish between a placeholder accessor and one

that is not. We then saw how to further optimize the example program by

giving the runtime more information about our accessor usage by adding

deduction tags to our accessor declarations. Finally, we covered many of

the different ways that accessors can be used in a program.

In the next chapter, we will learn in greater detail how the runtime can

use the information we give it through accessors to schedule the execution

of different kernels. We will also see how this information informs the

runtime about when and how the data in buffers needs to be copied

between the host and a device. We will learn how we can explicitly control

data movement involving buffers—and USM allocations too.

Chapter 7 Buffers

200

Open Access This chapter is licensed under the terms of

the Creative Commons Attribution 4.0 International License

(https://creativecommons.org/licenses/by/4.0/), which permits use,

sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter’s Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter’s

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 7 Buffers

https://creativecommons.org/licenses/by/4.0/

201

CHAPTER 8

Scheduling Kernels
and Data Movement
We need to discuss our role as the conductor for our parallel programs.

The proper orchestration of a parallel program is a thing of beauty—code

running full speed without waiting for data, because we have arranged

for all data to arrive and depart at the proper times—code carefully

constructed to keep the hardware maximally busy. It is the thing that

dreams are made of!

Life in the fast lanes—not just one lane!—demands that we take our

work as the conductor seriously. In order to do that, we can think of our

job in terms of task graphs.

Therefore, in this chapter, we will cover task graphs, the mechanism

that is used to run complex sequences of kernels correctly and efficiently.

There are two things that need sequencing in an application: kernel

executions and data movement. Task graphs are the mechanism that we

use to achieve proper sequencing.

First, we will quickly review how we can use dependences to order

tasks from Chapter 3. Next, we will cover how the SYCL runtime builds

graphs. We will discuss the basic building block of SYCL graphs, the

command group. We will then illustrate the different ways we can build

graphs of common patterns. We will also discuss how data movement,

both explicit and implicit, is represented in graphs. Finally, we will discuss

the various ways to synchronize our graphs with the host.

© Intel Corporation 2023
J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-9691-2_8

https://doi.org/10.1007/978-1-4842-9691-2_8

202

 What Is Graph Scheduling?
In Chapter 3, we discussed data management and ordering the uses of

data. That chapter described the key abstraction behind graphs in SYCL:

dependences. Dependences between kernels are fundamentally based on

what data a kernel accesses. A kernel needs to be certain that it reads the

correct data before it can compute its output.

We described the three types of data dependences that are important

for ensuring correct execution. The first, Read-after-Write (RAW), occurs

when one task needs to read data produced by a different task. This type of

dependence describes the flow of data between two kernels. The second

type of dependence happens when one task needs to update data after

another task has read it. We call that type of dependence a Write-after-

Read (WAR) dependence. The final type of data dependence occurs when

two tasks try to write the same data. This is known as a Write-after-Write

(WAW) dependence.

Data dependences are the building blocks we will use to build graphs.

This set of dependences is all we need to express both simple linear

chains of kernels and large, complex graphs with hundreds of kernels with

elaborate dependences. No matter which types of graph a computation

needs, SYCL graphs ensure that a program will execute correctly based on

the expressed dependences. However, it is up to the programmer to make

sure that a graph correctly expresses all the dependences in a program.

 How Graphs Work in SYCL
A command group can contain three different things: an action, its

dependences, and miscellaneous host code. Of these three things, the

one that is always required is the action, since without it the command

group really doesn’t do anything. Most command groups will also express

dependences, but there are cases where they may not. One such example

Chapter 8 SCheduling KernelS and data MoveMent

203

is the first action submitted in a program. It does not depend on anything

to begin execution; therefore, we would not specify any dependence. The

other thing that can appear inside a command group is arbitrary C++ code

that executes on the host. This is perfectly legal and can be useful to help

specify the action or its dependences, and this code is executed while the

command group is created (not later, when the action is performed based

on dependences having been met).

Command groups are typically expressed as a C++ lambda expression

passed to the submit method. Command groups can also be expressed

through shortcut methods on queue objects that take a kernel and set of

event-based dependences.

 Command Group Actions
There are two types of actions that may be performed by a command

group: kernel executions and explicit memory operations. A command

group may only perform a single action. As we’ve seen in earlier chapters,

kernels are defined through calls to a parallel_for or single_task

method and express computations that we want to perform on our

devices. Operations for explicit data movement are the second type of

action. Examples from USM include memcpy, memset, and fill operations.

Examples from buffers include copy, fill, and update_host.

 How Command Groups Declare Dependences
The other main component of a command group is the set of dependences

that must be satisfied before the action defined by the group can execute.

SYCL allows these dependences to be specified in several ways.

If a program uses in-order SYCL queues, the in-order semantics of

the queue specify implicit dependences between successively enqueued

command groups. One task cannot execute until the previously submitted

task has completed.

Chapter 8 SCheduling KernelS and data MoveMent

204

Event-based dependences are another way to specify what must be

complete before a command group may execute. These event-based

dependences may be specified in two styles. The first way is used when

a command group is specified as a lambda passed to a queue’s submit

method. In this case, the programmer invokes the depends_on method

of the command group handler object, passing either an event or vector

of events as parameter. The other way is used when a command group is

created from the shortcut methods defined on the queue object. When the

programmer directly invokes parallel_for or single_task on a queue, an

event or vector of events may be passed as an extra parameter.

The last way that dependences may be specified is through the creation

of accessor objects. Accessors specify how they will be used to read or

write data in a buffer object, letting the runtime use this information to

determine the data dependences that exist between different kernels.

As we reviewed in the beginning of this chapter, examples of data

dependences include one kernel reading data that another produces, two

kernels writing the same data, or one kernel modifying data after another

kernel reads it.

 Examples
Now we will illustrate everything we’ve just learned with several examples.

We will present how one might express two different dependence patterns

in several ways. The two patterns we will illustrate are linear dependence

chains where one task executes after another and a “Y” pattern where two

independent tasks must execute before successive tasks.

Graphs for these dependence patterns can be seen in Figures 8-1

and 8-2. Figure 8-1 depicts a linear dependence chain. The first node

represents the initialization of data, while the second node presents the

reduction operation that will accumulate the data into a single result.

Figure 8-2 depicts a “Y” pattern where we independently initialize two

Chapter 8 SCheduling KernelS and data MoveMent

205

different pieces of data. After the data is initialized, an addition kernel

will sum the two vectors together. Finally, the last node in the graph

accumulates the result into a single value.

Figure 8-1. Linear dependence chain graph

Figure 8-2. “Y” pattern dependence graph

For each pattern, we will show three different implementations.

The first implementation will use in-order queues. The second will use

event-based dependences. The last implementation will use buffers and

accessors to express data dependences between command groups.

Figure 8-3 shows how to express a linear dependence chain using

in-order queues. This example is very simple because the semantics of in-

order queues already guarantee a sequential order of execution between

command groups. The first kernel we submit initializes the elements of

Chapter 8 SCheduling KernelS and data MoveMent

206

an array to 1. The next kernel then takes those elements and sums them

together into the first element. Since our queue is in order, we do not need

to do anything else to express that the second kernel should not execute

until the first kernel has completed. Finally, we wait for the queue to finish

executing all its tasks, and we check that we obtained the expected result.

#include <sycl/sycl.hpp>
using namespace sycl;
constexpr int N = 42;

int main() {
queue q{property::queue::in_order()};

int *data = malloc_shared<int>(N, q);

q.parallel_for(N, [=](id<1> i) { data[i] = 1; });

q.single_task([=]() {
for (int i = 1; i < N; i++) data[0] += data[i];

});
q.wait();

assert(data[0] == N);
return 0;

}

Figure 8-3. Linear dependence chain with in-order queues

Figure 8-4 shows the same example using an out-of-order queue

and event-based dependences. Here, we capture the event returned by

the first call to parallel_for. The second kernel is then able to specify

a dependence on that event and the kernel execution it represents by

passing it as a parameter to depends_on. We will see in Figure 8-6 how

we could shorten the expression of the second kernel using one of the

shortcut methods for defining kernels.

Chapter 8 SCheduling KernelS and data MoveMent

207

#include <sycl/sycl.hpp>
using namespace sycl;
constexpr int N = 42;

int main() {
queue q;

int *data = malloc_shared<int>(N, q);

auto e = q.parallel_for(N, [=](id<1> i) { data[i] = 1; });

q.submit([&](handler &h) {
h.depends_on(e);
h.single_task([=]() {

for (int i = 1; i < N; i++) data[0] += data[i];
});

});
q.wait();

assert(data[0] == N);
return 0;

}

Figure 8-4. Linear dependence chain with events

Figure 8-5 rewrites our linear dependence chain example using buffers

and accessors instead of USM pointers. Here we once again use an out-

of- order queue but use data dependences specified through accessors

instead of event-based dependences to order the execution of the

command groups. The second kernel reads the data produced by the first

kernel, and the runtime can see this because we declare accessors based

on the same underlying buffer object. Unlike the previous examples, we do

not wait for the queue to finish executing all its tasks. Instead, we construct

a host accessor that defines a data dependence between the output of the

second kernel and our assertion that we computed the correct answer on

the host. Note that while a host accessor gives us an up-to-date view of

data on the host, it does not guarantee that the original host memory has

been updated if any was specified when the buffer was created. We can’t

Chapter 8 SCheduling KernelS and data MoveMent

208

safely access the original host memory unless the buffer is first destroyed

or unless we use a more advanced mechanism like the mutex mechanism

described in Chapter 7.

#include <sycl/sycl.hpp>
using namespace sycl;
constexpr int N = 42;

int main() {
queue q;

buffer<int> data{range{N}};

q.submit([&](handler &h) {
accessor a{data, h};
h.parallel_for(N, [=](id<1> i) { a[i] = 1; });

});

q.submit([&](handler &h) {
accessor a{data, h};
h.single_task([=]() {

for (int i = 1; i < N; i++) a[0] += a[i];
});

});

host_accessor h_a{data};
assert(h_a[0] == N);
return 0;

}

Figure 8-5. Linear dependence chain with buffers and accessors

Figure 8-6 shows how to express a “Y” pattern using in-order queues.

In this example, we declare two arrays, data1 and data2. We then define

two kernels that will each initialize one of the arrays. These kernels do not

depend on each other, but because the queue is in order, the kernels must

execute one after the other. Note that it would be perfectly legal to swap

the order of these two kernels in this example. After the second kernel has

executed, the third kernel adds the elements of the second array to those

of the first array. The final kernel sums up the elements of the first array

to compute the same result we did in our examples for linear dependence

Chapter 8 SCheduling KernelS and data MoveMent

209

chains. This summation kernel depends on the previous kernel, but this

linear chain is also captured by the in-order queue. Finally, we wait for

all kernels to complete and validate that we successfully computed our

magic number.

Figure 8-7 shows our “Y” pattern example with out-of-order queues

instead of in-order queues. Since the dependences are no longer implicit

due to the order of the queue, we must explicitly specify the dependences

between command groups using events. As in Figure 8-6, we begin by

defining two independent kernels that have no initial dependences. We

represent these kernels by two events, e1 and e2. When we define our

third kernel, we must specify that it depends on the first two kernels.

#include <sycl/sycl.hpp>
using namespace sycl;
constexpr int N = 42;

int main() {
queue q{property::queue::in_order()};

int *data1 = malloc_shared<int>(N, q);
int *data2 = malloc_shared<int>(N, q);

q.parallel_for(N, [=](id<1> i) { data1[i] = 1; });

q.parallel_for(N, [=](id<1> i) { data2[i] = 2; });

q.parallel_for(N, [=](id<1> i) { data1[i] += data2[i]; });

q.single_task([=]() {
for (int i = 1; i < N; i++) data1[0] += data1[i];

data1[0] /= 3;
});
q.wait();

assert(data1[0] == N);
return 0;

}

Figure 8-6. “Y” pattern with in-order queues

Chapter 8 SCheduling KernelS and data MoveMent

210

We do this by saying that it depends on events e1 and e2 to complete

before it may execute. However, in this example, we use a shortcut

form to specify these dependences instead of the handler’s depends_on

method. Here, we pass the events as an extra parameter to parallel_for.

Since we want to pass multiple events at once, we use the form that

accepts a std::vector of events, but luckily modern C++ simplifies this

for us by automatically converting the expression {e1, e2} into the

appropriate vector.

#include <sycl/sycl.hpp>
using namespace sycl;
constexpr int N = 42;

int main() {
queue q;

int *data1 = malloc_shared<int>(N, q);
int *data2 = malloc_shared<int>(N, q);

auto e1 =
q.parallel_for(N, [=](id<1> i) { data1[i] = 1; });

auto e2 =
q.parallel_for(N, [=](id<1> i) { data2[i] = 2; });

auto e3 = q.parallel_for(
range{N}, {e1, e2},
[=](id<1> i) { data1[i] += data2[i]; });

q.single_task(e3, [=]() {
for (int i = 1; i < N; i++) data1[0] += data1[i];

data1[0] /= 3;
});
q.wait();

assert(data1[0] == N);
return 0;

}

Figure 8-7. “Y” pattern with events

Chapter 8 SCheduling KernelS and data MoveMent

211

In our final example, seen in Figure 8-8, we again replace USM pointers

and events with buffers and accessors. This example represents the two

arrays data1 and data2 as buffer objects. Our kernels no longer use the

shortcut methods for defining kernels since we must associate accessors

with a command group handler. Once again, the third kernel must capture

the dependence on the first two kernels. Here this is accomplished by

declaring accessors for our buffers. Since we have previously declared

accessors for these buffers, the runtime is able to properly order the

execution of these kernels. Additionally, we also provide extra information

to the runtime here when we declare accessor b. We add the access tag

read_only to let the runtime know that we’re only going to read this data,

not produce new values. As we saw in our buffer and accessor example

for linear dependence chains, our final kernel orders itself by updating

the values produced in the third kernel. We retrieve the final value of our

computation by declaring a host accessor that will wait for the final kernel

to finish executing before moving the data back to the host where we can

read it and assert we computed the correct result.

Chapter 8 SCheduling KernelS and data MoveMent

212

#include <sycl/sycl.hpp>
using namespace sycl;
constexpr int N = 42;

int main() {
queue q;

buffer<int> data1{range{N}};
buffer<int> data2{range{N}};

q.submit([&](handler &h) {
accessor a{data1, h};
h.parallel_for(N, [=](id<1> i) { a[i] = 1; });

});

q.submit([&](handler &h) {
accessor b{data2, h};
h.parallel_for(N, [=](id<1> i) { b[i] = 2; });

});

q.submit([&](handler &h) {
accessor a{data1, h};
accessor b{data2, h, read_only};
h.parallel_for(N, [=](id<1> i) { a[i] += b[i]; });

});

q.submit([&](handler &h) {
accessor a{data1, h};
h.single_task([=]() {

for (int i = 1; i < N; i++) a[0] += a[i];

a[0] /= 3;
});

});

host_accessor h_a{data1};
assert(h_a[0] == N);
return 0;

}

Figure 8-8. “Y” pattern with accessors

Chapter 8 SCheduling KernelS and data MoveMent

213

 When Are the Parts of a Command
Group Executed?
Since task graphs are asynchronous, it makes sense to wonder when

exactly command groups are executed. By now, it should be clear that

kernels may be executed as soon as their dependences have been satisfied,

but what happens with the host portion of a command group?

When a command group is submitted to a queue, it is executed

immediately on the host (before the submit call returns). This host portion

of the command group is executed only once. Any kernel or explicit data

operation defined in the command group is enqueued for execution on

the device.

 Data Movement
Data movement is another very important aspect of graphs in SYCL that

is essential for understanding application performance. However, it can

often be accidentally overlooked if data movement happens implicitly

in a program, either using buffers and accessors or using USM shared

allocations. Next, we will examine the different ways that data movement

can affect graph execution in SYCL.

 Explicit Data Movement
Explicit data movement has the advantage that it appears explicitly in a

graph, making it obvious to programmers what goes on within execution of

a graph. We will separate explicit data operations into those for USM and

those for buffers.

Chapter 8 SCheduling KernelS and data MoveMent

214

As we learned in Chapter 6, explicit data movement in USM occurs

when we need to copy data between device allocations and the host. This

is done with the memcpy method, found in both the queue and handler

classes. Submitting the action or command group returns an event that

can be used to order the copy with other command groups.

Explicit data movement with buffers occurs by invoking either the

copy or update_host method of the command group handler object.

The copy method can be used to manually exchange data between host

memory and an accessor object on a device. This can be done for a variety

of reasons. A simple example is checkpointing a long-running sequence of

computations. With the copy method, data can be written from the device

to arbitrary host memory in a one-way fashion. If this were done using

buffers, most cases (i.e., those where the buffer was not created with use_

host_ptr) would require the data to first be copied to the host and then

from the buffer’s memory to the desired host memory.

The update_host method is a very specialized form of copy. If a

buffer was created around a host pointer, this method will copy the data

represented by the accessor back to the original host memory. This can be

useful if a program manually synchronizes host data with a buffer that was

created with the special use_mutex property. However, this use case is not

likely to occur in most programs.

 Implicit Data Movement
Implicit data movement can have hidden consequences for command

groups and task graphs in SYCL. With implicit data movement, data is

copied between host and device either by the SYCL runtime or by some

combination of hardware and software. In either case, copying occurs

without explicit input from the user. Let’s again look separately at the USM

and buffer cases.

Chapter 8 SCheduling KernelS and data MoveMent

215

With USM, implicit data movement occurs with host and shared

allocations. As we learned in Chapter 6, host allocations do not really

move data so much as access it remotely, and shared allocations

may migrate between host and device. Since this migration happens

automatically, there is really nothing to think about with USM implicit data

movement and command groups. However, there are some nuances with

shared allocations worth keeping in mind.

The prefetch operation works in a similar fashion to memcpy in

order to let the runtime begin migrating shared allocations before a

kernel attempts to use them. However, unlike memcpy where data must

be copied in order to ensure correct results, prefetches are often treated

as hints to the runtime to increase performance, and prefetches do not

invalidate pointer values in memory (as a copy would when copying to a

new address range). The program will still execute correctly if a prefetch

has not completed before a kernel begins executing, and so many codes

may choose to make command groups in a graph not depend on prefetch

operations since they are not a functional requirement.

Buffers also carry some nuance. When using buffers, command groups

must construct accessors for buffers that specify how the data will be used.

These data dependences express the ordering between different command

groups and allow us to construct task graphs. However, command groups

with buffers sometimes fill another purpose: they specify the requirements

on data movement.

Accessors specify that a kernel will read or write to a buffer. The

corollary from this is that the data must also be available on the device,

and if it is not, the runtime must move it there before the kernel may begin

executing. Consequently, the SYCL runtime must keep track of where the

current version of a buffer resides so that data movement operations can

be scheduled. Accessor creation effectively creates an extra, hidden node

in the graph. If data movement is necessary, the runtime must perform it

first. Only then may the kernel being submitted execute.

Chapter 8 SCheduling KernelS and data MoveMent

216

Let us take another look at Figure 8-8. In this example, our first two

kernels will require buffers data1 and data2 to be copied to the device;

the runtime implicitly creates extra graph nodes to perform the data

movement. When the third kernel’s command group is submitted, it is

likely that these buffers will still be on the device, so the runtime will not

need to perform any extra data movement. The fourth kernel’s data is also

likely to not require any extra data movement, but the creation of the host

accessor requires the runtime to schedule a movement of buffer data1

back to the host before the accessor is available for use.

 Synchronizing with the Host
The last topic we will discuss is how to synchronize graph execution with

the host. We have already touched on this throughout the chapter, but we

will now examine all the different ways a program can do this.

The first method for host synchronization is one we’ve used in many

of our previous examples: waiting on a queue. Queue objects have two

methods, wait and wait_and_throw, that block host execution until every

command group that was submitted to the queue has completed. This

is a very simple method that handles many common cases. However, it

is worth pointing out that this method is very coarse-grained. If finer-

grained synchronization is desired (to possibly improve performance, for

example), one of the other approaches we will discuss may be better suit

an application’s needs.

The next method for host synchronization is to synchronize on events.

This gives more flexibility over synchronizing on a queue since it lets an

application only synchronize on specific actions or command groups. This

is done by either invoking the wait method on an event or invoking the

static method wait on the event class, which can accept a vector of events.

Chapter 8 SCheduling KernelS and data MoveMent

217

We have seen the next method used in Figures 8-5 and 8-8: host

accessors. Host accessors perform two functions. First, they make data

available for access on the host, as their name implies. Second, they

synchronize the device and the host by defining a new dependence

between the currently accessing graph and the host. This ensures that

the data that gets copied back to the host has the correct value of the

computation the graph was performing. However, we once again note

that if the buffer was constructed from existing host memory, this original

memory is not guaranteed to contain the updated values.

Note that host accessors are blocking. Execution on the host may not

proceed past the creation of the host accessor until the data is available.

Likewise, a buffer cannot be used on a device while a host accessor exists

and keeps its data available. A common pattern is to create host accessors

inside additional C++ scopes in order to free the data once the host

accessor is no longer needed. This is an example of the next method for

host synchronization.

Certain objects in SYCL have special behaviors when they are

destroyed, and their destructors are invoked. We just learned how host

accessors can make data remain on the host until they are destroyed.

Buffers and images also have special behavior when they are destroyed or

leave scope. When a buffer is destroyed, it waits for all command groups

that use that buffer to finish execution. Once a buffer is no longer being

used by any kernel or memory operation, the runtime may have to copy

data back to the host. This copy occurs either if the buffer was initialized

with a host pointer or if a host pointer was passed to the method set_

final_data. The runtime will then copy back the data for that buffer and

update the host pointer before the object is destroyed.

The final option for synchronizing with the host involves an

uncommon feature first described in Chapter 7. Recall that the

constructors for buffer objects optionally take a property list. One of the

valid properties that may be passed when creating a buffer is use_mutex.

When a buffer is created in this fashion, it adds the requirement that the

Chapter 8 SCheduling KernelS and data MoveMent

218

memory owned by the buffer can be shared with the host application.

Access to this memory is governed by the mutex used to initialize the

buffer. The host is able to obtain the lock on the mutex when it is safe

to access the memory shared with the buffer. If the lock cannot be

obtained, the user may need to enqueue memory movement operations

to synchronize the data with the host. This use is very specialized and

unlikely to be found in the majority of DPC++ applications.

 Summary
In this chapter, we have learned about graphs and how they are built,

scheduled, and executed in SYCL. We went into detail on what command

groups are and what function they serve. We discussed the three things

that can be within a command group: dependences, an action, and

miscellaneous host code. We reviewed how to specify dependences

between tasks using events as well as through data dependences described

by accessors. We learned that the single action in a command group may

be either a kernel or an explicit memory operation, and we then looked

at several examples that showed the different ways we can construct

common execution graph patterns. Next, we reviewed how data movement

is an important part of SYCL graphs, and we learned how it can appear

either explicitly or implicitly in a graph. Finally, we looked at all the ways to

synchronize the execution of a graph with the host.

Understanding the program flow can enable us to understand the sort

of debug information that can be printed if we have runtime failures to

debug. Chapter 13 has a table in the section “Debugging Runtime Failures”

that will make a little more sense given the knowledge we have gained

by this point in the book. However, this book does not attempt to discuss

these advanced compiler dumps in detail.

Chapter 8 SCheduling KernelS and data MoveMent

219

Hopefully this has left you feeling like a graph expert who can

construct graphs that range in complexity from linear chains to enormous

graphs with hundreds of nodes and complex data and task dependences!

In the next chapter, we’ll begin to dive into low-level details that are useful

for improving the performance of an application on a specific device.

Open Access This chapter is licensed under the terms of

the Creative Commons Attribution 4.0 International License

(https://creativecommons.org/licenses/by/4.0/), which permits use,

sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter’s Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter’s

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 8 SCheduling KernelS and data MoveMent

https://creativecommons.org/licenses/by/4.0/

221

CHAPTER 9

Communication
and Synchronization
In Chapter 4, we discussed ways to express parallelism, using basic data-

parallel kernels or explicit ND-range kernels. We discussed how basic

data-parallel kernels apply the same operation to every piece of data

independently. We also discussed how explicit ND-range kernels divide

the execution range into work-groups of work-items.

In this chapter, we will revisit the question of how to break up a

problem into bite-sized chunks in our continuing quest to Think Parallel.

This chapter provides more detail regarding explicit ND-range kernels

and describes how groupings of work-items may be used to improve the

performance of some types of algorithms. We will describe how groups

of work-items provide additional guarantees for how parallel work is

executed, and we will introduce language features that support groupings

of work-items. Many of these ideas and concepts will be important when

optimizing programs for specific devices in Chapters 15, 16, and 17 and to

describe common parallel patterns in Chapter 14.

 Work-Groups and Work-Items
Recall from Chapter 4 that explicit ND-range kernels organize work-items

into work-groups and that all work-items in the same work-group have

© Intel Corporation 2023
J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-9691-2_9

https://doi.org/10.1007/978-1-4842-9691-2_9

222

additional scheduling guarantees. This property is important, because

it means that the work-items in a work-group can cooperate to solve a

problem.

Figure 9-1 shows an ND-range divided into work-groups, where each

work-group is represented by a different color. The work-items in each

work-group can safely communicate with other work-items that share the

same color.

Figure 9-1. Two-dimensional ND-range of size (8, 8) divided into
four work-groups of size (4,4)

There are no guarantees that work-items in different work-groups will

be executing at the same time, and so a work-item with one color cannot

reliably communicate with a work-item with a different color. A kernel may

deadlock if one work-item attempts to communicate with another work-

item that is not currently executing. Since we want our kernels to complete

execution, we must ensure that when one work-item communicates with

another work-item, they are in the same work-group.

Chapter 9 CommuniCation and SynChronization

223

 Building Blocks for Efficient Communication
This section describes building blocks that support efficient

communication between work-items in a group. Some are fundamental

building blocks that enable construction of custom algorithms, whereas

others are higher level and describe common operations used by many

kernels.

 Synchronization via Barriers
The most fundamental building block for communication is the barrier

function. The barrier function serves two key purposes:

First, the barrier function synchronizes execution of work-items in a

group. By synchronizing execution, one work-item can ensure that another

work-item in the same group has completed an operation before using

the result of that operation. Alternatively, one work-item is given time to

complete its operation before another work-item uses the result of the

operation.

Second, the barrier function synchronizes how each work-item views

the state of memory. This type of synchronization operation is known

as enforcing memory consistency or fencing memory (more details in

Chapter 19). Memory consistency is at least as important as synchronizing

execution since it ensures that the results of memory operations

performed before the barrier are visible to other work-items after the

barrier. Without memory consistency, an operation in one work-item is

like a tree falling in a forest, where the sound may or may not be heard by

other work-items!

Figure 9-2 shows four work-items in a group that synchronize at a

barrier function. Even though the execution time for each work-item may

differ, no work-items can execute past the barrier until all work-items

execute the barrier. After executing the barrier function, all work-items

have a consistent view of memory.

Chapter 9 CommuniCation and SynChronization

224

Figure 9-2. Four work-items in a group synchronize at a barrier
function

WHY ISN’T MEMORY CONSISTENT BY DEFAULT?

For many programmers, the idea of memory consistency—and that different

work-items can have different views of memory—can feel very strange.

Wouldn’t it be easier if all memory was consistent for all work-items by

default? the short answer is that it would, but it would also be very expensive

to implement. By allowing work-items to have inconsistent views of memory

and only requiring memory consistency at defined points during program

execution, accelerator hardware may be cheaper, may perform better, or both.

Chapter 9 CommuniCation and SynChronization

225

Because barrier functions synchronize execution, it is critically

important that either all work-items in the group execute the barrier or

no work-items in the group execute the barrier. If some work-items in the

group branch around any barrier function, the other work-items in the

group may wait at the barrier forever—or at least until the user gives up

and terminates the program!

COLLECTIVE FUNCTIONS

When a function is required to be executed by all work-items in a group, it

may be called a collective function, since the operation is performed by the

group and not by individual work-items in the group. Barrier functions are not

the only collective functions available in SyCL. other collective functions are

described later in this chapter.

 Work-Group Local Memory
The work-group barrier function is sufficient to coordinate communication

among work-items in a work-group, but the communication itself must

occur through memory. Communication may occur through USM

or buffers, but this can be inconvenient and inefficient: it requires a

dedicated allocation for communication and requires partitioning the

allocation among work-groups.

To simplify kernel development and accelerate communication

between work-items in a work-group, SYCL defines a special local

memory space specifically for communication between work-items in a

work-group.

Chapter 9 CommuniCation and SynChronization

226

In Figure 9-3, two work-groups are shown. Both work-groups may

access USM and buffers in the global memory space. Each work-group may

access variables in its own local memory space but cannot access variables

in another work-group’s local memory.

Figure 9-3. Each work-group may access all global memory, but only
its own local memory

When a work-group begins, the contents of its local memory are

uninitialized, and local memory does not persist after a work-group

finishes executing. Because of these properties, local memory may only be

used for temporary storage while a work-group is executing.

For some devices, such as for many CPU devices, local memory is

a software abstraction and is implemented using the same memory

subsystems as global memory. On these devices, using local memory is

primarily a convenience mechanism for communication. Some compilers

may use the memory space information for compiler optimizations, but

otherwise using local memory for communication will not fundamentally

perform better than communication via global memory on these devices.

For other devices, such as many GPU devices, there are dedicated

resources for local memory. On these devices, communicating via local

memory will perform better than communicating via global memory.

Chapter 9 CommuniCation and SynChronization

227

Communication between work-items in a work-group can be more
convenient and faster when using local memory!

We can use the device query info::device::local_mem_type to

determine whether an accelerator has dedicated resources for local

memory or whether local memory is implemented as a software

abstraction of global memory. Please refer to Chapter 12 for more

information about querying properties of a device and to Chapters 15, 16,

and 17 for more information about how local memory is typically

implemented for CPUs, GPUs, and FPGAs.

 Using Work-Group Barriers
and Local Memory
Now that we have identified the basic building blocks for efficient

communication between work-items, we can describe how to express

work-group barriers and local memory in kernels. Remember that

communication between work-items requires a notion of work-item

grouping, so these concepts can only be expressed for ND-range kernels

and are not included in the execution model for basic data-parallel

kernels.

This chapter will build upon the naïve matrix multiplication kernel

examples introduced in Chapter 4 by introducing communication between

the work-items in the work-groups executing the matrix multiplication.

On many devices—but not necessarily all!—communicating through local

memory will improve the performance of the matrix multiplication kernel.

Chapter 9 CommuniCation and SynChronization

228

A NOTE ABOUT MATRIX MULTIPLICATION

in this book, matrix multiplication kernels are used to demonstrate how

changes in a kernel affect performance. although matrix multiplication

performance may be improved on many devices using the techniques

described in this chapter, matrix multiplication is such an important and

common operation that many vendors have implemented highly tuned

versions of matrix multiplication. Vendors invest significant time and effort

implementing and validating functions for specific devices and in some cases

may use functionality or techniques that are difficult or impossible to use in

standard parallel kernels.

USE VENDOR-PROVIDED LIBRARIES!

When a vendor provides a library implementation of a function, it is almost

always beneficial to use it rather than reimplementing the function as a

parallel kernel! For matrix multiplication, one can look to onemKL as part of

intel’s toolkits for solutions appropriate for C++ with SyCL programmers.

Figure 9-4 shows the naïve matrix multiplication kernel we will be

starting from, similar to the matrix multiplication kernel from Chapter 4.

For this kernel, and for all of the matrix multiplication kernels in this

chapter, T is a template type indicating the type of data stored in the

matrix, such as a 32-bit float or a 64-bit double.

Chapter 9 CommuniCation and SynChronization

229

h.parallel_for(range{M, N}, [=](id<2> id) {
int m = id[0];
int n = id[1];

// Template type T is the type of data stored
// in the matrix
T sum = 0;
for (int k = 0; k < K; k++) {

sum += matrixA[m][k] * matrixB[k][n];
 }

matrixC[m][n] = sum;
});

Figure 9-4. The naïve matrix multiplication kernel from Chapter 4

In Chapter 4, we observed that the matrix multiplication algorithm has

a high degree of reuse, and that grouping work-items may improve locality

of access and therefore may also improve cache hit rates. In this chapter,

instead of relying on implicit cache behavior to improve performance, our

modified matrix multiplication kernels will instead use local memory as an

explicit cache, to guarantee locality of access.

For many algorithms, it is helpful to think of local memory as an
explicit cache.

Figure 9-5 is a modified diagram from Chapter 4 showing a work-group

consisting of a single row, which makes the algorithm using local memory

easier to understand. Observe that for elements in a row of the result

matrix, every result element is computed using a unique column of data

from one of the input matrices, shown in blue and orange. Because there

is no data sharing for this input matrix, it is not an ideal candidate for local

memory. Observe, though, that every result element in the row accesses

the exact same data in the other input matrix, shown in green. Because

this data is reused, it is an excellent candidate to benefit from work-group

local memory.

Chapter 9 CommuniCation and SynChronization

230

Figure 9-5. Mapping of matrix multiplication to work-groups and
work-items

Because we want to multiply matrices that are potentially very large

and because work-group local memory may be a limited resource, our

modified kernels will process subsections of each matrix, which we will

refer to as a matrix tile. For each tile, our modified kernel will load data for

the tile into local memory, synchronize the work-items in the group, and

then load the data from local memory rather than global memory. The

data that is accessed for the first tile is shown in Figure 9-6.

Figure 9-6. Processing the first tile: the green input data (left of X)
is reused and is read from local memory, the blue and orange input
data (right of X) is read from global memory

Chapter 9 CommuniCation and SynChronization

231

In our kernels, we have chosen the tile size to be equivalent to the

work-group size. This is not required, but because it simplifies transfers

into or out of local memory, it is common and convenient to choose a tile

size that is a multiple of the work-group size.

 Work-Group Barriers and Local Memory
in ND- Range Kernels
This section describes how work-group barriers and local memory are

expressed in ND-range kernels. For ND-range kernels, the representation

is explicit: a kernel declares and operates on a local accessor representing

an allocation in the local address space and calls a barrier function to

synchronize the work-items in a work-group.

 Local Accessors

To declare local memory for use in an ND-range kernel, use a local

accessor. Like other accessor objects, a local accessor is constructed within

a command group handler, but unlike the accessor objects discussed

in Chapters 3 and 7, a local accessor is not created from a buffer object.

Instead, a local accessor is created by specifying a type and a range

describing the number of elements of that type. Like other accessors,

local accessors may be one-dimensional, two-dimensional, or three-

dimensional. Figure 9-7 demonstrates how to declare local accessors and

use them in a kernel.

Chapter 9 CommuniCation and SynChronization

232

/ This is a typical global accessor.
accessor dataAcc{dataBuf, h};

// This is a 1D local accessor consisting of 16 ints:
auto localIntAcc = local_accessor<int, 1>(16, h);

// This is a 2D local accessor consisting of 4 x 4
// floats:
auto localFloatAcc =

local_accessor<float, 2>({4, 4}, h);

h.parallel_for(
nd_range<1>{{size}, {16}}, [=](nd_item<1> item) {
auto index = item.get_global_id();
auto local_index = item.get_local_id();

// Within a kernel, a local accessor may be read
// from and written to like any other accessor.
localIntAcc[local_index] = dataAcc[index] + 1;
dataAcc[index] = localIntAcc[local_index];

});

Figure 9-7. Declaring and using local accessors

Remember that local memory is uninitialized when each work-group

begins and does not persist after each work-group completes. This means

that a local accessor must always be read_write, since otherwise a kernel

would have no way to assign the contents of local memory or view the

results of an assignment. Local accessors may optionally be atomic though,

in which case accesses to local memory via the accessor are performed

atomically. Atomic accesses are discussed in more detail in Chapter 19.

 Synchronization Functions

To synchronize the work-items in an ND-range kernel work-group, call

the group_barrier function with a group representing the work-group.

Because the group representing the work-group may only be queried from

an nd_item and cannot be queried from an item, work-group barriers are

only available to ND-range kernels and are not available to basic data-

parallel kernels.

Chapter 9 CommuniCation and SynChronization

233

The group_barrier function accepts one additional optional

argument to describe the scope of any memory consistency operations that

are performed by the barrier. When no additional arguments are passed

to the group_barrier function, the barrier function will determine the

default scope based on the passed-in group. The default scope is usually

correct and therefore an explicit scope is rarely required, but the memory

scope can be broadened if necessary for some algorithms.

Please note that the explicit scope only affects the memory operations

that are performed by the barrier, and that the set of work-items that

synchronize execution at the barrier is determined entirely by the group

object passed to the barrier. We cannot synchronize more or fewer work-

items by passing a different memory scope to the barrier, but we can

synchronize a different set of work-items by passing a different group

object to the barrier.

 A Full ND-Range Kernel Example

Now that we know how to declare a local memory accessor and

synchronize accesses to it using a barrier function, we can implement

an ND-range kernel version of matrix multiplication that coordinates

communication among work-items in the work-group to reduce traffic to

global memory. The complete example is shown in Figure 9-8.

Chapter 9 CommuniCation and SynChronization

234

// Traditional accessors, representing matrices in
// global memory:
accessor matrixA{bufA, h};
accessor matrixB{bufB, h};
accessor matrixC{bufC, h};

// Local accessor, for one matrix tile:
constexpr int tile_size = 16;

// Template type T is the type of data stored in the matrix
auto tileA = local_accessor<T, 1>(tile_size, h);

h.parallel_for(
nd_range<2>{{M, N}, {1, tile_size}},
[=](nd_item<2> item) {
// Indices in the global index space:
int m = item.get_global_id()[0];
int n = item.get_global_id()[1];

// Index in the local index space:
int i = item.get_local_id()[1];

T sum = 0;
for (int kk = 0; kk < K; kk += tile_size) {
// Load the matrix tile from matrix A, and
// synchronize to ensure all work-items have a
// consistent view of the matrix tile in local
// memory.
tileA[i] = matrixA[m][kk + i];
group_barrier(item.get_group());

// Perform computation using the local memory
// tile, and matrix B in global memory.
for (int k = 0; k < tile_size; k++) {
sum += tileA[k] * matrixB[kk + k][n];

 }

// After computation, synchronize again, to
// ensure all reads from the local memory tile
// are complete.
group_barrier(item.get_group());

 }

// Write the final result to global memory.
matrixC[m][n] = sum;

});

Figure 9-8. Expressing a tiled matrix multiplication kernel with an
ND-range parallel_for and work-group local memory

Chapter 9 CommuniCation and SynChronization

235

The main loop in this kernel can be thought of as two distinct phases:

in the first phase, the work-items in the work-group collaborate to load

shared data from the A matrix into work-group local memory; and in the

second, the work-items perform their own computations using the shared

data. To ensure that all work-items have completed the first phase before

moving onto the second phase, the two phases are separated by a call to

group_barrier to synchronize all work-items in the work-group and to

provide a memory fence. This pattern is a common one, and the use of

work-group local memory in a kernel almost always necessitates the use of

work-group barriers.

Note that there must also be a call to group_barrier to synchronize

execution between the computation phase for the current tile and the

loading phase for the next matrix tile. Without this synchronization

operation, part of the current matrix tile may be overwritten by one work-

item in the work-group before another work-item is finished computing

with it. In general, any time that one work-item is reading or writing

data in local memory that was read or written by another work-item,

synchronization is required. In Figure 9-8, the synchronization is done at

the end of the loop, but it would be equally correct to synchronize at the

beginning of each loop iteration instead.

 Sub-Groups
So far in this chapter, work-items have communicated with other work-

items in the work-group by exchanging data through work-group local

memory and by synchronizing using the group_barrier function on a

work-group.

In Chapter 4, we discussed another grouping of work-items. A sub-

group is an implementation-defined subset of work-items in a work-group

that execute together on the same hardware resources or with additional

scheduling guarantees. Because the implementation decides how to group

Chapter 9 CommuniCation and SynChronization

236

work-items into sub-groups, the work-items in a sub-group may be able to

communicate or synchronize more efficiently than the work-items in an

arbitrary work-group.

This section describes the building blocks for communication among

work-items in a sub-group. Sub-groups also require a notion of work-

item grouping, so sub-groups also require ND-range kernels and are not

included in the execution model for basic data-parallel kernels.

 Synchronization via Sub-Group Barriers
Just like how the work-items in a work-group may synchronize using a

work-group barrier, the work-items in a sub-group may synchronize using

a sub-group barrier. To perform a sub-group barrier, call the same group_

barrier function, but pass a group object representing the sub-group

rather than the work-group, as shown in Figure 9-9. Like for work-group

objects, a group object representing the sub-group can be queried from

the nd_item class for ND-range kernels but cannot be queried from a basic

data-parallel item.

h.parallel_for(
nd_range{{size}, {16}}, [=](nd_item<1> item) {
auto sg = item.get_sub_group();
group_barrier(sg);
// ...
auto index = item.get_global_id();
data_acc[index] = data_acc[index] + 1;

});

Figure 9-9. Querying and using the sub_group class

Also like the work-group barrier, the sub-group barrier may accept

optional arguments to broaden the scope of any memory operations

associated with the sub-group barrier, but this is uncommon and in most

cases we can simply use the default memory scope.

Chapter 9 CommuniCation and SynChronization

237

 Exchanging Data Within a Sub-Group
Unlike work-groups, sub-groups do not have a dedicated memory space

for exchanging data. Instead, work-items in the sub-group may exchange

data through work-group local memory, through global memory, or more

commonly by using sub-group collective functions.

As described previously, a collective function is a function that

describes an operation performed by a group of work-items, not an

individual work-item. Because a barrier synchronization function is an

operation performed by a group of work-items, it is one example of a

collective function.

Other collective functions express common communication patterns.

We will describe the semantics for many collective functions in detail later

in this chapter, but for now, we focus on the group_broadcast collective

function that we will use to implement matrix multiplication using

sub-groups.

The group_broadcast collective function takes a value from one

work-item in the group and communicates it to all other work-items in

the group. An example is shown in Figure 9-10. Notice that the semantics

of the broadcast function require that the local_id identifying the value

in the group to communicate must be the same for all work-items in the

group, ensuring that the result of the broadcast function is also the same

for all work-items in the group.

Figure 9-10. Processing by the broadcast function

Chapter 9 CommuniCation and SynChronization

238

If we look at the innermost loop of our local memory matrix

multiplication kernel, shown in Figure 9-11, we can see that the access to

the matrix tile is a broadcast operation, since each work-item in the group

reads the same value out of the matrix tile.

h.parallel_for(
nd_range<2>{{M, N}, {1, tile_size}},
[=](nd_item<2> item) {
// Indices in the global index space:
int m = item.get_global_id()[0];
int n = item.get_global_id()[1];

// Index in the local index space:
int i = item.get_local_id()[1];

// Template type T is the type of data stored in
// the matrix
T sum = 0;
for (int kk = 0; kk < K; kk += tile_size) {
// Load the matrix tile from matrix A, and
// synchronize to ensure all work-items have a
// consistent view of the matrix tile in local
// memory.
tileA[i] = matrixA[m][kk + i];
group_barrier(item.get_group());

// Perform computation using the local memory
// tile, and matrix B in global memory.
for (int k = 0; k < tile_size; k++) {
// Because the value of k is the same for
// all work-items in the group, these reads
// from tileA are broadcast operations.
sum += tileA[k] * matrixB[kk + k][n];

 }

// After computation, synchronize again, to
// ensure all reads from the local memory tile
// are complete.
group_barrier(item.get_group());

 }

// Write the final result to global memory.
matrixC[m][n] = sum;

});

Figure 9-11. Matrix multiplication kernel includes a broadcast
operation

Chapter 9 CommuniCation and SynChronization

239

We will use the group_broadcast function with a sub-group object

to implement a matrix multiplication kernel that does not require work-

group local memory or barriers. On many devices, sub-group broadcasts

are faster than work-group broadcasts using work-group local memory and

barriers.

 A Full Sub-Group ND-Range Kernel Example
Figure 9-12 is a complete example that implements matrix multiplication

using sub-groups. Notice that this kernel requires no work-group local

memory or explicit synchronization and instead uses a sub-group

broadcast collective function to communicate the contents of the matrix

tile among the work-items in the sub-group.

Chapter 9 CommuniCation and SynChronization

240

// Note: This example assumes that the sub-group size
// is greater than or equal to the tile size!
constexpr int tile_size = 4;
h.parallel_for(

nd_range<2>{{M, N}, {1, tile_size}},
[=](nd_item<2> item) {
auto sg = item.get_sub_group();

// Indices in the global index space:
int m = item.get_global_id()[0];
int n = item.get_global_id()[1];

// Index in the local index space:
int i = item.get_local_id()[1];

// Template type T is the type of data stored
// in the matrix
T sum = 0;
for (int kk = 0; kk < K; kk += tile_size) {

// Load the matrix tile from matrix A.
T tileA = matrixA[m][kk + i];

// Perform computation by broadcasting from
// the matrix tile and loading from matrix B
// in global memory. The loop variable k
// describes which work-item in the sub-group
// to broadcast data from.
for (int k = 0; k < tile_size; k++) {

sum += group_broadcast(sg, tileA, k) *
matrixB[kk + k][n];

 }
 }

// Write the final result to global memory.
matrixC[m][n] = sum;

});

Figure 9-12. Tiled matrix multiplication kernel expressed with ND-
range parallel_for and sub-group collective functions

Chapter 9 CommuniCation and SynChronization

241

 Group Functions and Group Algorithms
In the “Sub-Groups” section of this chapter, we described collective

functions and how collective functions express common communication

patterns. We specifically discussed the broadcast collective function,

which is used to communicate a value from one work-item in a group

to the other work-items in the group. This section describes additional

collective functions.

Although the collective functions described in this section can be

implemented directly in our programs using features such as atomics,

work-group local memory, and barriers, many devices include dedicated

hardware to accelerate collective functions. Even when a device does

not include specialized hardware, vendor-provided implementations of

collective functions are likely tuned for the device they are running on,

so calling a built-in collective function will usually perform better than a

general-purpose implementation that we might write.

use collective functions for common communication patterns to
simplify code and increase performance!

 Broadcast
The group_broadcast function enables one work-item in a group to share

the value of a variable with all other work-items in the group. A diagram

showing how the broadcast function works can be found in Figure 9-10.

The group_broadcast function is supported for both work-groups and

sub-groups.

Chapter 9 CommuniCation and SynChronization

242

 Votes
The any_of_group, all_of_group, and none_of_group functions

(henceforth referred to as “vote” functions) enable work-items to compare

the result of a Boolean condition across their group: any_of_group returns

true if the condition is true for at least one work-item in the group, all_of_

group returns true if the condition is true for all work-items in the group,

and none_of_group returns true if the condition is false for all of the work-

items in the group. A comparison of these two functions for an example

input is shown in Figure 9-13.

Figure 9-13. Comparison of the any_of_group, all_of_group, and
none_of_group functions

SYCL 2020 also supports another variant of these functions where

the work-items in a group cooperate to evaluate a range of data like the

standard C++ all_of, any_of, and none_of algorithms. These functions

are named joint_any_of, joint_all_of, and joint_none_of to

differentiate from the variants where each work-item in the group holds

the data to compare directly.

The vote functions are useful for some iterative algorithms to

determine when a solution has converged for all work-items in the group,

for example. The vote functions are supported for work-groups and

sub-groups.

Chapter 9 CommuniCation and SynChronization

243

 Shuffles
One of the most useful features of sub-groups is the ability to communicate

directly between individual work-items without explicit memory

operations. In many cases, such as the sub-group matrix multiplication

kernel, these shuffle operations enable us to both remove work-group local

memory usage from our kernels and avoid unnecessary repeated accesses

to global memory. There are several flavors of these shuffle functions

available.

The most general of the shuffle functions is called select_from_group,

and as shown in Figure 9-14, it allows for arbitrary communication

between any pair of work-items in the sub-group. This generality may

come at a performance cost, however, and we strongly encourage making

use of the more specialized shuffle functions wherever possible.

Figure 9-14. Using a generic select_from_group to sort values
based on precomputed indices

In Figure 9-14, a generic shuffle is used to sort the values of a sub-

group using precomputed permutation indices. Arrows are shown for one

work-item in the sub-group, where the result of the shuffle is the value of x

for the work-item with local_id equal to 7.

Note that the sub-group group_broadcast function can be thought

of as a specialized version of the general-purpose select_from_group

function, where the shuffle index is the same for all work-items in the

sub-group. When the shuffle index is known to be the same for all work-

Chapter 9 CommuniCation and SynChronization

244

items in the sub-group, using group_broadcast instead of select_from_

group provides the compiler additional information and may increase

performance on some implementations.

The shift_group_right and shift_group_left functions effectively

shift the contents of a sub-group by a fixed number of elements in a given

direction, as shown in Figure 9-15. Note that the values returned to the last

five work-items in the sub-group are undefined and are shown as blank

in Figure 9-15. Shifting can be useful for parallelizing loops with loop-

carried dependences or when implementing common algorithms such as

exclusive or inclusive scans.

Figure 9-15. Using shift_group_left to shift x values of a sub-
group by five items

The permute_group_by_xor function swaps the values of two work-

items, specified by the result of an XOR operation applied to the work-

item’s sub-group local id and a fixed constant. As shown in Figure 9-16 and

Figure 9-17, several common communication patterns can be expressed

using an XOR, such as swapping pairs of neighboring values or reversing

the sub-group values.

Chapter 9 CommuniCation and SynChronization

245

Figure 9-16. Swapping neighboring pairs of x using a permute_
group_by_xor

Figure 9-17. Reversing the values of x using a permute_
group_by_xor

SUB-GROUP OPTIMIZATIONS USING BROADCAST, VOTE, AND COLLECTIVES

the behavior of broadcast, vote, and other collective functions applied to sub-

groups is identical to when they are applied to work-groups, but they deserve

additional attention because they may enable aggressive optimizations in

certain compilers. For example, a compiler may be able to reduce register

usage for variables that are broadcast to all work-items in a sub-group, or

may be able to reason about control flow divergence based on usage of the

any_of_group and all_of_group functions.

Chapter 9 CommuniCation and SynChronization

246

Because the shuffle functions are so specialized, they are only available

for sub-groups and are not available for work-groups.

 Summary
This chapter discussed how work-items in a group may communicate and

cooperate to improve the performance of some types of kernels.

We first discussed how ND-range kernels support grouping work-items

into work-groups. We discussed how grouping work-items into work-

groups changes the parallel execution model, guaranteeing that the work-

items in a work-group are scheduled for execution in a way that enables

communication and synchronization.

Next, we discussed how the work-items in a work-group may

synchronize using barriers and how barriers are expressed in kernels. We

also discussed how communication between work-items in a work-group

can be performed via work-group local memory, to simplify kernels and to

improve performance, and we discussed how work-group local memory is

represented using local accessors.

We discussed how work-groups in ND-range kernels may be further

divided into sub-groupings of work-items, where the sub-groups of work-

items may support additional communication patterns or scheduling

guarantees.

For both work-groups and sub-groups, we discussed how common

communication patterns may be expressed and accelerated through the

use of collective functions.

The concepts in this chapter are an important foundation for

understanding the common parallel patterns described in Chapter 14 and

for understanding how to optimize for specific devices in Chapters 15, 16,

and 17.

Chapter 9 CommuniCation and SynChronization

247

Open Access This chapter is licensed under the terms of

the Creative Commons Attribution 4.0 International License

(https://creativecommons.org/licenses/by/4.0/), which permits use,

sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter’s Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter’s

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 9 CommuniCation and SynChronization

https://creativecommons.org/licenses/by/4.0/

249

CHAPTER 10

Defining Kernels
Thus far in this book, our code examples have represented kernels

using C++ lambda expressions. Lambda expressions are a concise and

convenient way to represent a kernel right where it is used, but they are not

the only way to represent a kernel in SYCL. In this chapter, we will explore

various ways to define kernels in detail, helping us to choose a kernel form

that is most natural for our C++ coding needs.

This chapter explains and compares three ways to represent a kernel:

• Lambda expressions.

• Named function objects (functors).

• Via interoperability with kernels created via other

languages or APIs. This topic is covered briefly in this

chapter, and in more detail in Chapter 20.

This chapter closes with a discussion of how to explicitly manipulate

kernels in a kernel bundle to query kernel properties and to control when

and how kernels are compiled.

 Why Three Ways to Represent a Kernel?
Before we dive into the details, let’s start with a summary of why there are

three ways to define a kernel and the advantages and disadvantages of

each method. A useful summary is given in Figure 10-1.

© Intel Corporation 2023
J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-9691-2_10

https://doi.org/10.1007/978-1-4842-9691-2_10

250

Bear in mind that a kernel is used to express a unit of computation

and that many instances of a kernel will usually execute in parallel on an

accelerator. SYCL supports multiple ways to express a kernel to integrate

naturally and seamlessly into codebases with different coding styles, while

also executing efficiently on a wide diversity of accelerator types.

Kernel
Representation

Description

Lambda Expression Pros:

� Lambda expressions are a concise way to represent a kernel right

where it is used.

� Lambda expressions are a familiar way to represent kernel-like

operations in modern C++ codebases.

� Lambda capture rules automatically pass data to kernels.

Cons:

� Kernels represented as lambda expressions cannot be templated, and

do not assemble as a library (like regular functions) without extra

work.

� The lambda syntax may be unfamiliar to some C++ codebases.

Named Function
Object
(Functor)

Pros:

� Functors can be templated, reused, and shipped as a part of a library,

just like any other C++ class.

� Functors provide more control over the data that gets passed into a

kernel.

Cons:

� Kernels represented as functors require more code than kernels

represented as lambda expressions.

� Kernel arguments must be explicitly passed to functors and are not

captured automatically.

Interoperability
with Other
Languages or APIs

Pros:

� Enables re-use of previously written kernels or libraries.

� Enables large application codebases to incrementally add support for

SYCL.

�

Cons:

�

�

�

Figure 10-1. Three ways to represent a kernel

Chapter 10 Defining Kernels

251

 Kernels as Lambda Expressions
C++ lambda expressions, also referred to as anonymous function objects,

unnamed function objects, closures, or simply lambdas, are a convenient

way to express a kernel right where it is used. This section describes how

to represent a kernel as a C++ lambda expression. This expands on the

introductory refresher on C++ lambda expressions, in Chapter 1, which

included some basic coding samples with output.

C++ lambda expressions are very powerful and have an expressive

syntax, but only a specific subset of the full C++ lambda expression syntax

is required (and supported) when expressing a kernel in SYCL.

 Elements of a Kernel Lambda Expression
Figure 10-2 shows a simple kernel written as a typical lambda

expression—the code examples so far in this book have used this syntax.

The illustration in Figure 10-3 shows elements of a lambda expression

that may be used with kernels, but many of these elements are not typical.

In most cases, the lambda defaults are sufficient, so a typical kernel

lambda expression looks more like the lambda expression in Figure 10-2

than the more complicated lambda expression in Figure 10-3.

h.parallel_for(
size,
// This is the start of a kernel lambda expression:
[=](id<1> i) { data_acc[i] = data_acc[i] + 1; }
// This is the end of the kernel lambda expression.

);

Figure 10-2. Simple kernel defined using a lambda expression

Chapter 10 Defining Kernels

252

q.submit([&](handler& h) {
accessor data_acc{data_buf, h};
h.parallel_for(

nd_range{{size}, {8}},

[=](id<1> i) noexcept [[sycl::reqd_work_group_size(8)]] ->void {
data_acc[i] = data_acc[i] + 1;

});
});

Figure 10-3. More elements of a kernel lambda expression, including
optional elements

 1. The first part of a lambda expression describes

the lambda captures. Capturing a variable from a

surrounding scope enables it to be used within the

lambda expression, without explicitly passing it to

the lambda expression as a parameter.

C++ lambda expressions support capturing a

variable by copying it or by creating a reference

to it, but for kernel lambda expressions, variables

may only be captured by copy. General practice is

to simply use the default capture mode [=], which

implicitly captures all variables by value, although it

is possible to explicitly name each captured variable

in a comma-separated capture-list as well. Any

variable used within a kernel that is not captured

by value will cause a compile-time error. Note

that global variables are not captured by a lambda

expression, as per the C++ standard.

 2. The second part of a lambda expression describes

parameters that are passed to the lambda

expression, just like parameters that are passed to

named functions.

Chapter 10 Defining Kernels

253

For kernel lambda expressions, the parameter

depends on how the kernel was invoked and

identifies the index of the work-item in the parallel

execution space. Please refer to Chapter 4 for more

details about the various parallel execution spaces

and how to identify the index of a work- item in each

execution space.

 3. The last part of the lambda expression defines the

function body. For a kernel lambda expression,

the function body describes the operations that

should be performed at each index in the parallel

execution space.

There are other parts of a lambda expression, but they are either

optional, infrequently used, or unsupported by SYCL 2020:

 4. No specifiers (such as mutable) are defined by SYCL

2020, so none are shown in the example code.

 5. The exception specification is supported, but must

be noexcept if provided, since exceptions are not

supported for kernels.

 6. Lambda attributes are supported and may be used

to control how the kernel is compiled. For example,

the reqd_work_group_size attribute can be used

to require a specific work-group size for a kernel,

and the device_has attribute can be used to require

specific device aspects for a kernel. Chapter 12

contains more information on kernel specialization

using attributes and aspects.

Chapter 10 Defining Kernels

254

 7. The return type may be specified but must be void

if provided, since non-void return types are not

supported for kernels.

LAMBDA CAPTURES: IMPLICIT OR EXPLICIT?

some C++ style guides recommend against implicit (or default) captures for

lambda expressions due to possible dangling pointer issues, especially when

lambda expressions cross scope boundaries. the same issues may occur

when lambdas are used to represent kernels, since kernel lambdas execute

asynchronously on the device, separately from host code.

Because implicit captures are useful and concise, it is common practice for

sYCl kernels and a convention we use in this book, but it is ultimately our

decision whether to prefer the brevity of implicit captures or the clarity of

explicit captures.

 Identifying Kernel Lambda Expressions
There is one more element that must be provided in some cases when

a kernel is written as a lambda expression: because lambda expressions

are anonymous, at times SYCL requires an explicit kernel name template

parameter to uniquely identify a kernel written as a lambda expression.

// In this example, "class Add" names the kernel
// lambda expression.
h.parallel_for<class Add>(size, [=](id<1> i) {
data_acc[i] = data_acc[i] + 1;

});

Figure 10-4. Identifying kernel lambda expressions

Chapter 10 Defining Kernels

255

Naming a kernel lambda expression is a way for a host code compiler

to identify which kernel to invoke when the kernel was compiled by a

separate device code compiler. Naming a kernel lambda also enables

runtime introspection of a compiled kernel or building a kernel by name,

as shown in Figure 10-9.

To support more concise code when the kernel name template

parameter is not required, the kernel name template parameter is optional

for most SYCL 2020 compilers. When no kernel name template parameter

is required, our code can be more compact, as shown in Figure 10-5.

h.parallel_for(size, [=](id<1> i) {
data_acc[i] = data_acc[i] + 1;

});

Figure 10-5. Using unnamed kernel lambda expressions

Because the kernel name template parameter for lambda expressions

is not required in most cases, we can usually start with an unnamed

lambda and only add a kernel name in specific cases when the kernel

name template parameter is required.

When the kernel name template parameter is not required, using
unnamed kernel lambdas is preferred to reduce verbosity.

 Kernels as Named Function Objects
Named function objects, also known as functors, are an established pattern

in C++ that allows operating on an arbitrary collection of data while

maintaining a well-defined interface. When used to represent a kernel,

the member variables of a named function object define the state that the

kernel may operate on, and the overloaded function call operator() is

invoked for each work-item in the parallel execution space.

Chapter 10 Defining Kernels

256

Named function objects require more code than lambda expressions

to express a kernel, but the extra verbosity provides more control and

additional capabilities. It may be easier to analyze and optimize kernels

expressed as named function objects, for example, since any buffers and

data values used by the kernel must be explicitly passed to the kernel,

rather than captured automatically by a lambda expression.

Kernels expressed as named function objects may also be easier to

debug, easier to reuse, and they may be shipped as part of a separate

header file or library.

Finally, because named function objects are just like any other C++

class, kernels expressed as named function objects may be templated.

C++20 added templated lambda expressions, but templated lambda

expressions are not supported for kernels in SYCL 2020, which is based

on C++17.

 Elements of a Kernel Named Function Object
The code in Figure 10-6 demonstrates typical usage of a kernel represented

as a named function object. In this example, the parameters to the

kernel are passed to the class constructor, and the kernel itself is in the

overloaded function call operator().

Chapter 10 Defining Kernels

257

class Add {
public:
Add(accessor<int> acc) : data_acc(acc) {}
void operator()(id<1> i) const {
data_acc[i] = data_acc[i] + 1;

}

private:
accessor<int> data_acc;

};

int main() {
constexpr size_t size = 16;
std::array<int, size> data;

for (int i = 0; i < size; i++) {
data[i] = i;

}

{
buffer data_buf{data};

queue q;
std::cout

<< "Running on device: "
<< q.get_device().get_info<info::device::name>()
<< "\n";

q.submit([&](handler& h) {
accessor data_acc{data_buf, h};
h.parallel_for(size, Add(data_acc));

});
}
// ...

Figure 10-6. Kernel as a named function object

When a kernel is expressed as a named function object, the named

function object type must follow SYCL 2020 rules to be device copyable.

Informally, this means that the named function objects may be safely

copied byte by byte, enabling the member variables of the named function

object to be passed to and accessed by kernel code executing on a device.

Any C++ type that is trivially copyable is implicitly device copyable.

Chapter 10 Defining Kernels

258

The argument to the overloaded function call operator() depends

on how the kernel is launched, just like for kernels expressed as lambda

expressions.

The code in Figure 10-7 shows how to use optional kernel attributes,

like the reqd_work_group_size attribute, on kernels defined as named

function objects. There are two valid positions for the optional kernel

attribute when a kernel is defined as a named function object. This is

different than a kernel written as a lambda expression, where only one

position for the optional kernel attribute is valid.

class AddWithAttribute {
public:
AddWithAttribute(accessor<int> acc) : data_acc(acc) {}
[[sycl::reqd_work_group_size(8)]] void operator()(

id<1> i) const {
data_acc[i] = data_acc[i] + 1;

}

private:
accessor<int> data_acc;

};

class MulWithAttribute {
public:
MulWithAttribute(accessor<int> acc) : data_acc(acc) {}
void operator()

[[sycl::reqd_work_group_size(8)]] (id<1> i) const {
data_acc[i] = data_acc[i] * 2;

}

private:
accessor<int> data_acc;

};

Figure 10-7. Using optional attributes with a named function object

Because all function objects are named, the host code compiler can

use the function object type to identify the kernel code produced by

the device code compiler even if the function object is templated. No

additional kernel name template parameter is needed to name a kernel

function object.

Chapter 10 Defining Kernels

259

 Kernels in Kernel Bundles
One final topic we should be aware of related to SYCL kernels concerns

SYCL kernel objects and SYCL kernel bundles. Knowledge of kernel objects

and kernel bundles is not required for typical application development

but is useful in some cases to tune application performance. Knowledge of

kernel objects and kernel bundles can also help to understand how kernels

are organized and managed by a SYCL implementation.

A SYCL kernel bundle is a container for SYCL kernels or SYCL

functions used by an application. The number of kernel bundles in an

application depends on the specific SYCL compiler. Some applications

may have just one kernel bundle, even if they have multiple kernels, while

other applications may have more than one kernel bundle, even if they just

have a few kernels.

A SYCL kernel bundle and the kernels or functions it contains can be in

one of three states:

• An input state: Kernel bundles in this state are typically

in some sort of intermediate representation and must

be just-in-time (JIT) compiled before they can execute

on a device.

• An object state: Kernel bundles in this state are usually

compiled but not linked, like object files created by

host application compilers.

• An executable state: Kernel bundles in this state are

fully compiled to device code and are ready to be

executed on the device. Kernel bundles that are ahead-

of- time (AOT) compiled when the host application is

compiled will initially be in this state.

Chapter 10 Defining Kernels

260

While not required by the specification, many SYCL compilers compile

kernels to an intermediate representation initially, for portability to the

largest number of SYCL devices. This means that usually the application

kernel bundles are in the input state initially. Then, many SYCL runtime

libraries compile the kernel bundles from the input state to the executable

state “lazily,” on an as-needed basis.

This is usually a good policy because it enables fast application startup

and does not compile kernels unnecessarily if they are never executed.

The disadvantage of this policy, though, is that the first use of a kernel

takes longer than subsequent uses, since it includes both the time needed

to compile the kernel and the usual time needed to submit and execute

the kernel. For complex kernels, the time to compile the kernel can be

significant, making it desirable to shift compilation to a different point

during application execution, such as when the application is loading, or

to a separate background thread.

To provide more control over when and how a kernel is compiled,

we can explicitly request a kernel bundle to be compiled before

submitting a kernel to a queue. The precompiled kernel bundle can be

used when the kernel is submitted to a queue for execution. Figure 10-8

shows how to compile all the kernels used by an application before

any of the kernels are submitted to a queue, and how to use the

precompiled kernel bundle.

Chapter 10 Defining Kernels

261

auto kb = get_kernel_bundle<bundle_state::executable>(
q.get_context());

std::cout
<< "All kernel compilation should be done now.\n";

q.submit([&](handler& h) {
// Use the pre-compiled kernel from the kernel bundle.
h.use_kernel_bundle(kb);

accessor data_acc{data_buf, h};
h.parallel_for(range{size}, [=](id<1> i) {
data_acc[i] = data_acc[i] + 1;

});
});

Figure 10-8. Compiling kernels explicitly using kernel bundles

This example requests a kernel bundle in an executable state for all

the devices in the SYCL context associated with the SYCL queue, which

will cause any kernels in the application to be just-in-time compiled if

they are not already in the executable state. In this specific example, the

kernel is very short and should not take long to compile, but if there were

many kernels, or if they were more complicated, this step could take a

significant amount of time. Of course, if all kernels were ahead-of-time

compiled, or if all kernels had already been just-in-time compiled, this

operation would effectively be free because all kernels would already be in

the executable state.

If we want even more control over when and how our kernels are

compiled, we can request a kernel bundle for a specific device, or even

specific kernels in our program. This allows us to selectively compile some

of the kernels in our program immediately, while leaving other kernels

to be compiled later or on an as-needed basis. Figure 10-9 shows how to

compile only the kernel identified by the class Add kernel name and only

for the SYCL device associated with the SYCL queue, rather than all kernels

in the program and all devices in the SYCL context.

Chapter 10 Defining Kernels

262

auto kid = get_kernel_id<class Add>();
auto kb = get_kernel_bundle<bundle_state::executable>(

q.get_context(), {q.get_device()}, {kid});

std::cout << "Kernel compilation should be done now.\n";

q.submit([&](handler& h) {
// Use the pre-compiled kernel from the kernel bundle.
h.use_kernel_bundle(kb);

accessor data_acc{data_buf, h};
h.parallel_for<class Add>(range{size}, [=](id<1> i) {

data_acc[i] = data_acc[i] + 1;
});

});

Figure 10-9. Compiling kernels explicitly and selectively using
kernel bundles

This is a rare case where we needed to name our kernel lambda

expression; otherwise, we would have no way to identify the kernel to

compile.

Use kernel bundles to compile kernels predictably in an application!

Kernels in kernel bundles can also be used to query information about

a compiled kernel, say to determine the maximum work-group size for a

kernel for a specific device. In some cases, these types of kernel queries

may be needed to choose valid values to use for a kernel and a specific

device. In other cases, kernel queries can provide hints, allowing our

application to dynamically adapt and choose optimal values for a kernel

and a specific device.

The basic mechanism to identify a kernel, get a kernel object from

a compiled kernel bundle, and use the kernel object to perform device-

specific queries is shown in Figure 10-10. A more complete list of available

kernel queries is described in Chapter 12.

Chapter 10 Defining Kernels

263

auto kid = get_kernel_id<class Add>();
auto kb = get_kernel_bundle<bundle_state::executable>(

q.get_context(), {q.get_device()}, {kid});
auto kernel = kb.get_kernel(kid);

std::cout
<< "The maximum work-group size for the kernel and "

"this device is: "
<< kernel.get_info<info::kernel_device_specific::

work_group_size>(
q.get_device())

<< "\n";

std::cout
<< "The preferred work-group size multiple for the "

"kernel and this device is: "
<< kernel.get_info<

info::kernel_device_specific::
preferred_work_group_size_multiple>(

q.get_device())
<< "\n";

Example Output:
Running on device: NVIDIA GeForce RTX 3060
The maximum work-group size for the kernel and this device is: 1024
The preferred work-group size multiple for the kernel and this device is: 32

Example Output:
Running on device: Intel(R) Data Center GPU Max 1100
The maximum work-group size for the kernel and this device is: 1024
The preferred work-group size multiple for the kernel and this device is: 16

Example Output:
Running on device: Intel(R) UHD Graphics 770
The maximum work-group size for the kernel and this device is: 512
The preferred work-group size multiple for the kernel and this device is: 64

Figure 10-10. Querying kernels in kernel bundles

This is another rare case where we need to name our kernel lambda

expression; otherwise, we would have no way to identify the kernel

to query.

Chapter 10 Defining Kernels

264

 Interoperability with Other APIs
When a SYCL implementation is built on top of another API, the

implementation may be able to interoperate with kernels defined using

mechanisms of the underlying API. This allows an application to integrate

SYCL easily and incrementally into existing codebases that are already

using the underlying API. This topic is covered in detail in Chapter 20. For

the purposes of this chapter, we can simply recognize that interoperability

with kernels or kernel bundles created via other source languages or APIs

provides a third way to represent a kernel.

 Summary
In this chapter, we explored different ways to define kernels. We

described how to seamlessly integrate SYCL into existing C++ codebases

by representing kernels as C++ lambda expressions or named function

objects. For new codebases, we also discussed the pros and cons of the

different kernel representations to help choose the best way to define

kernels based on the needs of our application or library.

We described how kernels are typically compiled in a SYCL application

and how to directly manipulate kernels in kernel bundles to control the

compilation process. Even though this level of control will not be required

for most applications, it is a useful technique to be aware of when we are

tuning our applications.

Chapter 10 Defining Kernels

265

Open Access This chapter is licensed under the terms of

the Creative Commons Attribution 4.0 International License

(https://creativecommons.org/licenses/by/4.0/), which permits use,

sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter’s Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter’s

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 10 Defining Kernels

https://creativecommons.org/licenses/by/4.0/

267

CHAPTER 11

Vectors and Math
Arrays
Vectors are collections of data. Vectors can be useful because parallelism

in our computers comes from collections of computer hardware, and data

is often processed in related groupings (e.g., the color channels in an RGB

pixel). The concept is so important that we spend a chapter discussing

the different SYCL vector types and how to utilize them. Note that we will

not dive into vectorization of scalar operations in this chapter since that

varies based on device type and implementations. Vectorization of scalar

operations is covered in Chapter 16.

This chapter seeks to address the following questions:

• What are vector types?

• What is the difference between the SYCL math array

(marray) and vector (vec) types?

• When and how should I use marray and vec?

We discuss marray and vec using working code examples and highlight

the most important aspects of exploiting these types.

© Intel Corporation 2023
J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-9691-2_11

https://doi.org/10.1007/978-1-4842-9691-2_11

268

 The Ambiguity of Vector Types
Vectors are a surprisingly controversial topic when we talk with parallel

programming experts. In the authors’ experience, this is because different

people define and think about vectors in different ways.

There are two broad ways to think about what this chapter calls

vector types:

 1. As a convenience type, which groups data that we

might want to refer to and operate on as a group, for

example, the RGB or YUV color channels of a pixel.

We could define a pixel class or struct and define

math operators like + on it, but convenience types

do this for us out of the box. Convenience types can

be found in many shader languages used to program

GPUs, so this way of thinking is common among

many GPU developers.

 2. As a mechanism to describe how code maps
to a SIMD (single instruction, multiple data)
instruction set in hardware. For example, in some

languages and implementations, operations on a

float8 could map to an eight-lane SIMD instruction

in hardware. SIMD vector types are used in many

languages as a high-level alternative to CPU-specific

intrinsics, so this way of thinking is already common

among many CPU developers.

Although these two interpretations of vector types are very different,

they unintentionally became combined and muddled together as SYCL

and other languages became applicable to both CPUs and GPUs. The

vec class (which existed in SYCL 1.2.1, and still exists in SYCL 2020) is

compatible with either interpretation, whereas the marray class (which

was introduced in SYCL 2020) is explicitly described as a convenience type

unrelated to SIMD vector hardware instructions.

Chapter 11 VeCtors and Math arrays

269

CHANGES ARE ON THE HORIZON: SIMD TYPES

syCL 2020 does not yet include a vector type explicitly tied to the second

interpretation (sIMd mappings). however, there are already extensions that

allow us to write explicit vector code that maps directly to sIMd instructions

in the hardware, designed for expert programmers who want to tune code

for a specific architecture and take control from the compiler vectorizers. We

should also expect another vector type to eventually appear in syCL to cover

the second interpretation, likely aligned with the proposed C++ std::simd

templates. this new class would make it very clear when code is written in an

explicit vector style, to reduce confusion. Both the existing extensions and a

future std::simd-like type in syCL are niche features that we expect will be

used by few developers.

With marray and a dedicated sIMd class, our intent as programmers will be

clear from the code that we write. this will be less error prone, less confusing,

and may even reduce the number of heated discussions between expert

developers when the question arises: “What is a vector?”

 Our Mental Model for SYCL Vector Types
Throughout this book, we talk about how work-items can be grouped

together to expose powerful communication and synchronization

primitives, such as sub-group barriers and shuffles. For these operations to

be efficient on vector hardware, there is an assumption that different work-

items in a sub-group combine and map to SIMD instructions. Said another

way, multiple work-items are grouped together by the compiler, at which

point they can map to SIMD instructions in the hardware. Remember from

Chapter 4 that this is a basic premise of SPMD (single program, multiple

data) programming models that operate on top of vector hardware, where

Chapter 11 VeCtors and Math arrays

270

a single work-item constitutes a lane of what might be a SIMD instruction

in hardware, instead of a work-item defining the entire operation that will

be a SIMD instruction in the hardware. You can think of the compiler as

always vectorizing across work-items when mapping to SIMD instructions

in hardware, when programming in a SPMD style.

For developers coming from languages that don’t have vector types, or

from GPU shading languages, we can think of SYCL vector types as being

local to a work-item, in that if there is an addition of two four-element

vectors that addition might take four instructions in the hardware (it would

be scalarized from the perspective of the work-item). Each element of

the vectors would be added by a different instruction/clock cycle in the

hardware. This is consistent with our interpretation of vector types as a

convenience—we can add two vectors in a single operation in our source

code, as opposed to performing four scalar operations in our source.

For developers coming from a CPU background, we should know

that implicit vectorization for SIMD hardware occurs by default in many

compilers, independent of vector type usage. The compiler may perform

this implicit vectorization across work-items, extract the vector operations

from well-formed loops, or honor vector types when mapping to vector

instructions—see Chapter 16 for more information.

The rest of this chapter focuses on teaching vectors using the

convenience interpretation of vector types (for both marray and vec),

and that is the one that we should keep in our minds when programming

in SYCL.

Chapter 11 VeCtors and Math arrays

271

OTHER IMPLEMENTATIONS POSSIBLE!

different compilers and implementations of syCL can in theory make different

decisions on how vector data types in code map to sIMd vector hardware

instructions. We should read a vendor’s documentation and optimization

guides to understand how to write code that will map to efficient sIMd

instructions, though the thinking and programming patterns that are described

in this chapter are applicable to most (ideally all) syCL implementations.

 Math Array (marray)
The SYCL math array type (marray), see Figure 11-1, is a new addition

in SYCL 2020 which has been defined to disambiguate different

interpretations of how vector types should behave. marray explicitly

represents the first interpretation of vector types introduced in the

previous section of this chapter—a convenience type unrelated to vector

hardware instructions. By removing “vector” from the name and by

including “array” instead, it becomes easier to remember and reason about

how the type will be logically implemented on hardware.

Chapter 11 VeCtors and Math arrays

272

Type Alias marray Equivalent
mcharN marray<int8_t, N>

mucharN marray<uint8_t, N>
mshortN marray<int16_t, N>
mushortN marray<uint16_t, N>

mintN marray<int32_t, N>
muintN marray<uint32_t, N>
mlongN marray<int64_t, N>

mulongN marray<uint64_t, N>
mhalfN marray<half, N>

mfloatN marray<float, N>
mdoubleN marray<double N>
mboolN marray<bool, N>

Figure 11-1. Type aliases for math arrays

The marray class is templated on its element type and number of

elements. The number of elements parameter, NumElements, is a positive

integer—when NumElements is 1, an marray is implicitly convertible to

an equivalent scalar type. The element type parameter, DataT, must be a

numeric type as defined by C++.

Marray is an array container, like std::array, with additional support

for mathematical operators (e.g., +, +=) and SYCL mathematical functions

(e.g., sin, cos) on arrays. It is designed to provide efficient and optimized

array operations for parallel computation on SYCL devices.

For convenience, SYCL provides type aliases for math arrays. For these

type aliases, the number of elements N must be 2, 3, 4, 8, or 16.

Figure 11-2 shows a simple example how to apply the cos function

to every element in an marray consisting of four floats. This example

highlights the convenience of using marray to express operations that

apply to all elements of a collection of data assigned to each work-item.

Chapter 11 VeCtors and Math arrays

273

queue q;
marray<float, 4> input{1.0004f, 1e-4f, 1.4f, 14.0f};
marray<float, 4> res[M];
for (int i = 0; i < M; i++)
res[i] = {-(i + 1), -(i + 1), -(i + 1), -(i + 1)};

{
buffer in_buf(&input, range{1});
buffer re_buf(res, range{M});

q.submit([&](handler &cgh) {
accessor re_acc{re_buf, cgh, read_write};
accessor in_acc{in_buf, cgh, read_only};

cgh.parallel_for(range<1>(M), [=](id<1> idx) {
int i = idx[0];
re_acc[i] = cos(in_acc[0]);

});
});

}

Figure 11-2. A simple example using marray

By executing this kernel over a large range of data M, we can achieve

good parallelism on many different types of devices, including those that

are much wider than the four elements of the marray, without prescribing

how our code maps to a SIMD instruction set operating on vector types.

 Vector (vec)
The SYCL vector type (vec) existed in SYCL 1.2.1 and is still included

in SYCL 2020. As mentioned previously, vec is compatible with either

interpretation of a vector type. In practice, vec is typically interpreted as

a convenience type, and our recommendation is therefore to use marray

instead to improve code readability and reduce ambiguity. However, there

are three exceptions to this recommendation, which we will cover in this

section: vector loads and stores, interoperability with backend-native

vector types, and operations known as “swizzles”.

Chapter 11 VeCtors and Math arrays

274

Like marray, the vec class is templated on its number of elements and

element type. However, unlike marray, the NumElements parameter must

be either 1, 2, 3, 4, 8, or 16, and any other value will produce a compilation

failure. This is a good example of the confusion around vector types

impacting vec’s design: limiting the size of a vector to small powers of

2 makes sense for SIMD instruction sets but appears arbitrary from the

perspective of a programmer looking for a convenience type. The element

type parameter, DataT, can be any of the basic scalar types supported in

device code.

Also, like marray, vec exposes shorthand type aliases for 2, 3, 4, 8, and

16 elements. Whereas marray aliases are prefixed with an “m”, vec aliases

are not, for example, uint4 is an alias to vec<uint32_t, 4> and float16 is

an alias to vec<float, 16>. It is important we pay close attention to the

presence or absence of this “m” when working with vector types, to ensure

we know which class we are dealing with.

 Loads and Stores
The vec class provides member functions for loading and storing the

elements of a vector. These operations act on contiguous memory

locations storing objects of the same type as the channels of the vector.

The load and store functions are shown in Figure 11-3. The load

member function reads values of type DataT from memory at the address

of the multi_ptr, offset by NumElements * offset elements of DataT, and

writes those values to the channels of the vec. The store member function

reads the channels of a vec and writes those values to memory at the address

of the multi_ptr, offset by NumElements * offset elements of DataT.

Note that the parameter is a multi_ptr, rather than an accessor or raw

pointer. The data type of the multi_ptr is DataT, that is, the data type of the

components of the vec class specialization. This requires that the pointer

passed to either load or store must match the component type of the vec

instance itself.

Chapter 11 VeCtors and Math arrays

275

template <access::address_space AddressSpace, access::decorated IsDecorated>
void load(size_t offset, multi_ptr<DataT, AddressSpace, IsDecorated> ptr);

multi_ptr<DataT, AddressSpace, IsDecorated> ptr) const;
template <access::address_space addressSpace, access::decorated IsDecorated>
void store(size_t offset,

Figure 11-3. vec load and store functions

A simple example of using the load and store functions is shown in

Figure 11-4.

std::array<float, size> fpData;
for (int i = 0; i < size; i++) {
fpData[i] = 8.0f;

}

buffer fpBuf(fpData);

queue q;
q.submit([&](handler& h) {
accessor acc{fpBuf, h};

h.parallel_for(workers, [=](id<1> idx) {
float16 inpf16;
inpf16.load(idx, acc.get_multi_ptr<access::decorated::no>());
float16 result = inpf16 * 2.0f;
result.store(idx, acc.get_multi_ptr<access::decorated::no>());

});
});

Figure 11-4. Use of load and store member functions

The SYCL vector load and store functions provide abstractions for

expressing vector operations, but the underlying hardware architecture

and compiler optimizations will determine any actual performance

benefits. We recommend analyzing performance using profiling tools and

experimenting with different strategies to find the best utilization of vector

load and store operations for specific use cases.

Even though we should not expect vector load and store operations

to map to SIMD instructions, using vector load and store functions can

still help to improve memory bandwidth utilization. Operating on vector

Chapter 11 VeCtors and Math arrays

276

types effectively is a hint to the compiler that each work-item is accessing a

contiguous block of memory, and certain devices may be able to leverage

this information to load or store multiple elements at once, thereby

improving efficiency.

 Interoperability with Backend-Native
Vector Types
The SYCL vec class template may also provide interoperability with a

backend’s native vector type (if one exists). The backend-native vector type

is defined by the member type vector_t and is available only in device

code. The vec class can be constructed from an instance of vector_t and

can be implicitly converted to an instance of vector_t.

Most of us will never need to use vector_t, as its use cases are very

limited; it exists only to allow interoperability with backend-native

functions called from within a kernel function (e.g., calling a function

written in OpenCL C from within a SYCL kernel).

 Swizzle Operations
In graphics applications, swizzling means rearranging the data elements

of a vector. For example, if a vector a contains the elements {1, 2, 3, 4},

and knowing that the components of a four-element vector can be referred

to as {x, y, z, w}, we could write b = a.wxyz(), and the values in the

vector b would be {4, 1, 2, 3}. This syntax is common in applications

for code compactness and where there is efficient hardware for such

operations.

The vec class allows swizzles to be performed in one of two ways, as

shown in Figure 11-5.

Chapter 11 VeCtors and Math arrays

277

template <int... swizzleindexes>
__swizzled_vec__ swizzle() const;
__swizzled_vec__ XYZW_ACCESS() const;
__swizzled_vec__ RGBA_ACCESS() const;
__swizzled_vec__ INDEX_ACCESS() const;

#ifdef SYCL_SIMPLE_SWIZZLES
// Available only when numElements <= 4
// XYZW_SWIZZLE is all permutations with repetition of:
// x, y, z, w, subject to numElements
__swizzled_vec__ XYZW_SWIZZLE() const;

// Available only when numElements == 4
// RGBA_SWIZZLE is all permutations with repetition of: r,
// g, b, a.
__swizzled_vec__ RGBA_SWIZZLE() const;
#endif

Figure 11-5. vec swizzle member functions

The swizzle member function template allows us to perform swizzle

operations by calling the template member function swizzle. This

member function takes a variadic number of integer template arguments,

where each argument represents the swizzle index for the corresponding

element in the vector. The swizzle indices must be integers between 0 and

NumElements-1, where NumElements represents the number of elements in

the original SYCL vector (e.g., vec.swizzle<2, 1, 0, 3>() for a vector of

four elements). The return type of the swizzle member function is always

an instance of __swizzled_vec__, which is an implementation-defined

temporary class representing the swizzled vector. Note that the swizzle

operation is not performed immediately when calling swizzle. Instead,

the swizzle operation is performed when the returned __swizzled_vec__

instance is used within an expression.

The set of simple swizzle member functions, described in the SYCL

specification as XYZW_SWIZZLE and RGBA_SWIZZLE, are provided as an

alternative way to perform swizzle operations. These member functions

are only available for vectors with up to four elements, and only if the

SYCL_SIMPLE_SWIZZLES macro is defined before any SYCL header files.

Chapter 11 VeCtors and Math arrays

278

The simple swizzle member functions allow us to refer to the elements of

a vector using the names {x, y, z, w} or {r, g, b, a} and to perform

swizzle operations by calling member functions using these element

names directly.

For example, simple swizzles enable the XYZW swizzle syntax

a.wxyz() used previously. The same operation can be performed

equivalently using RGBA swizzles by writing a.argb(). Using simple

swizzles can produce more compact code and code that is a closer match

to other languages, especially graphics shading languages. Simple swizzles

can also better express programmer intent when a vector contains XYZW

position data or RGBA color data. The return type of the simple swizzle

member functions is also __swizzled_vec__. Like the swizzle member

function template, the actual swizzle operation is performed when the

returned __swizzled_vec__ instance is used within an expression.

Chapter 11 VeCtors and Math arrays

279

constexpr int size = 16;

std::array<float4, size> input;
for (int i = 0; i < size; i++) {
input[i] = float4(8.0f, 6.0f, 2.0f, i);

}

buffer b(input);

queue q;
q.submit([&](handler& h) {
accessor a{b, h};

// We can access the individual elements of a vector by
// using the functions x(), y(), z(), w() and so on.
//
// "Swizzles" can be used by calling a vector member
// equivalent to the swizzle order that we need, for
// example zyx() or any combination of the elements.
// The swizzle need not be the same size as the
// original vector.
h.parallel_for(size, [=](id<1> idx) {
auto e = a[idx];
float w = e.w();
float4 sw = e.xyzw();
sw = e.xyzw() * sw.wzyx();
sw = sw + w;
a[idx] = sw.xyzw();

});
});

Figure 11-6. Example of using the __swizzled_vec__ class

Figure 11-6 demonstrates the usage of simple swizzles and the __

swizzled_vec__ class. Although the __swizzled_vec__ does not appear

directly in our code, it is used within expressions such as b.xyzw() *

sw.wzyx(): the return type of b.xyzw() and sw.wzyx() is instances of

__swizzled_vec__, and the multiplication is not evaluated until the result

is assigned back to the float4 variable sw.

Chapter 11 VeCtors and Math arrays

280

 How Vector Types Execute
As described throughout this chapter, there are two different

interpretations of vector types and how they might map to hardware. Until

this point, we have deliberately only discussed these mappings at a high

level. In this section, we will take a deeper look into exactly how different

interpretations of the vector types may map to low-level hardware features

such as SIMD registers, demonstrating that both interpretations can make

efficient use of vector hardware.

 Vectors as Convenience Types
There are three primary points that we’d like to make around how vectors

map from convenience types (e.g., marray and usually vec) to hardware

implementations:

 1. To leverage the portability and expressiveness of

the SPMD programming model, we should think

of multiple work-items being combined to create

vector hardware instructions. More specifically, we

should not think of vector hardware instructions

being created from a single work-item in isolation.

 2. As a consequence of (1), we should think of

operations (e.g., addition) on a vector as executing

per-channel or per-element in time, from the

perspective of one work-item. Using vectors in our

source code is usually unrelated to taking advantage

of underlying vector hardware instructions.

Chapter 11 VeCtors and Math arrays

281

 3. Compilers are required to obey the memory layout

requirements of vectors and math arrays if we write

code in certain ways, such as by passing the address

of a vector to a function, which can cause surprising

performance impacts. Understanding this can

make it easier to write code which compilers can

aggressively optimize.

We will start by further describing the first two points, because a clear

mental model can make it much easier to write code.

As described in Chapters 4 and 9, a work-item is the leaf node of

the parallelism hierarchy and represents an individual instance of a

kernel function. Work-items can be executed in any order and cannot

communicate or synchronize with each other except through atomic

memory operations to local or global memory, or through group collective

functions (e.g., select_from_group, group_barrier).

Instances of convenience types are local to a single work-item and can

therefore be thought of as equivalent to a private array of NumElements per

work-item. For example, the storage of a float4 y4 declaration can be

considered equivalent to float y4[4]. Consider the example shown in

Figure 11-7.

h.parallel_for(8, [=](id<1> i) {
float x = a[i];
float4 y4 = b[i];
a[i] = x + sycl::length(y4);

});

Figure 11-7. Vector execution example

For the scalar variable x, the result of kernel execution with multiple

work-items on hardware that has SIMD instructions (e.g., CPUs, GPUs)

might use a vector register and SIMD instructions, but the vectorization

is across work-items and unrelated to any vector type in our code. Each

work-item, with its own scalar x, could form a different lane in an implicit

Chapter 11 VeCtors and Math arrays

282

SIMD hardware instruction that the compiler generates, as shown in

Figure 11-8. The scalar data in a work-item can be thought of as being

implicitly vectorized (combined into SIMD hardware instructions)

across work-items that happen to execute at the same time, in some

implementations and on some hardware, but the work-item code that we

write does not encode this in any way—this is the core of the SPMD style of

programming.

Work-item ID w0 w1 w2 w3 w4 w5 w6 w7
SIMD hardware
instruc�on lanes x[w0] x[w1] x[w2] x[w3] x[w4] x[w5] x[w6] x[w7]

Figure 11-8. Possible expansion from scalar variable x to eight-wide
hardware vector instruction

Exposing potential parallelism in a hardware-agnostic way ensures

that our applications can scale up (or down) to fit the capabilities of

different platforms, including those with vector hardware instructions.

Striking the right balance between work-item and other forms of

parallelism during application development is a challenge that we must all

engage with, and is covered in more detail in Chapters 15, 16, and 17.

With the implicit vector expansion from scalar variable x to a vector

hardware instruction by the compiler as shown in Figure 11-8, the

compiler creates a SIMD operation in hardware from a scalar operation

that occurs in multiple work-items.

Returning to the code example in Figure 11-7, for the vector variable

y4, the result of kernel execution for multiple work-items (e.g., eight

work-items) does not process the four-element vector by using vector

operations in hardware. Instead, each work-item independently sees its

own vector (float4 in this case), and the operations on elements of that

vector may occur across multiple clock cycles/instructions. This is shown

in Figure 11-9. We can think of the vectors as having been scalarized by the

compiler from the perspective of a work-item.

Chapter 11 VeCtors and Math arrays

283

Scalarized
ops

Exec
cycle

Work-item ID

w0 w1 w2 w3 w4 w5 w6 w7
y4.x N y4[w0].x y4[w1].x y4[w2].x y4[w3].x y4[w4].x y4[w5].x y4[w6].x y4[w7].x
y4.y N+1 y4[w0].y y4[w1].y y4[w2].y y4[w3].y y4[w4].y y4[w5].y y4[w6].y y4[w7].y
y4.z N+2 y4[w0].z y4[w1].z y4[w2].z y4[w3].z y4[w4].z y4[w5].z y4[w6].z y4[w7].z
y4.w N+3 y4[w0].w y4[w1].w y4[w2].w y4[w3].w y4[w4].w y4[w5].w y4[w6].w y4[w7].w

Figure 11-9. Vector hardware instructions access strided memory
locations across SIMD lanes

Figure 11-9 also demonstrates the third key point for this section,

that the convenience interpretation of vectors can have memory access

implications that are important to understand. In the preceding code

example, each work-item sees the original (consecutive) data layout of y4,

which provides an intuitive model to reason about and tune.

From a performance perspective, the downside of this work-item-

centric vector data layout is that if a compiler vectorizes across work-items

to create vector hardware instructions, the lanes of the vector hardware

instruction do not access consecutive memory locations. Depending on

the vector data size and the capabilities of a specific device; a compiler

may need to generate, gather, or scatter memory instructions; as shown

in Figure 11-10. This is required because the vectors are contiguous in

memory, and neighboring work-items are operating on different vectors in

parallel. See Chapters 15 and 16 for more discussion of how vector types

may impact execution on specific devices, and be sure to check vendor

documentation, compiler optimization reports, and use runtime profiling

to understand the efficiency of specific scenarios.

Chapter 11 VeCtors and Math arrays

284

q.submit([&](sycl::handler &h) { // assume sub group size is 8
// ...
h.parallel_for(range<1>(8), [=](id<1> i) {
// ...
float4 y4 = b[i]; // i=0, 1, 2, ...
// ...
float x = dowork(&y4); // the “dowork” expects y4,

// i.e., vec_y[8][4] layout
});

Figure 11-10. Vector code example with address escaping

When the compiler can prove that the address of y4 does not escape

from the current kernel work-item, or if all callee functions are inlined,

then the compiler may perform aggressive optimizations that may

improve performance. For example, the compiler can legally transpose

the storage of y4 if it is not observable, enabling consecutive memory

accesses that avoid the need for gather or scatter instructions. Compiler

optimization reports can provide information how our source code has

been transformed into vector hardware instructions and can provide hints

on how to tweak our code for increased performance.

As a general guideline, we should use convenience vectors (e.g.,

marray) whenever they make logical sense, because code using these types

is much easier to write and maintain. Only when we see performance

hotspots in our application should we investigate whether a source

code vector operation has been lowered into suboptimal hardware

implementation.

 Vectors as SIMD Types
Although we have emphasized in this chapter that marray and vec are not

SIMD types, for completeness we include here a brief discussion of how

SIMD types may map to vector hardware. This discussion is not coupled

to vectors within our SYCL source code but provides background that will

Chapter 11 VeCtors and Math arrays

285

be useful as we progress to the later chapters of this book that describe

specific device types (GPU, CPU, FPGA), and may help to prepare us for

the possible introduction of SIMD types in future versions of SYCL.

SYCL devices may contain SIMD instruction hardware that operates

on multiple data values contained in one vector register or a register file.

On devices that provide SIMD hardware, we can consider a vector addition

operation, for example, on an eight-element vector, as shown in Figure 11-11.

The vector addition in this example could execute in a single

instruction using vector hardware, adding the vector registers vec_x and

vec_y in parallel with that SIMD instruction.

This mapping of SIMD types to vector hardware is very straightforward

and predictable, and likely to be performed the same way by any

compiler. These properties make SIMD types very attractive for low-level

performance tuning on SIMD hardware but come with a cost—the code is

less portable and becomes sensitive to details of the specific architecture.

The SPMD programming model evolved to combat these costs.

That developers expect SIMD types to have predictable hardware

mapping properties is precisely why it is critical to cleanly separate the two

interpretations of vectors via two distinct language features: if a developer

uses a convenience type expecting it to behave as a SIMD type, they will

likely be working against compiler optimizations and will likely see lower

performance than hoped or expected.

Figure 11-11. SIMD addition with eight-way data parallelism

Chapter 11 VeCtors and Math arrays

286

 Summary
There are multiple interpretations of the term vector within programming

languages, and understanding the interpretation that a particular language

or compiler has been built around is important when writing performant

and scalable code. SYCL has been built around the idea that vector

types in source code are convenience types local to a work-item and that

implicit vectorization by the compiler across work-items map to SIMD

instructions in the hardware. When we (in very rare cases) want to write

code which maps directly to vector hardware explicitly, we should look

to vendor documentation and in some cases to extensions to SYCL. Most

applications should be written assuming that kernels will be vectorized

across work-items—doing so leverages the powerful abstraction of SPMD,

which provides an easy-to-reason-about programming model, and that

provides scalable performance across devices and architectures.

This chapter described the marray interface, which offers convenience

out of the box when we have groupings of similarly typed data that we want

to operate on (e.g., a pixel with multiple color channels). In addition, we

discussed the legacy vec class, which may be convenient for expressing

certain patterns (with swizzles) or optimizations (with loads/stores and

backend interoperability).

Chapter 11 VeCtors and Math arrays

287

Open Access This chapter is licensed under the terms of

the Creative Commons Attribution 4.0 International License

(https://creativecommons.org/licenses/by/4.0/), which permits use,

sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter’s Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter’s

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 11 VeCtors and Math arrays

https://creativecommons.org/licenses/by/4.0/

289

CHAPTER 12

Device Information
and Kernel
Specialization
In this chapter, we look at the advanced concept of making our program

more flexible and therefore more portable. This is done by looking at

mechanisms to match the capabilities of any system (and accelerators) our

application might be executed upon, with a selection of kernels and code

that we have written. This is an advanced topic because we can always

simply “use the default accelerator” and run the kernels we write on that

regardless of what it is. We have learned that this will work even on systems

which may have no accelerator because SYCL guarantees there is always

a device available that will run a kernel even if it is the CPU that is also

running our host application.

When we move beyond “use the default accelerator” and general-

purpose kernels, we find mechanisms are available to choose which

device(s) to use, and mechanisms to create more specialized kernels. We

discuss both capabilities in this chapter. Together, these two capabilities

allow us to construct applications that are highly adaptable to the system

on which they are executed.

© Intel Corporation 2023
J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-9691-2_12

https://doi.org/10.1007/978-1-4842-9691-2_12

290

Fortunately, the creators of the SYCL specification thought about

these needs and gave us interfaces to let us solve this problem. The SYCL

specification defines a device class that encapsulates a device on which

kernels may be executed. We first cover the ability to query the device

class, so that our program can adapt to the device characteristics and

capabilities. We may occasionally choose to write different algorithms for

different devices. Later in this chapter, we learn that we can apply aspects

to a kernel to specialize a kernel and let a compiler take advantage of that.

Such specialization helps make a kernel more tailored to a certain class of

devices while likely rendering it unsuitable for other devices. Combining

these concepts allows us to adapt our program as much, or as little, as

we wish. This ensures we can decide how much investment to make in

squeezing out performance while starting with broad portability.

 Is There a GPU Present?
Many of us will start with having logic to figure out “Is there a GPU

present?” to inform the choices our program will make as it executes.

That is the start of what this chapter covers. As we will see, there is much

more information available to help us make our programs robust and

performant.

Parameterizing a program can help with correctness, functional
portability, performance portability, and future proofing.

This chapter dives into the most important queries and how to use

them effectively in our programs. Implementations doubtlessly offer more

detailed properties that we can query. To learn all possible queries, we

ChaPter 12 DeviCe information anD Kernel SPeCialization

291

would need to review the latest SYCL specification, the documentation for

our particular compiler, and documentation for any runtimes/drivers we

may encounter.

Device-specific properties are queryable using get_info functions,

including access to device-specific kernel and work-group properties.

 Refining Kernel Code to Be More
Prescriptive
It is useful to consider that our coding, kernel by kernel, will fall broadly

into one of these three categories:

• Generic kernel code: Run anywhere, not tuned to a

specific class of device.

• Device type–specific kernel code: Run on a type of

device (e.g., GPU, CPU, FPGA), not tuned to specific

models of a device type. This is particularly useful

because many device types share common features,

so it is safe to make some assumptions that would not

apply to fully general code written for all devices.

• Tuned device-specific kernel code: Run on a type of

device, with tuning that reacts to specific parameters

of a device—this covers a broad range of possibilities

from a small amount of tuning to very detailed

optimization work.

it is our job as programmers to determine when different patterns are
needed for different device types. We dedicate Chapters 14, 15, 16,
and 17 to illuminating this important thinking.

ChaPter 12 DeviCe information anD Kernel SPeCialization

292

It is most common to start by focusing on getting things working

with a functionally correct implementation of a generic kernel. Chapter 2

specifically talks about what methods are easiest to debug when getting

started with a kernel implementation. Once we have a kernel working,

we may evolve it to target the capabilities of a specific device type or

device model.

Chapter 14 offers a framework of thinking to consider parallelism

first, before we dive into device considerations. It is our choice of pattern

(a.k.a. algorithm) that dictates our code, and it is our job as programmers

to determine when different patterns are needed for different devices.

Chapters 15 (GPU), 16 (CPU), and 17 (FPGA) dive more deeply into the

qualities that distinguish these device types and motivate a choice in

pattern to use. It is these qualities that motivate us to consider writing

distinct versions of kernels when the best approach (pattern choice) varies

on different device types.

When we have a kernel written for a specific type of device (e.g., a

specific CPU, GPU, FPGA, etc.), it is logical to adapt it to specific vendors

or even models of such devices. Good coding style is to parameterize code

based on features (e.g., item size support found from a device query).

We should write code to query parameters that describe the actual

capabilities of a device instead of its marketing information; it is bad

programming practice to query the model number of a device and react to

that—such code is less portable because it is not future-proof.

It is common to write a different kernel for each device type that

we want to support (a GPU version of a kernel and an FPGA version of

a kernel and maybe a generic version of a kernel). When we get more

specific, to support a specific device vendor or even device model, we may

benefit when we can parameterize a kernel rather than duplicate it. We

are free to do either, as we see fit. Code cluttered with too many parameter

adjustments may be hard to read or excessively burdened at runtime. It

is common however that parameters can fit neatly into a single version of

a kernel.

ChaPter 12 DeviCe information anD Kernel SPeCialization

293

Parameterizing makes the most sense when the algorithm is broadly
the same but has been tuned for the capabilities of a specific device.
Writing a different kernel is much cleaner when using a completely
different approach, pattern, or algorithm.

 How to Enumerate Devices and Capabilities
Chapter 2 enumerates and explains five methods for choosing a device

on which to execute. Essentially, Method#1 was the least prescriptive run

it somewhere, and we evolve to the most prescriptive Method#5, which

considered executing on a fairly precise model of a device from a family of

devices. The enumerated methods in between gave a mix of flexibility and

prescriptiveness. Figure 12-1, Figure 12-2, and Figure 12-4 help to illustrate

how we can select a device.

Figure 12-1 shows that even if we allow the implementation to select

a default device for us (Method#1 in Chapter 2), we can still query for

information about the selected device.

Figure 12-2 shows how we can try to set up a queue using a specific

device (in this case, a GPU), but fall back explicitly on the default device

if no GPU is available. This gives us some control of our device choice by

biasing us to get a GPU whenever one is available. We know that at least

one device is always guaranteed to exist so our kernels can always run in

a properly configured system. When there is no GPU, many systems will

default to a CPU device but there is no guarantee. Likewise, if we ask for a

CPU device explicitly, there is no guarantee there is such a device (but we

are guaranteed that some device will exist).

ChaPter 12 DeviCe information anD Kernel SPeCialization

294

It is not recommended that we use the solution shown in Figure 12-2.

In addition to appearing a little scary and error prone, Figure 12-2 does not

give us control over which GPU is selected if there are choices of GPUs at

runtime. Despite being both instructive and functional, there is a better

way. It is recommended that we write custom device selectors as shown in

the next code example (Figure 12-4).

Queries about devices rely on installed software (special user-level

drivers), to respond regarding a device. SYCL relies on this, just as an

operating system needs drivers to access hardware—it is not sufficient that

the hardware simply be installed in a machine.

queue q;

std::cout << "By default, we are running on "
<< q.get_device().get_info<info::device::name>()
<< "\n";

Example Outputs (one line per run – depends on system):
By default, we are running on NVIDIA GeForce RTX 3060
By default, we are running on AMD Radeon RX 5700 XT
By default, we are running on Intel(R) UHD Graphics 770
By default, we are running on Intel(R) Xeon(R) Gold 6336Y CPU @ 2.40GHz
By default, we are running on Intel(R) Data Center GPU Max 1100

Figure 12-1. Device we have been assigned by default

ChaPter 12 DeviCe information anD Kernel SPeCialization

295

auto GPU_is_available = false;

try {
device testForGPU(gpu_selector_v);
GPU_is_available = true;

} catch (exception const& ex) {
std::cout << "Caught this SYCL exception: " << ex.what()

<< std::endl;
}

auto q = GPU_is_available ? queue(gpu_selector_v)
: queue(default_selector_v);

std::cout
<< "After checking for a GPU, we are running on:\n "
<< q.get_device().get_info<info::device::name>()
<< "\n";

Four Example Outputs (using four different
 systems, each with a GPU):
After checking for a GPU, we are running on:
 AMD Radeon RX 5700 XT
After checking for a GPU, we are running on:
 Intel(R) Data Center GPU Max 1100
After checking for a GPU, we are running on:
 NVIDIA GeForce RTX 3060
After checking for a GPU, we are running on:
 Intel(R) UHD Graphics 770

Example Output (using a system without GPU):
Caught this SYCL exception: No device of
requested type 'info::device_type::gpu' available.
...(PI_ERROR_DEVICE_NOT_FOUND)
After checking for a GPU, we are running on:
 AMD Ryzen 5 3600 6-Core Processor

Figure 12-2. Using try-catch to select a GPU device if possible, use the
default device if not

ChaPter 12 DeviCe information anD Kernel SPeCialization

296

 Aspects
The SYCL standard has a small list of device aspects that can be used to

understand the capabilities of a device, to control which devices we choose

to use, and to control which kernels we submit to a device. At the end of

this chapter, we will discuss “kernel specialization” and kernel templating.

For now, we will enumerate the aspects and how to use them in device

queries and selection. Figure 12-3 lists aspects that are defined by the SYCL

standard to be available for use in every C++ program using SYCL. Aspects

are Boolean—a device either has or does not have an aspect. The first four

(cpu/gpu/accelerator/custom) are mutually exclusive since device types

are defined as an enum by SYCL 2020. Features including aspect::fp16,

aspect::fp64, and aspect::atomic64 are “optional features” so they

may not be supported by all devices—testing for these can be especially

important for a robust application.

ChaPter 12 DeviCe information anD Kernel SPeCialization

297

Standard aspect (all booleans) The device…
aspect::cpu executes code on a CPU
aspect::gpu executes code on a GPU
aspect::accelerator executes code on an accelerator
aspect::custom executes fixed functions only, no

support for programmable kernels
aspect::emulated executes code in an emulator, not for

performance – typically used for

debug, pro�iling, etc.
aspect::host_debuggable can fully support standard debugging
aspect::fp16 supports the sycl::half data type

aspect::fp64 supports the double data type

aspect::atomic64 supports 64-bit atomic operations
aspect::image supports images, a topic not covered

in this book (we emphasize the more

general and portable buffer
instead)

aspect::online_compiler
aspect::online_linker

supports online compilation and/or

linking of device code. Such devices

may support the build(), compile(),

and link() functions, all very

advanced topics not covered in this

book
aspect::queue_profiling supports queue pro�iling, an

advanced topic discussed a bit, along

with other practical tips, in Chapter

13
aspect::usm_device_allocations

aspect::usm_host_allocations

aspect::usm_atomic_host_allocations

aspect::usm_shared_allocations

aspect::usm_atomic_shared_allocations

supports the corresponding USM

capability

aspect::usm_system_allocations supports sharing data allocated by

the system allocators, not just the

Figure 12-3. Aspects defined by the SYCL standard (implementations
can add more)

ChaPter 12 DeviCe information anD Kernel SPeCialization

298

 Custom Device Selector
Figure 12-4 uses a custom device selector. Custom device selectors were

first discussed in Chapter 2 as Method#5 for choosing where our code runs

(Figure 2-16). The custom device selector evaluates each device available

to the application. A particular device is selected based on receiving the

highest score (or no device if the highest score is -1). In this example, we

will have a little fun with our selector:

• Reject non-GPUs (return -1).

• Favor GPUs with a vendor name including the word

“ACME” (return 24 if Martian, 824 otherwise).

• Any other non-Martian GPU is a good one (return 799).

• Martian GPUs, which are not ACME, are rejected

(return -1).

The next section, “Being Curious: get_info<>,” dives into the rich

information that get_devices(), get_platforms(), and get_info<>

offer. Those interfaces open up any type of logic we might want to utilize

to pick our devices, including the simple vendor name checks shown in

Figure 2-16 and Figure 12-4.

ChaPter 12 DeviCe information anD Kernel SPeCialization

299

#include <iostream>
#include <sycl/sycl.hpp>
using namespace sycl;

int my_selector(const device& dev) {
int score = -1;

// We prefer non-Martian GPUs, especially ACME GPUs
if (dev.is_gpu()) {
if (dev.get_info<info::device::vendor>().find("ACME") !=

std::string::npos)
score += 25;

if (dev.get_info<info::device::vendor>().find(
"Martian") == std::string::npos)

score += 800;
 }

// If there is no GPU on the system all devices will be
// given a negative score and the selector will not select
// a device. This will cause an exception.
return score;

}

int main() {
try {
auto q = queue{my_selector};
std::cout

<< "After checking for a GPU, we are running on:\n "
<< q.get_device().get_info<info::device::name>()
<< "\n";

} catch (exception const& ex) {
std::cout << "Custom device selector did not select a "

"device.\n";
std::cout << "Caught this SYCL exception: " << ex.what()

<< std::endl;
 }

return 0;
}
Four Example Outputs (using four different
 systems, each with a GPU):
After checking for a GPU, we are running on:
 Intel(R) Gen9 HD Graphics NEO.
After checking for a GPU, we are running on:
 NVIDIA GeForce RTX 3060
After checking for a GPU, we are running on:
 Intel(R) Data Center GPU Max 1100
After checking for a GPU, we are running on:
 AMD Radeon RX 5700 XT

Example Output (using a system without GPU):
After checking for a GPU, we are running on:
Custom device selector did not select a device.
Caught this SYCL exception: No device of requested

Figure 12-4. Custom device selector—our preferred solution

ChaPter 12 DeviCe information anD Kernel SPeCialization

300

 Being Curious: get_info<>
In order for our program to “know” what devices are available at runtime,

we can have our program query available devices from the device class, and

then we can learn more details using get_info<> to inquire about a specific

device. We provide a simple program, called curious (see Figure 12-5), that

uses these interfaces to dump out information for us to look at directly.

This can be especially useful for doing a sanity check when developing or

debugging a program that uses these interfaces. Failure of this program to

work as expected can often tell us that the software drivers we need are not

installed correctly. Figure 12-6 shows a sample output from this program,

with the high-level information about the devices that are present.

You may want to see if your system supports a utility such as
sycl-ls, before you write your own “list all available SYCl devices”
program.

// Loop through available platforms
for (auto const& this_platform :

platform::get_platforms()) {
std::cout

<< "Found platform: "
<< this_platform.get_info<info::platform::name>()
<< "\n";

// Loop through available devices in this platform
for (auto const& this_device :

this_platform.get_devices()) {
std::cout

<< " Device: "
<< this_device.get_info<info::device::name>()
<< "\n";

 }
std::cout << "\n";

}

Figure 12-5. Simple use of device query mechanisms: curious.cpp

ChaPter 12 DeviCe information anD Kernel SPeCialization

301

% clang++ -fsycl fig_12_5_curious.cpp -o curious

% ./curious
Found platform: NVIDIA CUDA BACKEND
Device: NVIDIA GeForce RTX 3060

Found platform: AMD HIP BACKEND
Device: AMD Radeon RX 5700 XT

Found platform: Intel(R) OpenCL
Device: Intel(R) Xeon(R) E-2176G CPU @ 3.70GHz

Found platform: Intel(R) OpenCL HD Graphics
Device: Intel(R) UHD Graphics P630 [0x3e96]

Found platform: Intel(R) Level-Zero
Device: Intel(R) UHD Graphics P630 [0x3e96]

Found platform: Intel(R) FPGA Emulation Platform for OpenCL(TM)
Device: Intel(R) FPGA Emulation Device

Figure 12-6. Example output from curious.cpp

 Being More Curious: Detailed Enumeration Code
We offer a program, which we have named verycurious.cpp (Figure 12-7),

to illustrate some of the detailed information available using get_info.

Again, we find ourselves writing code like this to help when developing or

debugging a program.

Now that we have shown how to access the information, we will

discuss the information fields that prove the most important to query and

act upon in applications.

ChaPter 12 DeviCe information anD Kernel SPeCialization

302

template <typename queryT, typename T>
void do_query(const T& obj_to_query,

const std::string& name, int indent = 4) {
std::cout << std::string(indent, ' ') << name << " is '"

<< obj_to_query.template get_info<queryT>()
<< "'\n";

}

int main() {
// Loop through the available platforms
for (auto const& this_platform :

platform::get_platforms()) {
std::cout << "Found Platform:\n";
do_query<info::platform::name>(this_platform,

"info::platform::name");
// query information like these (more in program than
// shown here in this figure – see book github)

// Loop through the devices available in this plaform
for (auto& dev : this_platform.get_devices()) {
std::cout << " Device: "

<< dev.get_info<info::device::name>()
<< "\n";

// is_cpu() == has(aspect::cpu)
std::cout << " is_cpu(): "

<< (dev.is_cpu() ? "Yes" : "No") << "\n";
// is_cpu() == has(aspect::gpu)
std::cout << " is_gpu(): "

<< (dev.is_gpu() ? "Yes" : "No") << "\n";
std::cout << " has(fp16): "

<< (dev.has(aspect::fp16) ? "Yes" : "No")
<< "\n";

// many more queries shown in fig_12_7_very_curious.cpp
// see book github for source code

 }
std::cout << "\n";

 }
return 0;

}

Figure 12-7. More detailed use of device query mechanisms:
verycurious.cpp (subset shown)

ChaPter 12 DeviCe information anD Kernel SPeCialization

303

 Very Curious: get_info plus has()
The has() interface allows a program to test directly for a feature using

aspects listed in Figure 12-3. Simple usage is shown in Figure 12-7—with

more in the full verycurious.cpp source code in the book GitHub. The

verycurious.cpp program is helpful for seeing the details about devices on

your system.

 Device Information Descriptors
Our “curious” and “verycurious” program examples, used earlier in this

chapter, utilize popular SYCL device class member functions (i.e., is_cpu,

is_gpu, is_accelerator, get_info, has). These member functions are

documented in the SYCL specification in a table titled “Member functions

of the SYCL device class.”

The “curious” program examples also queried for information using

the get_info member function. There is a set of queries that must be

supported by all SYCL devices. The complete list of such items is described

in the SYCL specification in a table titled “Device information descriptors.”

 Device-Specific Kernel Information
Descriptors
Like platforms and devices, we can query information about our kernels

using a get_info function. Such information (e.g., supported work-group

sizes, preferred work-group size, the amount of private memory required

per work-item) may be device-specific, and so the get_info member

function of the kernel class accepts a device as an argument.

ChaPter 12 DeviCe information anD Kernel SPeCialization

304

 The Specifics: Those of “Correctness”
We will divide the specifics into information about necessary conditions

(correctness) and information useful for tuning but not necessary for

correctness.

In this first correctness category, we will enumerate conditions that

should be met in order for kernels to launch properly. Failure to abide by

these device limitations will lead to program failures. Figure 12-8 shows

how we can fetch a few of these parameters in a way that the values are

available for use in host code and in kernel code (via lambda capture). We

can modify our code to utilize this information; for instance, it could guide

our code on buffer sizing or work-group sizing.

queue q;
device dev = q.get_device();

std::cout << "We are running on:\n"
<< dev.get_info<info::device::name>() << "\n";

// Query results like the following can be used to
// calculate how large your kernel invocations can be.
auto maxWG =

dev.get_info<info::device::max_work_group_size>();
auto maxGmem =

dev.get_info<info::device::global_mem_size>();
auto maxLmem =

dev.get_info<info::device::local_mem_size>();

std::cout << "Max WG size is " << maxWG
<< "\nGlobal memory size is " << maxGmem
<< "\nLocal memory size is " << maxLmem << "\n";

Figure 12-8. Fetching parameters that can be used to shape a kernel

Submitting a kernel that violates a required condition
(e.g., sub_group_sizes) will generate a runtime error.

ChaPter 12 DeviCe information anD Kernel SPeCialization

305

 Device Queries
device_type: cpu, gpu, accelerator, custom,1 automatic, all. These are most

often tested by is_cpu, is_gpu(), and so on (see Figure 12-7):

max_work_item_sizes: The maximum number of work-items that

are permitted in each dimension of the work-group of the nd_range. The

minimum value is (1, 1, 1).

max_work_group_size: The maximum number of work-items that are

permitted in a work-group executing a kernel on a single compute unit.

The minimum value is 1.

global_mem_size: The size of global memory in bytes.

local_mem_size: The size of local memory in bytes. The minimum size

is 32 K.

max_compute_units: Indicative of the amount of parallelism available

on a device—implementation-defined, interpret with care!

sub_group_sizes: Returns the set of sub-group sizes supported by

the device.

Note that many more characteristics are encoded as aspects (see

Figure 12-3), such as USM capabilities.

1 Custom devices are not discussed in this book (do not confuse “custom device”
with a “custom device selector”). If we find ourselves programming a device that
identifies itself using the custom type, we will need to study the documentation
for that device to learn more. Put less gently: custom devices are uncommon and
weird so we are not going to talk about them—we’ve purposefully ignored limits
they may impose on some of the features we discuss.

ChaPter 12 DeviCe information anD Kernel SPeCialization

306

WE STRONGLY ADVISE AVOIDING MAX_COMPUTE_UNITS
 IN PROGRAM LOGIC

We have found that querying the maximum number of compute units should

be avoided, in part because the definition isn’t crisp enough to be useful in

code tuning. instead of using max_compute_units, most programs should

express their parallelism and let the runtime map it onto available parallelism.

relying on max_compute_units for correctness only makes sense when

augmented with implementation- and device- specific information. experts

might do that, but most developers do not and do not need to do so! let the

runtime do its job in this case!

 Kernel Queries
The mechanisms discussed in Chapter 10, under “Kernels in Kernel

Bundles,” are needed to perform these kernel queries:

work_group_size: Returns the maximum work-

group size that can be used to execute a kernel on a

specific device

compile_work_group_size: Returns the work-group

size specified by a kernel if applicable; otherwise

returns (0, 0, 0)

compile_sub_group_size: Returns the sub-group

size specified by a kernel if applicable; otherwise

returns 0

compile_num_sub_groups: Returns the number

of sub-groups specified by a kernel if applicable;

otherwise returns 0

ChaPter 12 DeviCe information anD Kernel SPeCialization

307

max_sub_group_size: Returns the maximum sub-

group size for a kernel launched with the specified

work-group size

max_num_sub_groups: Returns the maximum

number of sub-groups for a kernel

 The Specifics: Those of “Tuning/
Optimization”
There are a few additional parameters that can be considered as fine-

tuning parameters for our kernels. These can be ignored without

jeopardizing the correctness of a program. These allow our kernels to

really utilize the particulars of the hardware for performance.

Paying attention to the results of these queries can help when tuning
for a cache (if it exists).

 Device Queries
global_mem_cache_line_size: Size of global memory cache line in bytes.

global_mem_cache_size: Size of global memory cache in bytes.

local_mem_type: The type of local memory supported. This can be

info::local_mem_type::local implying dedicated local memory storage

such as SRAM or info::local_mem_type::global. The latter type means

that local memory is just implemented as an abstraction on top of global

memory with potentially no performance gains.

ChaPter 12 DeviCe information anD Kernel SPeCialization

308

 Kernel Queries
preferred_work_group_size: The preferred work-group size for executing

a kernel on a specific device.

preferred_work_group_size_multiple: Work-group size should

be a multiple of this value (preferred_work_group_size_multiple) for

executing a kernel on a particular device for best performance. The value

must not be greater than work_group_size.

 Runtime vs. Compile-Time Properties
Implementations may offer compile-time constants/macros, or other

functionality, but they are not standard and therefore we do not encourage

their use nor do we discuss them in this book. The queries described in

this chapter are performed through runtime APIs (get_info) so the results

are not known until runtime. In the next section, we discuss how attributes

may be used to control how the kernel is compiled. Other than attributes,

the SYCL standard promotes only the use of runtime information with one

fairly esoteric exception. SYCL does offer two traits that the application can

use to query aspects at compilation time. These traits are there specifically

to help avoid instantiating a templated kernel for device features that are

not supported by any device. This is a very advanced, and seldom used,

feature we do not elaborate upon in this book. The SYCL standard has an

example toward the end of the “Device aspects” section that shows the use

of any_device_has_v<aspect> and all_devices_have_v<aspect> for this

purpose. The standard also defines “specialization constants,” which we do

not discuss in this book because they are typically used in very advanced

targeted development, such as in libraries. An experimental compile-time

property extension is discussed in the Epilogue under “Compile-Time

Properties.”

ChaPter 12 DeviCe information anD Kernel SPeCialization

309

 Kernel Specialization
We can specialize our kernels by having different kernels for different uses

and select the appropriate kernel based on aspects (see Figure 12-3) of

the device we are targeting. Of course, we can write specialized kernels

explicitly and use C++ templating to help. We can inform the compiler

that we want our kernel to use specific feature by using SYCL attributes

(Figure 12-9) and aspects (Figure 12-3).

For example, the reqd_work_group_size attribute (Figure 12-9) can be

used to require a specific work-group size for a kernel, and the device_has

attribute can be used to require specific device aspects for a kernel.

Using attributes helps in two ways:

 1. A kernel will throw an exception if it is submitted to

a device that does not have one of the listed aspects.

 2. The compiler will issue a diagnostic if the kernel (or

any of the functions it calls) uses an optional feature

(e.g., fp16) that is associated with an aspect that is

not listed in the attribute.

The first helps prevent an application from proceeding if it will likely

fail, and the second helps catch errors at compile time. For these reasons,

using attributes can be helpful.

Figure 12-10 provides an example for illustration that uses run time

logic to choose between two code sequences and uses attributes to

specialize one of the kernels.

ChaPter 12 DeviCe information anD Kernel SPeCialization

310

Standard attribute Speci�ies
device_has(aspect, ...) This attribute is the only attribute

that can be used to decorate a non-

kernel function, in addition to the

ability (of all attributes) to decorate a

kernel function.

Requires: that the kernel is only

launched with devices meeting the

speci�ied aspect(s) from Figure 12-3).
reqd_work_group_size(dim0)
reqd_work_group_size(dim0,
dim1)
reqd_work_group_size(dim0,
dim1, dim2)

Requires: that the kernel must be

launched with the speci�ied

workgroup size.

work_group_size_hint(dim0)
work_group_size_hint(dim0,
dim1)
work_group_size_hint(dim0,
dim1, dim2)

Hints: that the kernel will most likely
be launched with the speci�ied

reqd_sub_group_size(dim)

Figure 12-9. Attributes defined by the SYCL standard (and not
deprecated)

ChaPter 12 DeviCe information anD Kernel SPeCialization

311

#include <iostream>
#include <sycl/sycl.hpp>
using namespace sycl;

int main() {
queue q;

constexpr int size = 16;
std::array<double, size> data;

// Using "sycl::device_has()" as an attribute does not
// affect the device we select. Therefore, our host code
// should check the device's aspects before submitting a
// kernel which does require that attribute.
if (q.get_device().has(aspect::fp64)) {

buffer B{data};
q.submit([&](handler& h) {

accessor A{B, h};
// the attributes here say that the kernel is allowed
// to require fp64 support any attribute(s) from
// Figure 12-3 could be specified note that namespace
// stmt above (for C++) does not affect attributes (a
// C++ quirk) so sycl:: is needed here
h.parallel_for(

size, [=](auto& idx)
[[sycl::device_has(aspect::fp64)]] {

A[idx] = idx * 2.0;
});

});
std::cout << "doubles were used\n";

} else {
// here we use an alternate method (not needing double
// math support on the device) to help our code be
// flexible and hence more portable
std::array<float, size> fdata;

 {
buffer B{fdata};
q.submit([&](handler& h) {

accessor A{B, h};
h.parallel_for(

size, [=](auto& idx) { A[idx] = idx * 2.0f; });
});

 }

for (int i = 0; i < size; i++) data[i] = fdata[i];

std::cout << "no doubles used\n";
 }
for (int i = 0; i < size; i++)

std::cout << "data[" << i << "] = " << data[i] << "\n";
return 0;

}

Figure 12-10. Specialization of kernel explicitly with the help of
attributes

ChaPter 12 DeviCe information anD Kernel SPeCialization

312

 Summary
The most portable programs will query the devices that are available in

a system and adjust their behavior based on runtime information. This

chapter opens the door to the rich set of information that is available to

allow such tailoring of our code to adjust to the hardware that is present at

runtime. We also discussed various ways to specialize kernels so they can

be more closely adapted to a particular device type when we decide the

investment is worthwhile. These give us the tools to balance portability

and performance as necessary to meet our needs, all within the bounds of

using C++ with SYCL.

Our programs can be made more functionally portable, more

performance portable, and more future-proof by parameterizing our

application to adjust to the characteristics of the hardware. We can also

test that the hardware present falls within the bounds of any assumptions

we have made in the design of our program and either warns or aborts

when hardware is found that lies outside the bounds of our assumptions.

Open Access This chapter is licensed under the terms of

the Creative Commons Attribution 4.0 International License

(https://creativecommons.org/licenses/by/4.0/), which permits use,

sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter’s Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter’s

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

ChaPter 12 DeviCe information anD Kernel SPeCialization

https://creativecommons.org/licenses/by/4.0/

313

CHAPTER 13

Practical Tips
This chapter is home to a number of pieces of useful information, practical

tips, advice, and techniques that have proven useful when programming

C++ with SYCL. None of these topics are covered exhaustively, so the intent

is to raise awareness and encourage learning more as needed.

 Getting the Code Samples and a Compiler
Chapter 1 covers how to get a SYCL compiler (e.g., oneapi.com/

implementations or github.com/intel/llvm) and where to get the code

samples used in this book (github.com/Apress/data-parallel-CPP). This

is mentioned again to emphasize how useful it can be to try the examples

(including making modifications!) to gain hands-on experience. Join those

who know what the code in Figure 1-1 actually prints out!

 Online Resources
Key online resources include

• Extensive resources at sycl.tech/

• The official SYCL home at khronos.org/sycl/ with great

resources listed at khronos.org/sycl/resources

© Intel Corporation 2023
J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-9691-2_13

https://doi.org/10.1007/978-1-4842-9691-2_13

314

• Resources to help migrate from CUDA to C++ with

SYCL at tinyurl.com/cuda2sycl

• Migration tool GitHub home github.com/oneapi-src/

SYCLomatic

 Platform Model
A C++ compiler with SYCL support is designed to act and feel like any

other C++ compiler we have ever used. It is worth understanding the inner

workings, at a high level, that enable a compiler with SYCL support to

produce code for a host (e.g., CPU) and devices.

The platform model (Figure 13-1) used by SYCL specifies a host that

coordinates and controls the compute work that is performed on the

devices. Chapter 2 describes how to assign work to devices, and Chapter 4

dives into how to program devices. Chapter 12 describes using the

platform model at various levels of specificity.

As we discussed in Chapter 2, there should always be a device to run

on in a system using a properly configured SYCL runtime and compatible

hardware. This allows device code to be written assuming that at least one

device will be available. The choice of the devices on which to run device

code is under program control—it is entirely our choice as programmers

if, and how, we want to execute code on specific devices (device selection

options are discussed in Chapter 12).

Chapter 13 praCtiCal tips

315

Figure 13-1. Platform model: can be used abstractly or with
specificity

 Multiarchitecture Binaries
Since our goal is to have a single-source code to support a heterogeneous

machine, it is only natural to want a single executable file to be the result.

A multiarchitecture binary (a.k.a. a fat binary) is a single binary file

that has been expanded to include all the compiled and intermediate code

needed for our heterogeneous machine. A multiarchitecture binary acts

Chapter 13 praCtiCal tips

316

like any other a.out or a.exe we are used to—but it contains everything

needed for a heterogeneous machine. This helps to automate the process

of picking the right code to run for a particular device. As we discuss next,

one possible form of the device code in a fat binary is an intermediate

format that defers the final creation of device instructions until runtime.

 Compilation Model
The single-source nature of SYCL allows compilations to act and feel like

regular C++ compilations. There is no need for us to invoke additional

passes for devices or deal with bundling device and host code. That is all

handled automatically for us by the compiler. Of course, understanding

the details of what is happening can be important for several reasons.

This is useful knowledge if we want to target specific architectures more

effectively, and it is important to understand if we need to debug a failure

happening in the compilation process.

We will review the compilation model so that we are educated for when

that knowledge is needed. Since the compilation model supports code that

executes on both a host and potentially several devices simultaneously,

the commands issued by the compiler, linker, and other supporting tools

are more complicated than the C++ compilations we are used to (targeting

only one architecture). Welcome to the heterogeneous world!

This heterogeneous complexity is intentionally hidden from us by the

compiler and “just works.”

The compiler can generate target-specific executable code similar

to traditional C++ compilers (ahead-of-time (AOT) compilation,

sometimes referred to as offline kernel compilation), or it can generate an

intermediate representation that can be just-in-time (JIT) compiled to a

specific target at runtime.

Chapter 13 praCtiCal tips

317

Compilation can be “ahead-of-time” (aOt) or “just-in- time” (Jit).

The compiler can only compile ahead of time if the device target is

known ahead of time (at the time when we compile our program). Using

JIT compilation will give more portability for our compiled program but

requires the compiler and the runtime to perform additional work while

our application is running.

For most devices, including GPUs, the most common practice is to rely

on JIT compilation. Some devices (e.g., FPGAs) may have exceptionally

slow compilation processes and therefore the practice is to use AOT

compilation.

Use Jit unless you know there is a need (e.g., FpGa) or benefit to
using aOt code.

By default, when we compile our code for most devices, the output for

device code is stored in an intermediate form. At runtime, the device driver

on the system will just-in-time compile the intermediate form into code to

run on the device(s) to match what is available on the system.

Unlike aOt code, the goal of Jit code is to be able to be compiled
at runtime to use whatever device is on a system. this may include
devices that did not exist when the program was originally compiled
to Jit code.

We can ask the compiler to compile ahead-of-time for specific devices

or classes of devices. This has the advantage of saving runtime, but it has

the disadvantage of added compile time and fatter binaries! Code that

is compiled ahead-of-time is not as portable as just-in-time because it

Chapter 13 praCtiCal tips

318

cannot be adapted to match the available hardware at runtime. We can

include both in our binary to get the benefits of both AOT and JIT.

to maximize portability, even when including some aOt code, we like
to have Jit code in our binary too.

Compiling for a specific device ahead-of-time also helps us to check at

build time that our program should work on that device. With just-in-time

compilation, it is possible that a program will fail to compile at runtime

(which can be caught using the mechanisms in Chapter 5). There are a

few debugging tips for this in the upcoming “Debugging” section of this

chapter, and Chapter 5 details how these errors can be caught at runtime

to avoid requiring that our applications abort.

Figure 13-2 illustrates a compilation process from source code to fat

binary (executable). Whatever combinations we choose are combined

into a fat binary. The fat binary is employed by the runtime when the

application executes (and it is the binary that we execute on the host!).

At times, we may want to compile device code for a particular device

in a separate compile. We would want the results of such a separate

compilation to eventually be combined into our fat binary. This can

be very useful for FPGA development when full compile (doing a full

synthesis place-and-route) times can be very long and is in fact a

requirement for FPGA development to avoid requiring the synthesis tools

to be installed on a runtime system. Figure 13-3 shows the flow of the

bundling/unbundling activity supported for such needs. We always have

the option to compile everything at once, but during development, the

option to break up compilation can be very useful.

Every C++ compiler supporting SYCL has a compilation model with

the same goal, but the exact implementation details will vary. The specific

diagrams shown here are courtesy of the DPC++ compiler toolchain

implementors.

Chapter 13 praCtiCal tips

319

Figure 13-2. Compilation process: ahead-of-time and just-in-
time options

Figure 13-3. Compilation process: offload bundler/unbundler

 Contexts: Important Things to Know
As mentioned in Chapter 6, a context represents a device or set of

devices on which we can execute kernels. We can think of a context as a

convenient place for the runtime to stash some state about what it is doing.

Programmers are not likely to directly interact with contexts outside of

passing them around in most SYCL programs.

Devices can be subdivided into sub-devices. This can be useful for

partitioning a problem. Since sub-devices are treated exactly as devices

(same C++ type), everything we say about grouping devices applies to sub-

devices also.

Chapter 13 praCtiCal tips

320

SYCL abstractly considers devices to be grouped together in platforms.

Within a platform, devices may be able to interact in ways including

sharing memory. Devices belonging to the same context must have the

ability to access each other’s global memory using some mechanism. SYCL

USM memory (Chapter 6) can be shared between devices only if they

are in the same context. USM memory allocations are bound to contexts,

not to devices, so a USM allocation within one context is not accessible

to other contexts. Therefore, USM allocations are limited to use within a

single context—possibly a subset of the device.

Contexts do not abstract what hardware cannot support. For instance,

we cannot create a context to include two GPUs which cannot share

memory with each other. Not all devices exposed from the same platform

are required to be able to be grouped together in the same context.

When we create a queue, we can specify which context we wish to

place it within. By default, the DPC++ compiler project implements a

default context per platform and automatically assigns new queues to the

default context. Other SYCL compilers are free to do the same but are not

required to do so by the standard.

Contexts are expensive to create—having less makes our
applications more efficient.

Having all devices from a given platform always be placed in the same

context has two advantages: (1) since a context is expensive to create, our

application is more efficient; and (2) the maximum sharing supported by

the hardware is allowed (e.g., USM).

Chapter 13 praCtiCal tips

321

 Adding SYCL to Existing C++ Programs
Adding the appropriate exploitation of parallelism to an existing C++

program is the first step to using SYCL. If a C++ application is already

exploiting parallel execution, that may be a bonus, or it may be a headache.

That is because the way we divide the work of an application into parallel

execution greatly affects what we can do with it. When programmers talk

about refactoring a program parallelism, they are referring to rearranging

the flow of execution and data within a program to get it ready to exploit

parallelism. This is a complex topic that we will only touch briefly upon.

There is no one-size-fits-all answer on how to prepare an application for

parallelism, but there are some tips worth noting.

When adding parallelism to a C++ application, an easy approach to

consider is to find an isolated point in the program where the opportunity

for parallelism is the greatest. We can start our modification there and then

continue to add parallelism in other areas as needed. A complicating factor

is that refactoring (i.e., rearranging the program flow and redesigning data

structures) may improve the opportunity for parallelism.

Once we find an isolated point in the program where the opportunity

for parallelism is the greatest, we will need to consider how to use SYCL at

that point in the program. That is what the rest of the book teaches.

At a high level, the key steps for introducing parallelism consist of the

following:

 1. Safety with concurrency (commonly called thread

safety in conventional CPU programming):

Adjusting the usage of all shared mutable data

(data that can change and may be acted upon

concurrently) to prevent data races. See Chapter 19.

 2. Introducing concurrency and/or parallelism.

 3. Tuning for parallelism (best scaling, optimizing for

throughput or latency).

Chapter 13 praCtiCal tips

322

It is important to consider step #1 first. Many applications have already

been refactored for concurrency, but many have not. With SYCL as the sole

source of parallelism, we focus on safety for the data being used within

kernels and possibly shared with the host. If we have other techniques in

our program (OpenMP, MPI, TBB, etc.) that introduce parallelism, that is

an additional concern on top of our SYCL programming. It is important to

note that it is okay to use multiple techniques inside a single program—

SYCL does not need to be the only source of parallelism within a program.

This book does not cover the advanced topic of mixing with other

parallelism techniques.

 Considerations When Using
Multiple Compilers
C++ compilers that support SYCL also support linking with object code

(libraries, object files, etc.) from other C++ compilers. In general, any

issues that arise from using multiple compilers are the same as for any C++

compiler, requiring consideration of name mangling, targeting the same

standard libraries, aligning calling conventions, etc. These are the same

issues we must deal with when mixing and matching compilers for other

languages such as Fortran or C.

In addition, applications must use the SYCL runtime that comes with

the compiler used to build programs. It is not safe to mix and match SYCL

compilers and SYCL runtimes—different runtimes may have different

implementations and data layouts for important SYCL objects.

Chapter 13 praCtiCal tips

323

sYCl interoperability with non-sYCl source languages refers to the
ability of sYCl to work with kernel functions or device functions
that are written in other programming languages, such as OpenCl,
C, or CUDa, or to consume code in an intermediate representation
precompiled by another compiler. refer to Chapter 20 for more
information about interoperability with non- sYCl source languages.

Finally, the same compiler toolchain that was used for compiling SYCL

device code is also required to do the linking phase of our compilation.

Using a linker from a different compiler toolchain to do the linking will not

result in a functional program as compilers that are not SYCL-aware will

not know how to properly integrate host and device code.

 Debugging
This section conveys some modest debugging advice, to ease the

challenges unique to debugging a parallel program, especially one

targeting a heterogeneous machine.

We should never forget that we have the option to debug our

applications while they are running on a CPU device. This debugging

tip is described as Method#2 in Chapter 2. Because the architectures

of devices often include fewer debugging hooks than general-purpose

CPUs, tools can often probe code on a CPU more precisely. An important

difference when running everything on a CPU is that many errors relating

to synchronization will disappear, including moving memory back and

forth between the host and devices. While we eventually need to debug all

such errors, this can allow incremental debugging so we can resolve some

Chapter 13 praCtiCal tips

324

bugs before others. Experience will show that running on the device we

are targeting as often as possible is important, as is leveraging portability

to the CPU (and other devices) as part of the debugging process—running

multiple devices will help expose issues and can help isolate whether a

bug we encounter is device-specific.

Debugging tip running on a CpU is a powerful debugging tool.

Parallel programming errors, specifically data races and deadlocks, are

generally easier for tools to detect and eliminate when running all code

on the host. Much to our chagrin, we will most often see program failures

from such parallel programming errors when running on a combination

of host and devices. When such issues strike, it is very useful to remember

that pulling back to CPU-only is a powerful debugging tool. Thankfully,

SYCL is carefully designed to keep this option available to us and easy

to access.

Debugging tip if a program is deadlocking, check that the
host accessors are being destroyed properly and that work-items
in kernels are obeying the synchronization rules from the sYCl
specification.

The following compiler options are a good idea when we start

debugging:

• -g: Put debug information in the output

• -ferror-limit=1: Maintain sanity when using

C++ with template libraries such as those heavily

used by SYCL

Chapter 13 praCtiCal tips

325

• -Werror -Wall -Wpedantic: Have the compiler

enforce good coding to help avoid producing incorrect

code to debug at runtime

We really do not need to get bogged down fixing pedantic warnings

just to use C++ with SYCL, so choosing to not use -Wpedantic is

understandable.

When we leave our code to be compiled just-in-time during runtime,

there is code we can inspect. This is highly dependent on the layers used by

our compiler, so looking at the compiler documentation for suggestions is

a good idea.

 Debugging Deadlock and Other
Synchronization Issues
Parallel programming relies on the proper coordination between our work

that happens in parallel. Data usage needs to be gated by when the data is

ready for use—such data dependencies need to be encoded in the logic of

our program for proper behavior.

Debugging dependency issues, especially with USM, can be a

challenge when an error in our synchronization/dependency logic occurs.

We may see a program hang (never complete) or generate erroneous

information intermittently. In such cases, we may see behavior such

as “it fails until I run it in the debugger—then it works perfectly!” Such

intermittent failures often stem from dependencies which are not properly

synchronized via waits, locks, explicit dependencies between queue

submission, etc.

Useful debugging techniques include

• Switching from out-of-order to in-order queues

• Sprinkle queue.wait() calls around

Chapter 13 praCtiCal tips

326

Using either, or both, of these while debugging can help to identify

where dependency information may be missing. If such change makes

program failures change or disappear, it is a strong hint that we have an

issue to correct in our synchronization/dependency logic. Once fixed, we

remove these temporary debugging measures.

 Debugging Kernel Code
While debugging kernel code, start by running on a CPU device (as advised

in Chapter 2). The code for device selectors in Chapter 2 can easily be

modified to accept runtime options, or compiler-time options, to redirect

work to the host device when we are debugging.

When debugging kernel code, SYCL defines a C++-style stream that

can be used within a kernel (Figure 13-4). The DPC++ compiler also

offers an experimental implementation of a C-style printf that has useful

capabilities, with some restrictions.

q.submit([&](handler &h) {
stream out(1024, 256, h);
h.parallel_for(range{8}, [=](id<1> idx) {

out << "Testing my sycl stream (this is work-item ID:"
<< idx << ")\n";

});
});

Figure 13-4. sycl::stream

When debugging kernel code, experience encourages that we put

breakpoints before parallel_for or inside parallel_for, but not actually

on the parallel_for. A breakpoint placed on a parallel_for can trigger

a breakpoint multiple times even after performing the next operation.

This C++ debugging advice applies to many template expansions like

those in SYCL, where a breakpoint on the template call will translate into a

Chapter 13 praCtiCal tips

327

complicated set of breakpoints when it is expanded by the compiler. There

may be ways that implementations can ease this, but the key point here is

that we can avoid some confusion on all implementations by not setting

the breakpoint precisely on the parallel_for itself.

 Debugging Runtime Failures
When a runtime error occurs while compiling just-in-time, we are either

dealing with a case where we used a feature explicitly that the available

hardware cannot support (e.g., fp16 or simd8), a compiler/runtime bug, or

we have accidentally programmed nonsense that was not detected until it

tripped up the runtime and created difficult-to-understand runtime error

messages. In all three cases, it can be a bit intimidating to dive into these

bugs. Thankfully, even a cursory look may allow us to get a better idea of

what caused a particular issue. It might yield some additional knowledge

that will guide us to avoid the issue, or it may just help us submit a short

bug report to the compiler team. Either way, knowing that some tools exist

to help can be important.

Output from our program that indicates a runtime failure may look like

these examples:

terminate called after throwing an instance of 'sycl::_

V1::runtime_error'

 what(): Native API failed. Native API returns: ...

or

terminate called after throwing an instance of 'sycl::_

V1::compile_program_error'

 what(): The program was built for 1 devices

...

Chapter 13 praCtiCal tips

328

error: Kernel compiled with required subgroup size 8, which is

unsupported on this platform

in kernel: 'typeinfo name for main::'lambda'(sycl::_V1::nd_

item<2>)'

error: backend compiler failed build.

 -11 (PI_ERROR_BUILD_PROGRAM_FAILURE)

Seeing such exceptions here lets us know that our host program could

have been constructed to catch this error. The first shows a bit of a catch-

all error for accessing any API that is not supported natively (in this case it

was using a host side memory allocation not supported on the platform);

the second is easier to realize that SIMD8 was specified for a device that

did not support it (in this case it supported SIMD16 instead). Runtime

compiler failures do not need to abort our application; we could catch

them, or code to avoid them, or both. Chapter 5 dives into this topic.

When we see a runtime failure and have any difficulty debugging

it quickly, it is worth simply trying a rebuild using ahead-of-time

compilations. If the device we are targeting has an ahead-of-time

compilation option, this can be an easy thing to try that may yield easier-

to- understand diagnostics. If our errors can be seen at compile time

instead of JIT or runtime, often much more useful information will be

found in the error messages from the compiler instead of the small amount

of error information we usually see from a JIT or the runtime.

Figure 13-5 lists two of the flags and additional environment variables

(supported on Windows and Linux) supported by compilers or runtimes

to aid in advanced debugging. These are DPC++ compiler–specific

advanced debug options that exist to inspect and control the compilation

model. They are not discussed or utilized in this book; they are explained

in detail online with the GitHub project at intel.github.io/llvm-docs/

EnvironmentVariables.html and tinyurl.com/IGCoptions.

Chapter 13 praCtiCal tips

329

Environment variables Value description

ONEAPI_DEVICE_SELECTOR See online documentation for

examples of the numerous

options in the documents at

intel.github.io.

Can be used to limit the choice of devices

available when a SYCL-using application is

run. Useful for limiting devices to a certain

type (like GPUs or accelerators) or

backends (like Level Zero or OpenCL).

SYCL_PI_TRACE 1 (basic),

2 (advanced),

-1 (all)

Runtime: Value of 1 enables tracing of

Runtime Plugin Interface (PI) for plugin

and device discovery; Value of 2 enables

tracing of all PI calls. Value of -1 unleashes

all levels of tracing.

SYCL_PRINT_EXECUTION_GRAPH always
(or ask to dump only
select files by
specifying:
before_addCG,
after_addCG,
before_addCopyBack,
after_addCopyBack,
before_addHostAcc, or
after_addHostAcc)

Runtime: create text �iles (with DOT

extension) tracing the execution graph.

Relatively easy to browse traces of what is

happening during runtime.

IGC_ShaderDumpEnable 0 or 1 Linux only. Runtime: ask the Intel Graphics

Compiler (JIT) to dump some information.

IGC_ShaderDumpEnableAll 0 or 1 Linux only. Runtime: ask the Intel Graphics

Compiler (JIT) to dump lots of information.

Figure 13-5. DPC++ compiler advanced debug options

These options are not described more within this book, but they are

mentioned here to open up this avenue of advanced debugging as needed.

These options may give us insight into how to work around an issue or

bug. It is possible that our source code is inadvertently triggering an issue

that can be resolved by correcting the source code. Otherwise, the use

of these options is for very advanced debugging of the compiler itself.

Therefore, they are associated more with compiler developers than with

users of the compiler. Some advanced users find these options useful;

therefore, they are mentioned here and never again in this book. To dig

deeper, see DPC++ compiler GitHub project intel.github.io/llvm-docs/

EnvironmentVariables.html.

Chapter 13 praCtiCal tips

330

Debugging tip When other options are exhausted and we need
to debug a runtime issue, we look for dump tools that might give us
hints toward the cause.

 Queue Profiling and Resulting
Timing Capabilities
Many devices support queue profiling (device::has(aspect::queue_

profiling)—for more on aspects in general, see Chapter 12. A simple and

powerful interface makes it easy to access detailed timing information on

queue submission, actual start of execution on the device, completion on

the device, and completion of the command. This profiling will be more

precise about the device timings than using host timing mechanisms (e.g.,

chrono) because they will generally not include host to/from device data

transfer times. See the examples shown in Figure 13-6 and Figure 13-7

with sample outputs shown in Figure 13-8. The samples outputs shown

in Figure 13-8 illustrate what is possible with this technique but have not

been optimized and should not be used as representations of the merits of

any particular system choice in any manner.

The aspect::queue_profiling aspect indicates that the device

supports queue profiling via property::queue::enable_profiling.

For such devices, we can specify property::queue::enable_profiling

when constructing a queue—a property list is an optional final parameter

to the queue constructor. Doing so activates the SYCL runtime captures

of profiling information for the command groups that are submitted

to that queue. The captured information is then made available via

the SYCL event class get_profiling_info member function. If the

queue’s associated device does not have aspect::queue_profiling, this

will cause the constructor to throw a synchronous exception with the

errc::feature_not_supported error code.

Chapter 13 praCtiCal tips

331

An event can be queried for profiling information using the get_

profiling_info member function of the event class, specifying one of

the profiling info parameters enumerated in info::event_profiling.

The possible values for each info parameter and any restrictions are

defined in the specification of the SYCL backend associated with the

event. All info parameters in info::event_profiling are specified in

SYCL specification’s table entitled “Profiling information descriptors for

the SYCL event class,” and the synopsis for info::event_profiling is

described in an Appendix of the specification under “Event information

descriptors.”

Each profiling descriptor returns a timestamp that represents the

number of nanoseconds that have elapsed since some implementation-

defined time base. All events that share the same backend are guaranteed

to share the same time base; therefore, the difference between two

timestamps from the same backend yields the number of nanoseconds

that have elapsed between those events.

As a final note, we do caution that enabling event profiling does

increase overhead, so the best practice is to enable it during development

or tuning and then to disable for production.

Tip Due to slight overhead, enable queue profiling only during
development or tuning—disable for production.

Chapter 13 praCtiCal tips

332

#include <iostream>
#include <sycl/sycl.hpp>
using namespace sycl;

// Array type and data size for this example.
constexpr size_t array_size = (1 << 16);
typedef std::array<int, array_size> IntArray;
// Define VectorAdd (see Figure 13-7)

void InitializeArray(IntArray &a) {
for (size_t i = 0; i < a.size(); i++) a[i] = i;

}

int main() {
IntArray a, b, sum;
InitializeArray(a);
InitializeArray(b);

queue q(property::queue::enable_profiling{});

std::cout << "Vector size: " << a.size()
<< "\nRunning on device: "
<< q.get_device().get_info<info::device::name>()
<< "\n";

VectorAdd(q, a, b, sum);

return 0;
}

Figure 13-6. Setting up to use queue profiling

Chapter 13 praCtiCal tips

333

void VectorAdd(queue &q, const IntArray &a,
const IntArray &b, IntArray &sum) {

range<1> num_items{a.size()};
buffer a_buf(a), b_buf(b);
buffer sum_buf(sum.data(), num_items);
auto t1 =

std::chrono::steady_clock::now(); // Start timing

event e = q.submit([&](handler &h) {
auto a_acc = a_buf.get_access<access::mode::read>(h);
auto b_acc = b_buf.get_access<access::mode::read>(h);
auto sum_acc =

sum_buf.get_access<access::mode::write>(h);

h.parallel_for(num_items, [=](id<1> i) {
sum_acc[i] = a_acc[i] + b_acc[i];

});
});
q.wait();

double timeA =
 (e.template get_profiling_info<

info::event_profiling::command_end>() -
e.template get_profiling_info<

info::event_profiling::command_start>());

auto t2 =
std::chrono::steady_clock::now(); // Stop timing

double timeB = (std::chrono::duration_cast<
std::chrono::microseconds>(t2 - t1)

 .count());

std::cout
<< "profiling: Vector add completed on device in "
<< timeA << " nanoseconds\n";

std::cout << "chrono: Vector add completed on device in "
<< timeB * 1000 << " nanoseconds\n";

std::cout << "chrono more than profiling by "
<< (timeB * 1000 - timeA) << " nanoseconds\n";

}

Figure 13-7. Using queue profiling

Chapter 13 praCtiCal tips

334

Vector size: 65536
Running on device: Intel(R) UHD Graphics P630 [0x3e96]
profiling: Vector add completed on device in 57602 nanoseconds
chrono: Vector add completed on device in 2.85489e+08 nanoseconds
chrono more than profiling by 2.85431e+08 nanoseconds

Vector size: 65536
Running on device: NVIDIA GeForce RTX 3060
profiling: Vector add completed on device in 17410 nanoseconds
chrono: Vector add completed on device in 3.6071e+07 nanoseconds
chrono more than profiling by 3.60536e+07 nanoseconds

Vector size: 65536
Running on device: Intel(R) Data Center GPU Max 1100
profiling: Vector add completed on device in 9440 nanoseconds
chrono: Vector add completed on device in 5.6976e+07 nanoseconds
chrono more than profiling by 5.69666e+07 nanoseconds

Figure 13-8. Three sample outputs from queue profiling example

 Tracing and Profiling Tools Interfaces
Tracing and profiling tools can help us understand our runtime behaviors

in our application, and often shed light on opportunities to improve our

algorithms. Insights are often portable, in that they can be generalized

to a wide class of devices, so we recommend using whatever tracing and

profiling tools you find most valuable on whatever platform you prefer. Of

course, fine-tuning any platform can require being on the exact platform in

question. For maximally portable applications, we encourage first looking

for opportunities to tune with an eye toward making any adjustments as

portable as possible.

When our SYCL programs are running on top of an OpenCL runtime

and using the OpenCL backend, we can run our programs with the

OpenCL Intercept Layer: github.com/intel/opencl-intercept-layer. This

is a tool that can inspect, log, and modify OpenCL commands that an

application (or higher-level runtime) is generating. It supports a lot of

controls, but good ones to set initially are ErrorLogging, BuildLogging,

and maybe CallLogging (though it generates a lot of output). Useful

Chapter 13 praCtiCal tips

335

dumps are possible with DumpProgramSPIRV. The OpenCL Intercept Layer

is a separate utility and is not part of any specific OpenCL implementation,

so it works with many SYCL compilers.

There are a number of additional excellent tools for collecting

performance data that are popular for SYCL developers. They are open

source (github.com/intel/pti-gpu) along with samples to help to get us

started.

Two of the most popular tools are as follows:

• onetrace: Host and device tracing tool for OpenCL and

Level Zero backends with support of DPC++ (both for

CPU and GPU) and OpenMP GPU offload

• oneprof: GPU HW metrics collection tool for OpenCL

and Level Zero backends with support of DPC++ and

OpenMP* GPU offload

Both tools use information from instrumented runtimes, so they apply

to GPUs and CPUs. SYCL, ISPC, and OpenMP support in compilers that

use these runtimes can all benefit from these tools. Consult the websites

for the tools to explore their applicability for your usage. In general, we

can find a platform that is supported and use the tools to learn useful

information about your program even if every platform we target is not

supported. Much of what we learn about a program is useful everywhere.

 Initializing Data and Accessing
Kernel Outputs
In this section, we dive into a topic that causes confusion for new users of

SYCL and that leads to the most common (in our experience) first bugs

that we encounter as new SYCL developers.

Chapter 13 praCtiCal tips

336

Put simply, when we create a buffer from a host memory allocation

(e.g., array or vector), we can’t access the host allocation directly until the

buffer has been destroyed. The buffer owns any host allocation passed to

it at construction time, for the buffer’s entire lifetime. There are rarely used

mechanisms that do let us access the host allocation while a buffer is still

alive (e.g., buffer mutex), but those advanced features don’t help with the

early bugs described here.

EVERYONE MAKES THIS ERROR—KNOWING THAT CAN HELP US DEBUG
IT QUICKLY RATHER THAN PUZZLE OVER IT A LONG TIME!!!

if we construct a buffer from a host memory allocation, we must not directly

access the host allocation until the buffer has been destroyed! While it is alive,

the buffer owns the allocation. Understand buffer scope—and rules inside

the scope!

A common bug appears when the host program accesses a host allocation

while a buffer still owns that allocation. All bets are off once this happens

because we don’t know what the buffer is using the allocation for. Don’t be

surprised if the data is incorrect—the kernels that we’re trying to read the

output from may not have even started running yet! As described in Chapters

3 and 8, SYCL is built around an asynchronous task graph mechanism. Before

we try to use output data from task graph operations, we need to be sure that

we have reached synchronization points in the code where the graph has

executed and made data available to the host. Both buffer destruction and

creation of host accessors are operations that cause this synchronization.

Figure 13-9 shows a common pattern of code that we often write,

where we cause a buffer to be destroyed by closing the block scope within

which it was defined. By causing the buffer to go out of scope and be

destroyed, we can then safely read kernel results through the original host

allocation that was passed to the buffer constructor.

Chapter 13 praCtiCal tips

337

constexpr size_t N = 1024;

// Set up queue on any available device
queue q;

// Create host containers to initialize on the host
std::vector<int> in_vec(N), out_vec(N);

// Initialize input and output vectors
for (int i = 0; i < N; i++) in_vec[i] = i;
std::fill(out_vec.begin(), out_vec.end(), 0);

// Nuance: Create new scope so that we can easily cause
// buffers to go out of scope and be destroyed
{
// Create buffers using host allocations (vector in this
// case)
buffer in_buf{in_vec}, out_buf{out_vec};

// Submit the kernel to the queue
q.submit([&](handler& h) {

accessor in{in_buf, h};
accessor out{out_buf, h};

h.parallel_for(
range{N}, [=](id<1> idx) { out[idx] = in[idx]; });

});

// Close the scope that buffer is alive within! Causes
// buffer destruction which will wait until the kernels
// writing to buffers have completed, and will copy the
// data from written buffers back to host allocations
// (our std::vectors in this case). After the buffer
// destructor runs, caused by this closing of scope,
// then it is safe to access the original in_vec and
// out_vec again!

}

// Check that all outputs match expected value
// WARNING: The buffer destructor must have run for us to
// safely use in_vec and out_vec again in our host code.
// While the buffer is alive it owns those allocations,
// and they are not safe for us to use! At the least they
// will contain values that are not up to date. This code
// is safe and correct because the closing of scope above
// has caused the buffer to be destroyed before this point
// where we use the vectors again.
for (int i = 0; i < N; i++)
std::cout << "out_vec[" << i << "]=" << out_vec[i]

<< "\n";

Figure 13-9. Common pattern: buffer creation from a host allocation

Chapter 13 praCtiCal tips

338

There are two common reasons to associate a buffer with existing host

memory like Figure 13-9:

 1. To simplify initialization of data in a buffer. We can

just construct the buffer from host memory that we

(or another part of the application) have already

initialized.

 2. To reduce the characters typed because closing

scope with a ‘}’ is slightly more concise (though

more error prone) than creating a host_accessor to

the buffer.

If we use a host allocation to dump or verify the output values from a

kernel, we need to put the buffer allocation into a block scope (or other

scopes) so that we can control when it is destructed. We must then make

sure that the buffer is destroyed before we access the host allocation to

obtain the kernel output. Figure 13-9 shows this done correctly, while

Figure 13-10 shows a common bug where the output is accessed while the

buffer is still alive.

advanced users may prefer to use buffer destruction to return result
data from kernels into a host memory allocation. But for most users,
and especially new developers, it is recommended to use scoped
host accessors.

Chapter 13 praCtiCal tips

339

constexpr size_t N = 1024;

// Set up queue on any available device
queue q;

// Create host containers to initialize on the host
std::vector<int> in_vec(N), out_vec(N);

// Initialize input and output vectors
for (int i = 0; i < N; i++) in_vec[i] = i;
std::fill(out_vec.begin(), out_vec.end(), 0);

// Create buffers using host allocations (vector in this
// case)
buffer in_buf{in_vec}, out_buf{out_vec};

// Submit the kernel to the queue
q.submit([&](handler& h) {
accessor in{in_buf, h};
accessor out{out_buf, h};

h.parallel_for(range{N},
[=](id<1> idx) { out[idx] = in[idx]; });

});

// BUG!!! We're using the host allocation out_vec, but the
// buffer out_buf is still alive and owns that allocation!
// We will probably see the initialiation value (zeros)
// printed out, since the kernel probably hasn't even run
// yet, and the buffer has no reason to have copied any
// output back to the host even if the kernel has run.
for (int i = 0; i < N; i++)
std::cout << "out_vec[" << i << "]=" << out_vec[i]

<< "\n";

Figure 13-10. Common bug: reading data directly from host
allocation during buffer lifetime

To avoid these bugs, we recommend using host accessors instead of

buffer scoping when getting started using C++ with SYCL. Host accessors

provide access to a buffer from the host, and once their constructor has

finished running, we are guaranteed that any previous writes (e.g., from

kernels submitted before the host_accessor was created) to the buffer

Chapter 13 praCtiCal tips

340

have executed and are visible. This book uses a mixture of both styles (i.e.,

host accessors and host allocations passed to the buffer constructor) to

provide familiarity with both. Using host accessors tends to be less error

prone when getting started. Figure 13-11 shows how a host accessor can be

used to read output from a kernel, without destroying the buffer first.

constexpr size_t N = 1024;

// Set up queue on any available device
queue q;

// Create host containers to initialize on the host
std::vector<int> in_vec(N), out_vec(N);

// Initialize input and output vectors
for (int i = 0; i < N; i++) in_vec[i] = i;
std::fill(out_vec.begin(), out_vec.end(), 0);

// Create buffers using host allocations (vector in this
// case)
buffer in_buf{in_vec}, out_buf{out_vec};

// Submit the kernel to the queue
q.submit([&](handler& h) {
accessor in{in_buf, h};
accessor out{out_buf, h};

h.parallel_for(range{N},
[=](id<1> idx) { out[idx] = in[idx]; });

});

// Check that all outputs match expected value
// Use host accessor! Buffer is still in scope / alive
host_accessor A{out_buf};

for (int i = 0; i < N; i++)
std::cout << "A[" << i << "]=" << A[i] << "\n";

Figure 13-11. Recommendation: Use a host accessor to read
kernel results

Chapter 13 praCtiCal tips

341

Host accessors can be used whenever a buffer is alive, such as at both

ends of a typical buffer lifetime—for initialization of the buffer content and

for reading of results from our kernels. Figure 13-12 shows an example of

this pattern.

constexpr size_t N = 1024;

// Set up queue on any available device
queue q;

// Create buffers of size N
buffer<int> in_buf{N}, out_buf{N};

// Use host accessors to initialize the data
{ // CRITICAL: Begin scope for host_accessor lifetime!
host_accessor in_acc{in_buf}, out_acc{out_buf};
for (int i = 0; i < N; i++) {

in_acc[i] = i;
out_acc[i] = 0;

 }
} // CRITICAL: Close scope to make host accessors go out

// of scope!

// Submit the kernel to the queue
q.submit([&](handler& h) {
accessor in{in_buf, h};
accessor out{out_buf, h};

h.parallel_for(range{N},
[=](id<1> idx) { out[idx] = in[idx]; });

});

// Check that all outputs match expected value
// Use host accessor! Buffer is still in scope / alive
host_accessor A{out_buf};

for (int i = 0; i < N; i++)
std::cout << "A[" << i << "]=" << A[i] << "\n";

Figure 13-12. Recommendation: Use host accessors for buffer
initialization and reading of results

Chapter 13 praCtiCal tips

342

One final detail to mention is that host accessors sometime cause an

opposite bug in applications, because they also have a lifetime. While a

host_accessor to a buffer is alive, the runtime will not allow that buffer to

be used by any devices! The runtime does not analyze our host programs

to determine when they might access a host accessor, so the only way for

it to know that the host program has finished accessing a buffer is for the

host_accessor destructor to run. As shown in Figure 13-13, this can cause

applications to appear to hang if our host program is waiting for some

kernels to run (e.g., queue::wait() or acquiring another host accessor)

and if the SYCL runtime is waiting for our earlier host accessor(s) to be

destroyed before it can run kernels that use a buffer.

When using host accessors, be sure that they are destroyed when
no longer needed to unlock use of the buffer by kernels or other host
accessors.

Chapter 13 praCtiCal tips

343

constexpr size_t N = 1024;

// Set up queue on any available device
queue q;

// Create buffers using host allocations (vector in this
// case)
buffer<int> in_buf{N}, out_buf{N};

// Use host accessors to initialize the data
host_accessor in_acc{in_buf}, out_acc{out_buf};
for (int i = 0; i < N; i++) {
in_acc[i] = i;
out_acc[i] = 0;

}

// BUG: Host accessors in_acc and out_acc are still alive!
// Later q.submits will never start on a device, because
// the runtime doesn't know that we've finished accessing
// the buffers via the host accessors. The device kernels
// can't launch until the host finishes updating the
// buffers, since the host gained access first (before the
// queue submissions). This program will appear to hang!
// Use a debugger in that case.

// Submit the kernel to the queue
q.submit([&](handler& h) {
accessor in{in_buf, h};
accessor out{out_buf, h};

h.parallel_for(range{N},
[=](id<1> idx) { out[idx] = in[idx]; });

});

std::cout << "This program will deadlock here!!! Our "
"host_accessors used\n"

<< " for data initialization are still in "
"scope, so the runtime won't\n"

<< " allow our kernel to start executing on "
"the device (the host could\n"

<< " still be initializing the data that is "
"used by the kernel). The next line\n"

<< " of code is acquiring a host accessor for "
"the output, which will wait for\n"

<< " the kernel to run first. Since in_acc "
"and out_acc have not been\n"

<< " destructed, the kernel is not safe for "
"the runtime to run, and we deadlock.\n";

// Check that all outputs match expected value
// Use host accessor! Buffer is still in scope / alive
host_accessor A{out_buf};

for (int i = 0; i < N; i++)
std::cout << "A[" << i << "]=" << A[i] << "\n";

Figure 13-13. Deadlock (bug—it hangs!) from improper use of host_
accessors

Chapter 13 praCtiCal tips

344

 Multiple Translation Units
When we want to call functions inside a kernel that are defined in

a different translation unit, those functions need to be labeled with

SYCL_EXTERNAL. Without this decoration, the compiler will only compile

a function for use outside of device code (making it illegal to call that

external function from within device code).

There are a few restrictions on SYCL_EXTERNAL functions that do not

apply if we define the function within the same translation unit:

• SYCL_EXTERNAL can only be used on functions.

• SYCL_EXTERNAL functions cannot use raw pointers

as parameter or return types. Explicit pointer

classes must be used instead.

• SYCL_EXTERNAL functions cannot call a parallel_

for_work_item method.

• SYCL_EXTERNAL functions cannot be called from

within a parallel_for_work_group scope.

If we try to compile a kernel that is calling a function that is not inside

the same translation unit and is not declared with SYCL_EXTERNAL, then we

can expect a compile error similar to

error: SYCL kernel cannot call an undefined function without

SYCL_EXTERNAL attribute

If the function itself is compiled without a SYCL_EXTERNAL attribute, we

can expect to see either a link or runtime failure such as

terminate called after throwing an instance of '...compile_

program_error'...

error: undefined reference to ...

Chapter 13 praCtiCal tips

345

SYCL does not require compilers to support SYCL_EXTERNAL; it is an

optional feature in general. DPC++ supports SYCL_EXTERNAL.

 Performance Implication of Multiple
Translation Units
An implication of the compilation model (see earlier in this chapter) is

that if we scatter our device code into multiple translation units, that may

trigger more invocations of just-in-time compilation than if our device

code is colocated. This is highly implementation-dependent and is subject

to changes over time as implementations mature.

Such effects on performance are minor enough to ignore through most

of our development work, but when we get to fine-tuning to maximize

code performance, there are two things we can consider to mitigate these

effects: (1) group device code together in the same translation unit, and (2)

use ahead-of-time compilation to avoid just-in-time compilation effects

entirely. Since both of these require some effort on our part, we only do

this when we have finished our development and are trying to squeeze

every ounce of performance out of our application. When we do resort to

this detailed tuning, it is worth testing changes to observe their effect on

the exact SYCL implementation that we are using.

 When Anonymous Lambdas Need Names
SYCL allows for assigning names to lambdas in case tools need it and

for debugging purposes (e.g., to enable displays in terms of user-defined

names). Naming lambdas is optional per the SYCL 2020 specification.

Throughout most of this book, anonymous lambdas are used for kernels

because names are not needed when using C++ with SYCL (except for

passing of compile options as described with lambda naming discussion in

Chapter 10).

Chapter 13 praCtiCal tips

346

When we have an advanced need to mix SYCL tools from multiple

vendors in a codebase, the tooling may require that we name lambdas.

This is done by adding a <class uniquename> to the SYCL action construct

in which the lambda is used (e.g., parallel_for). This naming allows

tools from multiple vendors to interact in a defined way within a single

compilation and can also help by displaying kernel names that we define

within debug tools and layers.

We also need to name kernels if we want to use kernel queries. The

SYCL standards committee was unable to find a solution to requiring

this in the SYCL 2020 standard. For instance, querying a kernel’s

preferred_work_group_size_multiple requires us to call the get_info()

member function of the kernel class, which requires an instance of the

kernel class, which ultimately requires that we know the name (and

kernel_id) of the kernel in order to extract a handle to it from the relevant

kernel_bundle.

 Summary
Popular culture today often refers to tips as life hacks. Unfortunately,

programming culture often assigns a negative connotation to hack, so the

authors refrained from naming this chapter “SYCL Hacks.” Undoubtedly,

this chapter has just touched the surface of what practical tips can be given

for using C++ with SYCL. More tips can be shared by all of us as we learn

together how to make the most out of C++ with SYCL.

Chapter 13 praCtiCal tips

347

Open Access This chapter is licensed under the terms of

the Creative Commons Attribution 4.0 International License

(https://creativecommons.org/licenses/by/4.0/), which permits use,

sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter’s Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter’s

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 13 praCtiCal tips

https://creativecommons.org/licenses/by/4.0/

349

CHAPTER 14

Common Parallel
Patterns
When we are at our best as programmers, we recognize patterns in our

work and apply techniques that are time-tested to be the best solution.

Parallel programming is no different, and it would be a serious mistake not

to study the patterns that have proven to be useful in this space. Consider

the MapReduce frameworks adopted for Big Data applications; their

success stems largely from being based on two simple yet effective parallel

patterns—map and reduce.

There are a number of common patterns in parallel programming

that crop up time and again, independent of the programming language

that we’re using. These patterns are versatile and can be employed at

any level of parallelism (e.g., sub-groups, work-groups, full devices) and

on any device (e.g., CPUs, GPUs, FPGAs). However, certain properties

of the patterns (such as their scalability) may affect their suitability for

different devices. In some cases, adapting an application to a new device

may simply require choosing appropriate parameters or fine-tuning

an implementation of a pattern; in others, we may be able to improve

performance by selecting a different pattern entirely.

Developing an understanding of how, when, and where to use these

common parallel patterns is a key part of improving our proficiency in

SYCL (and parallel programming in general). For those with existing

© Intel Corporation 2023
J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-9691-2_14

https://doi.org/10.1007/978-1-4842-9691-2_14

350

parallel programming experience, seeing how these patterns are expressed

in SYCL can be a quick way to spin up and gain familiarity with the

capabilities of the language.

This chapter aims to provide answers to the following questions:

• What are some common patterns that we should

understand?

• How do the patterns relate to the capabilities of

different devices?

• Which patterns are already provided as SYCL functions

and libraries?

• How would the patterns be implemented using direct

programming?

 Understanding the Patterns
The patterns discussed here are a subset of the parallel patterns described

in the book Structured Parallel Programming by McCool et al. We do not

cover the patterns related to types of parallelism (e.g., fork-join, branch-

and- bound) but focus on some of the algorithmic patterns most useful for

writing data-parallel kernels.

We wholeheartedly believe that understanding this subset of parallel

patterns is critical to becoming an effective SYCL programmer. The table

in Figure 14-1 presents a high-level overview of the different patterns,

including their primary use cases, their key attributes, and how their

attributes impact their affinity for different hardware devices.

Chapter 14 Common parallel patterns

351

Figure 14-1. Parallel patterns and their affinity for different
device types

 Map
The map pattern is the simplest parallel pattern of all and will

be immediately familiar to readers with experience in functional

programming languages. As shown in Figure 14-2, each input element of

a range is independently mapped to an output by applying some function.

Many data-parallel operations can be expressed as instances of the map

pattern (e.g., vector addition).

Figure 14-2. Map pattern

Chapter 14 Common parallel patterns

352

Since every application of the function is completely independent,

expressions of map are often very simple, relying on the compiler and/

or runtime to do most of the hard work. We should expect kernels written

to the map pattern to be suitable for any device and for the performance

of those kernels to scale very well with the amount of available hardware

parallelism.

However, we should think carefully before deciding to rewrite entire

applications as a series of map kernels! Such a development approach is

highly productive and guarantees that an application will be portable to a

wide variety of device types but encourages us to ignore optimizations that

may significantly improve performance (e.g., improving data reuse, fusing

kernels).

 Stencil
The stencil pattern is closely related to the map pattern. As shown in

Figure 14-3, a function is applied to an input and a set of neighboring

inputs described by a stencil to produce a single output. Stencil patterns

appear frequently in many domains, including scientific/engineering

applications (e.g., finite difference codes) and computer vision/machine

learning applications (e.g., image convolutions).

Chapter 14 Common parallel patterns

353

Figure 14-3. Stencil pattern

When the stencil pattern is executed out-of-place (i.e., writing the

outputs to a separate storage location), the function can be applied to

every input independently. Scheduling stencils in the real world is often

more complicated than this: computing neighboring outputs requires

the same data, and loading that data from memory multiple times will

degrade performance; and we may wish to apply the stencil in-place (i.e.,

overwriting the original input values) in order to decrease an application’s

memory footprint.

The suitability of a stencil kernel for different devices is therefore

highly dependent on properties of the stencil and the input problem.

Generally speaking,

• Small stencils can benefit from the scratchpad storage

of GPUs.

Chapter 14 Common parallel patterns

354

• Large stencils can benefit from the (comparatively)

large caches of CPUs.

• Small stencils operating on small inputs can achieve

significant performance gains via implementation as

systolic arrays on FPGAs.

Since stencils are easy to describe but complex to implement

efficiently, many stencil applications make use of a domain-specific

language (DSL). There are already several embedded DSLs leveraging

the template meta-programming capabilities of C++ to generate high-

performance stencil kernels at compile time.

 Reduction
A reduction is a common parallel pattern which combines partial results

using an operator that is typically associative and commutative (e.g.,

addition). The most ubiquitous examples of reductions are computing a

sum (e.g., while computing a dot product) or computing the minimum/

maximum value (e.g., using maximum velocity to set time-step size).

Figure 14-4 shows the reduction pattern implemented by way of a

tree reduction, which is a popular implementation requiring log2(N)

combination operations for a range of N input elements. Although tree

reductions are common, other implementations are possible—in general,

we should not assume that a reduction combines values in a specific order.

Chapter 14 Common parallel patterns

355

Figure 14-4. Reduction pattern

Kernels are rarely embarrassingly parallel in real life, and even

when they are, they are often paired with reductions (as in MapReduce

frameworks) to summarize their results. This makes reductions one of the

most important parallel patterns to understand and one that we must be

able to execute efficiently on any device.

Tuning a reduction for different devices is a delicate balancing act

between the time spent computing partial results and the time spent

combining them; using too little parallelism increases computation time,

whereas using too much parallelism increases combination time.

It may be tempting to improve overall system utilization by using

different devices to perform the computation and combination steps,

but such tuning efforts must pay careful attention to the cost of moving

data between devices. In practice, we find that performing reductions

directly on data as it is produced and on the same device is often the best

Chapter 14 Common parallel patterns

356

approach. Using multiple devices to improve the performance of reduction

patterns therefore relies not on task parallelism but on another level of

data parallelism (i.e., each device performs a reduction on part of the

input data).

 Scan
The scan pattern computes a generalized prefix sum using a binary

associative operator, and each element of the output represents a partial

result. A scan is said to be inclusive if the partial sum for element i is the

sum of all elements in the range [0, i] (i.e., the sum including i). A scan

is said to be exclusive if the partial sum for element i is the sum of all

elements in the range [0, i) (i.e., the sum excluding i).

At first glance, a scan appears to be an inherently serial operation—the

value of each output depends on the value of the previous output! While it

is true that scan has less opportunities for parallelism than other patterns

(and may therefore be less scalable), Figure 14-5 shows that it is possible to

implement a parallel scan using multiple sweeps over the same data.

Chapter 14 Common parallel patterns

357

Figure 14-5. Scan pattern

Because the opportunities for parallelism within a scan operation are

limited, the best device on which to execute a scan is highly dependent on

problem size: smaller problems are a better fit for a CPU, since only larger

problems will contain enough data parallelism to saturate a GPU. Problem

size is less of a concern for FPGAs and other spatial architectures since

scans naturally lend themselves to pipeline parallelism. As in the case

of a reduction, it is usually a good idea to execute the scan operation on

the same device that produced the data—considering where and how

scan operations fit into an application during optimization will typically

produce better results than focusing on optimizing the scan operations in

isolation.

Chapter 14 Common parallel patterns

358

 Pack and Unpack
The pack and unpack patterns are closely related to scans and are often

implemented on top of scan functionality. We cover them separately here

because they enable performant implementations of common operations

(e.g., appending to a list) that may not have an obvious connection to

prefix sums.

 Pack

The pack pattern, shown in Figure 14-6, discards elements of an input

range based on a Boolean condition, packing the elements that are not

discarded into contiguous locations of the output range. This Boolean

condition could be a precomputed mask or could be computed online by

applying some function to each input element.

Figure 14-6. Pack pattern

Chapter 14 Common parallel patterns

359

Like with scan, there is an inherently serial nature to the pack

operation. Given an input element to pack/copy, computing its location

in the output range requires information about how many prior elements

were also packed/copied into the output. This information is equivalent to

an exclusive scan over the Boolean condition driving the pack.

 Unpack

As shown in Figure 14-7 (and as its name suggests), the unpack pattern is

the opposite of the pack pattern. Contiguous elements of an input range

are unpacked into noncontiguous elements of an output range, leaving

other elements untouched. The most obvious use case for this pattern is

to unpack data that was previously packed, but it can also be used to fill in

“gaps” in data resulting from some previous computation.

Figure 14-7. Unpack pattern

Chapter 14 Common parallel patterns

360

 Using Built-In Functions and Libraries
Many of these patterns can be expressed directly using built-

in functionality of SYCL or vendor-provided libraries written in

SYCL. Leveraging these functions and libraries is the best way to balance

performance, portability, and productivity in real large-scale software

engineering projects.

 The SYCL Reduction Library
Rather than require that each of us maintain our own library of portable

and highly performant reduction kernels, SYCL provides a convenient

abstraction for describing variables with reduction semantics. This

abstraction simplifies the expression of reduction kernels and makes the

fact that a reduction is being performed explicit, allowing implementations

to select between different reduction algorithms for different combinations

of device, data type, and reduction operation.

The kernel in Figure 14-8 shows an example of using the reduction

library. Note that the kernel body doesn’t contain any reference to

reductions—all we must specify is that the kernel contains a reduction

which combines instances of the sum variable using the plus functor. This

provides enough information for an implementation to automatically

generate an optimized reduction sequence.

h.parallel_for(
range<1>{N}, reduction(sum, plus<>()),
[=](id<1> i, auto& sum) { sum += data[i]; });

Figure 14-8. Reduction expressed as a data-parallel kernel using the
reduction library

Chapter 14 Common parallel patterns

361

The result of a reduction is not guaranteed to be written back to

the original variable until the kernel has completed. Apart from this

restriction, accessing the result of a reduction behaves identically to

accessing any other variable in SYCL: accessing a reduction result stored

in a buffer requires the creation of an appropriate device or host accessor,

and accessing a reduction result stored in a USM allocation may require

explicit synchronization and/or memory movement.

One important way in which the SYCL reduction library differs from

reduction abstractions found in other languages is that it restricts our

access to the reduction variable during kernel execution—we cannot

inspect the intermediate values of a reduction variable, and we are

forbidden from updating the reduction variable using anything other

than the specified combination function. These restrictions prevent us

from making mistakes that would be hard to debug (e.g., adding to a

reduction variable while trying to compute the maximum) and ensure that

reductions can be implemented efficiently on a wide variety of different

devices.

 The reduction Class

The reduction class is the interface we use to describe the reductions

present in a kernel. The only way to construct a reduction object is to

use one of the functions shown in Figure 14-9. Note that there are three

families of reduction function (for buffers, USM pointers and spans), each

with two overloads (with and without an identity variable).

Chapter 14 Common parallel patterns

362

template <typename BufferT, typename BinaryOperation>
unspecified reduction(BufferT variable, handler& h,

BinaryOperation combiner,
const property_list& properties = {});

template <typename BufferT, typename BinaryOperation>
unspecified reduction(BufferT variable, handler& h,

const BufferT::value_type& identity,
BinaryOperation combiner,
const property_list& properties = {});

template <typename T, typename BinaryOperation>
unspecified reduction(T* variable, BinaryOperation combiner,

const property_list& properties = {});

template <typename T, typename BinaryOperation>
unspecified reduction(T* variable, const T& identity,

BinaryOperation combiner,
const property_list& properties = {});

template <typename T, typename Extent,
typename BinaryOperation>

unspecified reduction(span<T, Extent> variables,
BinaryOperation combiner,
const property_list& properties = {});

template <typename T, typename Extent,
typename BinaryOperation>

unspecified reduction(span<T, Extent> variables,
const T& identity,
BinaryOperation combiner,
const property_list& properties = {});

Figure 14-9. Function prototypes of the reduction function

If a reduction is initialized using a buffer or a USM pointer, the

reduction is a scalar reduction, operating on the first object in an array. If

a reduction is initialized using a span, the reduction is an array reduction.

Each component of an array reduction is independent—we can think of

an array reduction operating on an array of size N as equivalent to N scalar

reductions with the same data type and operator.

Chapter 14 Common parallel patterns

363

The simplest overloads of the function allow us to specify the

reduction variable and the operator used to combine the contributions

from each work-item. The second set of overloads allow us to provide an

optional identity value associated with the reduction operator—this is an

optimization for user-defined reductions, which we will revisit later.

Note that the return type of the reduction function is unspecified,

and the reduction class itself is completely implementation-defined.

Although this may appear slightly unusual for a C++ class, it permits an

implementation to use different classes (or a single class with any number

of template arguments) to represent different reduction algorithms. Future

versions of SYCL may decide to revisit this design in order to enable us

to explicitly request specific reduction algorithms in specific execution

contexts (most likely, via the property_list argument).

 The reducer Class

An instance of the reducer class encapsulates a reduction variable,

exposing a limited interface ensuring that we cannot update the reduction

variable in any way that an implementation could consider to be unsafe.

A simplified definition of the reducer class is shown in Figure 14-10.

Like the reduction class, the precise definition of the reducer class

is implementation-defined—a reducer’s type will depend on how the

reduction is being performed, and it is important to know this at compile

time in order to maximize performance. However, the functions and

operators that allow us to update the reduction variable are well defined

and are guaranteed to be supported by any SYCL implementation.

Chapter 14 Common parallel patterns

364

template <typename T, typename BinaryOperation,
/* implementation-defined */>

class reducer {
// Combine partial result with reducer's value
void combine(const T& partial);

};

// Other operators are available for standard binary
// operations
template <typename T>
auto& operator+=(reducer<T, plus::<T>>&, const T&);

Figure 14-10. Simplified definition of the reducer class

Specifically, every reducer provides a combine() function which

combines the partial result (from a single work-item) with the value

of the reduction variable. How this combine function behaves is

implementation-defined but is not something that we need to worry

about when writing a kernel. A reducer is also required to make other

operators available depending on the reduction operator; for example, the

+= operator is defined for plus reductions. These additional operators are

provided only as a programmer convenience and to improve readability;

where they are available, these operators have identical behavior to calling

combine() directly.

When working with array reductions, the reducer provides an

additional subscript operator (i.e., operator[]), allowing access to

individual elements of the array. Rather than returning a reference directly

to an element of the array, this operator returns another reducer object,

which exposes the same combine() function and shorthand operators

as the reducers associated with a scalar reduction. Figure 14-11 shows

a simple example of a kernel using an array reduction to compute a

histogram, where the subscript operator is used to access only the

histogram bin that is updated by the work-item.

Chapter 14 Common parallel patterns

365

h.parallel_for(
range{N},
reduction(span<int, 16>(histogram, 16), plus<>()),
[=](id<1> i, auto& histogram) {

histogram[i % B]++;
});

Figure 14-11. An example kernel using an array reduction to
compute a histogram

 User-Defined Reductions

Several common reduction algorithms (e.g., a tree reduction) do not

see each work-item directly update a single shared variable, but instead

accumulate some partial result in a private variable that will be combined

at some point in the future. Such private variables introduce a problem:

how should the implementation initialize them? Initializing variables to

the first contribution from each work-item has potential performance

ramifications, since additional logic is required to detect and handle

uninitialized variables. Initializing variables to the identity of the reduction

operator instead avoids the performance penalty but is only possible when

the identity is known.

SYCL implementations can only automatically determine the correct

identity value to use when a reduction is operating on simple arithmetic

types and the reduction operator is one of several standard function

objects (e.g., plus). For user-defined reductions (i.e., those operating on

user-defined types and/or using user-defined function objects), we may be

able to improve performance by specifying the identity value directly.

Support for user-defined reductions is limited to trivially copyable

types and combination functions with no side effects, but this is enough

to enable many real-life use cases. For example, the code in Figure 14-12

demonstrates the usage of a user-defined reduction to compute both the

minimum element in a vector and its location.

Chapter 14 Common parallel patterns

366

template <typename T, typename I>
using minloc = minimum<std::pair<T, I>>;

int main() {
constexpr size_t N = 16;

queue q;
float* data = malloc_shared<float>(N, q);
std::pair<float, int>* res =

malloc_shared<std::pair<float, int>>(1, q);
std::generate(data, data + N, std::mt19937{});

std::pair<float, int> identity = {
std::numeric_limits<float>::max(),
std::numeric_limits<int>::min()};

*res = identity;

auto red =
sycl::reduction(res, identity, minloc<float, int>());

q.submit([&](handler& h) {
h.parallel_for(

range<1>{N}, red, [=](id<1> i, auto& res) {
std::pair<float, int> partial = {data[i], i};
res.combine(partial);

});
}).wait();

std::cout << "minimum value = " << res->first << " at "
<< res->second << "\n";

...

Figure 14-12. Using a user-defined reduction to find the location of
the minimum value

 Group Algorithms
Support for parallel patterns in SYCL device code is provided by a separate

library of group algorithms. These functions exploit the parallelism of

a specific group of work-items (i.e., a work-group or a sub-group) to

implement common parallel algorithms at limited scope and can be used

as building blocks to construct other more complex algorithms.

Chapter 14 Common parallel patterns

367

The syntax of the group algorithms in SYCL is based on that of the

algorithm library in C++, and any restrictions from the C++ algorithms

apply. However, there is a critical difference: whereas the STL’s algorithms

are called from sequential (host) code and indicate an opportunity for a

library to employ parallelism, SYCL’s group algorithms are designed to be

called within (device) code that is already executing in parallel. To ensure

that this difference cannot be overlooked, the group algorithms have

slightly different syntax and semantics to their C++ counterparts.

SYCL distinguishes between two different kinds of parallel algorithm. If

an algorithm is performed collaboratively by all work-items in a group but

otherwise behaves identically to an algorithm from the STL, the algorithm

is named with a “joint” prefix (because the members of the group “join”

together to perform the algorithm). Such algorithms read their inputs from

memory and write their results to memory and can only operate on data in

memory locations visible to all work-items in a given group. If an algorithm

instead operates over an implicit range reflecting the group itself, with

inputs and outputs stored in work-item private memory, the algorithm

name is modified to include the word “group” (because the algorithm is

performed directly on data owned to the group).

The code examples in Figure 14-13 demonstrate these two different

kinds of algorithm, comparing the behavior of std::reduce to the

behaviors of sycl::joint_reduce and sycl::reduce_over_group.

Chapter 14 Common parallel patterns

368

// std::reduce// std::reduce
// // Each workEach work--item reduces over a given input rangeitem reduces over a given input range
qq..parallel_forparallel_for(number_of_reductions, [=]((number_of_reductions, [=](size_tsize_t ii) {) {

output1output1[i] = [i] = stdstd::::reducereduce((
input + i * elements_per_reduction,input + i * elements_per_reduction,
input + (i + input + (i + 11) * elements_per_reduction);) * elements_per_reduction);

}).}).waitwait();();

// // sycl::joint_reducesycl::joint_reduce
// Each work// Each work--group reduces over a given input rangegroup reduces over a given input range
// The elements are automatically distributed over// The elements are automatically distributed over
// work// work--items in the groupitems in the group
qq..parallel_forparallel_for((nd_rangend_range<<11>{number_of_reductions *>{number_of_reductions *

elements_per_reduction,elements_per_reduction,
elements_per_reduction},elements_per_reduction},

[=]([=](nd_itemnd_item<<11> > itit) {) {
autoauto g = g = itit..get_groupget_group();();
intint sum = sum = joint_reducejoint_reduce((

g,g,
input + input + gg..get_group_idget_group_id() *() *

elements_per_reduction,elements_per_reduction,
input + (input + (gg..get_group_idget_group_id() + () + 11) *) *

elements_per_reduction,elements_per_reduction,
plusplus<>());<>());

ifif ((gg..leaderleader()) {()) {
output2output2[[gg..get_group_idget_group_id()] = sum;()] = sum;

}}
})})

..waitwait();();

// sycl::reduce_over_group// sycl::reduce_over_group
// Each work// Each work--group reduces over data held in workgroup reduces over data held in work--itemitem
// private memory. Each work-item is responsible for
// loading and contributing one value// loading and contributing one value
qq..parallel_forparallel_for((

nd_rangend_range<<11>{>{
number_of_reductions * elements_per_reduction,number_of_reductions * elements_per_reduction,
elements_per_reduction},elements_per_reduction},

[=]([=](nd_itemnd_item<<11> > itit) {) {
autoauto g = g = itit..get_groupget_group();();
intint x = x = inputinput[[gg..get_group_idget_group_id() *() *

elements_per_reduction +elements_per_reduction +
gg..get_local_idget_local_id()];()];

intint sum = sum = reduce_over_groupreduce_over_group(g, x, (g, x, plusplus<>());<>());
ifif ((gg..leaderleader()) {()) {
output3output3[[gg..get_group_idget_group_id()] = sum;()] = sum;

}}
})})

..waitwait();();

Figure 14-13. A comparison of std::reduce, sycl::joint_reduce,
and sycl::reduce_over_group

Chapter 14 Common parallel patterns

369

Note that in both cases, the first argument to each group algorithm

accepts a group or sub_group object in place of an execution policy,

to describe the set of work-items that should be used to perform the

algorithm. Since algorithms are performed collaboratively by all the work-

items in the specified group, they must also be treated similarly to a group

barrier—all work-items in the group must encounter the same algorithm

in converged control flow (i.e., all work-items in the group must similarly

encounter or not encounter the algorithm call), and the arguments

provided by all work-items must be such that all work-items agree on the

operation being performed. For example, sycl::joint_reduce requires

all arguments to be the same for all work-items, to ensure that all work-

items in the group operate on the same data and use the same operator to

accumulate results.

The table in Figure 14-14 shows how the parallel algorithms available

in the STL relate to the group algorithms, and whether there are any

restrictions on the type of group that can be used. Note that in some

cases, a group algorithm can only be used with sub-groups; these cases

correspond to the “shuffle” operations introduced in earlier chapters.

C++ Algorithm SYCL "Joint" Algorithm SYCL "Group" Algorithm Group
Types

std::any_of sycl::joint_any_of sycl::any_of_group All

std::all_of sycl::joint_all_of sycl::all_of_group All

std::none_of sycl::joint_none_of sycl::none_of_group All

std::shift_left N/A sycl::shift_group_left sub_group
std::shift_right N/A sycl::shift_group_right sub_group
N/A N/A sycl::permute_group_by_xor sub_group

Figure 14-14. Mapping between C++ algorithms and SYCL group
algorithms

Chapter 14 Common parallel patterns

370

At the time of writing, the group algorithms are limited to supporting

only primitive data types and a set of built-in operators recognized by

SYCL (i.e., plus, multiplies, bit_and, bit_or, bit_xor, logical_and,

logical_or, minimum, and maximum). This is enough to cover most common

use cases, but future versions of SYCL are expected to extend collective

support to user-defined types and operators.

 Direct Programming
Although we recommend leveraging libraries wherever possible, we can

learn a lot by looking at how each pattern could be implemented using

“native” SYCL kernels.

The kernels in the remainder of this chapter should not be expected

to reach the same level of performance as highly tuned libraries but

are useful in developing a greater understanding of the capabilities of

SYCL—and may even serve as a starting point for prototyping new library

functionality.

USE VENDOR-PROVIDED LIBRARIES!

When a vendor provides a library implementation of a function, it is almost

always beneficial to use it rather than reimplementing the function as a kernel!

 Map
Owing to its simplicity, the map pattern can be implemented directly as

a basic parallel kernel. The code shown in Figure 14-15 shows such an

implementation, using the map pattern to compute the square root of each

input element in a range.

Chapter 14 Common parallel patterns

371

// Compute the square root of each input value
q.parallel_for(N, [=](id<1> i) {

output[i] = sqrt(input[i]);
}).wait();

Figure 14-15. Implementing the map pattern in a data- parallel kernel

 Stencil
Implementing a stencil directly as a multidimensional basic data-parallel

kernel with multidimensional buffers, as shown in Figure 14-16, is

straightforward and easy to understand.

q.submit([&](handler& h) {
accessor input{input_buf, h};
accessor output{output_buf, h};

// Compute the average of each cell and its immediate
// neighbors
h.parallel_for(stencil_range, [=](id<2> idx) {

int i = idx[0] + 1;
int j = idx[1] + 1;

float self = input[i][j];
float north = input[i - 1][j];
float east = input[i][j + 1];
float south = input[i + 1][j];
float west = input[i][j - 1];
output[i][j] =

(self + north + east + south + west) / 5.0f;
});

});

Figure 14-16. Implementing the stencil pattern in a data- parallel kernel

However, this expression of the stencil pattern is very naïve and should

not be expected to perform very well. As mentioned earlier in the chapter,

it is well known that leveraging locality (via spatial or temporal blocking) is

required to avoid repeated reads of the same data from memory. A simple

example of spatial blocking, using work-group local memory, is shown in

Figure 14-17.

Chapter 14 Common parallel patterns

372

q.submit([&](handler& h) {
accessor input{input_buf, h};
accessor output{output_buf, h};

constexpr size_t B = 4;
range<2> local_range(B, B);
range<2> tile_size =

local_range +
range<2>(2, 2); // Includes boundary cells

auto tile = local_accessor<float, 2>(tile_size, h);

// Compute the average of each cell and its immediate
// neighbors
h.parallel_for(

nd_range<2>(stencil_range, local_range),
[=](nd_item<2> it) {

// Load this tile into work-group local memory
id<2> lid = it.get_local_id();
range<2> lrange = it.get_local_range();
for (int ti = lid[0]; ti < B + 2;

ti += lrange[0]) {
int gi = ti + B * it.get_group(0);
for (int tj = lid[1]; tj < B + 2;

tj += lrange[1]) {
int gj = tj + B * it.get_group(1);
tile[ti][tj] = input[gi][gj];

}
}
group_barrier(it.get_group());

// Compute the stencil using values from local
// memory
int gi = it.get_global_id(0) + 1;
int gj = it.get_global_id(1) + 1;

int ti = it.get_local_id(0) + 1;
int tj = it.get_local_id(1) + 1;

float self = tile[ti][tj];
float north = tile[ti - 1][tj];
float east = tile[ti][tj + 1];
float south = tile[ti + 1][tj];
float west = tile[ti][tj - 1];
output[gi][gj] =

(self + north + east + south + west) / 5.0f;
});

});

Figure 14-17. Implementing the stencil pattern in an ND-range
kernel, using work-group local memory

Chapter 14 Common parallel patterns

373

Selecting the best optimizations for a given stencil requires compile-

time introspection of block size, the neighborhood, and the stencil

function itself, requiring a much more sophisticated approach than

discussed here.

 Reduction
It is possible to implement reduction kernels in SYCL by leveraging

language features that provide synchronization and communication

capabilities between work-items (e.g., atomic operations, work-group and

sub-group functions, sub-group “shuffles”). The kernels in Figure 14-18

and Figure 14-19 show two possible reduction implementations: a naïve

reduction using a basic parallel_for and an atomic operation for every

work-item, and a slightly smarter reduction that exploits locality using an

ND-range parallel_for and a work-group reduce function, respectively.

We revisit these atomic operations in more detail in Chapter 19.

q.parallel_for(N, [=](id<1> i) {
atomic_ref<int, memory_order::relaxed,

memory_scope::system,
access::address_space::global_space>(

*sum) += data[i];
}).wait();

Figure 14-18. Implementing a naïve reduction expressed as a
data- parallel kernel

Chapter 14 Common parallel patterns

374

q.parallel_for(nd_range<1>{N, B}, [=](nd_item<1> it) {
int i = it.get_global_id(0);
auto grp = it.get_group();
int group_sum =

reduce_over_group(grp, data[i], plus<>());
if (grp.leader()) {

atomic_ref<int, memory_order::relaxed,
memory_scope::system,
access::address_space::global_space>(

*sum) += group_sum;
}

}).wait();

Figure 14-19. Implementing a naïve reduction expressed as an
ND- range kernel

There are numerous other ways to write reduction kernels, and

different devices will likely prefer different implementations, owing to

differences in hardware support for atomic operations, work-group local

memory size, global memory size, the availability of fast device-wide

barriers, or even the availability of dedicated reduction instructions. On

some architectures, it may even be faster (or necessary!) to perform a tree

reduction using log2(N) separate kernel calls.

We strongly recommend that manual implementations of reductions

should only be considered for cases that are not supported by the SYCL

reduction library or when fine-tuning a kernel for the capabilities of a

specific device—and even then, only after being 100% sure that SYCL’s

built-in reductions are underperforming!

 Scan
As we saw earlier in this chapter, implementing a parallel scan requires

multiple sweeps over the data, with synchronization occurring between

each sweep. Since SYCL does not provide a mechanism for synchronizing

all work-items in an ND-range, a direct implementation of a device-wide

scan must use multiple kernels that communicate partial results through

global memory.

Chapter 14 Common parallel patterns

375

The code, shown in Figures 14-20, 14-21, and 14-22, demonstrates

an inclusive scan implemented using several kernels. The first kernel

distributes the input values across work-groups, computing work-group

local scans in work-group local memory (note that we could have used

the work-group inclusive_scan function instead). The second kernel

computes a local scan using a single work-group, this time over the final

value from each block. The third kernel combines these intermediate

results to finalize the prefix sum. These three kernels correspond to the

three layers of the diagram in Figure 14-5.

// Phase 1: Compute local scans over input blocks
q.submit([&](handler& h) {

auto local = local_accessor<int32_t, 1>(L, h);
h.parallel_for(nd_range<1>(N, L), [=](nd_item<1> it) {

int i = it.get_global_id(0);
int li = it.get_local_id(0);

// Copy input to local memory
local[li] = input[i];
group_barrier(it.get_group());

// Perform inclusive scan in local memory
for (int32_t d = 0; d <= log2((float)L) - 1; ++d) {

uint32_t stride = (1 << d);
int32_t update =

(li >= stride) ? local[li - stride] : 0;
group_barrier(it.get_group());
local[li] += update;
group_barrier(it.get_group());

}

// Write the result for each item to the output
// buffer Write the last result from this block to
// the temporary buffer
output[i] = local[li];
if (li == it.get_local_range()[0] - 1) {
tmp[it.get_group(0)] = local[li];

}
});

}).wait();

Figure 14-20. Phase 1 for implementing a global inclusive scan in an
ND-range kernel: computing across each work-group

Chapter 14 Common parallel patterns

376

// Phase 2: Compute scan over partial results
q.submit([&](handler& h) {

auto local = local_accessor<int32_t, 1>(G, h);
h.parallel_for(nd_range<1>(G, G), [=](nd_item<1> it) {

int i = it.get_global_id(0);
int li = it.get_local_id(0);

// Copy input to local memory
local[li] = tmp[i];
group_barrier(it.get_group());

// Perform inclusive scan in local memory
for (int32_t d = 0; d <= log2((float)G) - 1; ++d) {

uint32_t stride = (1 << d);
int32_t update =

(li >= stride) ? local[li - stride] : 0;
group_barrier(it.get_group());
local[li] += update;
group_barrier(it.get_group());

}

// Overwrite result from each work-item in the
// temporary buffer
tmp[i] = local[li];

});
}).wait();

Figure 14-21. Phase 2 for implementing a global inclusive scan in an
ND-range kernel: scanning across the results of each work-group

// Phase 3: Update local scans using partial results
q.parallel_for(nd_range<1>(N, L), [=](nd_item<1> it) {

int g = it.get_group(0);
if (g > 0) {

int i = it.get_global_id(0);
output[i] += tmp[g - 1];

}
}).wait();

Figure 14-22. Phase 3 (final) for implementing a global inclusive
scan in an ND-range kernel

Chapter 14 Common parallel patterns

377

Figure 14-20 and Figure 14-21 are very similar; the only differences are

the size of the range and how the input and output values are handled. A

real-life implementation of this pattern could use a single function taking

different arguments to implement these two phases, and they are only

presented as distinct code here for pedagogical reasons.

 Pack and Unpack
Pack and unpack are also known as gather and scatter operations. These

operations handle differences in how data is arranged in memory and how

we wish to present it to the compute resources.

 Pack

Since pack depends on an exclusive scan, implementing a pack that

applies to all elements of an ND-range must also take place via global

memory and over the course of several kernel enqueues. However, there

is a common use case for pack that does not require the operation to be

applied over all elements of an ND-range—namely, applying a pack only

across items in a specific work-group or sub-group.

The snippet in Figure 14-23 shows how to implement a group pack

operation on top of an exclusive scan.

uint32_t index =
exclusive_scan(g, (uint32_t)predicate, plus<>());

if (predicate) dst[index] = value;

Figure 14-23. Implementing a group pack operation on top of an
exclusive scan

The code in Figure 14-24 demonstrates how such a pack operation

could be used in a kernel to build a list of elements which require some

additional postprocessing (in a future kernel). The example shown is based

Chapter 14 Common parallel patterns

378

on a real kernel from molecular dynamics simulations: the work-items in

the sub-group assigned to particle i cooperate to identify all other particles

within a fixed distance of i, and only the particles in this “neighbor list” will

be used to calculate the force acting on each particle.

range<2> global(N, 8);
range<2> local(1, 8);
q.parallel_for(nd_range<2>(global, local), [=](nd_item<2>

it) {
int i = it.get_global_id(0);
sub_group sg = it.get_sub_group();
int sglid = sg.get_local_id()[0];
int sgrange = sg.get_local_range()[0];

uint32_t k = 0;
for (int j = sglid; j < N; j += sgrange) {

// Compute distance between i and neighbor j
float r = distance(position[i], position[j]);

// Pack neighbors that require
// post-processing into a list
uint32_t pack = (i != j) and (r <= CUTOFF);
uint32_t offset =

exclusive_scan_over_group(sg, pack, plus<>());
if (pack) {

neighbors[i * MAX_K + k + offset] = j;
}

// Keep track of how many neighbors have been
// packed so far
k += reduce_over_group(sg, pack, plus<>());

}
num_neighbors[i] =

reduce_over_group(sg, k, maximum<>());
}).wait();

Figure 14-24. Using a sub-group pack operation to build a list of
elements needing additional postprocessing

Chapter 14 Common parallel patterns

379

Note that the pack pattern never reorders elements—the elements that

are packed into the output array appear in the same order as they did in

the input. This property of pack is important and enables us to use pack

functionality to implement other more abstract parallel algorithms (such

as std::copy_if and std::stable_partition). However, there are other

parallel algorithms that can be implemented on top of pack functionality

where maintaining order is not required (such as std::partition).

 Unpack

As with pack, we can implement unpack using scan. Figure 14-25

shows how to implement a sub-group unpack operation on top of an

exclusive scan.

uint32_t index =
exclusive_scan(sg, (uint32_t)predicate, plus<>());

return (predicate) ? new_value[index] : original_value;

Figure 14-25. Implementing a sub-group unpack operation on top of
an exclusive scan

The code in Figure 14-26 demonstrates how such a sub-group

unpack operation could be used to improve load balancing in a kernel

with divergent control flow (in this case, computing the Mandelbrot set).

Each work-item is assigned a separate pixel to compute and iterates until

convergence or a maximum number of iterations is reached. An unpack

operation is then used to replace completed pixels with new pixels.

Chapter 14 Common parallel patterns

380

// Keep iterating as long as one work-item has work to do
while (any_of_group(sg, i < Nx)) {
uint32_t converged = next_iteration(

params, i, j, count, cr, ci, zr, zi, mandelbrot);
if (any_of_group(sg, converged)) {
// Replace pixels that have converged using an
// unpack. Pixels that haven't converged are not
// replaced.
uint32_t index = exclusive_scan_over_group(

sg, converged, plus<>());
i = (converged) ? iq + index : i;
iq += reduce_over_group(sg, converged, plus<>());

// Reset the iterator variables for the new i
if (converged) {

reset(params, i, j, count, cr, ci, zr, zi);
}

}
}

Figure 14-26. Using a sub-group unpack operation to improve load
balancing for kernels with divergent control flow

The degree to which an approach like this improves efficiency (and

decreases execution time) is highly application- and input-dependent,

since checking for completion and executing the unpack operation both

introduce some overhead! Successfully using this pattern in realistic

applications will therefore require some fine-tuning based on the amount

of divergence present and the computation being performed (e.g.,

introducing a heuristic to execute the unpack operation only if the number

of active work-items falls below some threshold).

 Summary
This chapter has demonstrated how to implement some of the most

common parallel patterns using SYCL features, including built-in functions

and libraries.

Chapter 14 Common parallel patterns

381

The SYCL ecosystem is still developing, and we expect to uncover new

best practices for these patterns as developers gain more experience with

the language and from the development of production-grade applications

and libraries.

 For More Information
• Structured Parallel Programming: Patterns for Efficient

Computation by Michael McCool, Arch Robison,

and James Reinders, © 2012, published by Morgan

Kaufmann, ISBN 978-0-124-15993-8.

• Algorithms library, C++ Reference,

https://en.cppreference.com/w/cpp/algorithm.

Open Access This chapter is licensed under the terms of

the Creative Commons Attribution 4.0 International License

(https://creativecommons.org/licenses/by/4.0/), which permits use,

sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter’s Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter’s

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 14 Common parallel patterns

https://en.cppreference.com/w/cpp/algorithm
https://creativecommons.org/licenses/by/4.0/

383

CHAPTER 15

Programming
for GPUs
Over the last few decades, graphics processing units (GPUs) have evolved

from specialized hardware devices capable of drawing images on a screen

to general-purpose devices capable of executing complex parallel kernels.

Nowadays, nearly every computer includes a GPU alongside a traditional

CPU, and many programs may be accelerated by offloading part of a

parallel algorithm from the CPU to the GPU.

In this chapter, we will describe how a typical GPU works, how

GPU software and hardware execute a SYCL application, and tips and

techniques to keep in mind when we are writing and optimizing parallel

kernels for a GPU.

 Performance Caveats
As with any processor type, GPUs differ from vendor to vendor or even

from product generation to product generation; therefore, best practices

for one device may not be best practices for a different device. The

advice in this chapter is likely to benefit many GPUs, both now and in the

future, but…

© Intel Corporation 2023
J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-9691-2_15

https://doi.org/10.1007/978-1-4842-9691-2_15

384

To achieve optimal performance for a particular GPU, always consult
the GPU vendor’s documentation!

Links to documentation from many GPU vendors are provided at the

end of this chapter.

 How GPUs Work
This section describes how typical GPUs work and how GPUs differ from

other accelerator types.

 GPU Building Blocks
Figure 15-1 shows a very simplified GPU consisting of three high-level

building blocks:

 1. Execution resources: A GPU’s execution resources

are the processors that perform computational

work. Different GPU vendors use different names

for their execution resources, but all modern GPUs

consist of multiple programmable processors. The

processors may be heterogeneous and specialized

for particular tasks, like transforming vertices and

shading pixels, or they may be homogeneous and

interchangeable. Processors for most modern GPUs

are homogeneous and interchangeable.

 2. Fixed functions: GPU fixed functions are hardware

units that are less programmable than the execution

resources and are specialized for a single task.

When a GPU is used for graphics, many parts of the

ChaPTer 15 ProGramminG for GPUs

385

graphics pipeline such as rasterization or ray tracing

are performed using fixed functions to improve

power efficiency and performance. When a GPU is

used for data-parallel computation, fixed functions

may be used for tasks such as workload scheduling,

texture sampling, and dependence tracking.

 3. Caches and memory: Like other processor types,

GPUs frequently have caches to store data accessed

by the execution resources. GPU caches may be

implicit, in which case they require no action from

the programmer, or may be explicit scratchpad

memories, in which case a programmer must

purposefully move data into a cache before using

it. Many GPUs also have a large pool of memory to

provide fast access to data used by the execution

resources.

Figure 15-1. Typical GPU building blocks—not to scale!

ChaPTer 15 ProGramminG for GPUs

386

 Simpler Processors (but More of Them)
Traditionally, when performing graphics operations, GPUs process large

batches of data. For example, a typical game frame or rendering workload

involves thousands of vertices that produce millions of pixels per frame.

To maintain interactive frame rates, these large batches of data must be

processed as quickly as possible.

A typical GPU design trade-off is to eliminate features from the

processors forming the execution resources that accelerate single-

threaded performance and to use these savings to build additional

processors, as shown in Figure 15-2. For example, GPU processors may

not include sophisticated out-of-order execution capabilities or branch

prediction logic used by other types of processors. Due to these trade-offs,

a single data element may be processed on a GPU slower than it would on

another processor, but the larger number of processors enables GPUs to

process many data elements quickly and efficiently.

Figure 15-2. GPU processors are simpler, but there are more of them

To take advantage of this trade-off when executing kernels, it is

important to give the GPU a sufficiently large range of data elements to

process. To demonstrate the importance of offloading a large range of data,

consider the matrix multiplication kernel we have been developing and

modifying throughout this book.

ChaPTer 15 ProGramminG for GPUs

387

A REMINDER ABOUT MATRIX MULTIPLICATION

in this book, matrix multiplication kernels are used to demonstrate how

changes in a kernel or the way it is dispatched affects performance.

although matrix multiplication performance is significantly improved using

the techniques described in this chapter, matrix multiplication is such an

important and common operation that many hardware (GPU, CPU, fPGa,

DsP, etc.) vendors have implemented highly tuned versions of many routines

including matrix multiplication. such vendors invest significant time and effort

implementing and validating functions for specific devices and in some cases

may use functionality or techniques that are difficult or impossible to use in

standard kernels.

USE VENDOR-PROVIDED LIBRARIES!

When a vendor provides a library implementation of a function, it is almost

always beneficial to use it rather than reimplementing the function as a kernel!

The onemKL project (part of oneaPi) proposes interfaces that will call intel’s

mKL for intel, cuBLas for nViDia, and hipBLas for amD. if such interfaces are

available, they might make things easier. otherwise, we need to do our own

work to make sure we are using the best libraries for the hardware we are

targeting.

A matrix multiplication kernel may be trivially executed on a GPU

by submitting it into a queue as a single task. The body of this matrix

multiplication kernel looks exactly like a function that executes on the host

CPU and is shown in Figure 15-3.

ChaPTer 15 ProGramminG for GPUs

388

h.single_task([=]() {
for (int m = 0; m < M; m++) {

for (int n = 0; n < N; n++) {
T sum = 0;
for (int k = 0; k < K; k++) {

sum +=
matrixA[m * K + k] * matrixB[k * N + n];

}
matrixC[m * N + n] = sum;

}
}

});

Figure 15-3. A single-task matrix multiplication looks a lot like CPU
host code

If we try to execute this kernel on a CPU, it will probably perform

okay—not great, since it is not expected to utilize any parallel capabilities

of the CPU, but potentially good enough for small matrix sizes. As shown in

Figure 15-4, if we try to execute this kernel on a GPU, however, it will likely

perform very poorly, because the single task will only utilize a single GPU

processor.

Figure 15-4. A single-task kernel on a GPU leaves many execution
resources idle

ChaPTer 15 ProGramminG for GPUs

389

 Expressing Parallelism

To improve the performance of this kernel for both CPUs and GPUs,

we can instead submit a range of data elements to process in parallel,

by converting one of the loops to a parallel_for. For the matrix

multiplication kernel, we can choose to submit a range of data elements

representing either of the two outermost loops. In Figure 15-5, we’ve

chosen to process rows of the result matrix in parallel.

h.parallel_for(range{M}, [=](id<1> idx) {
int m = idx[0];

for (int n = 0; n < N; n++) {
T sum = 0;
for (int k = 0; k < K; k++) {

sum += matrixA[m * K + k] * matrixB[k * N + n];
}
matrixC[m * N + n] = sum;

}
});

Figure 15-5. Somewhat-parallel matrix multiplication

CHOOSING HOW TO PARALLELIZE

Choosing which dimension to parallelize is one very important way to tune an

application for both GPUs and other device types. subsequent sections in this

chapter will describe some of the reasons why parallelizing in one dimension

may perform better than parallelizing in a different dimension.

Even though the somewhat-parallel kernel is very similar to the single-

task kernel, it should run better on a CPU and much better on a GPU. As

shown in Figure 15-6, the parallel_for enables work-items representing

rows of the result matrix to be processed on multiple processor resources

in parallel, so all execution resources stay busy.

ChaPTer 15 ProGramminG for GPUs

390

Figure 15-6. Somewhat-parallel kernel keeps more processor
resources busy

Note that the exact way that the rows are partitioned and assigned to

different processor resources is not specified, giving an implementation

flexibility to choose how best to execute the kernel on a device. For

example, instead of executing individual rows on a processor, an

implementation may choose to execute consecutive rows on the same

processor to gain locality benefits.

 Expressing More Parallelism

We can parallelize the matrix multiplication kernel even more by choosing

to process both outer loops in parallel. Because parallel_for can express

parallel loops over up to three dimensions, this is straightforward, as

shown in Figure 15-7. In Figure 15-7, note that both the range passed

to parallel_for and the item representing the index in the parallel

execution space are now two-dimensional.

ChaPTer 15 ProGramminG for GPUs

391

h.parallel_for(range{M, N}, [=](id<2> idx) {
int m = idx[0];
int n = idx[1];

T sum = 0;
for (int k = 0; k < K; k++) {

sum += matrixA[m * K + k] * matrixB[k * N + n];
}

matrixC[m * N + n] = sum;
});

Figure 15-7. Even more parallel matrix multiplication

Exposing additional parallelism will likely improve the performance

of the matrix multiplication kernel when run on a GPU. This is likely to be

true even when the number of matrix rows exceeds the number of GPU

processors. The next few sections describe possible reasons why this may

be the case.

 Simplified Control Logic (SIMD Instructions)
Many GPU processors optimize control logic by leveraging the fact that

most data elements tend to take the same control flow path through a

kernel. For example, in the matrix multiplication kernel, each data element

executes the innermost loop the same number of times since the loop

bounds are invariant.

When data elements take the same control flow path through a kernel,

a processor may reduce the costs of managing an instruction stream by

sharing control logic among multiple data elements and executing them

as a group. One way to do this is to implement a single instruction, multiple

data, or SIMD, instruction set, where multiple data elements are processed

simultaneously by a single instruction.

ChaPTer 15 ProGramminG for GPUs

392

THREADS VS. INSTRUCTION STREAMS

in many parallel programming contexts and GPU literature, the term “thread”

is used to mean an “instruction stream.” in these contexts, a “thread” is

different than a traditional operating system thread and is typically much more

lightweight. This isn’t always the case, though, and in some cases, a “thread”

is used to describe something completely different.

since the term “thread” is overloaded and easily misunderstood, even among

different GPU vendors, this chapter uses the term “instruction stream” instead.

The number of data elements that are processed simultaneously by

a single instruction is sometimes referred to as the SIMD width of the

instruction or the processor executing the instruction. In Figure 15-8, the

four ALUs share the same control logic, so this may be described as a four-

wide SIMD processor.

Figure 15-8. Four-wide SIMD processor: the four ALUs share fetch/
decode logic

ChaPTer 15 ProGramminG for GPUs

393

GPU processors are not the only processors that implement SIMD

instruction sets. Other processor types also implement SIMD instruction

sets to improve efficiency when processing large sets of data. The main

difference between GPU processors and other processor types is that GPU

processors rely on executing multiple data elements in parallel to achieve

good performance and that GPU processors may support wider SIMD

widths than other processor types. For example, it is not uncommon for

GPU processors to support SIMD widths of 16, 32, or more data elements.

PROGRAMMING MODELS: SPMD AND SIMD

although GPU processors implement simD instruction sets with varying

widths, this is usually an implementation detail and is transparent to the

application executing data-parallel kernels on the GPU processor. This is

because many GPU compilers and runtime aPis implement a single program,

multiple data, or sPmD, programming model, where the GPU compiler and

runtime aPi determine the most efficient group of data elements to process

with a simD instruction stream, rather than expressing the simD instructions

explicitly. The “sub-Groups” section of Chapter 9 explores cases where the

grouping of data elements is visible to applications.

In Figure 15-9, we have widened each of our execution resources to

support four-wide SIMD, allowing us to process four times as many matrix

rows in parallel.

ChaPTer 15 ProGramminG for GPUs

394

Figure 15-9. Executing a somewhat-parallel kernel on SIMD
processors

The use of SIMD instructions that process multiple data elements

in parallel is one of the ways that the performance of the parallel matrix

multiplication kernels in Figures 15-5 and 15-7 is able to scale beyond the

number of processors alone. The use of SIMD instructions also provides

natural locality benefits in many cases, including matrix multiplication, by

executing consecutive data elements on the same processor.

Kernels benefit from parallelism across processors and parallelism
within processors!

 Predication and Masking

Sharing an instruction stream among multiple data elements works well

so long as all data elements take the same path through conditional code

in a kernel. When data elements take different paths through conditional

code, control flow is said to diverge. When control flow diverges in a SIMD

instruction stream, usually both control flow paths are executed, with

ChaPTer 15 ProGramminG for GPUs

395

some channels masked off or predicated. This ensures correct behavior,

but the correctness comes at a performance cost since channels that are

masked do not perform useful work.

To show how predication and masking works, consider the kernel in

Figure 15-10, which multiplies each data element with an “odd” index by

two and increments each data element with an “even” index by one.

h.parallel_for(array_size, [=](id<1> i) {
auto condition = i[0] & 1;
if (condition) {

dataAcc[i] = dataAcc[i] * 2; // odd
} else {

dataAcc[i] = dataAcc[i] + 1; // even
}

});

Figure 15-10. Kernel with divergent control flow

Let’s say that we execute this kernel on the four-wide SIMD processor

shown in Figure 15-8, and that we execute the first four data elements in

one SIMD instruction stream, the next four data elements in a different

SIMD instruction stream, and so on. Figure 15-11 shows one of the ways

channels may be masked and execution may be predicated to correctly

execute this kernel with divergent control flow.

ChaPTer 15 ProGramminG for GPUs

396

Figure 15-11. Possible channel masks for a divergent kernel

 SIMD Efficiency

SIMD efficiency measures how well a SIMD instruction stream performs

compared to equivalent scalar instruction streams. In Figure 15-11,

since control flow partitioned the channels into two equal groups, each

instruction in the divergent control flow executes with half efficiency.

In a worst-case scenario, for highly divergent kernels, efficiency may be

reduced by a factor of the processor’s SIMD width.

All processors that implement a SIMD instruction set will suffer

from divergence penalties that affect SIMD efficiency, but because GPU

processors typically support wider SIMD widths than other processor

types, restructuring an algorithm to minimize divergent control flow

and maximize converged execution may be especially beneficial when

optimizing a kernel for a GPU. This is not always possible, but as an

example, choosing to parallelize along a dimension with more converged

execution may perform better than parallelizing along a different

dimension with highly divergent execution.

ChaPTer 15 ProGramminG for GPUs

397

 SIMD Efficiency and Groups of Items

All kernels in this chapter so far have been basic data-parallel kernels that

do not specify any grouping of items in the execution range, which gives

an implementation freedom to choose the best grouping for a device. For

example, a device with a wider SIMD width may prefer a larger grouping,

but a device with a narrower SIMD width may be fine with smaller

groupings.

When a kernel is an ND-range kernel with explicit groupings of work-

items, care should be taken to choose an ND-range work-group size that

maximizes SIMD efficiency. When a work-group size is not evenly divisible

by a processor’s SIMD width, part of the work-group may execute with

channels disabled for the entire duration of the kernel. The device-specific

kernel query for the preferred_work_group_size_multiple can be used

to choose an efficient work-group size. Please refer to Chapter 12 for more

information on how to query properties of a device.

Choosing a work-group size consisting of a single work-item will likely

perform very poorly since many GPUs will implement a single-work-item

work-group by masking off all SIMD channels except for one. For example,

the kernel in Figure 15-12 will likely perform much worse than the very

similar kernel in Figure 15-5, even though the only significant difference

between the two is a change from a basic data-parallel kernel to an

inefficient single-work-item ND-range kernel (nd_range<1>{M, 1}).

ChaPTer 15 ProGramminG for GPUs

398

h.parallel_for(
nd_range<1>{M, 1}, [=](nd_item<1> idx) {

int m = idx.get_global_id(0);

for (int n = 0; n < N; n++) {
T sum = 0;
for (int k = 0; k < K; k++) {

sum += matrixA[m * K + k] * matrixB[k * N + n];
}
matrixC[m * N + n] = sum;

}
});

Figure 15-12. Inefficient single-item, somewhat-parallel matrix
multiplication

 Switching Work to Hide Latency
Many GPUs use one more technique to simplify control logic, maximize

execution resources, and improve performance: instead of executing

a single instruction stream on a processor, many GPUs allow multiple

instruction streams to be resident on a processor simultaneously.

Having multiple instruction streams resident on a processor is

beneficial because it gives each processor a choice of work to execute. If

one instruction stream is performing a long-latency operation, such as

a read from memory, the processor can switch to a different instruction

stream that is ready to run instead of waiting for the operation to complete.

With enough instruction streams, by the time that the processor switches

back to the original instruction stream, the long-latency operation may

have completed without requiring the processor to wait at all.

Figure 15-13 shows how a processor uses multiple simultaneous

instruction streams to hide latency and improve performance. Even

though the first instruction stream took a little longer to execute with

multiple streams, by switching to other instruction streams, the processor

was able to find work that was ready to execute and never needed to idly

wait for the long operation to complete.

ChaPTer 15 ProGramminG for GPUs

399

Figure 15-13. Switching instruction streams to hide latency

GPU profiling tools may describe the number of instruction streams

that a GPU processor is currently executing vs. the theoretical total number

of instruction streams using a term such as occupancy.

Low occupancy does not necessarily imply low performance, since

it is possible that a small number of instruction streams will keep a

processor busy. Likewise, high occupancy does not necessarily imply high

performance, since a GPU processor may still need to wait if all instruction

streams perform inefficient, long-latency operations. All else being equal

though, increasing occupancy maximizes a GPU processor’s ability to hide

latency and will usually improve performance. Increasing occupancy is

another reason why performance may improve with the even more parallel

kernel in Figure 15-7.

This technique of switching between multiple instruction streams

to hide latency is especially well suited for GPUs and data-parallel

processing. Recall from Figure 15-2 that GPU processors are frequently

simpler than other processor types and hence lack complex latency-hiding

features. This makes GPU processors more susceptible to latency issues,

but because data-parallel programming involves processing a lot of data,

GPU processors usually have plenty of instruction streams to execute!

ChaPTer 15 ProGramminG for GPUs

400

 Offloading Kernels to GPUs
This section describes how an application, the SYCL runtime library,

and the GPU software driver work together to offload a kernel on GPU

hardware. The diagram in Figure 15-14 shows a typical software stack with

these layers of abstraction. In many cases, the existence of these layers

is transparent to an application, but it is important to understand and

account for them when debugging or profiling our application.

Figure 15-14. Offloading parallel kernels to GPUs (simplified)

 SYCL Runtime Library
The SYCL runtime library is the primary software library that SYCL

applications interface with. The runtime library is responsible for

implementing classes such as queues, buffers, and accessors and the

member functions of these classes. Parts of the runtime library may be in

header files and hence directly compiled into the application executable.

Other parts of the runtime library are implemented as library functions,

which are linked with the application executable as part of the application

build process. The runtime library is usually not device-specific, and the

same runtime library may orchestrate offload to CPUs, GPUs, FPGAs, or

other devices.

ChaPTer 15 ProGramminG for GPUs

401

 GPU Software Drivers
Although it is theoretically possible that a SYCL runtime library could

offload directly to a GPU, in practice, most SYCL runtime libraries interface

with a GPU software driver to submit work to a GPU.

A GPU software driver is typically an implementation of an API,

such as OpenCL, Level Zero, or CUDA. Most of a GPU software driver is

implemented in a user-mode driver library that the SYCL runtime calls

into, and the user-mode driver may call into the operating system or

a kernel-mode driver to perform system-level tasks such as allocating

memory or submitting work to the device. The user-mode driver may also

invoke other user-mode libraries; for example, the GPU driver may invoke

a GPU compiler to just-in-time compile a kernel from an intermediate

representation to GPU ISA (Instruction Set Architecture). These software

modules and the interactions between them are shown in Figure 15-15.

Figure 15-15. Typical GPU software driver modules

ChaPTer 15 ProGramminG for GPUs

402

 GPU Hardware
When the runtime library or the GPU software user-mode driver

is explicitly requested to submit work, or when the GPU software

heuristically determines that work should begin, it will typically call

through the operating system or a kernel-mode driver to start executing

work on the GPU. In some cases, the GPU software user-mode driver may

submit work directly to the GPU, but this is less common and may not be

supported by all devices or operating systems.

When the results of work executed on a GPU are consumed by the host

processor or another accelerator, the GPU must issue a signal to indicate

that work is complete. The steps involved in work completion are very

similar to the steps for work submission, executed in reverse: the GPU

may signal the operating system or kernel-mode driver that it has finished

execution, then the user-mode driver will be informed, and finally the

runtime library will observe that work has completed via GPU software

API calls.

Each of these steps introduces latency, and in many cases, the runtime

library and the GPU software are making a trade-off between lower

latency and higher throughput. For example, submitting work to the GPU

more frequently may reduce latency, but submitting frequently may also

reduce throughput due to per-submission overheads. Collecting large

batches of work increases latency but amortizes submission overheads

over more work and introduces more opportunities for parallel execution.

The runtime and drivers are tuned to make the right trade-off and usually

do a good job, but if we suspect that driver heuristics are submitting

work inefficiently, we should consult documentation to see if there are

ways to override the default driver behavior using API-specific or even

implementation-specific mechanisms. The techniques described in

Chapter 20 to interact directly with an API backend can be useful to tune

GPU submission policies.

ChaPTer 15 ProGramminG for GPUs

403

 Beware the Cost of Offloading!
Although SYCL implementations and GPU vendors are continually

innovating and optimizing to reduce the cost of offloading work to a GPU,

there will always be overhead involved both when starting work on a

GPU and observing results on the host or another device. When choosing

where to execute an algorithm, consider both the benefit of executing

an algorithm on a device and the cost of moving the algorithm and any

data that it requires to the device. In some cases, it may be most efficient

to perform a parallel operation using the host processor—or to execute a

serial part of an algorithm inefficiently on the GPU—to avoid the overhead

of moving an algorithm from one processor to another.

Consider the performance of our algorithm as a whole—it may be
most efficient to execute part of an algorithm inefficiently on one
device than to transfer execution to another device!

 Transfers to and from Device Memory

On GPUs with dedicated memory, be especially aware of transfer costs

between dedicated GPU memory and memory on the host or another

device. Figure 15-16 shows typical memory bandwidth differences

between different memory types in a system.

ChaPTer 15 ProGramminG for GPUs

404

Figure 15-16. Typical differences between device memory, remote
memory, and host memory

Recall from Chapter 3 that GPUs prefer to operate on dedicated

device memory, which can be faster by an order of magnitude or more,

instead of operating on host memory or another device’s memory. Even

though accesses to dedicated device memory are significantly faster than

accesses to remote memory or system memory, if the data is not already in

dedicated device memory, then it must be copied or migrated.

So long as the data will be accessed frequently, moving it into

dedicated device memory is beneficial, especially if the transfer can

be performed asynchronously while the GPU execution resources are

busy processing another task. When the data is accessed infrequently

or unpredictably though, it may be preferable to save transfer costs and

operate on the data remotely or in system memory, even if per-access costs

are higher. Chapter 6 describes ways to control where memory is allocated

and different techniques to copy and prefetch data into dedicated device

memory. These techniques are important when optimizing program

execution for GPUs.

ChaPTer 15 ProGramminG for GPUs

405

 GPU Kernel Best Practices
The previous sections described how the dispatch parameters passed to a

parallel_for affect how kernels are assigned to GPU processor resources

and the software layers and overheads involved in executing a kernel on

a GPU. This section describes best practices when a kernel is executing

on a GPU.

Broadly speaking, kernels are either memory bound, meaning that their

performance is limited by data read and write operations into or out of the

execution resources on the GPU, or are compute bound, meaning that their

performance is limited by the execution resources on the GPU. A good first

step when optimizing a kernel for a GPU—and many other processors!—is

to determine whether our kernel is memory bound or compute bound,

since the techniques to improve a memory-bound kernel frequently will

not benefit a compute-bound kernel and vice versa. GPU vendors often

provide profiling tools to help make this determination.

Different optimization techniques are needed depending on whether
our kernel is memory bound or compute bound!

Because GPUs tend to have many processors and wide SIMD widths,

kernels tend to be memory bound more often than they are compute

bound. If we are unsure where to start, examining how our kernel accesses

memory is a good first step.

 Accessing Global Memory
Efficiently accessing global memory is critical for optimal application

performance because almost all data that a work-item or work-group

operates on originates in global memory. If a kernel operates on global

memory inefficiently, it will almost always perform poorly. Even though

ChaPTer 15 ProGramminG for GPUs

406

GPUs often include dedicated hardware gather and scatter units for

reading and writing arbitrary locations in memory, the performance

of accesses to global memory is usually driven by the locality of data

accesses. If one work-item in a work-group is accessing an element in

memory that is adjacent to an element accessed by another work-item

in the work-group, the global memory access performance is likely to

be good. If work-items in a work-group instead access memory that is

strided or random, the global memory access performance will likely be

worse. Some GPU documentation describes operating on nearby memory

accesses as coalesced memory accesses.

Recall that for our somewhat-parallel matrix multiplication kernel

in Figure 15-5, we had a choice whether to process a row or a column of

the result matrix in parallel, and we chose to operate on rows of the result

matrix in parallel. This turns out to be a poor choice: if one work-item with

id equal to m is grouped with a neighboring work-item with id equal to m-1

or m+1, the indices used to access matrixB are the same for each work-item,

but the indices used to access matrixA differ by K, meaning the accesses

are highly strided. The access pattern for matrixA is shown in Figure 15-17.

ChaPTer 15 ProGramminG for GPUs

407

Figure 15-17. Accesses to matrixA are highly strided and inefficient

If, instead, we choose to process columns of the result matrix in

parallel, the access patterns have much better locality. The kernel in

Figure 15-18 is structurally very similar to that in Figure 15-5 with the only

difference being that each work-item in Figure 15-18 operates on a column

of the result matrix, rather than a row of the result matrix.

h.parallel_for(N, [=](item<1> idx) {
int n = idx[0];

for (int m = 0; m < M; m++) {
T sum = 0;
for (int k = 0; k < K; k++) {

sum += matrixA[m * K + k] * matrixB[k * N + n];
}
matrixC[m * N + n] = sum;

}
});

Figure 15-18. Computing columns of the result matrix in parallel,
not rows

ChaPTer 15 ProGramminG for GPUs

408

Even though the two kernels are structurally very similar, the kernel

that operates on columns of data will significantly outperform the kernel

that operates on rows of data on many GPUs, purely due to the more

efficient memory accesses: if one work-item with id equal to n is grouped

with a neighboring work-item with id equal to n-1 or n+1, the indices used

to access matrixA are now the same for each work-item, and the indices

used to access matrixB are consecutive. The access pattern for matrixB is

shown in Figure 15-19.

Figure 15-19. Accesses to matrixB are consecutive and efficient

Accesses to consecutive data are usually very efficient. A good rule of

thumb is that the performance of accesses to global memory for a group of

work-items is a function of the number of GPU cache lines accessed. If all

accesses are within a single cache line, the access will execute with peak

performance. If an access requires two cache lines, say by accessing every

other element or by starting from a cache-misaligned address, the access

ChaPTer 15 ProGramminG for GPUs

409

may operate at half performance. When each work-item in the group

accesses a unique cache line, say for a very strided or random accesses, the

access is likely to operate at lowest performance.

PROFILING KERNEL VARIANTS

for matrix multiplication, choosing to parallelize along one dimension clearly

results in more efficient memory accesses, but for other kernels, the choice

may not be as obvious. for kernels where it is important to achieve the best

performance, if it is not obvious which dimension to parallelize, it is sometimes

worth developing and profiling different kernel variants that parallelize along

each dimension to see what works better for a device and data set.

 Accessing Work-Group Local Memory
In the previous section, we described how accesses to global memory

benefit from locality, to maximize cache performance. As we saw, in some

cases we can design our algorithm to efficiently access memory, such

as by choosing to parallelize in one dimension instead of another. This

technique isn’t possible in all cases, however. This section describes how

we can use work-group local memory to efficiently support more memory

access patterns.

Recall from Chapter 9 that work-items in a work-group can cooperate

to solve a problem by communicating through work-group local memory

and synchronizing using work-group barriers. This technique is especially

beneficial for GPUs, since typical GPUs have specialized hardware

to implement both barriers and work-group local memory. Different

GPU vendors and different products may implement work-group local

memory differently, but work-group local memory frequently has two

benefits compared to global memory: local memory may support higher

ChaPTer 15 ProGramminG for GPUs

410

bandwidth and lower latency than accesses to global memory, even when

the global memory access hits a cache, and local memory is often divided

into different memory regions, called banks. So long as each work-item in

a group accesses a different bank, the local memory access executes with

full performance. Banked accesses allow local memory to support far more

access patterns with peak performance than global memory.

Many GPU vendors will assign consecutive local memory addresses

to different banks. This ensures that consecutive memory accesses always

operate at full performance, regardless of the starting address. When

memory accesses are strided, though, some work-items in a group may

access memory addresses assigned to the same bank. When this occurs,

it is considered a bank conflict and results in serialized access and lower

performance.

for maximum global memory performance, minimize the number of
cache lines accessed.

for maximum local memory performance, minimize the number of
bank conflicts!

A summary of access patterns and expected performance for global

memory and local memory is shown in Figure 15-20. Assume that

when ptr points to global memory, the pointer is aligned to the size of a

GPU cache line. The best performance when accessing global memory

can be achieved by accessing memory consecutively starting from a

cache-aligned address. Accessing an unaligned address will likely lower

global memory performance because the access may require accessing

additional cache lines. Because accessing an unaligned local address will

not result in additional bank conflicts, the local memory performance is

unchanged.

ChaPTer 15 ProGramminG for GPUs

411

The strided case is worth describing in more detail. Accessing every

other element in global memory requires accessing more cache lines and

will likely result in lower performance. Accessing every other element

in local memory may result in bank conflicts and lower performance, but

only if the number of banks is divisible by two. If the number of banks is

odd, this case will operate at full performance also.

When the stride between accesses is very large, each work-item

accesses a unique cache line, resulting in the worst performance. For local

memory though, the performance depends on the stride and the number

of banks. When the stride N is equal to the number of banks, each access

results in a bank conflict, and all accesses are serialized, resulting in the

worst performance. If the stride M and the number of banks share no

common factors, however, the accesses will run at full performance. For

this reason, many optimized GPU kernels will pad data structures in local

memory to choose a stride that reduces or eliminates bank conflicts.

Figure 15-20. Possible performance for different access patterns, for
global and local memory

ChaPTer 15 ProGramminG for GPUs

412

 Avoiding Local Memory Entirely with Sub-Groups
As discussed in Chapter 9, sub-group collective functions are an

alternative way to exchange data between work-items in a group. For many

GPUs, a sub-group represents a collection of work-items processed by a

single instruction stream. In these cases, the work-items in the sub-group

can inexpensively exchange data and synchronize without using work-

group local memory. Many of the best-performing GPU kernels use sub-

groups, so for expensive kernels, it is well worth examining if our algorithm

can be reformulated to use sub-group collective functions.

 Optimizing Computation Using Small Data Types
This section describes techniques to optimize kernels after eliminating

or reducing memory access bottlenecks. One very important perspective

to keep in mind is that GPUs have traditionally been designed to draw

pictures on a screen. Although the pure computational capabilities of

GPUs have evolved and improved over time, in some areas their graphics

heritage is still apparent.

Consider support for kernel data types, for example. Many GPUs

are highly optimized for 32-bit floating-point operations since these

operations tend to be common in graphics and games. For algorithms that

can cope with lower precision, many GPUs also support a lower-precision

16-bit floating-point type that trades precision for faster processing.

Conversely, although many GPUs do support 64-bit double-precision

floating-point operations, the extra precision will come at a cost, and 32-bit

operations usually perform much better than their 64-bit equivalents.

The same is true for integer data types, where 32-bit integer data types

typically perform better than 64-bit integer data types and 16-bit integers

may perform even better still. If we can structure our computation to use

smaller integers, our kernel may perform faster. One area to pay careful

attention to are addressing operations, which typically operate on 64-bit

ChaPTer 15 ProGramminG for GPUs

413

size_t data types, but can sometimes be rearranged to perform most of

the calculation using 32-bit data types. In some local memory cases, 16 bits

of indexing is sufficient, since most local memory allocations are small.

 Optimizing Math Functions
Another area where a kernel may trade off accuracy for performance

involves SYCL built-in functions. SYCL includes a rich set of math

functions with well-defined accuracy across a range of inputs. Most

GPUs do not support these functions natively and implement them

using a long sequence of other instructions. Although the math

function implementations are typically well optimized for a GPU, if our

application can tolerate lower accuracy, we should consider a different

implementation with lower accuracy and higher performance instead.

Please refer to Chapter 18 for more information about SYCL built-in

functions.

For commonly used math functions, the SYCL library includes fast

or native function variants with reduced or implementation-defined

accuracy requirements. For some GPUs, these functions can be an order

of magnitude faster than their precise equivalents, so they are well worth

considering if they have enough precision for an algorithm. For example,

many image postprocessing algorithms have well-defined inputs and can

tolerate lower accuracy and hence are good candidates for using fast or

native math functions.

if an algorithm can tolerate lower precision, we can use smaller data
types or lower-precision math functions to increase performance!

ChaPTer 15 ProGramminG for GPUs

414

 Specialized Functions and Extensions
One final consideration when optimizing a kernel for a GPU is specialized

instructions that are common in many GPUs. As one example, nearly all

GPUs support a mad or fma multiply-and-add instruction that performs

two operations in a single clock. GPU compilers are generally very good at

identifying and optimizing individual multiplies and adds to use a single

instruction instead, but SYCL also includes mad and fma functions that can

be called explicitly. Of course, if we expect our GPU compiler to optimize

multiplies and adds for us, we should be sure that we do not prevent

optimizations by disabling floating-point contractions!

Other specialized GPU instructions may only be available via compiler

optimizations, extensions to the SYCL language, or by interacting directly

with a low-level GPU backend. For example, some GPUs support a

specialized dot-product-and-accumulate instruction that compilers will

try to identify and optimize for, or that may be called directly. Refer to

Chapter 12 for more information on how to query the extensions that are

supported by a GPU implementation and to Chapter 20 for information

about backend interoperability.

 Summary
In this chapter, we started by describing how typical GPUs work and how

GPUs are different than traditional CPUs. We described how GPUs are

optimized for large amounts of data, by trading processor features that

accelerate a single instruction stream for additional processors.

We described how GPUs process multiple data elements in parallel

using wide SIMD instructions and how GPUs use predication and masking

to execute kernels with complex flow control using SIMD instructions. We

discussed how predication and masking can reduce SIMD efficiency and

decrease performance for kernels that are highly divergent and how choosing

to parallelize along one dimension vs. another may reduce SIMD divergence.

ChaPTer 15 ProGramminG for GPUs

415

Because GPUs have so many processing resources, we discussed how

it is important to give GPUs enough work to keep occupancy high. We also

described how GPUs use instruction streams to hide latency, making it

even more crucial to give GPUs lots of work to execute.

Next, we discussed the software and hardware layers involved in

offloading a kernel to a GPU and the costs of offloading. We discussed how

it may be more efficient to execute an algorithm on a single device than it

is to transfer execution from one device to another.

Finally, we described best practices for kernels once they are executing

on a GPU. We described how many kernels start off memory bound and

how to access global memory and local memory efficiently or how to

avoid local memory entirely by using sub-group operations. When kernels

are compute bound instead, we described how to optimize computation

by trading lower precision for higher performance or using custom GPU

extensions to access specialized instructions.

 For More Information
There is much more to learn about GPU programming, and this chapter

just scratched the surface!

GPU specifications and white papers are a great way to learn more

about specific GPUs and GPU architectures. Many GPU vendors provide

very detailed information about their GPUs and how to program them.

At the time of this writing, relevant reading about major GPUs can be

found on software.intel.com, devblogs.nvidia.com, and amd.com.

Some GPU vendors have open source drivers or driver components.

When available, it can be instructive to inspect or step through driver code,

to get a sense for which operations are expensive or where overheads may

exist in an application.

ChaPTer 15 ProGramminG for GPUs

416

This chapter focused entirely on traditional accesses to global memory

via buffer accessors or Unified Shared Memory, but most GPUs also

include a fixed-function texture sampler that can accelerate operations on

images. For more information about images and samplers, please refer to

the SYCL specification.

Open Access This chapter is licensed under the terms of

the Creative Commons Attribution 4.0 International License

(https://creativecommons.org/licenses/by/4.0/), which permits use,

sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter’s Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter’s

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

ChaPTer 15 ProGramminG for GPUs

https://creativecommons.org/licenses/by/4.0/

417

CHAPTER 16

Programming for
CPUs
Kernel programming originally became popular as a way to program

GPUs. As kernel programming is generalized, it is important to understand

how kernel style of programming affects the mapping of our code to a CPU.

The CPU has evolved over the years. A major shift occurred around

2005 when performance gains from increasing clock speeds diminished.

Parallelism arose as the favored solution—instead of increasing clock

speeds, CPU producers introduced multicore chips. Computers became

more effective in performing multiple tasks at the same time!

While multicore prevailed as the path for increasing hardware

performance, realizing that gain in software required nontrivial effort.

Multicore processors required developers to come up with different

algorithms so the hardware improvements could be noticeable, and this

was not always easy. The more cores that we have, the harder it is to keep

them busy efficiently. SYCL is one of the programming languages that

address these challenges, with many constructs that help to exploit various

forms of parallelism on CPUs (and other architectures).

This chapter discusses some particulars of CPU architectures, how

CPU hardware typically executes SYCL applications and offers best

practices when writing a SYCL code for a CPU platform.

© Intel Corporation 2023
J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-9691-2_16

https://doi.org/10.1007/978-1-4842-9691-2_16

418

 Performance Caveats
SYCL paves a portable path to parallelize our applications or to develop

parallel applications from scratch. The performance of an application,

when run on CPUs, is largely dependent upon the following factors:

• The underlying performance of the launch and

execution of kernel code

• The percentage of the program that runs in a parallel

kernel and its scalability

• CPU utilization, effective data sharing, data locality,

and load balancing

• The amount of synchronization and communication

between work-items

• The overhead introduced to create, resume, manage,

suspend, destroy, and synchronize any threads that

work-items execute on, which is impacted by the

number of serial-to-parallel or parallel-to-serial

transitions

• Memory conflicts caused by shared memory (including

falsely shared memory)

• Performance limitations of shared resources such

as memory, write combining buffers, and memory

bandwidth

In addition, as with any processor type, CPUs may differ from vendor

to vendor or even from product generation to product generation. The best

practices for one CPU may not be best practices for a different CPU and

configuration.

Chapter 16 programming for CpUs

419

to achieve optimal performance on a CpU, understand as many
characteristics of the CpU architecture as possible!

 The Basics of Multicore CPUs
Emergence and rapid advancements in multicore CPUs have driven

substantial acceptance of shared memory parallel computing platforms.

CPUs offer parallel computing platforms at laptop, desktop, and server

levels, making them ubiquitous and exposing performance almost

everywhere. The most common form of CPU architecture is cache-

coherent non-uniform memory access (cc-NUMA), which is characterized

by memory access times not being completely uniform. Many small dual-

socket general-purpose CPU systems have this kind of memory system.

This architecture has become dominant because the number of cores in a

processor, as well as the number of sockets, continues to increase.

In a cc-NUMA CPU system, each socket connects to a subset of

the total memory in the system. A cache-coherent interconnect glues

all the sockets together and provides a single system memory view for

programmers. Such a memory system is scalable, because the aggregate

memory bandwidth scales with the number of sockets in the system. The

benefit of the interconnect is that an application has transparent access

to all the memory in the system, regardless of where the data resides.

However, there is a cost: the latency to access data from memory is no

longer consistent (i.e., we no longer have fixed access latency). The latency

instead depends on where that data is stored in the system. In a good case,

data comes from memory directly connected to the socket where code

runs. In a bad case, data has to come from a memory connected to a socket

far away in the system, and that cost of memory access can increase due

to the number of hops in the interconnect between sockets on a cc-NUMA

CPU system.

Chapter 16 programming for CpUs

420

In Figure 16-1, a generic CPU architecture with cc-NUMA memory

is shown. This is a simplified system architecture containing cores and

memory components found in contemporary, general-purpose, multi-

socket systems today. Throughout the remainder of this chapter, the figure

will be used to illustrate the mapping of corresponding code examples.

To achieve optimal performance, we need to be sure to understand

the characteristics of the cc-NUMA configuration of a specific system.

For example, recent servers from Intel make use of a mesh interconnect

architecture. In this configuration, the cores, caches, and memory

controllers are organized into rows and columns. Understanding the

connectivity of processors with memory can be critical when working to

achieve peak performance of the system.

Figure 16-1. Generic multicore CPU system

Chapter 16 programming for CpUs

421

The system in Figure 16-1 has two sockets, each of which has two

cores with four hardware threads per core. Each core has its own level 1

(L1) cache. L1 caches are connected to a shared last-level cache, which

is connected to the memory system on the socket. The memory access

latency within a socket is uniform, meaning that it is consistent and can be

predicted with accuracy.

The two sockets are connected through a cache-coherent interconnect.

Memory is distributed across the system, but all the memory may be

transparently accessed from anywhere in the system. The memory read

and write latency is non-uniform when accessing memory that isn’t in

the socket where the code making the access is running, which means

it imposes a potentially much longer and inconsistent latency when

accessing data from a remote socket. A critical aspect of the interconnect,

though, is coherency. We do not need to worry about inconsistent

views of data in memory across the system and can instead focus on the

performance impact of how we are accessing the distributed memory

system. More advanced optimizations (e.g., atomic operation with a

relaxed memory order) can enable operations that no longer require as

much hardware memory consistency, but when we want the consistency,

the hardware provides it for us.

Hardware threads in CPUs are the execution vehicles. These are the

units that execute instruction streams. The hardware threads in Figure 16-1

are numbered consecutively from 0 to 15, which is a notation used to

simplify discussions on the examples in this chapter. Unless otherwise

noted, all references to a CPU system in this chapter are to the reference

cc-NUMA system shown in Figure 16-1.

Chapter 16 programming for CpUs

422

 The Basics of SIMD Hardware
In 1996, a widely deployed SIMD instruction set was MMX extensions on

top of the x86 architecture. Many SIMD instruction set extensions have

since followed both on Intel architectures and more broadly across the

industry. A CPU core carries out its job by executing instructions, and

the specific instructions that a core knows how to execute are defined

by the instruction set (e.g., x86, x86_64, AltiVec, NEON) and instruction

set extensions (e.g., SSE, AVX, AVX-512) that it implements. Many of the

operations added by instruction set extensions are focused on SIMD.

SIMD instructions allow multiple calculations to be carried out

simultaneously on a single core by using registers and hardware bigger

than the fundamental unit of data being processed. For example, using

512-bit registers we can perform eight 64-bit calculations with a single

machine instruction.

This example shown in Figure 16-2 could, in theory, give us up to an

eight times speed-up. In reality, it is likely to be somewhat curtailed as a

portion of the eight times speed-up serves to remove one bottleneck and

expose the next, such as memory throughput. In general, the performance

benefit of using SIMD varies depending on the specific scenario, and in

a few cases such as extensive branch divergence, gather/scatter for non-

unit- stride memory access, and cache-line split for SIMD loads and stores,

it can even perform worse than simpler non-SIMD equivalent code. That

said, considerable gains are achievable on today’s processors when we

know when and how to apply (or have the compiler apply) SIMD. As with

all performance optimizations, programmers should measure the gains on

a typical target machine before putting it into production. There are more

details on expected performance gains in the following sections of this

chapter.

Chapter 16 programming for CpUs

423

h.parallel_for(range(1024),
[=](id<1> k) { z[k] = x[k] + y[k]; });

Figure 16-2. SIMD execution in a CPU hardware thread

The cc-NUMA CPU architecture with SIMD units forms the foundation

of a multicore processor, which can exploit a wide spectrum of parallelism

starting from instruction-level parallelism in at least the five different ways

as shown in Figure 16-3.

Figure 16-3. Five ways for executing instructions in parallel

Chapter 16 programming for CpUs

424

In Figure 16-3, instruction-level parallelism can be achieved through

both out-of-order execution of scalar instructions and SIMD parallelism

within a single thread. Thread-level parallelism can be achieved through

executing multiple threads on the same core or on multiple cores at

different scales. More specifically, thread-level parallelism can be exposed

from the following:

• Modern CPU architectures allow one core to execute

the instructions of two or more threads simultaneously.

• Multicore architectures that contain two or more cores

within each processor. The operating system perceives

each of its execution cores as a discrete processor, with

all of the associated execution resources.

• Multiprocessing at the processor (chip) level, which can

be accomplished by executing separate threads of code.

As a result, the processor can have one thread running

from an application and another thread running from

an operating system, or it can have parallel threads

running from within a single application.

• Distributed processing, which can be accomplished by

executing processes consisting of multiple threads on

a cluster of computers, which typically communicate

through message passing frameworks.

As multiprocessor computers and multicore technology become more

and more common, it is important to use parallel processing techniques as

standard practice to increase performance. Later sections of this chapter

will introduce the coding methods and performance-tuning techniques

within SYCL that allow us to achieve peak performance on multicore CPUs.

Chapter 16 programming for CpUs

425

Like other parallel processing hardware (e.g., GPUs), it is important

to give the CPU a sufficiently large set of data elements to process. To

demonstrate the importance of exploiting multilevel parallelism to handle

a large set of data, consider a simple C++ STREAM Triad program, as

shown in Figure 16-4.

// C++ STREAM Triad workload
// __restrict is used to denote no memory aliasing among
// arguments
template <typename T>
double triad(T* __restrict VA, T* __restrict VB,

T* __restrict VC, size_t array_size,
const T scalar) {

double ts = timer_start();
for (size_t id = 0; id < array_size; id++) {

VC[id] = VA[id] + scalar * VB[id];
}
double te = timer_end();
return (te – ts);

}

Figure 16-4. STREAM Triad C++ loop

A NOTE ABOUT STREAM TRIAD WORKLOAD

the stream triad workload (www.cs.virginia.edu/stream) is an

important and popular benchmark workload that CpU vendors use to

demonstrate memory bandwidth capabilities. We use the stream triad

kernel to demonstrate code generation of a parallel kernel and the way

that it is scheduled to achieve significantly improved performance through

the techniques described in this chapter. stream triad is a relatively

simple workload but is sufficient to show many of the optimizations in an

understandable way. there is a stream implementation from the University of

Bristol, called Babelstream, that includes a C++ with sYCL version.

Chapter 16 programming for CpUs

http://www.cs.virginia.edu/stream

426

The STREAM Triad loop may be trivially executed on a CPU using a

single CPU core for serial execution. A good C++ compiler will perform

loop vectorization to generate SIMD code for the CPU that has hardware to

exploit instruction-level SIMD parallelism. For example, for an Intel Xeon

processor with AVX-512 support, the Intel C++ compiler generates SIMD

code as shown in Figure 16-5. Critically, the compiler’s transformation of

the code reduced the number of loop iterations by doing more work per

loop iteration (using SIMD instructions and loop unrolling).

Chapter 16 programming for CpUs

427

%b

b.
0:

%e

nt
ry

vb
ro
ad
ca
st
sd

%x
mm

0,
 %

zm
m0

br
oa
dc
as
t
“s
ca
la
r”
 t
o
SI
MD
 r
eg
 z
mm
0

mo
vq

$-
32

,
%r

ax
.p
2a
li
gn

4,
 0

x9
0

.L
BB
0_
1:

%l

oo
p.
19

=>

Th
is

 L
oo

p
He

ad
er

:
De

pt
h=

1
vm
ov
up
d

25
6(
%r
dx
,%
ra
x,

8)
,

%z
mm

1

lo
ad

 8
el

em
en

ts
 f

ro
m

me
mo

ry
 t

o
zm

m1

vf
ma
dd
21
3p
d

25
6(

%r
si
,%
ra
x,

8)
,
%z
mm
0,
 %
zm
m1
 #
 z
mm
1=
(z
mm
0*
zm
m1
)+
me
m

pe

rf
or

m
SI

MD
 F

MA
 f

or
8

da
ta

 e
le

me
nt

s

VC
[i
d:
8]

 =
 s
ca
la
r*

VB
[i

d:
8]

+V
A[
id

:8
]

vm
ov
up
d
%z
mm
1,
 2

56
(%

rd
i,

%r
ax
,8
)

st

or
e
8-

el
em

en
t

re
su

lt
 t

o
me

m
fr

om
 z

mm
1

Th

is
 S

IM
D

lo
op

 b
od

y
is

 u
nr

ol
le

d
by
 4

vm
ov
up
d

32
0(
%r
dx
,%
ra
x,

8)
,

%z
mm

1
vf
ma
dd
21
3p
d

32
0(

%r
si
,%
ra
x,

8)
,
%z
mm
0,
 %
zm
m1
 #
 z
mm
1=
(z
mm
0*
zm
m1
)+
me
m

vm
ov
up
d
%z
mm
1,
 3

20
(%

rd
i,

%r
ax
,8
)

vm
ov
up
d

38
4(
%r
dx
,%
ra
x,

8)
,

%z
mm
1

vf
ma
dd
21
3p
d

38
4(

%r
si
,%
ra
x,

8)
,
%z
mm
0,
 %
zm
m1
 #
 z
mm
1=
(z
mm
0*
zm
m1
)+
me
m

vm
ov
up
d
%z
mm
1,
 3

84
(%

rd
i,

%r
ax
,8
)

vm
ov
up
d

44
8(
%r
dx
,%
ra
x,

8)
,

%z
mm
1

vf
ma
dd
21
3p
d

44
8(

%r
si
,%
ra
x,

8)
,
%z
mm
0,
 %
zm
m1
 #
 z
mm
1=
(z
mm
0*
zm
m1
)+
me
m

vm
ov
up
d
%z
mm
1,
 4

48
(%

rd
i,

%r
ax
,8
)

ad
dq

$3
2,

 %
ra

x
cm
pq

$1
34
21
76
96

,
%r

ax

im

m
=
0x

7F
FF

FE
0

jb

.L
BB

0_
1

Fi
gu

re
 1

6-
5.

 A
V

X
-5

12
 a

ss
em

bl
y

co
de

 fo
r

ST
R

E
A

M
 T

ri
ad

 C
++

 lo
op

Chapter 16 programming for CpUs

428

As shown in Figure 16-5, the compiler was able to exploit instruction-

level parallelism in two ways. First is by using SIMD instructions, exploiting

instruction-level data parallelism, in which a single instruction can process

eight double-precision data elements simultaneously in parallel (per

instruction). Second, the compiler applied loop unrolling to get the out-

of- order execution effect of these instructions that have no dependences

between them, based on hardware multiway instruction scheduling.

If we try to execute this function on a CPU, it will probably run well for

small array sizes—not great, though, since it does not utilize any multicore

or threading capabilities of the CPU. If we try to execute this function with

a large array size on a CPU, however, it will likely perform very poorly

because the single thread will only utilize a single CPU core and will be

bottlenecked when it saturates the memory bandwidth of that core.

 Exploiting Thread-Level Parallelism
To improve the performance of the STREAM Triad kernel, we can

compute on a range of data elements that can be processed in parallel, by

converting the loop to a parallel_for kernel.

The body of this STREAM Triad SYCL parallel kernel looks exactly like

the body of the STREAM Triad loop that executes in serial C++ on the CPU,

as shown in Figure 16-6.

Chapter 16 programming for CpUs

429

constexpr int num_runs = 10;
constexpr size_t scalar = 3;

double triad(const std::vector<float>& vecA,
const std::vector<float>& vecB,
std::vector<float>& vecC) {

assert(vecA.size() == vecB.size() &&
vecB.size() == vecC.size());

const size_t array_size = vecA.size();
double min_time_ns = std::numeric_limits<double>::max();

queue q{property::queue::enable_profiling{}};
std::cout << "Running on device: "

<< q.get_device().get_info<info::device::name>()
<< "\n";

buffer<float> bufA(vecA);
buffer<float> bufB(vecB);
buffer<float> bufC(vecC);

for (int i = 0; i < num_runs; i++) {
auto Q_event = q.submit([&](handler& h) {

accessor A{bufA, h};
accessor B{bufB, h};
accessor C{bufC, h};

h.parallel_for(array_size, [=](id<1> idx) {
C[idx] = A[idx] + B[idx] * scalar;

});
});

double exec_time_ns =
Q_event.get_profiling_info<

info::event_profiling::command_end>() -
Q_event.get_profiling_info<

info::event_profiling::command_start>();

std::cout << "Execution time (iteration " << i
<< ") [sec]: "
<< (double)exec_time_ns * 1.0E-9 << "\n";

min_time_ns = std::min(min_time_ns, exec_time_ns);
}

return min_time_ns;
}

Figure 16-6. SYCL STREAM Triad parallel_for kernel code

Chapter 16 programming for CpUs

430

Even though the parallel kernel is very similar to the STREAM Triad

function written as serial C++ with a loop, it runs much faster because

the parallel_for enables different elements of the array to be processed

on multiple cores in parallel. Figure 16-7 shows how this kernel could be

mapped to a CPU. Assume that we have a system with one socket, four

cores, and two hardware threads per core (for a total of eight threads) and

that the implementation processes data in work-groups containing 32

work-items each. If we have 1024 double-precision data elements to be

processed, we will have 32 work-groups. The work-group scheduling can

be done in a round-robin order, that is, thread-id = work-group-id mod 8.

Essentially, each thread will execute four work-groups. Eight work-groups

can be executed in parallel for each round. Note that, in this case, the

work-group is a set of work-items that is implicitly formed by the SYCL

compiler and runtime.

Figure 16-7. A mapping of a STREAM Triad parallel kernel

Note that in the SYCL program, the exact way that data elements are

partitioned and assigned to different processor cores (or threads) is not

specified. This gives a SYCL implementation flexibility to choose how

best to execute a parallel kernel on a specific CPU. With that said, an

Chapter 16 programming for CpUs

431

implementation may provide some level of control to programmers to

enable performance tuning (e.g., via compiler options or environment

variables).

While a CPU may impose a relatively expensive thread context switch

and synchronization overhead, having more software threads resident on

a processor core may be beneficial because it gives each processor core

a choice of work to execute. If one software thread is waiting for another

thread to produce data, the processor core can switch to a different

software thread that is ready to run without leaving the processor core idle.

CHOOSING HOW TO BIND AND SCHEDULE THREADS

Choosing an effective scheme to partition and schedule the work among threads

is important to tune an application on CpUs and other device types. subsequent

sections will describe some of the techniques.

 Thread Affinity Insight
Thread affinity designates the CPU cores on which specific threads

execute. Performance can suffer if a thread moves around among cores—

for instance, if threads do not execute on the same core, cache locality can

become an inefficiency if data ping-pongs between different cores.

The DPC++ compiler’s runtime library supports several schemes for

binding threads to cores through the environment variables DPCPP_CPU_

CU_AFFINITY, DPCPP_CPU_PLACES, DPCPP_CPU_NUM_CUS, and DPCPP_CPU_

SCHEDULE, which are not defined by SYCL. Other implementations may

expose similar environment variables.

The first of these is the environment variable DPCPP_CPU_CU_

AFFINITY. Tuning using these environment variable controls is simple and

low cost but can have large impact for many applications. The description

of this environment variable is shown in Figure 16-8.

Chapter 16 programming for CpUs

432

DPCPP_CPU_CU_AFFINITY Description

spread Bind successive threads to distinct sockets starting with
socket 0 in a round-robin order

close Bind successive threads to distinct hardware threads
starting with thread 0 in a round-robin order

Figure 16-8. DPCPP_CPU_CU_AFFINITY environment variable

When the environment variable DPCPP_CPU_CU_AFFINITY is specified,

a software thread is bound to a hardware thread through the following

formula:

spread: boundHT = (tid mod numHT) + (tid mod numSocket) × numHT)

close: boundHT = tid mod (numSocket × numHT)

where

• tid denotes a software thread identifier

• boundHT denotes a hardware thread (logical core) that

thread tid is bound to

• numHT denotes the number of hardware threads

per socket

• numSocket denotes the number of sockets in the system

Assume that we run a program with eight threads on a dual-core dual-

socket system—in other words, we have four cores with a total of eight

threads to program. Figure 16-9 shows examples of how threads can map

to the hardware threads and cores for different DPCPP_CPU_CU_AFFINITY

settings.

Chapter 16 programming for CpUs

433

Figure 16-9. Mapping threads to cores with hardware threads

In conjunction with the environment variable DPCPP_CPU_CU_

AFFINITY, there are other environment variables that support CPU

performance tuning:

• DPCPP_CPU_NUM_CUS = [n], which sets the number of

threads used for kernel execution. Its default value is

the number of hardware threads in the system.

• DPCPP_CPU_PLACES = [sockets | numa_domains |

cores | threads], which specifies the places that the

affinity will be set similar to OMP_PLACES in OpenMP

5.1. The default setting is cores.

• DPCPP_CPU_SCHEDULE = [dynamic | affinity |

static], which specifies the algorithm for scheduling

work-groups. Its default setting is dynamic.

dynamic: Enable the auto_partitioner, which

usually performs sufficient splitting to balance the

load among worker threads.

affinity: Enable the affinity_partitioner,

which improves cache affinity and uses proportional

splitting when mapping subranges to worker

threads.

static: Enable the static_partitioner, which

distributes iterations among worker threads as

uniformly as possible.

Chapter 16 programming for CpUs

434

When running on CPUs using Intel’s OpenCL CPU runtime, work-

group scheduling is handled by the Threading Building Blocks (TBB)

library. Using DPCPP_CPU_SCHEDULE determines which TBB partitioner is

used. Note that the TBB partitioner also uses a grain size to control work

splitting, with a default grain size of 1 which indicates that all work-groups

can be executed independently. More information can be found at

tinyurl.com/oneTBBpart.

A lack of thread affinity tuning does not necessarily mean lower

performance. Performance often depends more on how many total

threads are executing in parallel than on how well the thread and data

are related and bound. Testing the application using benchmarks is one

way to be certain whether the thread affinity has a performance impact

or not. The STREAM Triad code, as shown in Figure 16-1, started with

a lower performance without thread affinity settings. By controlling the

affinity setting and using static scheduling of software threads through

the environment variables (exports shown in the following for Linux),

performance improved:

export DPCPP_CPU_PLACES=numa_domains

export DPCPP_CPU_CU_AFFINITY=close

By using numa_domains as the places setting for affinity, the TBB task

arenas are bound to NUMA nodes or sockets, and the work is uniformly

distributed across task arenas. In general, the environment variable DPCPP_

CPU_PLACES is recommended to be used together with DPCPP_CPU_CU_

AFFINITY. These environment variable settings help us to achieve a ~30%

performance gain on an Intel Xeon server system with 2 sockets, 28 cores

per socket, and 2 hardware threads per core, running at 2.5 GHz. However,

we can still do better to further improve the performance on this CPU.

Chapter 16 programming for CpUs

https://tinyurl.com/oneTBBpart

435

 Be Mindful of First Touch to Memory
Memory is stored where it is first touched (used). Since the initialization

loop in our example is executed by the host thread serially, all the

memory is associated with the socket that the host thread is running on.

Subsequent access by other sockets will then access data from memory

attached to the initial socket (used for the initialization), which is clearly

undesirable for performance. We can achieve a higher performance on the

STREAM Triad kernel by parallelizing the initialization loop to control the

first touch effect across sockets, as shown in Figure 16-10.

template <typename T>
void init(queue& deviceQueue, T* VA, T* VB, T* VC,

size_t array_size) {
range<1> numOfItems{array_size};

buffer<T, 1> bufferA(VA, numOfItems);
buffer<T, 1> bufferB(VB, numOfItems);
buffer<T, 1> bufferC(VC, numOfItems);

auto queue_event = deviceQueue.submit([&](handler& cgh) {
auto aA = bufA.template get_access<sycl_write>(cgh);
auto aB = bufB.template get_access<sycl_write>(cgh);
auto aC = bufC.template get_access<sycl_write>(cgh);

cgh.parallel_for<class Init<T>>(numOfItems, [=](id<1> wi) {
aA[wi] = 2.0;
aB[wi] = 1.0;
aC[wi] = 0.0;

});
});

queue_event.wait();
}

Figure 16-10. STREAM Triad parallel initialization kernel to control
first touch effects

Exploiting parallelism in the initialization code improves performance

of the kernel when run on a CPU. In this instance, we achieve a ~2x

performance gain on an Intel Xeon processor system.

Chapter 16 programming for CpUs

436

The recent sections of this chapter have shown that by exploiting

thread-level parallelism, we can utilize CPU cores and threads effectively.

However, we need to exploit the SIMD vector-level parallelism in the CPU

core hardware as well, to achieve peak performance.

sYCL parallel kernels benefit from thread-level parallelism across
cores and hardware threads!

 SIMD Vectorization on CPU
While a well-written SYCL kernel without cross-work-item dependences

can run in parallel effectively on a CPU, implementations can also apply

vectorization to SYCL kernels to leverage SIMD hardware similar to the

GPU support described in Chapter 15. Essentially, CPU processors may

optimize memory loads, stores, and operations using SIMD instructions

by leveraging the fact that most data elements are often in contiguous

memory and take the same control flow paths through a data-parallel

kernel. For example, in a kernel with a statement a[i] = a[i] + b[i],

each data element executes with the same instruction stream load, load,

add, and store by sharing hardware logic among multiple data elements

and executing them as a group, which may be mapped naturally onto a

hardware’s SIMD instruction set. Specifically, multiple data elements can

be processed simultaneously by a single instruction.

The number of data elements that are processed simultaneously by a

single instruction is sometimes referred to as the vector length (or SIMD

width) of the instruction or processor executing it. In Figure 16-11, our

instruction stream runs with four-way SIMD execution.

Chapter 16 programming for CpUs

437

Figure 16-11. Instruction stream for SIMD execution

CPU processors are not the only processors that implement SIMD

instruction sets. Other processors such as GPUs implement SIMD

instructions to improve efficiency when processing large sets of data. A key

difference with Intel Xeon CPU processors, compared with other processor

types, is having three fixed-size SIMD register widths 128-bit XMM, 256-bit

YMM, and 512-bit ZMM instead of a variable length of SIMD width. When

we write SYCL code with SIMD parallelism using sub-group or vector types

(see Chapter 11), we need to be mindful of SIMD width and the number of

SIMD vector registers in the hardware.

 Ensure SIMD Execution Legality
Semantically, the SYCL execution model ensures that SIMD execution

can be applied to any kernel, and a set of work-items in each work-group

(i.e., a sub-group) may be executed concurrently using SIMD instructions.

Some implementations may instead choose to execute loops within a

kernel using SIMD instructions, but this is possible if and only if all original

data dependences are preserved, or data dependences are resolved

by the compiler based on privatization and reduction semantics. Such

implementation would likely report a sub-group size of one.

A single SYCL kernel execution can be transformed from processing a

single work-item to a set of work-items using SIMD instructions within the

work-group. Under the ND-range model, the fastest-growing (unit-stride)

dimension is selected by the compiler vectorizer on which to generate

SIMD code. Essentially, to enable vectorization given an ND-range, there

Chapter 16 programming for CpUs

438

should be no cross-work-item dependences between any two work-items

in the same sub-group, or the compiler needs to preserve cross-work-item

forward dependences in the same sub-group.

When the kernel execution of work-items is mapped to threads on

CPUs, fine-grained synchronization is known to be costly, and the thread

context switch overhead is high as well. It is therefore an important

performance optimization to eliminate dependences between work-

items within a work-group when writing a SYCL kernel for CPUs. Another

effective approach is to restrict such dependences to the work-items

within a sub-group, as shown for the read-before-write dependence in

Figure 16-12. If the sub-group is executed under a SIMD execution model,

the sub-group barrier in the kernel can be treated by the compiler as a no-

op, and no real synchronization cost is incurred at runtime.

Chapter 16 programming for CpUs

439

const int n = 16, w = 16;

queue q;
range<2> G = {n, w};
range<2> L = {1, w};

int *a = malloc_shared<int>(n * (n + 1), q);

for (int i = 0; i < n; i++)
for (int j = 0; j < n + 1; j++) a[i * n + j] = i + j;

q.parallel_for(
nd_range<2>{G, L},
[=](nd_item<2> it) [[sycl::reqd_sub_group_size(w)]] {

// distribute uniform "i" over the sub-group with
// 16-way redundant computation
const int i = it.get_global_id(0);
sub_group sg = it.get_sub_group();

for (int j = sg.get_local_id()[0]; j < n; j += w) {
// load a[i*n+j+1:16] before updating a[i*n+j:16]
// to preserve loop-carried forward dependency
auto va = a[i * n + j + 1];
group_barrier(sg);
a[i * n + j] = va + i + 2;

}
group_barrier(sg);

})
.wait();

Figure 16-12. Using a sub-group to vectorize a loop with a forward
dependence

The kernel is vectorized (with a vector length of 8 as an illustration),

and its SIMD execution is shown in Figure 16-13. A work-group is formed

with a group size of (1, 8), and the loop iterations inside the kernel are

distributed over these sub-group work-items and executed with eight-way

SIMD parallelism.

Chapter 16 programming for CpUs

440

Figure 16-13. SIMD vectorization for a loop with a forward
dependence

In this example, if the loop in the kernel dominates the performance,

allowing SIMD vectorization across the sub-group will result in a

significant performance improvement.

The use of SIMD instructions that process data elements in parallel is

one way to let the performance of the kernel scale beyond the number of

CPU cores and hardware threads.

 SIMD Masking and Cost
In real applications, we can expect conditional statements such as an if

statement, conditional expressions such as a = b > a? a: b, loops with

a variable number of iterations, switch statements, and so on. Anything

that is conditional may lead to scalar control flows not executing the same

code paths and just like on a GPU (Chapter 15) can lead to decreased

performance. A SIMD mask is a set of bits with the value 1 or 0, which is

generated from conditional statements in a kernel. Consider an example

with A={1, 2, 3, 4}, B={3, 7, 8, 1} and the comparison expression

a < b. The comparison returns a mask with four values {1, 1, 1, 0} that

Chapter 16 programming for CpUs

441

can be stored in a hardware mask register, to dictate which lanes of later

SIMD instructions should execute the code that was guarded (enabled) by

the comparison.

If a kernel contains conditional code, it is vectorized with masked

instructions that are executed based on the mask bits associated with each

data element (lane in the SIMD instruction). The mask bit for each data

element is the corresponding bit in a mask register.

Using masking may result in lower performance than corresponding

non-masked code. This may be caused by

• An additional mask blend operation on each load

• Dependence on the destination

Masking has a cost, so use it only when necessary. When a kernel is an

ND-range kernel with explicit groupings of work-items in the execution

range, care should be taken when choosing an ND-range work-group size

to maximize SIMD efficiency by minimizing masking cost. When a work-

group size is not evenly divisible by a processor’s SIMD width, part of the

work-group may execute with masking for the kernel.

Figure 16-14 shows how using merge masking creates a dependence

on the destination register:

• With no masking, the processor executes two multiplies

(vmulps) per cycle.

• With merge masking, the processor executes two

multiplies every four cycles as the multiply instruction

(vmulps) preserves results in the destination register as

shown in Figure 16-17.

• Zero masking doesn’t have a dependence on the

destination register and therefore can execute two

multiplies (vmulps) per cycle.

Chapter 16 programming for CpUs

442

Figure 16-14. Three masking code generations for masking in kernel

Accessing cache-aligned data gives better performance than accessing

nonaligned data. In many cases, the address is not known at compile

time or is known and not aligned. When working with loops, a peeling on

memory accesses may be implemented, to process the first few elements

using masked accesses, up to the first aligned address, and then to process

unmasked accesses followed by a masked remainder, through multi-

versioning techniques. This method increases code size, but improves

data processing overall. When working with parallel kernels, we as

programmers can improve performance by employing similar techniques

by hand, or by ensuring that allocations are appropriately aligned to

improve performance.

 Avoid Array of Struct for SIMD Efficiency
AOS (Array-of-Struct) structures lead to gathers and scatters, which

can both impact SIMD efficiency and introduce extra bandwidth and

latency for memory accesses. The presence of a hardware gather–scatter

mechanism does not eliminate the need for this transformation—gather–

scatter accesses commonly need significantly higher bandwidth and

latency than contiguous loads. Given an AOS data layout of struct {float

x; float y; float z; float w;} a[4], consider a kernel operating on it

as shown in Figure 16-15.

Chapter 16 programming for CpUs

443

cgh.parallel_for<class aos<T>>(numOfItems,[=](id<1> wi) {
x[wi] = a[wi].x; // lead to gather x0, x1, x2, x3
y[wi] = a[wi].y; // lead to gather y0, y1, y2, y3
z[wi] = a[wi].z; // lead to gather z0, z1, z2, z3
w[wi] = a[wi].w; // lead to gather w0, w1, w2, w3

});

Figure 16-15. SIMD gather in a kernel

When the compiler vectorizes the kernel along a set of work-items, it

leads to SIMD gather instruction generation due to the need for non-unit-

stride memory accesses. For example, the stride of a[0].x, a[1].x, a[2].x,

and a[3].x is 4, not a more efficient unit-stride of 1.

In a kernel, we can often achieve a higher SIMD efficiency by

eliminating the use of memory gather–scatter operations. Some code

benefits from a data layout change that converts data structures written

in an Array-of-Struct (AOS) representation to a Structure-of-Arrays (SOA)

representation, that is, having separate arrays for each structure field to

keep memory accesses contiguous when SIMD vectorization is performed.

For example, consider a SOA data layout of struct {float x[4]; float

y[4]; float z[4]; float w[4];} a; as shown here:

A kernel can operate on the data with unit-stride (contiguous) vector

loads and stores as shown in Figure 16-16, even when vectorized!

Chapter 16 programming for CpUs

444

cgh.parallel_for<class aos<T>>(numOfItems,[=](id<1> wi) {
x[wi] = a.x[wi]; // lead to unit-stride vector load x[0:4]
y[wi] = a.y[wi]; // lead to unit-stride vector load y[0:4]
z[wi] = a.z[wi]; // lead to unit-stride vector load z[0:4]
w[wi] = a.w[wi]; // lead to unit-stride vector load w[0:4]

});

Figure 16-16. SIMD unit-stride vector load in a kernel

The SOA data layout helps prevent gathers when accessing one field of

the structure across the array elements and helps the compiler to vectorize

kernels over the contiguous array elements associated with work-items.

Note that such AOS-to-SOA or AOSOA data layout transformations are

expected to be done at the program level (by us) considering all the

places where those data structures are used. Doing it at just a loop level

will involve costly transformations between the formats before and after

the loop. However, we may also rely on the compiler to perform vector-

load- and-shuffle optimizations for AOS data layouts with some cost.

When a member of SOA (or AOS) data layout has a vector type, compiler

vectorization may perform either horizontal expansion or vertical

expansion based on underlying hardware to generate optimal code.

 Data Type Impact on SIMD Efficiency
C++ programmers often use integer data types whenever they know that

the data fits into a 32-bit signed type, often leading to code such as

int id = get_global_id(0); a[id] = b[id] + c[id];

However, given that the return type of the get_global_id(0) is

size_t (unsigned integer, often 64-bit), the conversion may reduce the

optimization that a compiler can legally perform. This can then lead to

SIMD gather/scatter instructions when the compiler vectorizes the code in

the kernel, for example:

Chapter 16 programming for CpUs

445

• Read of a[get_global_id(0)] may lead to a SIMD

unit-stride vector load.

• Read of a[(int)get_global_id(0)] may lead to a non-

unit- stride gather instruction.

This nuanced situation is introduced by the wraparound behavior

(unspecified behavior and/or well-defined wraparound behavior in C++

standards) of data type conversion from size_t to int (or uint), which

is mostly a historical artifact from the evolution of C-based languages.

Specifically, overflow across some conversions is undefined behavior,

which allows the compiler to assume that such conditions never happen

and to optimize more aggressively. Figure 16-17 shows some examples for

those wanting to understand the details.

SIMD gather/scatter instructions are slower than SIMD unit-stride

vector load/store operations. To achieve an optimal SIMD efficiency,

avoiding gathers/scatters can be critical for an application regardless of

which programming language is used.

Most SYCL get_*_id() family functions have the same detail, although

many cases fit within MAX_INT because the possible return values are

bounded (e.g., the maximum id within a work-group). Thus, whenever

legal, SYCL compilers can assume unit-stride memory addresses across

the chunk of neighboring work-items to avoid gathers/scatters. For cases

get_global_id(0) a[(int)get_global_id(0)] get_global_id(0)a((uint)get_global_id(0)]

0x7FFFFFFE a[MAX_INT-1] 0xFFFFFFFE a[MAX_UINT-1]

0x7FFFFFFF a[MAX_INT (big
positive)]

0xFFFFFFFF a[MAX_UINT]

0x80000000 a[MIN_INT (big
negative)]

0x100000000 a[0]

0x80000001 a[MIN_INT+1] Ox100000001 a[1]

Figure 16-17. Examples of integer type value wraparound

Chapter 16 programming for CpUs

446

that the compiler can’t safely generate linear unit-stride vector memory

loads/stores because of possible overflow from the value of global IDs and/

or derivative value from global IDs, the compiler will generate gathers/

scatters.

Under the philosophy of delivering optimal performance for users,

the DPC++ compiler assumes no overflow, and captures the reality almost

all of the time in practice, so the compiler can generate optimal SIMD

code to achieve good performance. However, a compiler option -fno-

sycl- id-queries-fit-in-int is provided by the DPC++ compiler for

us to tell the compiler that there will be an overflow and that vectorized

accesses derived from the id queries may not be safe. This can have large

performance impact and should be used whenever unsafe to assume no

overflow. The key takeaway is that a programmer should ensure the value

of global ID fit in 32-bit int. Otherwise, the compiler option -fno-sycl-id-

queries-fit-in-int should be used to guarantee program correctness,

which may result in a lower performance.

 SIMD Execution Using single_task
Under a single-task execution model, there are no work-items to vectorize

over. Optimizations related to the vector types and functions may be

possible, but this will depend on the compiler. The compiler and runtime

are given a freedom either to enable explicit SIMD execution or to choose

scalar execution within the single_task kernel, and the result will depend

on the compiler implementation.

C++ compilers may map vector types occurring inside of a single_

task to SIMD instructions when compiling to CPU. The vec load, store,

and swizzle functions perform operations directly on vector variables,

informing the compiler that data elements are accessing contiguous data

starting from the same (uniform) location in memory and enabling us

to request optimized loads/stores of contiguous data. As discussed in

Chapter 16 programming for CpUs

447

Chapter 11, this interpretation of vec is valid—however, we should expect

this functionality to be deprecated, eventually, in favor of a more explicit

vector type (e.g., std::simd) once available.

In the example shown in Figure 16-18, under single-task execution,

a vector with three data elements is declared. A swizzle operation is

performed with old_v.abgr(). If a CPU provides SIMD hardware

instructions for some swizzle operations, we may achieve some

performance benefits of using swizzle operations in applications.

SIMD VECTORIZATION GUIDELINES

CpU processors implement simD instruction sets with different simD widths.

in many cases, this is an implementation detail and is transparent to the

application executing kernels on the CpU, as the compiler can determine an

efficient group of data elements to process with a specific simD size rather

queue q;

bool *resArray = malloc_shared<bool>(1, q);
resArray[0] = true;

q.single_task([=]() {
sycl::vec<int, 4> old_v =

sycl::vec<int, 4>(0, 100, 200, 300);
sycl::vec<int, 4> new_v = sycl::vec<int, 4>();

new_v.rgba() = old_v.abgr();
int vals[] = {300, 200, 100, 0};

if (new_v.r() != vals[0] || new_v.g() != vals[1] ||
new_v.b() != vals[2] || new_v.a() != vals[3]) {

resArray[0] = false;
}

}).wait();

Figure 16-18. Using vector types and swizzle operations in the
single_task kernel

Chapter 16 programming for CpUs

448

than requiring us to use the simD instructions explicitly. sub-groups may be

used to more directly express cases where the grouping of data elements

should be subject to simD execution in kernels.

given computational complexity, selecting the code and data layouts that are

most amenable to vectorization may ultimately result in higher performance.

While selecting data structures, try to choose a data layout, alignment, and

data width such that the most frequently executed calculation can access

memory in a simD-friendly manner with maximum parallelism, as described in

this chapter.

 Summary
To get the most out of thread-level parallelism and SIMD vector-level

parallelism on CPUs, we need to keep the following goals in mind:

• Be familiar with all types of SYCL parallelism and the

underlying CPU architectures that we wish to target.

• Exploit the right amount of parallelism—not more and

not less—at a thread level that best matches hardware

resources. Use vendor tooling, such as analyzers and

profilers, to help guide our tuning work to achieve this.

• Be mindful of thread affinity and memory first touch

impact on program performance.

• Design data structures with a data layout, alignment,

and data width such that the most frequently executed

calculations can access memory in a SIMD-friendly

manner with maximum SIMD parallelism.

• Be mindful of balancing the cost of masking vs. code

branches.

Chapter 16 programming for CpUs

449

Open Access This chapter is licensed under the terms of

the Creative Commons Attribution 4.0 International License

(https://creativecommons.org/licenses/by/4.0/), which permits use,

sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter’s Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter’s

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

• Use a clear programming style that minimizes potential

memory aliasing and side effects.

• Be aware of the scalability limitations of using vector

types and interfaces. If a compiler implementation

maps them to hardware SIMD instructions, a fixed

vector size may not match the SIMD width of SIMD

registers well across multiple generations of CPUs and

CPUs from different vendors.

Chapter 16 programming for CpUs

https://creativecommons.org/licenses/by/4.0/

451

CHAPTER 17

Programming for
FPGAs
Kernel-based programming originally became popular as a way to access

GPUs. Since it has now been generalized across many types of accelerators,

it is important to understand how our style of programming affects the

mapping of code to an FPGA as well.

Field-programmable gate arrays (FPGAs) are unfamiliar to the majority of

software developers, in part because most desktop computers don’t include

an FPGA alongside the typical CPU and GPU. But FPGAs are worth knowing

about because they offer advantages in many applications. The same

questions need to be asked as we would of other accelerators, such as “When

should I use an FPGA?”, “What parts of my applications should be offloaded to

FPGA?”, and “How do I write code that performs well on an FPGA?”

This chapter gives us the knowledge to start answering those

questions, at least to the point where we can decide whether an FPGA

is interesting for our applications, and to know which constructs are

commonly used to achieve performance. This chapter is the launching

point from which we can then read vendor documentation to fill in details

for specific products and toolchains. We begin with an overview of how

programs can map to spatial architectures such as FPGAs, followed by

discussion of some properties that make FPGAs a good choice as an

accelerator, and we finish by introducing the programming constructs

used to achieve performance.

© Intel Corporation 2023
J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-9691-2_17

https://doi.org/10.1007/978-1-4842-9691-2_17

452

The “How to Think About FPGAs” section in this chapter is applicable

to thinking about any FPGA. SYCL allows vendors to specify devices

beyond CPUs and GPUs but does not specifically say how to support an

FPGA. The specific vendor support for FPGAs described in this chapter

is currently unique to DPC++, namely, FPGA selectors and pipes. FPGA

selectors and pipes are the only DPC++ extensions used in this chapter.

It is hoped that vendors will converge on similar or compatible means of

supporting FPGAs, and this is encouraged by DPC++ as an open source

project.

 Performance Caveats
As with any processor or accelerator, FPGA devices differ from vendor to

vendor or even from product generation to product generation; therefore,

best practices for one device may not be best practices for a different

device. The advice in this chapter is likely to benefit many FPGA devices,

both now and in the future, however…

…to achieve optimal performance for a particular FPGA, always
consult the vendor’s documentation!

 How to Think About FPGAs
FPGAs are commonly classified as a spatial architecture. They benefit from

very different coding styles and forms of parallelism than devices that use

an Instruction Set Architecture (ISA), including CPUs and GPUs, which are

more familiar to most people. To get started forming an understanding of

FPGAs, we’ll briefly cover some ideas from ISA-based accelerators, so that

we can highlight key differences.

ChAPter 17 ProGrAmminG For FPGAs

453

For our purposes, an ISA-based accelerator is one where the device

can execute many different instructions, one or a few at a time. The

instructions are usually relatively primitive such as “load from memory at

address A” or “add the following numbers.” A chain of operations is strung

together to form a program, and the processor conceptually executes one

instruction after the other.

In an ISA-based accelerator, a single region of a chip (or the entire

chip) executes a different instruction from the program in each clock

cycle. The instructions execute on a fixed hardware architecture that can

run different instructions at different times, such as shown in Figure 17-1.

For example, the memory load unit feeding an addition is probably

the same memory load unit used to feed a subtraction. Similarly, the

same arithmetic unit is probably used to execute both the addition and

subtraction instructions. Hardware on the chip is reused by different

instructions as the program executes over time.

Figure 17-1. Simple ISA-based (temporal) processing: reuses
hardware (regions) over time

Spatial architectures are different. Instead of being based around

a machine that executes a variety of instructions on shared hardware,

they start from the opposite perspective. Spatial implementations of a

ChAPter 17 ProGrAmminG For FPGAs

454

program conceptually take the entire program as a whole and lay it down

at once on the device. Different regions of the device implement different

instructions in the program. This is in many ways the opposite perspective

from sharing hardware between instructions over time (e.g., ISA)—in

spatial architectures, each instruction receives its own dedicated hardware

that can execute simultaneously (same clock cycle) as the hardware

implementing the other instructions. Figure 17-2 shows this idea which is

a spatial implementation of an entire program (a very simple program in

this example).

Figure 17-2. Spatial processing: Each operation uses a different
region of the device

This description of a spatial implementation of a program is overly

simplistic, but it captures the idea that in spatial architectures, different

parts of the program execute on different parts of the device, as opposed to

being issued over time to a shared set of more general-purpose hardware.

With different regions of an FPGA programmed to perform distinct

operations, some of the hardware typically associated with ISA-based

accelerators is unnecessary. For example, Figure 17-2 shows that we no

longer need an instruction fetch or decode unit, program counter, or

ChAPter 17 ProGrAmminG For FPGAs

455

register file. Instead of storing data for future instructions in a register file,

spatial architectures connect the output of one instruction to the input

of the next, which is why spatial architectures are often called data flow

architectures.

A few obvious questions arise from the mapping to FPGA that we’ve

introduced. First, since each instruction in the program occupies some

percentage of the spatial area of the device, what happens if the program

requires more than 100% of the area? Some solutions provide resource

sharing mechanisms to enable larger programs to fit at a performance

cost, but FPGAs do have the concept of a program fitting. This is both an

advantage and a disadvantage:

• The benefit: If a program uses most of the area on

the FPGA and there is sufficient work to keep all of

the hardware busy every clock cycle, then executing

a program on the device can be incredibly efficient

because of the extreme parallelism. More general

architectures may have significant unused hardware

per clock cycle, whereas with an FPGA, the use of

area can be perfectly tailored to a specific application

without waste. This customization can allow

applications to run faster through massive parallelism,

usually with compelling energy efficiency.

• The downside: Large programs may have to be tuned

and restructured to fit on a device. Resource sharing

features of compilers can help to address this, but

usually with some degradation in performance that

reduces the benefit of using an FPGA. ISA-based

accelerators are very efficient resource sharing

implementations—FPGAs prove most valuable

for compute primarily when an application can be

architected to utilize most of the available area.

ChAPter 17 ProGrAmminG For FPGAs

456

Taken to the extreme, resource sharing solutions on an FPGA lead

to an architecture that looks like an ISA-based accelerator, but that is

built in reconfigurable logic instead being optimized in fixed silicon. The

reconfigurable logic leads to overhead relative to a fixed silicon design—

therefore, FPGAs are not typically chosen as ways to implement ISAs.

FPGAs are of prime benefit when an application is able to utilize the

resources to implement efficient data flow algorithms more directly, which

we cover in the coming sections.

 Pipeline Parallelism
Another question that often arises from Figure 17-2 is how the spatial

implementation of a program relates to a clock frequency and how quickly

a program will execute from start to finish. In the example shown, it’s easy

to believe that data could be loaded from memory, have multiplication

and addition operations performed, and have the result stored back

into memory, quite quickly. As the program becomes larger, potentially

with tens of thousands of operations across the FPGA device, it becomes

apparent that for all of the instructions to operate one after the other

(operations often depend on results produced by previous operations), it

might take significant time given the processing delays introduced by each

operation.

Intermediate results between operations are updated (propagated)

over time in a spatial architecture as shown in Figure 17-3. For example,

the load executes and then passes its result into the multiplier, whose

result is then passed into the adder and so on. After some amount of time,

the intermediate data has propagated all the way to the end of the chain of

operations, and the final result is available or stored to memory.

ChAPter 17 ProGrAmminG For FPGAs

457

Figure 17-3. Propagation time of a naïve spatial compute
implementation

A spatial implementation as shown in Figure 17-3 is quite inefficient,

because most of the hardware is only doing useful work a small percentage

of the time. Most of the time, an operation such as the multiply is

either waiting for new data from the load or holding its output so that

operations later in the chain can use its result. Most spatial compilers and

implementations address this inefficiency by pipelining, which means that

execution of a single program is spread across many clock cycles. This is

achieved by inserting registers (a data storage primitive in the hardware)

between some operations, where each register holds a binary value for the

duration of a clock cycle. By holding the result of an operation’s output so

that the next operation in the chain can see and operate on that held value,

the previous operation is free to work on a different computation without

impacting the input to following operations.

The goal of algorithmic pipelining is to keep every operation (hardware

unit) busy for the majority of every clock cycle. Figure 17-4 shows a

pipelined implementation of the previous simple example. Keep in mind

that the compiler does all of this pipelining and balancing for us! We cover

ChAPter 17 ProGrAmminG For FPGAs

458

this topic so that we can understand how to fill the pipeline with work

in the coming sections, not because we need to worry about manually

pipelining anything in our code.

Figure 17-4. Pipelining of a computation: Stages execute in parallel

When a spatial implementation is pipelined, it becomes extremely

efficient in the same way as a factory assembly line. Each pipeline stage

performs only a small amount of the overall work, but it does so quickly

and then begins to work on the next unit of work immediately afterward.

It takes many clock cycles for a single computation to be processed by the

pipeline, from start to finish, but the pipeline can compute many different

instances of the computation on different data simultaneously.

When enough work starts executing in the pipeline, over enough

consecutive clock cycles, then every single pipeline stage and therefore

operation in the program can perform useful work during every

clock cycle, meaning that the entire spatial device performs work

simultaneously. This is one of the powers of spatial architectures—the

entire device can execute work in parallel, all of the time. We call this

pipeline parallelism.

ChAPter 17 ProGrAmminG For FPGAs

459

Pipeline parallelism is the primary form of parallelism exploited
on FPGAs to achieve performance.

PIPELINING IS AUTOMATIC

in the DPC++ implementation of sYCL for FPGAs, and in other high-level

programming solutions for FPGAs, the pipelining of an algorithm is performed

automatically by the compiler. it is useful to roughly understand the

implementation on spatial architectures, as described in this section, because

then it becomes easier to structure applications to take advantage of the

pipeline parallelism. it should be made clear that pipeline register insertion and

balancing is performed by the compiler and not manually by developers.

Real programs and algorithms often have control flow (e.g., if/else

structures) that leaves some parts of the program inactive a certain

percentage of the clock cycles. FPGA compilers typically perform

optimizations that allow both sides of a branch to share the same hardware

resources when it is possible, to minimize wasted spatial area and to

maximize compute efficiency during control flow divergence. This makes

control flow divergence much less expensive and less of a development

concern than on other, especially vectorized architectures.

 Kernels Consume Chip “Area”
In existing implementations, each kernel in a SYCL application generates a

spatial pipeline that consumes some resources of the FPGA (we can think

about this as space or area on the device), which is conceptually shown in

Figure 17-5.

ChAPter 17 ProGrAmminG For FPGAs

460

Figure 17-5. Multiple kernels in the same FPGA binary: Kernels can
run concurrently

Since a kernel uses its own area on the device, different kernels can

execute concurrently. If one kernel is waiting for something such as

a memory access, other kernels on the FPGA can continue executing

because they are independent pipelines elsewhere on the chip. This idea,

more formally described as independent forward progress across kernels,

is a critical property of FPGA spatial compute.

 When to Use an FPGA
Like any accelerator architecture, predicting when an FPGA is the right

choice of accelerator vs. an alternative often comes down to knowledge

of the architecture, the application characteristics, and the system

bottlenecks. This section describes some of the characteristics of an

application to consider.

 Lots and Lots of Work
Like most modern compute accelerators, achieving good performance

requires a large amount of work to be performed. If computing a single

result from a single element of data, then it may not be useful to leverage

ChAPter 17 ProGrAmminG For FPGAs

461

an accelerator at all (of any kind). This is no different with FPGAs. Knowing

that FPGA compilers leverage pipeline parallelism makes this more

apparent. A pipelined implementation of an algorithm has many stages,

often thousands or more, each of which should have different work within

it in any clock cycle. If there isn’t enough work to occupy most of the

pipeline stages most of the time, then efficiency will be low. We’ll call the

average utilization of pipeline stages over time occupancy of the pipeline.

This is different from the definition of occupancy used when optimizing

other architectures such as GPUs!

There are multiple ways to generate work on an FPGA to fill the

pipeline stages, which we’ll cover in coming sections.

 Custom Operations or Operation Widths
FPGAs were originally designed to perform efficient integer and bitwise

operations and to act as glue logic that could adapt interfaces of other

chips to work with each other. Although FPGAs have evolved into

computational powerhouses instead of just glue logic solutions, they are

still very efficient at bitwise operations, integer math operations on custom

data widths or types, and operations on arbitrary bit fields in packet

headers, for example.

The fine-grained architecture of an FPGA, described at the end of

this chapter, means that novel and arbitrary data types can be efficiently

implemented. For example, if we need a 33-bit integer multiplier or a

129-bit adder, FPGAs can provide these custom operations with great

efficiency. Because of this flexibility, FPGAs are commonly employed in

rapidly evolving domains, such as recently in artificial intelligence, where

the data widths and operations have been changing faster than can be

built into ASICs.

ChAPter 17 ProGrAmminG For FPGAs

462

 Scalar Data Flow
An important aspect of FPGA spatial pipelines, apparent from Figure 17-4,

is that the intermediate data between operations not only stays on-chip

(is not stored to external memory), but that intermediate data between

each pipeline stage has dedicated storage registers. FPGA parallelism

often comes primarily from pipelining of computation such that many

operations are being executed concurrently, each at a different stage

of the pipeline. This results in scalar data flow being the common

implementation (under the hood) even in arithmetically intense regions of

a program and is fundamentally different from vector architectures where

multiple computations are executed as lanes of a shared vector instruction.

The scalar nature of the parallelism in a spatial pipeline is important

for many applications because it still applies even with tight data

dependences across the units of work. These data dependences can

be handled without loss of performance, as we will discuss later in this

chapter when talking about loop-carried dependences. The result is that

spatial pipelines, and therefore FPGAs, are a compelling architecture

to target for algorithms where data dependences across units of work

(such as work-items) can’t be broken and fine-grained communication

must occur. Many optimization techniques for other accelerators focus

on breaking these dependences through various complex approaches or

managing communication at controlled scales through features such as

sub-groups. FPGAs can instead perform well with communication through

tight dependences and should be on your mind when working with classes

of algorithms where such patterns exist.

LOOPS ARE FINE!

A common misconception on data flow architectures is that loops with

either fixed or dynamic iteration counts lead to poor data flow performance

because they aren’t simple feed-forward pipelines. At least with the intel

ChAPter 17 ProGrAmminG For FPGAs

463

FPGA toolchains, this is not true. Loop iterations can instead be a good way to

produce high occupancy within the pipeline, and the compilers are built around

the concept of allowing multiple loop iterations to execute in an overlapped

way. Loops provide an easy mechanism to keep the pipeline busy with work!

 Low Latency and Rich Connectivity
More conventional uses of FPGAs which take advantage of the rich input

and output transceivers on the devices apply equally well for developers

using SYCL. For example, as shown in Figure 17-6, some FPGA accelerator

cards have network interfaces that make it possible to stream data directly

into the device, process it, and then stream the result directly back to the

network. Such systems are often sought when processing latency needs to

be minimized and where processing through operating system network

stacks is too slow or needs to be offloaded to free CPU processing cycles.

Figure 17-6. Low-latency I/O streaming: FPGA connects network
data and computation tightly

The opportunities are almost limitless when considering direct input/

output through FPGA transceivers, but the options do come down to

what is available on the circuit board that forms an accelerator. Because

of the dependence on a specific accelerator card and variety of such uses,

ChAPter 17 ProGrAmminG For FPGAs

464

aside from describing the pipe language constructs in a coming section,

this chapter doesn’t dive into these applications. We should instead read

the vendor documentation associated with a specific accelerator card or

search for an accelerator card that matches our specific interface needs.

 Customized Memory Systems
Memory systems on an FPGA, such as function private or work-group

local memory, are built out of small blocks of on-chip memory. This is

important because each memory system is custom built for the specific

portion of an algorithm or kernel using it. FPGAs have significant on-

chip memory bandwidth, and combined with the formation of custom

memory systems, they can perform very well on applications that have

atypical access patterns and structures. Figure 17-7 shows some of the

optimizations that can be performed by the compiler when a memory

system is implemented on an FPGA.

Figure 17-7. FPGA memory systems are customized by the compiler
for our specific code

Other architectures such as GPUs have fixed memory structures that

are easy to reason about by experienced developers, but that can also be

hard to optimize around in many cases. Many optimizations on other

accelerators are focused on memory pattern modification to avoid bank

conflicts, for example. If we have algorithms that would benefit from a

ChAPter 17 ProGrAmminG For FPGAs

465

custom memory structure, such as a different number of access ports per

bank or an unusual number of banks, then FPGAs can offer immediate

advantages. Conceptually, the difference is between writing code to use a

fixed memory system efficiently (most other accelerators) vs. having the

memory system custom designed by the compiler to be efficient with our

specific code (FPGA).

 Running on an FPGA
There are two steps to run a kernel on an FPGA (as with any ahead-of-time

compilation accelerator):

• Compiling the source to a binary which can be run on

our hardware of interest

• Selecting the correct accelerator that we are interested

in at runtime

To compile kernels so that they can run on FPGA hardware, we can use

the command line:

icpx -fsycl -fintelfpga my_source_code.cpp -Xshardware

This command tells the compiler to turn all kernels in my_source_

code.cpp into binaries that can run on an Intel FPGA accelerator and then

to package them within the host binary that is generated. When we execute

the host binary (e.g., by running ./a.out on Linux), the runtime will

automatically program any attached FPGA as required, before executing

the submitted kernels, as shown in Figure 17-8.

ChAPter 17 ProGrAmminG For FPGAs

466

Figure 17-8. FPGA programmed automatically at runtime

FPGA programming binaries are embedded within the compiled
DPC++ executable that we run on the host. the FPGA is automatically
configured behind the scenes for us.

When we run a host program and submit the first kernel for execution
on an FPGA, there might be a slight delay before the kernel begins
executing, while the FPGA is programmed. resubmitting kernels for
additional executions won’t see the same delay because the kernel is
already programmed to the device and ready to run.

ChAPter 17 ProGrAmminG For FPGAs

467

Selection of an FPGA device at runtime was covered in Chapter 2. We

need to tell the host program where we want kernels to run because there

are typically multiple accelerator options available, such as a CPU and

GPU, in addition to the FPGA. To quickly recap one method to select an

FPGA during program execution, we can use code like that in Figure 17-9.

#include <sycl/ext/intel/fpga_extensions.hpp> // For fpga_selector_v
#include <sycl/sycl.hpp>
using namespace sycl;

void say_device(const queue& q) {
 std::cout << "Device : "
 << q.get_device().get_info<info::device::name>()
 << "\n";
}

int main() {
 queue q{ext::intel::fpga_selector_v};
 say_device(q);

 q.submit([&](handler& h) {
 h.parallel_for(1024, [=](auto idx) {
 // ...
 });
 });

 return 0;
}

Figure 17-9. Choosing an FPGA device at runtime using the fpga_
selector

 Compile Times
Rumors abound that compiling designs for an FPGA can take a long time,

much longer than compiling for ISA-based accelerators. The rumors are

true! The end of this chapter overviews the fine-grained architectural

elements of an FPGA that lead to both the advantages of an FPGA and the

computationally intensive compilation (place-and-route optimizations)

that can take hours in some cases.

ChAPter 17 ProGrAmminG For FPGAs

468

The compile time from source code to FPGA hardware execution

is long enough that we don’t want to develop and iterate on our code

exclusively in hardware. FPGA development flows offer several stages that

minimize the number of hardware compilations, to make us productive

despite the hardware compile times. Figure 17-10 shows the typical

stages, where most of our time is spent on the early steps that provide fast

turnaround and rapid iteration.

Figure 17-10. Most verification and optimizations occur prior to
lengthy hardware compilation

Emulation and static reports from the compiler are the cornerstones

of FPGA code development in DPC++. The emulator acts as if it was

an FPGA, including supporting relevant extensions and emulating the

execution model, but runs on the host processor. Compilation time

is therefore the same as we would expect from compilation to a CPU

device, although we won’t see the performance boost that we would from

execution on actual FPGA hardware. The emulator is great for establishing

and testing functional correctness in an application.

ChAPter 17 ProGrAmminG For FPGAs

469

Static reports, like emulation, are generated quickly by the toolchain.

They report on the FPGA structures created by the compiler and on

bottlenecks identified by the compiler. Both of these can be used to predict

whether our design will achieve good performance when run on FPGA

hardware and are used to optimize our code. Please read the vendor’s

documentation for information on the reports, which are often improved

from release to release of a toolchain (see documentation for the latest

and greatest features!). Extensive documentation is provided by vendors

on how to interpret and optimize based on the reports. This information

would be the topic of another book, so we can’t dive into details in this

single chapter.

 The FPGA Emulator
Emulation is primarily used to functionally debug our application, to make sure

that it behaves as expected and produces correct results. There is no reason to

do this level of development on actual FPGA hardware where compile times

are longer. The emulation flow is activated by removing the -Xshardware

flag from the icpx compilation command and at the same time using

INTEL::fpga_emulator_selector_v instead of INTEL::fpga_selector_v in

our host code. We would compile using a command like

icpx -fsycl -fintelfpga my_source_code.cpp

By using fpga_emulator_selector_v, which uses the host processor

to emulate an FPGA, we maintain a rapid development and debugging

process before we have to commit to the lengthier compile for actual

FPGA hardware. An example of using INTEL::fpga_emulator_selector_v

instead of INTEL::fpga_selector_v is shown in Figure 17-11.

ChAPter 17 ProGrAmminG For FPGAs

470

#include <sycl/ext/intel/fpga_extensions.hpp> // For fpga_selector_v
#include <sycl/sycl.hpp>
using namespace sycl;

void say_device(const queue& q) {
std::cout << "Device : "

<< q.get_device().get_info<info::device::name>()
<< "\n";

}

int main() {
queue q{ext::intel::fpga_emulator_selector_v};
say_device(q);

q.submit([&](handler& h) {
h.parallel_for(1024, [=](auto idx) {

// ...
});

});

return 0;
}

Figure 17-11. Using fpga_emulator_selector_v for rapid
development and debugging

 FPGA Hardware Compilation Occurs
“Ahead- of-Time”
The Full Compile and Hardware Profiling stage in Figure 17-10 is an ahead-

of- time compile in SYCL terminology. This means that the compilation of

the kernel to a device binary occurs when we initially compile our program

and not when the program is submitted to a device to be run. On an FPGA,

this is particularly important because

• Compilation takes a length of time that we don’t

normally want to incur when running an application.

• DPC++ programs may be executed on systems that

don’t have a capable host processor. The compilation

process to an FPGA binary benefits from a fast

ChAPter 17 ProGrAmminG For FPGAs

471

processor with a good amount of attached memory.

Ahead-of-time compilation lets us easily choose

where the compile occurs, rather than having it run on

systems where the program is deployed.

A LOT HAPPENS BEHIND THE SCENES WITH DPC++ ON AN FPGA!

Conventional FPGA design (not using a high-level language) can be very

complicated. there are many steps beyond just writing our kernel, such

as building and configuring the interfaces that communicate with off-chip

memories and closing timing by inserting registers needed to make the

compiled design run fast enough to communicate with certain peripherals.

DPC++ solves all of this for us, so that we don’t need to know anything about

the details of conventional FPGA design to achieve working applications!

the tooling treats our kernels as code to optimize and make efficient on the

device and then automatically handles all of the details of talking to off-chip

peripherals, closing timing, and setting up drivers for us.

Achieving peak performance on an FPGA still requires detailed knowledge of

the architecture, just like any other accelerator, but the steps to move from

code to a working design are much simpler and more productive with DPC++

than in traditional FPGA flows.

 Writing Kernels for FPGAs
Once we have decided to use an FPGA for our application or even just

decided to try one out, having an idea of how to write code to see good

performance is important. This section highlights important concepts

and covers a few topics that often cause confusion, to make getting

started faster.

ChAPter 17 ProGrAmminG For FPGAs

472

 Exposing Parallelism
We have already looked at how pipeline parallelism is used to efficiently

perform work on an FPGA. Another simple pipeline example is shown in

Figure 17-12.

Figure 17-12. Simple pipeline with five stages: six clock cycles to
process an element of data

In this pipeline, there are five stages. Data moves from one stage to the

next once per clock cycle, so in this very simple example, it takes six clock

cycles from when data enters into stage 1 until it exits from stage 5.

A major goal of pipelining is to enable multiple elements of data to be

processed at different stages of the pipeline, simultaneously. To be sure

that this is clear, Figure 17-13 shows a pipeline where there is not enough

work (only one element of data in this case), which causes each pipeline

stage to be unused during most of the clock cycles. This is an inefficient

use of the FPGA resources because most of the hardware is idle most of

the time.

ChAPter 17 ProGrAmminG For FPGAs

473

Figure 17-13. Pipeline stages are mostly unused if processing only a
single element of work

To keep the pipeline stages better occupied, it is useful to imagine a

queue of un-started work waiting before the first stage, which feeds the

pipeline. In each clock cycle, the pipeline can consume and start one more

element of work from the queue, as shown in Figure 17-14. After some

initial startup cycles, each stage of the pipeline is occupied and doing

useful work every clock cycle, leading to efficient utilization of the FPGA

resources.

ChAPter 17 ProGrAmminG For FPGAs

474

Figure 17-14. Efficient utilization comes when each pipeline stage is
kept busy

The following two sections cover methods to keep the queue feeding

the pipeline filled with work that is ready to start. We’ll look at

 1. ND-range kernels

 2. Loops

Choosing between these options impacts how kernels that run on an

FPGA should be fundamentally architected. In some cases, algorithms

lend themselves well to one style or the other, and in other cases

programmer preference and experience inform which method should

be chosen.

ChAPter 17 ProGrAmminG For FPGAs

475

 Keeping the Pipeline Busy Using ND-Ranges
The ND-range hierarchical execution model was described in Chapter 4.

Figure 17-15 illustrates the key concepts: an ND-range execution model

where there is a hierarchical grouping of work-items, and where a work-

item is the primitive unit of work that a kernel defines. This model was

originally developed to enable efficient programming of GPUs where

work-items may execute concurrently at various levels of the execution

model hierarchy. To match the type of work that GPU hardware is efficient

at, ND-range work-items do not frequently communicate with each other

in most applications.

Figure 17-15. ND-range execution model: a hierarchical grouping of
work-items

The FPGA spatial pipeline can be very efficiently filled with work using

an ND-range. This programming style is fully supported on FPGA, and

we can think of it as depicted in Figure 17-16 where on each clock cycle, a

different work-item enters the first stage of the pipeline.

ChAPter 17 ProGrAmminG For FPGAs

476

Figure 17-16. ND-range feeding a spatial pipeline

When should we create an ND-range kernel on an FPGA using

work-items to keep the pipeline occupied? It’s simple. Whenever we can

structure our algorithm or application as independent work-items that

don’t need to communicate often (or ideally at all), we should use ND-

range! If work-items do need to communicate often or if we don’t naturally

think in terms of ND-ranges, then loops (described in the next section)

provide an efficient way to express our algorithm as well.

if we can structure our algorithm so that work-items don’t need
to communicate much (or at all), then nD-range is a great way to
generate work to keep the spatial pipeline full!

ChAPter 17 ProGrAmminG For FPGAs

477

A good example of a kernel that is efficient with an ND-range feeding

the pipeline is a random number generator, with an algorithm where

creation of numbers in the sequence is independent of the previous

numbers generated.

Figure 17-17 shows an ND-range kernel that will call the random

number generation function once for each work-item in the 16 × 16 × 16

range. Note how the random number generation function takes the work-

item id as input.

h.parallel_for({16, 16, 16}, [=](auto I) {
output[I] = generate_random_number_from_ID(I);

});

Figure 17-17. Multiple work-item (16 × 16 × 16) invocation of a
random number generator

The example shows a parallel_for invocation that uses a range,

with only a global size specified. We can alternately use the parallel_for

invocation style that takes an nd_range, where both the global work

size and local work-group sizes are specified. FPGAs can very efficiently

implement work-group local memory from on-chip resources, so feel free

to use work-groups whenever they make sense, either because we want

work-group local memory or because having work-group IDs available

simplifies our code.

PARALLEL RANDOM NUMBER GENERATORS

the example in Figure 17-17 assumes that generate_random_number_from_

iD(i) is a random number generator which has been written to be safe and

correct when invoked in a parallel way. For example, if different work-items

in the parallel_for range execute the function, we expect different sequences

ChAPter 17 ProGrAmminG For FPGAs

478

to be created by each work-item, with each sequence adhering to whatever

distribution is expected from the generator. Parallel random number generators

are themselves a complex topic, so it is a good idea to use libraries or to learn

about the topic through techniques such as block skip-ahead algorithms.

 Pipelines Do Not Mind Data Dependences!
One of the challenges when programming vector architectures (e.g., GPUs)

where some work-items execute together as lanes of vector instructions is

structuring an algorithm to be efficient without extensive communication

between work-items. Some algorithms and applications lend themselves

well to vector hardware, and some don’t. A common cause of a poor

mapping is an algorithmic need for extensive sharing of data, due to data

dependences with other computations that are in some sense neighbors.

Sub-groups address some of this challenge on vector architectures by

providing efficient communication between work-items in the same sub-

group, as described in Chapter 14.

FPGAs play an important role for algorithms that can’t be decomposed

into independent work. FPGA spatial pipelines are not vectorized across

work-items, but instead execute consecutive work-items across pipeline

stages. This implementation of the parallelism means that fine-grained

communication between work-items (even those in different work-groups)

can be implemented easily and efficiently within the spatial pipeline!

One example is a random number generator where output N+1

depends on knowing what output N was. This creates a data dependence

between two outputs, and if each output is generated by a work-item in an

ND-range, then there is a data dependence between work-items that can

require complex and often costly synchronization on some architectures.

When coding such algorithms serially, one would typically write a loop,

ChAPter 17 ProGrAmminG For FPGAs

479

where iteration N+1 uses the computation from iteration N, such as shown

in Figure 17-18. Each iteration depends on the state computed by the

previous iteration. This is a very common pattern.

int state = 0;
for (int i = 0; i < size; i++) {
state = generate_random_number(state);
output[i] = state;

}

Figure 17-18. Loop-carried data dependence (state)

Spatial implementations can very efficiently communicate results

backward in the pipeline to work that started in a later cycle (i.e., to work

at an earlier stage in the pipeline), and spatial compilers implement

many optimizations around this pattern. Figure 17-19 shows the idea

of backward communication of data, from stage 5 to stage 4. Spatial

pipelines are not vectorized across work-items. This enables efficient data

dependence communication by passing results backward in the pipeline!

ChAPter 17 ProGrAmminG For FPGAs

480

Figure 17-19. Backward communication enables efficient data
dependence communication

The ability to pass data backward (to an earlier stage in the pipeline)

is key to spatial architectures, but it isn’t obvious how to write code that

takes advantage of it. There are two approaches that make expressing this

pattern easy:

 1. Loops

 2. Intra-kernel pipes with ND-range kernels

The second option is based on pipes that we describe later in this

chapter, but it isn’t nearly as common as loops so we mention it for

completeness, but don’t detail it here. Vendor documentation provides

more details on the pipe approach, but it’s easier to stick to loops which

are described next unless there is a reason to do otherwise.

ChAPter 17 ProGrAmminG For FPGAs

481

 Spatial Pipeline Implementation of a Loop
A loop is a natural fit when programming an algorithm that has data

dependences. Loops frequently express dependences across iterations,

even in the most basic loop examples where the counter that determines

when the loop should exit is carried across iterations (variable i in

Figure 17-20).

int a = 0;
for (int i = 0; i < size; i++) {
a = a + i;

}

Figure 17-20. Loop with two loop-carried dependences (i.e., i and a)

In the simple loop of Figure 17-20, it is understood that the value of a,

which is on the right-hand side of a= a + i, reflects the value stored by

the previous loop iteration or the initial value if it’s the first iteration of

the loop. When a spatial compiler implements a loop, iterations of the

loop can be used to fill the stages of the pipeline as shown in Figure 17-21.

Notice that the queue of work, which is ready to start, now contains loop

iterations, not work-items!

ChAPter 17 ProGrAmminG For FPGAs

482

Figure 17-21. Pipelines stages fed by successive iterations of a loop

A modified random number generator example is shown in

Figure 17-22. In this case, instead of generating a number based on the

id of a work-item, as in Figure 17-17, the generator takes the previously

computed value as an argument.

h.single_task([=]() {
int state = seed;
for (int i = 0; i < size; i++) {

state = generate_incremental_random_number(state);
output[i] = state;

 }
});

Figure 17-22. Random number generator that depends on previous
value generated

ChAPter 17 ProGrAmminG For FPGAs

483

The example uses single_task instead of parallel_for because the

repeated work is expressed by a loop within the single task, so there isn’t

a reason to also include multiple work-items in this code (via parallel_

for). The loop inside the single_task makes it much easier to express

(programming convenience) that the previously computed value of state

is passed to each invocation of the random number generation function.

In cases such as Figure 17-22, the FPGA can implement the loop

efficiently. It can maintain a fully occupied pipeline in many cases or can

at least tell us through reports what to change to increase occupancy.

With this in mind, it becomes clear that this same algorithm would be

much more difficult to describe if loop iterations were replaced with

work-items, where the value generated by one work-item would need to

be communicated to another work-item to be used in the incremental

computation. The code complexity would rapidly increase, particularly

if the work couldn’t be batched so that each work-item was actually

computing its own independent random number sequence.

 Loop Initiation Interval
Conceptually, we probably think of iterations of a loop in C++ as executing

one after another, as shown in Figure 17-23. That’s the programming

model and is the right way to think about loops. In implementation,

though, compilers are free to perform many optimizations as long as most

behavior (i.e., defined and race-free behavior) of the program doesn’t

observably change. Regardless of compiler optimizations, what matters is

that the loop appears to execute as if Figure 17-23 is how it happened.

ChAPter 17 ProGrAmminG For FPGAs

484

Figure 17-23. Conceptually, loop iterations execute one after another

Moving into the spatial compiler perspective, Figure 17-24 shows a

loop pipelining optimization where the execution of iterations of a loop are

overlapped in time. Different iterations will be executing different stages of

the spatial pipeline from each other, and data dependences across stages

of the pipeline can be managed by the compiler to ensure that the program

appears to execute as if the iterations were sequential (except that the loop

will finish executing sooner!).

ChAPter 17 ProGrAmminG For FPGAs

485

Figure 17-24. Loop pipelining allows iterations of the loop to be
overlapped across pipeline stages

Loop pipelining is easy to understand with the realization that many

results within a loop iteration may finish computation well before the loop

iteration finishes all of its work and that, in a spatial pipeline, results can

be passed to an earlier pipeline stage when the compiler decides to do so.

Figure 17-25 shows this idea where the results of stage 1 are fed backward

in the pipeline, allowing a future loop iteration to use the result early,

before the previous iteration has completed.

ChAPter 17 ProGrAmminG For FPGAs

486

Figure 17-25. A pipelined implementation of the incremental
random number generator

With loop pipelining, it is possible for the execution of many iterations

of a loop to overlap. The overlap means that even with loop-carried data

dependences, loop iterations can still be used to fill the pipeline with work,

leading to efficient utilization. Figure 17-26 shows how loop iterations

might overlap their executions, even with loop-carried data dependences,

within the same simple pipeline as was shown in Figure 17-25.

ChAPter 17 ProGrAmminG For FPGAs

487

Figure 17-26. Loop pipelining simultaneously processes parts of
multiple loop iterations

In real algorithms, it is often not possible to launch a new loop iteration

every single clock cycle, because a data dependence may take multiple

clock cycles to compute. This often arises if memory lookups, particularly

from off-chip memories, are on the critical path of the computation of

a dependence. The result is a pipeline that can only initiate a new loop

iteration every N clock cycles, and we refer to this as an initiation interval

(II) of N cycles. An example is shown in Figure 17-27. A loop initiation

interval (II) of two means that a new loop iteration can begin every second

cycle, which results in suboptimal occupancy of the pipeline stages.

ChAPter 17 ProGrAmminG For FPGAs

488

Figure 17-27. Suboptimal occupancy of pipeline stages

An II larger than one can lead to inefficiency in the pipeline because

the average occupancy of each stage is reduced. This is apparent from

Figure 17-27 where II=2 and pipeline stages are unused a large percentage

(50%!) of the time. There are multiple ways to improve this situation.

The compiler performs extensive optimization to reduce II whenever

possible, so its reports will also tell us what the initiation interval of each

loop is and give us information on why it is larger than one, if that occurs.

Restructuring the compute in a loop based on the reports can often reduce

the II, particularly because as developers, we can make loop structural

changes that the compiler isn’t allowed to (because they would be

observable). Read the compiler reports to learn how to reduce the II in

specific cases.

An alternative way to reduce inefficiency from an II that is larger than

one is through nested loops, which can fill all pipeline stages through

interleaving of outer loop iterations with those of an inner loop that has

II>1. Check vendor documentation and the compiler reports for details on

using this technique.

ChAPter 17 ProGrAmminG For FPGAs

489

 Pipes
An important concept in spatial and other architectures is a first-in, first-

out (FIFO) buffer. There are many reasons that FIFOs are important, but

two properties are especially useful when thinking about programming:

 1. There is implicit control information carried
alongside the data. These signals tell us whether

the FIFO is empty or full and can be useful when

decomposing a problem into independent pieces.

 2. FIFOs have storage capacity. This can make it

easier to achieve performance in the presence of

dynamic behaviors such as highly variable latencies

when accessing memory.

Figure 17-28 shows a simple example of a FIFO’s operation.

Figure 17-28. Example operation of a FIFO over time

ChAPter 17 ProGrAmminG For FPGAs

490

FIFOs are exposed in DPC++ through a feature called pipes. The main

reason that we should care about pipes when writing FPGA programs is

that they allow us to decompose a problem into smaller pieces to focus

on development and optimizations in a more modular way. They also

allow the rich communication features of the FPGA to be harnessed.

Figure 17-29 shows both of these graphically.

Figure 17-29. Pipes simplify modular design and access to hardware
peripherals

Remember that FPGA kernels can exist on the device simultaneously

(in different areas of the chip) and that in an efficient design, all parts

of the kernels are active all the time, every clock cycle. This means that

optimizing an FPGA application involves considering how kernels or parts

of kernels interact with one another, and pipes provide an abstraction to

make this easy.

Pipes are FIFOs that are implemented using on-chip memories on

an FPGA, so they allow us to communicate between and within running

kernels without the cost of moving data to off-chip memory. This provides

inexpensive communication, and the control information that is coupled

with a pipe (empty/full signals) provides a lightweight synchronization

mechanism.

ChAPter 17 ProGrAmminG For FPGAs

491

Do We Need Pipes? no. it is possible to write efficient kernels
without using pipes. We can use all of the FPGA resources and
achieve maximum performance using conventional programming
styles without pipes. But it is easier for most developers to program
and optimize more modular spatial designs, and pipes are a great
tool to achieve this.

As shown in Figure 17-30, there are four general types of pipes

available. In the rest of this section, we’ll cover the first type (inter-kernel

pipes), because they suffice to show what pipes are and how they are used.

Pipes can also communicate within a single kernel and with the host or

input/output peripherals. Please check vendor documentation for more

information on those forms and uses of pipes that we don’t have room to

dive into here.

Figure 17-30. Types of pipe connectivity in DPC++

A simple example is shown in Figure 17-31. In this case, there are

two kernels that communicate through a pipe, with each read or write

operating on a unit of an int.

ChAPter 17 ProGrAmminG For FPGAs

492

// Create alias for pipe type to be consistent across uses
using my_pipe = ext::intel::pipe<class some_pipe, int>;

// ND-range kernel
q.submit([&](handler& h) {
auto a = accessor(b_in, h);

h.parallel_for(
count, [=](auto idx) { my_pipe::write(a[idx]); });

});

// Single_task kernel
q.submit([&](handler& h) {
auto a = accessor(b_out, h);

h.single_task([=]() {
for (int i = 0; i < count; i++) {
a[i] = my_pipe::read();

 }
});

});

Figure 17-31. Pipe between two kernels: (1) ND-range and (2) single
task with a loop

There are a few points to observe from Figure 17-31. First, two kernels

are communicating with each other using a pipe. If there are no accessor

or event dependences between the kernels, the DPC++ runtime will

execute both at the same time, allowing them to communicate through the

pipe instead of full SYCL memory buffers or USM.

Pipes are identified using a type-based approach, where each is

identified using a parameterization of the pipe type which is shown in

Figure 17-32. The parameterization of the pipe type identifies a specific

pipe. Reads or writes on the same pipe type are to the same FIFO. There

are three template parameters that together define the type and therefore

identity of a pipe.

ChAPter 17 ProGrAmminG For FPGAs

493

template <typename name, typename dataT,
size_t min_capacity = 0>

class pipe;

Figure 17-32. Parameterization of the pipe type

It is recommended to use type aliases to define our pipe types, as

shown in the first line of code in Figure 17-31, to reduce programming

errors and improve code readability.

Use type aliases to identify pipes. this simplifies code and prevents
accidental creation of unexpected pipes.

Pipes have a min_capacity parameter. It defaults to 0 which is

automatic selection, but if specified, it guarantees that at least that number

of words can be written to the pipe without any being read out. This

parameter is useful when

• Two kernels communicating with a pipe do not run at

the same time, and we need enough capacity in the

pipe for a first kernel to write all of its outputs before a

second kernel starts to run and reads from the pipe.

• If kernels generate or consume data in bursts, then

adding capacity to a pipe can provide isolation between

the kernels, decoupling their performance from each

other. For example, a kernel producing data can

continue to write (until the pipe capacity becomes full),

even if a kernel consuming that data is busy and not

ready to consume anything yet. This provides flexibility

in execution of kernels relative to each other, at the cost

only of some memory resources on the FPGA.

ChAPter 17 ProGrAmminG For FPGAs

494

 Blocking and Non-blocking Pipe Accesses

Like most FIFO interfaces, pipes have two styles of interface: blocking and

non-blocking. Blocking accesses wait (block/pause execution!) for the

operation to succeed, while non-blocking accesses return immediately

and set a Boolean value indicating whether the operation succeeded.

The definition of success is simple: If we are reading from a pipe and

there was data available to read (the pipe wasn’t empty), then the read

succeeds. If we are writing and the pipe wasn’t already full, then the write

succeeds. Figure 17-33 shows both forms of access member functions of

the pipe class. We see the member functions of a pipe that allow it to be

written to or read from. Recall that accesses to pipes can be blocking or

non-blocking.

// Blocking
T read();
void write(const T &data);

// Non-blocking
T read(bool &success_code);
void write(const T &data, bool &success_code);

Figure 17-33. Member functions of a pipe that allow it to be written
to or read from

Both blocking and non-blocking accesses have their uses depending

on what our application is trying to achieve. If a kernel can’t do any more

work until it reads data from the pipe, then it probably makes sense to use

a blocking read. If instead a kernel wants to read data from any one of a

set of pipes and it is not sure which one might have data available, then

reading from pipes with a non-blocking call makes more sense. In that

case, the kernel can read from a pipe and process the data if there was any,

but if the pipe was empty, it can instead move on and try reading from the

next pipe that potentially has data available.

ChAPter 17 ProGrAmminG For FPGAs

495

 For More Information on Pipes

We could only scratch the surface of pipes in this chapter, but we should

now have an idea of what they are and the basics of how to use them. FPGA

vendor documentation has a lot more information and many examples of

their use in different types of applications, so we should look there if we

think that pipes are relevant for our particular needs.

 Custom Memory Systems
When programming for most accelerators, much of the optimization effort

tends to be spent making memory accesses more efficient. The same

is true of FPGA designs, particularly when input and output data pass

through off-chip memory.

There are two main reasons that memory accesses on an FPGA can be

worth optimizing:

• To reduce required bandwidth, particularly if some of

that bandwidth is used inefficiently

• To modify access patterns on a memory that is leading

to unnecessary stalls in the spatial pipeline

It is worth talking briefly about stalls in the spatial pipeline. The

compiler builds in assumptions about how long it will take to read from

or write to specific types of memories, and it optimizes and balances the

pipeline accordingly, hiding memory latencies in the process. But if we

access memory in an inefficient way, we can introduce longer latencies

and as a by-product stalls in the pipeline, where earlier stages cannot make

progress executing because they’re blocked by a pipeline stage that is

waiting for something (e.g., a memory access). Figure 17-34 shows such a

situation, where the pipeline above the load is stalled and unable to make

forward progress.

ChAPter 17 ProGrAmminG For FPGAs

496

Figure 17-34. How a memory stall can cause earlier pipeline stages
to stall as well

There are a few fronts on which memory system optimizations can be

performed. As usual, the compiler reports are our primary guide to what

the compiler has implemented for us and what might be worth tweaking or

improving. We list a few optimization topics here to highlight some of the

degrees of freedom available to us. Optimization is typically available both

through explicit controls and by modifying code to allow the compiler to

infer the structures that we intend. The compiler static reports and vendor

documentation are key parts of memory system optimization, sometimes

combined with profiling tools during hardware executions to capture

actual memory behavior for validation or for the final stages of tuning.

Some memory optimization considerations are as follows:

ChAPter 17 ProGrAmminG For FPGAs

497

• Static coalescing: The compiler will combine memory

accesses into a smaller number of wider accesses,

where it can. This reduces the complexity of a memory

system in terms of numbers of load or store units in

the pipeline, ports on the memory system, the size and

complexity of arbitration networks, and other memory

system details. In general, we want to maximize static

coalescing wherever possible, which we can confirm

through the compiler reports. Simplifying addressing

logic in a kernel can sometimes be enough for the

compiler to perform more aggressive static coalescing,

so always check in the reports that the compiler has

inferred what we expect!

• Memory access style: The compiler creates load or

store units for memory accesses, and these are tailored

to both the memory technology being accessed (e.g.,

on-chip vs. DDR vs. HBM) and the access pattern

inferred from the source code (e.g., streaming,

dynamically coalesced/widened, or likely to benefit

from a cache of a specific size). The compiler reports

tell us what the compiler has inferred and allow us to

modify or add controls to our code, where relevant, to

improve performance.

• Memory system structure: Memory systems (both

on- and off-chip) can have banked structures and

numerous optimizations implemented by the compiler.

There are many controls and mode modifications that

can be used to control these structures and to tune

specific aspects of the spatial implementation.

ChAPter 17 ProGrAmminG For FPGAs

498

 Some Closing Topics
When talking with developers who are getting started with FPGAs, we find

that it often helps to understand at a high level the components that make

up the device and also to mention clock frequency which seems to be a

point of confusion. We close this chapter with these topics.

 FPGA Building Blocks
To help with an understanding of the tool flows (particularly compile time),

it is worth mentioning the building blocks that make up an FPGA. These

building blocks are abstracted away through DPC++ and SYCL, and

knowledge of them plays no part in typical application development (at

least in the sense of making code functional). Their existence does, however,

factor into development of an intuition for spatial architecture optimization

and tool flows, and occasionally in advanced optimizations such as

choosing the ideal data types for our application, for example.

A very simplified view of a modern FPGA device consists of five basic

elements:

 1. Look-up tables: Fundamental blocks that have a

few binary input wires and produce a binary output.

The output relative to the inputs is defined through

the entries programmed into a look-up table. These

are extremely primitive blocks, but there are many

of them (millions) on a typical modern FPGA used

for compute. These are the basis on which much of

our design is implemented!

 2. Math engines: For common math operations such

as addition or multiplication of single-precision

floating-point numbers, FPGAs have specialized

hardware to make those operations very efficient.

ChAPter 17 ProGrAmminG For FPGAs

499

A modern FPGA has thousands of these blocks, such

that at least these many floating-point primitive

operations can be performed in parallel every clock

cycle! Most FPGAs name these math engines digital

signal processors (DSPs).

 3. On-chip memory: This is a distinguishing aspect

of FPGAs vs. other accelerators, and memories

come in two flavors (more actually, but we won’t

get into those here): (1) registers that are used

to pipeline between operations and some other

purposes and (2) block memories that provide small

random-access memories spread across the device.

A modern FPGA can have on the order of millions

of register bits and more than 10,000 20 Kbit RAM

memory blocks. Since each of those can be active

every clock cycle, the result is significant on-chip

memory capacity and bandwidth, when used

efficiently.

 4. Interfaces to off-chip hardware: FPGAs have

evolved in part because of their very flexible

transceivers and input/output connectivity that

allows communications with almost anything

ranging from off-chip memories to network

interfaces and beyond.

 5. Routing fabric between all of the other
elements: There are many of each element

mentioned previously on a typical FPGA, and the

connectivity between them is not fixed. A complex

programmable routing fabric allows signals to pass

between the fine-grained elements that make up

an FPGA.

ChAPter 17 ProGrAmminG For FPGAs

500

Given the numbers of blocks on an FPGA of each specific type (some

blocks are counted in the millions) and the fine granularity of those

blocks such as look-up tables, the compile times seen when generating

FPGA configuration bitstreams may make more sense. Not only does

functionality need to be assigned to each fine-grained resource but routing

needs to be configured between them. Much of the compile time comes

from finding a first legal mapping of our design to the FPGA fabric, before

optimizations even start! The extensive configurability of an FPGA is how

a spatial implementation of your algorithms can achieve compelling

performance.

 Clock Frequency
FPGAs are extremely flexible and configurable, and that configurability

comes with some cost to the frequency that an FPGA runs at compared

with an equivalent design hardened into a CPU or any other fixed compute

architecture. But this is not a problem! The spatial architecture of an

FPGA more than makes up for the clock frequency because there are so

many independent operations occurring simultaneously, spread across

the area of the FPGA. Simply put, the frequency of an FPGA is lower

than other architectures because of the configurable design, but more

happens per clock cycle which balances out the frequency. We should

compare compute throughput (e.g., in operations per second) and not raw

frequency when benchmarking and comparing accelerators.

This said, as we approach 100% utilization of the resources on an

FPGA, operating frequency may start to decrease. This is primarily a result

of signal routing resources on the device becoming overused. There are

ways to remedy this, typically at the cost of increased compile time. But

it’s best to avoid using more than 80–90% of the resources on an FPGA for

most applications unless we are willing to dive into details to counteract

frequency decrease.

ChAPter 17 ProGrAmminG For FPGAs

501

RECOMMENDATION

try not to exceed 90% of any resources on an FPGA and certainly not more

than 90% of multiple resources. exceeding these thresholds may lead to

exhaustion of routing resources which leads to lower operating frequencies

unless we are willing to dive into lower-level FPGA details to counteract this.

 Summary
In this chapter, we have introduced how the compiler maps an algorithm

to the FPGA’s spatial architecture. We have also covered concepts that can

help us to decide whether an FPGA is useful for our applications and that

can help us get up and running developing code faster. From this starting

point, we should be in good shape to browse vendor programming and

optimization manuals and to start writing FPGA code! FPGAs provide

performance and enable applications that don’t map well to other

accelerators, so we should keep them near the front of our mental toolbox!

ChAPter 17 ProGrAmminG For FPGAs

502

Open Access This chapter is licensed under the terms of

the Creative Commons Attribution 4.0 International License

(https://creativecommons.org/licenses/by/4.0/), which permits use,

sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter’s Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter's

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

ChAPter 17 ProGrAmminG For FPGAs

https://creativecommons.org/licenses/by/4.0/

503

CHAPTER 18

Libraries
We have spent the entire book promoting the art of writing our own code.

Now we finally acknowledge that some great programmers have already

written code that we can just use. Libraries are the best way to get our work

done. This is not a case of being lazy—it is a case of having better things to

do than reinvent the work of others.

This chapter covers three different sets of library functionality:

 1. Built-in functions defined by the SYCL specification

 2. The C++ standard library

 3. C++17 parallel algorithms, supported by the oneAPI

DPC++ Library (oneDPL)

SYCL defines a rich set of built-in functions that provide common

functions shared by host and device code. All SYCL implementations

support these functions, and so we can rely on key math libraries being

available on all SYCL devices.

The C++ standard library is not guaranteed to be supported in device

code by all SYCL implementations. However, the DPC++ compiler (and

other compilers) support this as an extension to SYCL, and so we briefly

discuss the limitations of that extension here.

Finally, the oneAPI DPC++ Library (oneDPL) provides a set of

algorithms based on the C++17 algorithms, implemented in SYCL, to

provide a high-productivity solution for SYCL programmers. This can

© Intel Corporation 2023
J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-9691-2_18

https://doi.org/10.1007/978-1-4842-9691-2_18

504

minimize programming effort across CPUs, GPUs, and FPGAs. Although

oneDPL is not part of SYCL 2020, since it is implemented on top of SYCL, it

should be compatible with any SYCL 2020 compiler.

 Built-In Functions
SYCL provides a rich set of built-in functions with support for various data

types. These built-in functions are available in the sycl namespace on host

and device and can be classified as in the following:

• Floating-point math functions: asin, acos, log, sqrt,

floor, etc.

• Integer functions: abs, max, min, etc.

• Common functions: clamp, smoothstep, etc.

• Geometric functions: cross, dot, distance, etc.

• Relational functions: isequal, isless, isfinite, etc.

The documentation for this extensive collection of functions can be

found in the SYCL 2020 specification, and the online documentation

at registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html in

sections 4.17.5 through 4.17.9.

Some compilers may provide options to control the precision of

these functions. For example, the DPC++ compiler provides several such

options, including -mfma, -ffast-math, and -ffp-contract=fast. It is

important to check the documentation of a SYCL implementation to

understand the availability of similar options (and their default values).

Several of the SYCL built-in functions have equivalents in the C++

standard library (e.g., sycl::log and std::log). SYCL implementations

are not required to support calling C++ standard library functions within

device code, but some implementations (e.g., DPC++) do.

Chapter 18 Libraries

https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html

505

Figure 18-1 demonstrates the usage of both the C++ std::log function

and SYCL built-in sycl::log function in device code. Using DPC++

compiler implementation, both functions produce the same numeric

results. In the example, the built-in relational function sycl::isequal is

used to compare the results of std::log and sycl::log.

constexpr int size = 9;
std::array<float, size> a;
std::array<float, size> b;

bool pass = true;

for (int i = 0; i < size; ++i) {
a[i] = i;
b[i] = i;

}

queue q;

range sz{size};

buffer<float> bufA(a);
buffer<float> bufB(b);
buffer<bool> bufP(&pass, 1);

q.submit([&](handler &h) {
accessor accA{bufA, h};
accessor accB{bufB, h};
accessor accP{bufP, h};

h.parallel_for(size, [=](id<1> idx) {
accA[idx] = std::log(accA[idx]);
accB[idx] = sycl::log(accB[idx]);
if (!sycl::isequal(accA[idx], accB[idx])) {
accP[0] = false;

}
});

});

Figure 18-1. Using std::log and sycl::log

Chapter 18 Libraries

506

Note that the SYCL 2020 specification does not mandate that a SYCL

math function implementation must produce the exact same numeric

result as its corresponding C and C++ standard math function for a

given hardware target. The specification allows for certain variations in

the implementation to account for the characteristics and limitations

of different hardware platforms. Therefore, it is possible for a SYCL

implementation to produce matching results in practice, as demonstrated

in the code example shown in Figure 18-1.

 Use the sycl:: Prefix with Built-In Functions
We strongly recommend invoking the SYCL built-in functions with

an explicit sycl:: prepended to the name. Calling just sqrt() is not

guaranteed to invoke the SYCL built-in on all implementations even if

“using namespace sycl;” has been used.

sYCL built-in functions should always be invoked with an explicit
sycl:: in front of the built-in name. Failure to follow this advice may
result in strange and non-portable results.

When writing portable code, we recommend avoiding using

namespace sycl; completely, in favor of explicitly using std:: and sycl::

namespaces. By being explicit, we remove the possibility of encountering

unresolvable conflicts within certain SYCL implementations. This may

also make code easier to debug in the future (e.g., if an implementation

provides different precision guarantees for math functions in the std::

and sycl:: namespaces).

Chapter 18 Libraries

507

 The C++ Standard Library
As mentioned previously, the SYCL specification does not guarantee that

functions from the C++ standard library will be supported in device code.

However, there are several compilers that do support these functions: this

simplifies the offloading of existing C++ code to SYCL devices and makes it

easier to write libraries that use SYCL as an implementation detail (e.g., a

user passing a function into a library can write that function without using

any SYCL-specific features).

YOUR MILEAGE MAY VARY

since support in device code for functions from the std:: namespace varies

across sYCL implementations, we cannot be sure that kernels employing the

C++ standard library will be portable across multiple sYCL compilers and

implementations.

The DPC++ compiler is compatible with a set of tested C++ standard

APIs—we simply need to include the corresponding C++ header files and

use the std namespace. All these APIs can be employed in device kernels

the way they are employed in a typical C++ host application. Figure 18-2

shows an example of how to use std::swap in device code.

Chapter 18 Libraries

508

int main() {
std::array<int, 2> arr{8, 9};
buffer<int> buf{arr};

{
host_accessor host_A(buf);
std::cout << "Before: " << host_A[0] << ", "

<< host_A[1] << "\n";
} // End scope of host_A so that upcoming kernel can

// operate on buf

queue q;
q.submit([&](handler &h) {

accessor a{buf, h};
h.single_task([=]() {

// Call std::swap!
std::swap(a[0], a[1]);

});
});

host_accessor host_B(buf);
std::cout << "After: " << host_B[0] << ", " << host_B[1]

<< "\n";
return 0;

}

Sample output:
8, 9
9, 8

Figure 18-2. Using std::swap in device code

Figure 18-3 lists C++ standard APIs with “Y” to indicate those that have

been tested for use in SYCL kernels for CPU, GPU, and FPGA devices, at

the time of writing. A blank indicates incomplete coverage (not all three

device types) at the time of publication for this book.

Chapter 18 Libraries

509

Figure 18-3. Library support with CPU/GPU/FPGA coverage (at
time of book publication)

The tested standard C++ APIs are supported in libstdc++ (GNU) with

gcc 7.5.0+ and libc++ (LLVM) with clang 11.0+ and MSVC Standard C++

Library with Microsoft Visual Studio 2019+ for the host CPU as well.

On Linux, GNU libstdc++ is the default C++ standard library for

the DPC++ compiler, so no compilation or linking option is required.

If we want to use libc++, use the compile options -stdlib=libc++

-nostdinc++ to leverage libc++ and to not include C++ std headers from

the system. The DPC++ compiler has been verified using libc++ in SYCL

Chapter 18 Libraries

510

kernels on Linux, but the runtime needs to be rebuilt with libc++ instead

of libstdc++. Details are in https://intel.github.io/llvm-docs/

GetStartedGuide.html#build-dpc-toolchain-with-libc-library.

Because of these extra steps, libc++ is not the recommended C++ standard

library for us to use in general, without a specific reason to do so.

to achieve cross-architecture portability, if a std:: function is not
marked with “Y” in Figure 18-3, we need to be careful that we don’t
create functional incorrectness (or build failures) for our application
as it runs on target devices that we haven’t tested on!

 oneAPI DPC++ Library (oneDPL)
C++17 introduced parallel versions of the algorithms defined in the C++

standard library. Unlike their serial counterparts, each of the parallel

algorithms accepts an execution policy as its first argument—this execution

policy denotes how an algorithm may execute.

Loosely speaking, an execution policy communicates to an

implementation whether it can parallelize the algorithm using threads,

SIMD instructions, or both. We can pass one of the values seq, unseq, par,

or par_unseq as the execution policy, with meanings shown in Figure 18-4.

Figure 18-4. Execution policies

Chapter 18 Libraries

https://intel.github.io/llvm-docs/GetStartedGuide.html#build-dpc-toolchain-with-libc-library
https://intel.github.io/llvm-docs/GetStartedGuide.html#build-dpc-toolchain-with-libc-library

511

oneDPL extends the standard execution policies to provide support for

SYCL devices. These SYCL-aware execution policies specify not only how

an algorithm should execute, but also where it should execute. A SYCL-

aware policy inherits a standard C++ execution policy, encapsulates a

SYCL device or queue, and allows us to set an optional kernel name. SYCL-

aware execution policies can be used with all standard C++ algorithms that

support execution policies according to the C++17 standard.

oneDPL is not tied to any single SYCL compiler, it is designed to

support all SYCL compilers.

Before we can use oneDPL and its SYCL-aware execution policies,

we need to add some additional header files. Which headers we include

will depend on the algorithms we intend to use, some common examples

include:

• #include <oneapi/dpl/algorithm>

• #include <oneapi/dpl/numeric>

• #include <oneapi/dpl/memory>

 SYCL Execution Policy
Currently, only algorithms with the parallel unsequenced policy (par_

unseq) can be safely offloaded to SYCL devices. This restriction stems

from the forward progress guarantees provided by work-items in SYCL,

which are incompatible with the requirements of other execution policies

(e.g., par).

There are three steps to using a SYCL execution policy:

 1. Add #include <oneapi/dpl/execution> into

our code.

 2. Create a policy object by providing a standard

policy type, a class type for a unique kernel name

Chapter 18 Libraries

512

as a template argument (optional), and one of the

following constructor arguments:

A SYCL queue

A SYCL device

A SYCL device selector

An existing policy object with a different

kernel name

 3. Pass the created policy object to an algorithm.

A oneapi::dpl::execution::dpcpp_default object is a predefined

device_policy created with a default kernel name and default queue.

This can be used to create custom policy objects or passed directly when

invoking an algorithm if the default choices are sufficient.

Figure 18-5 shows examples that assume use of the using namespace

oneapi::dpl::execution; directive when referring to policy classes and

functions.

auto policy_b = device_policy<parallel_unsequenced_policy,
class PolicyB>{

sycl::device{sycl::gpu_selector{}}};
std::for_each(policy_b, …);
auto policy_c =

device_policy<parallel_unsequenced_policy,
class PolicyС>{sycl::default_selector{}};

std::for_each(policy_c, …);
auto policy_d =

make_device_policy<class PolicyD>(default_policy);
std::for_each(policy_d, …);
auto policy_e =

make_device_policy<class PolicyE>(sycl::queue{});
std::for_each(policy_e, …);

Figure 18-5. Creating execution policies

Chapter 18 Libraries

513

 Using oneDPL with Buffers
The algorithms in the C++ standard library are all based on iterators. To

support passing SYCL buffers into these algorithms, oneDPL defines two

special helper functions: oneapi::dpl::begin and oneapi::dpl::end.

These functions accept a SYCL buffer and return an object of an

unspecified type that satisfies the following requirements:

• Is CopyConstructible, CopyAssignable, and

comparable with operators == and !=.

• The following expressions are valid: a + n, a – n, and

a – b, where a and b are objects of the type and n is an

integer value.

• Has a get_buffer method with no arguments.

The method returns the SYCL buffer passed to

oneapi::dpl::begin and oneapi::dpl::end functions.

Note that using these helper functions requires us to add #include

<oneapi/dpl/iterator> to our code. This functionality is not included by

default, because these iterators are not required when using USM (which

we will revisit shortly).

The code in Figure 18-6 shows how to use the std::fill function in

conjunction with the begin/end helpers to fill a SYCL buffer. Note that the

algorithm is in the std:: namespace, and only the execution policy is in

a nonstandard namespace—this is not a typo! The C++ standard library

explicitly permits implementations to define their own execution policies

to support coding patterns like this.

Chapter 18 Libraries

514

#include <oneapi/dpl/algorithm>
#include <oneapi/dpl/execution>
#include <oneapi/dpl/iterator>
#include <sycl/sycl.hpp>

int main() {
sycl::queue q;
sycl::buffer<int> buf{1000};

auto buf_begin = oneapi::dpl::begin(buf);
auto buf_end = oneapi::dpl::end(buf);

auto policy = oneapi::dpl::execution::make_device_policy<
class fill>(q);

std::fill(policy, buf_begin, buf_end, 42);

return 0;
}

Figure 18-6. Using std::fill

The code in Figure 18-7 shows an even simpler version of this code,

using a default policy and ordinary (host-side) iterators. In this case, a

temporary SYCL buffer is created, and the data is copied to this buffer.

After processing of the temporary buffer on a device is complete, the data

is copied back to the host. Working directly with existing SYCL buffers

(where possible) is recommended to reduce data movement between the

host and device and any unnecessary overhead of buffer creations and

destructions.

Chapter 18 Libraries

515

#include <oneapi/dpl/algorithm>
#include <oneapi/dpl/execution>
#include <oneapi/dpl/iterator>
#include <sycl/sycl.hpp>

int main() {
std::vector<int> v(100000);
std::fill(oneapi::dpl::execution::dpcpp_default,

v.begin(), v.end(), 42);

if (v[788] == 42)
std::cout << "passed" << std::endl;

else
std::cout << "failed" << std::endl;

return 0;
}

Figure 18-7. Using std::fill with default policy and host-side
iterators

Figure 18-8 shows an example which performs a binary search of the

input sequence for each of the values in the search sequence provided. As

the result of a search for the ith element of the search sequence, a Boolean

value indicating whether the search value was found in the input sequence

is assigned to the ith element of the result sequence. The algorithm returns

an iterator that points to one past the last element of the result sequence

that was assigned a result. The algorithm assumes that the input sequence

has been sorted by the comparator provided. If no comparator is provided,

then a function object that uses operator< to compare the elements will

be used.

The complexity of the preceding description highlights that we

should leverage library functions where possible, instead of writing our

own implementations of similar algorithms which may take significant

debugging and tuning time. Authors of the libraries that we can take

advantage of are often experts in the internals of the device architectures

we are targeting and may have access to information that we do not, so we

should always leverage optimized libraries when they are available.

Chapter 18 Libraries

516

#include <oneapi/dpl/algorithm>
#include <iostream>
#include <oneapi/dpl/execution>
#include <oneapi/dpl/iterator>
#include <sycl/sycl.hpp>

using namespace sycl;

int main() {
buffer<uint64_t, 1> kB{range<1>(10)};
buffer<uint64_t, 1> vB{range<1>(5)};
buffer<uint64_t, 1> rB{range<1>(5)};
{
host_accessor k{kB};
host_accessor v{vB};

// Initialize data, sorted
k[0] = 0;
k[1] = 5;
k[2] = 6;
k[3] = 6;
k[4] = 7;
k[5] = 7;
k[6] = 8;
k[7] = 8;
k[8] = 9;
k[9] = 9;

v[0] = 1;
v[1] = 6;
v[2] = 3;
v[3] = 7;
v[4] = 8;

}

// create dpc++ iterators
auto k_beg = oneapi::dpl::begin(kB);
auto k_end = oneapi::dpl::end(kB);
auto v_beg = oneapi::dpl::begin(vB);
auto v_end = oneapi::dpl::end(vB);
auto r_beg = oneapi::dpl::begin(rB);

// create named policy from existing one
auto policy = oneapi::dpl::execution::make_device_policy<

class bSearch>(oneapi::dpl::execution::dpcpp_default);

Figure 18-8. Using binary_search

Chapter 18 Libraries

517

The code example shown in Figure 18-8 demonstrates the three typical

steps when using oneDPL in conjunction with SYCL buffers:

 1. Create SYCL iterators from our buffers.

 2. Create a named policy from an existing policy.

 3. Invoke the parallel algorithm.

 Using oneDPL with USM
In this section, we explore two ways to use oneDPL in combination

with USM:

• Through USM pointers

• Through USM allocators

Unlike with buffers, we can directly use USM pointers as the iterators

passed to an algorithm. Specifically, we can pass the pointers to the

start and (one past the) end of the allocation to a parallel algorithm. It is

// call algorithm
oneapi::dpl::binary_search(policy, k_beg, k_end, v_beg,

v_end, r_beg);

// check data
host_accessor r{rB};
if ((r[0] == false) && (r[1] == true) &&

(r[2] == false) && (r[3] == true) && (r[4] == true)) {
std::cout << "Passed. \nRun on "

<< policy.queue()
.get_device()
.get_info<info::device::name>()

<< "\n";
} else

std::cout << "failed: values do not match.\n";

return 0;
}

Figure 18-8. (continued)

Chapter 18 Libraries

518

important to be sure that the execution policy and the allocation itself

were created for the same queue or context, to avoid undefined behavior at

runtime. (Remember that this is not oneDPL specific, and we must always

pay close attention to contexts when using USM!)

If the same USM allocation is to be processed by several algorithms,

we can either use an in-order queue or explicitly wait for completion of

each algorithm before using the same allocation in the next one (this is

typical operation ordering when using USM). We should also be careful to

ensure that we wait for completion before accessing the data on the host,

as shown in Figure 18-9.

#include <oneapi/dpl/algorithm>
#include <oneapi/dpl/execution>
#include <sycl/sycl.hpp>

int main() {
sycl::queue q;
const int n = 10;
int* h_head = sycl::malloc_host<int>(n, q);
int* d_head = sycl::malloc_device<int>(n, q);
std::fill(oneapi::dpl::execution::make_device_policy(q),

d_head, d_head + n, 78);
q.wait();

q.memcpy(h_head, d_head, n * sizeof(int));
q.wait();

if (h_head[8] == 78)
std::cout << "passed" << std::endl;

else
std::cout << "failed" << std::endl;

sycl::free(h_head, q);
sycl::free(d_head, q);
return 0;

}

Figure 18-9. Using oneDPL with a USM pointer

Chapter 18 Libraries

519

Alternatively, we can use std::vector with a USM allocator as shown

in Figure 18-10. With this approach, std::vector manages its own

memory (as normal) but allocates any memory it needs via an internal

call to sycl::malloc_shared. The begin() and end() member functions

then return iterators that step through a USM allocation. This style of

programming is very convenient, especially when migrating existing C++

code that already makes use of containers and algorithms.

#include <oneapi/dpl/algorithm>
#include <oneapi/dpl/execution>
#include <sycl/sycl.hpp>

int main() {
sycl::queue q;
const int n = 10;
sycl::usm_allocator<int, sycl::usm::alloc::shared> alloc(

q);
std::vector<int, decltype(alloc)> vec(n, alloc);

std::fill(oneapi::dpl::execution::make_device_policy(q),
vec.begin(), vec.end(), 78);

q.wait();

return 0;
}

Figure 18-10. Using oneDPL with a USM allocator

 Error Handling with SYCL Execution Policies
As detailed in Chapter 5, the SYCL error handling model supports two

types of errors. With synchronous errors, the runtime throws exceptions,

while asynchronous errors are only processed by an asynchronous error

handler at specified times during program execution.

For algorithms executed with SYCL-aware execution policies, the

handling of all errors (synchronous or asynchronous) is the responsibility

of the caller. Specifically,

Chapter 18 Libraries

520

• No exceptions are thrown explicitly by algorithms.

• Exceptions thrown by the runtime on the host CPU,

including SYCL synchronous exceptions, are passed

through to the caller.

• SYCL asynchronous errors are not handled by oneDPL,

so must be handled (if any handling is desired) by the

caller using the usual SYCL asynchronous exception

mechanisms.

 Summary
We should use libraries wherever possible in our heterogeneous

applications, to avoid wasting time rewriting and testing common

functions and parallel patterns. We should leverage the work of others

rather than writing everything ourselves, and we should use that approach

wherever practical to simplify application development and (often) to

realize superior performance.

This chapter has briefly introduced three sets of library functionality

that we think every SYCL developer should be familiar with:

 1. The SYCL built-in functions, for common math

operations

 2. The standard C++ library, for other common

operations

 3. The C++17 parallel algorithms (supported by

oneDPL), for complete kernels

Chapter 18 Libraries

521

With any library, it is important to understand which devices,

compilers, and implementations are tested and supported before

relying upon them in production. This is not SYCL-specific advice, but

worth remembering—the number of potential targets for a portable

programming solution like SYCL is huge, and it is our responsibility as

programmers to identify which libraries are aligned with our goals.

Open Access This chapter is licensed under the terms of

the Creative Commons Attribution 4.0 International License

(https://creativecommons.org/licenses/by/4.0/), which permits use,

sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter’s Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter’s

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 18 Libraries

https://creativecommons.org/licenses/by/4.0/

523

CHAPTER 19

Memory Model
and Atomics
Memory consistency is not an esoteric concept if we want to be parallel

programmers. It helps us to ensure that data is where we need it, when we

need it, and that its values are what we are expecting. This chapter brings

to light key things we need to master to ensure our program hums along

correctly. This topic is not unique to SYCL.

Having a basic understanding of the memory (consistency) model of

a programming language is necessary for any programmer who wants to

allow concurrent updates to memory (whether those updates originate

from multiple work-items in the same kernel, multiple devices, or both).

This is true regardless of how memory is allocated, and the content of this

chapter is equally important to us whether we choose to use buffers or

USM allocations.

In previous chapters, we have focused on the development of simple

kernels, where work-items either operate on completely independent data or

share data using structured communication patterns that can be expressed

directly using language and/or library features. As we move toward

writing more complex and realistic kernels, we are likely to encounter

situations where work-items may need to communicate in less structured

ways—understanding how the memory model relates to SYCL language

features and the capabilities of the hardware we are targeting is a necessary

precondition for designing correct, portable, and efficient programs.

© Intel Corporation 2023
J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-9691-2_19

https://doi.org/10.1007/978-1-4842-9691-2_19

524

THREADS OF EXECUTION

C++17 introduced the concept of a “thread of execution” (often referred

to simply as a “thread”) to help describe the behaviors of library features

related to parallelism and concurrency (e.g., the parallel algorithms). The C++

memory consistency model and execution model are defined entirely in terms

of interactions between these “threads.”

To simplify comparison between SYCL and C++, this chapter often uses

the term “thread” to mean “thread of execution.” A SYCL work-item is

equivalent to a C++ thread of execution with weakly parallel forward

progress guarantees, and so it is safe to use these terms interchangeably—

occasionally, we may still use “work-item” to highlight when we are

discussing SYCL-specific concepts.

The memory consistency model of C++ is sufficient for writing

applications that execute entirely on the host, but it is modified by SYCL

in order to address complexities that may arise when programming

heterogeneous systems. Specifically, we need to be able to

• Reason about which types of memory allocation

(buffers and USM) can be accessed by which devices in

the system

• Prevent unsafe concurrent memory accesses (data

races) during the execution of our kernels by using

barriers and atomics

• Enable safe communication between work-items

using barriers, fences, atomics, memory orders, and

memory scopes

ChApTer 19 MeMorY ModeL And AToMiCS

525

• Prevent optimizations that may unexpectedly alter the

behavior of parallel applications—while still allowing

other optimizations—using barriers, fences, atomics,

memory orders, and memory scopes

Memory models are a complex topic, but for a good reason—processor

architects care about making processors and accelerators execute our

codes as efficiently as possible! We have worked hard in this chapter

to break down this complexity and highlight the most critical concepts

and language features. This chapter starts us down the path of not only

knowing the memory model inside and out but also enjoying an important

aspect of parallel programming that many people do not know exists. If

questions remain after reading the descriptions and example codes here,

we highly recommend visiting the websites listed at the end of this chapter

or referring to the C++ and SYCL specifications.

 What’s in a Memory Model?
This section expands upon the motivation for programming languages to

contain a memory model and introduces a few core concepts that parallel

programmers should familiarize themselves with:

• Data races and synchronization

• Barriers and fences

• Atomic operations

• Memory ordering

Understanding these concepts at a high level is necessary to appreciate

their expression and usage in C++ with SYCL. Readers with extensive

experience in parallel programming, especially using C++, may wish to

skip ahead.

ChApTer 19 MeMorY ModeL And AToMiCS

526

 Data Races and Synchronization
The operations that we write in our programs typically do not map directly

to a single hardware instruction or micro-operation. A simple addition

operation such as data[i] += x may be broken down into a sequence of

several instructions or micro-operations:

• Load data[i] from memory into a temporary

(register).

• Compute the result of adding x to data[i].

• Store the result back to data[i].

This is not something that we need to worry about when developing

sequential applications—the three stages of the addition will be executed

in the order that we expect, as depicted in Figure 19-1.

Figure 19-1. Sequential execution of data[i] += x broken into three
separate operations

ChApTer 19 MeMorY ModeL And AToMiCS

527

Switching to parallel application development introduces an extra

level of complexity: if we have multiple operations being applied to the

same data concurrently, how can we be certain that their view of that data

is consistent? Consider the situation shown in Figure 19-2, where two

executions of data[i] += x have been interleaved on two threads. If the

two threads use different values of i, the application will execute correctly.

If they use the same value of i, both load the same value from memory,

and one of the results is overwritten by the other! This is just one of many

ways in which their operations could be scheduled, and the behavior of

our application depends on which thread gets to which data first—our

application contains a data race.

Figure 19-2. One possible interleaving of data[i] += x executed
concurrently

The code in Figure 19-3 and its output in Figure 19-4 show how easily

this can happen in practice. If M is greater than or equal to N, the value of

j used by each thread is unique; if it is not, values of j will conflict, and

updates may be lost. We say may be lost because a program containing

a data race could still produce the correct answer some or all the time

(depending on how work is scheduled by the implementation and

hardware). Neither the compiler nor the hardware can possibly know

ChApTer 19 MeMorY ModeL And AToMiCS

528

what this program is intended to do or what the values of N and M may be at

runtime—it is our responsibility as programmers to understand whether

our programs may contain data races and whether they are sensitive to

execution order.

int* data = malloc_shared<int>(N, q);
std::fill(data, data + N, 0);

q.parallel_for(N, [=](id<1> i) {
int j = i % M;
data[j] += 1;

}).wait();

for (int i = 0; i < N; ++i) {
std::cout << "data [" << i << "] = " << data[i] << "\n";

}

Figure 19-3. Kernel containing a data race

N = 2, M = 2:
data [0] = 1
data [1] = 1

N = 2, M = 1:
data [0] = 1
data [1] = 0

Figure 19-4. Sample output of the code in Figure 19-3 for small
values of N and M

In general, when developing massively parallel SYCL applications,

we should not concern ourselves with the exact order in which individual

work-items execute—there are hopefully hundreds (or thousands!) of

work-items in each of our kernels, and trying to impose a specific ordering

upon them will negatively impact both scalability and performance.

Rather, our focus should be on developing portable applications that

execute correctly, which we can achieve by providing the compiler

(and hardware) with information about when work-items share data,

what guarantees are needed when sharing occurs, and which execution

orderings are legal.

ChApTer 19 MeMorY ModeL And AToMiCS

529

Massively parallel applications should not be concerned with the
exact order in which individual work-items execute!

 Barriers and Fences
One way to prevent data races between work-items in the same group is

to introduce synchronization across different threads using work-group

barriers and appropriate memory fences. We could use a work-group

barrier to order our updates of data[i] as shown in Figure 19-5, and an

updated version of our example kernel is given in Figure 19-6. Note that

because a work-group barrier does not synchronize work-items in different

groups, our simple example is only guaranteed to execute correctly if we

limit ourselves to a single work-group!

Figure 19-5. Two executions of data[i] += x separated by a barrier

ChApTer 19 MeMorY ModeL And AToMiCS

530

int* data = malloc_shared<int>(N, q);
std::fill(data, data + N, 0);

// Launch exactly one work-group
// Number of work-groups = global / local
range<1> global{N};
range<1> local{N};

q.parallel_for(nd_range<1>{global, local},
[=](nd_item<1> it) {

int i = it.get_global_id(0);
int j = i % M;
for (int round = 0; round < N; ++round) {

// Allow exactly one work-item update
// per round
if (i == round) {
data[j] += 1;

}
group_barrier(it.get_group());

}
})

.wait();

for (int i = 0; i < N; ++i) {
std::cout << "data [" << i << "] = " << data[i] << "\n";

}

Figure 19-6. Avoiding a data race using a barrier

Although using a barrier to implement this pattern is possible, it is

not typically encouraged—it forces the work-items in a group to execute

sequentially and in a specific order, which may lead to long periods of

inactivity in the presence of load imbalance. It may also introduce more

synchronization than is strictly necessary—if the different work-items

happen to use different values of i, they will still be forced to synchronize

at the barrier.

Barrier synchronization is a useful tool for ensuring that all work-items

in a work-group or sub-group complete some stage of a kernel before

proceeding to the next stage, but is too heavy-handed for fine-grained

(and potentially data-dependent) synchronization. For more general

synchronization patterns, we must look to atomic operations.

ChApTer 19 MeMorY ModeL And AToMiCS

531

 Atomic Operations
Atomic operations enable concurrent access to a memory location without

introducing a data race. When multiple atomic operations access the same

memory, they are guaranteed not to overlap. Note that this guarantee

does not apply if only some of the accesses use atomics and that it is our

responsibility as programmers to ensure that we do not concurrently

access the same data using operations with different atomicity guarantees.

Mixing atomic and non-atomic operations on the same memory
location(s) at the same time results in undefined behavior!

If our simple addition is expressed using atomic operations, the result

may look like Figure 19-8—each update is now an indivisible chunk of

work, and our application will always produce the correct result. The

corresponding code is shown in Figure 19-7—we will revisit the atomic_

ref class and the meaning of its template arguments later in the chapter.

int* data = malloc_shared<int>(N, q);
std::fill(data, data + N, 0);

q.parallel_for(N, [=](id<1> i) {
int j = i % M;
atomic_ref<int, memory_order::relaxed,

memory_scope::system,
access::address_space::global_space>

atomic_data(data[j]);
atomic_data += 1;

}).wait();

for (int i = 0; i < N; ++i) {
std::cout << "data [" << i << "] = " << data[i] << "\n";

}

Figure 19-7. Avoiding a data race using atomic operations

ChApTer 19 MeMorY ModeL And AToMiCS

532

Figure 19-8. An interleaving of data[i] += x executed concurrently
with atomic operations

However, it is important to note that this is still only one possible

execution order. Using atomic operations guarantees that the two updates

do not overlap (if both threads use the same value of i), but there is still

no guarantee as to which of the two threads will execute first. Even more

importantly, there are no guarantees about how these atomic operations

are ordered with respect to any non-atomic operations in different threads.

 Memory Ordering
Even within a sequential application, optimizing compilers and the

hardware are free to reorder operations if they do not change the

observable behavior of an application. In other words, the application

must behave as if it ran exactly as it was written by the programmer.

ChApTer 19 MeMorY ModeL And AToMiCS

533

Unfortunately, this as-if guarantee is not strong enough to help us

reason about the execution of parallel programs. We now have two sources

of reordering to worry about: the compiler and hardware may reorder the

execution of statements within each sequential thread, and the threads

themselves may be executed in any (possibly interleaved) order. To design

and implement safe communication protocols between threads, we need

to be able to constrain this reordering. By providing the compiler with

information about our desired memory order, we can prevent reordering

optimizations that are incompatible with the intended behavior of our

applications.

Three commonly available memory orderings are:

 1. A relaxed memory ordering

 2. An acquire-release or release-acquire memory

ordering

 3. A sequentially consistent memory ordering

Under a relaxed memory ordering, memory operations can be

reordered without any restrictions. The most common usage of a relaxed

memory model is incrementing shared variables (e.g., a single counter, an

array of values during a histogram computation).

Under an acquire-release memory ordering, one thread releasing an

atomic variable and another thread acquiring the same atomic variable

acts as a synchronization point between those two threads and guarantees

that any prior writes to memory issued by the releasing thread are visible

to the acquiring thread. Informally, we can think of atomic operations

releasing side effects from other memory operations to other threads or

acquiring the side effects of memory operations on other threads. Such

a memory model is required if we want to communicate values between

pairs of threads via memory, which may be more common than we would

think. When a program acquires a lock, it typically goes on to perform

some additional calculations and modify some memory before eventually

ChApTer 19 MeMorY ModeL And AToMiCS

534

releasing the lock—only the lock variable is ever updated atomically, but

we expect memory updates guarded by the lock to be protected from

data races. This behavior relies on an acquire-release memory ordering

for correctness, and attempting to use a relaxed memory ordering to

implement a lock will not work.

Under a sequentially consistent memory ordering, the guarantees

of acquire-release ordering still hold, but there additionally exists a

single global order of all atomic operations. The behavior of this memory

ordering is the most intuitive of the three and the closest that we can get to

the original as-if guarantee we are used to relying upon when developing

sequential applications. With sequential consistency, it becomes

significantly easier to reason about communication between groups

(rather than pairs) of threads, since all threads must agree on the global

ordering of all atomic operations.

Understanding which memory orders are supported by a combination

of programming model and device is a necessary part of designing

portable parallel applications. Being explicit in describing the memory

order required by our applications ensures that they fail predictably

(e.g., at compile time) when the behavior we require is unsupported and

prevents us from making unsafe assumptions.

 The Memory Model
The chapter so far has introduced the concepts required to understand the

memory model. The remainder of the chapter explains the memory model

in detail, including

• How to express the memory ordering requirements of

our kernels

• How to query the memory orders supported by a

specific device

ChApTer 19 MeMorY ModeL And AToMiCS

535

• How the memory model behaves with respect to

disjoint address spaces and multiple devices

• How the memory model interacts with barriers, fences,

and atomics

• How using atomic operations differs between

buffers and USM

The memory model is based on the memory model of C++ but differs

in some important ways. These differences reflect our long-term vision

that SYCL should help inform the future of C++: the default behaviors and

naming of classes are closely aligned with the C++ standard library and are

intended to extend C++ functionality rather than to restrict it.

The table in Figure 19-9 summarizes how different memory model

concepts are exposed as language features in C++ (C++11, C++14, C++17,

C++20) vs. SYCL. The C++14, C++17, and C++20 standards additionally

include some clarifications that impact implementations of C++. These

clarifications should not affect the application code that we write, so we do

not cover them here.

ChApTer 19 MeMorY ModeL And AToMiCS

536

Feature C++ SYCL
Atomic Objects std::atomic Not available.

Atomic

References
std::atomic_ref (C++20 onwards) sycl::atomic_ref

Memory Orders

relaxed
consume
acquire
release
acq_rel
seq_cst

relaxed

acquire
release
acq_rel
seq_cst

Memory Scopes

Not available.

Behavior of atomics and fences

matches SYCL system scope.

work_item
sub_group
work_group
device
system

std::atomic_thread_fence sycl::atomic_fence
std::barrier sycl::group_barrier

Figure 19-9. Comparing C++ and SYCL memory models

 The memory_order Enumeration Class
The memory model exposes different memory orders through five

values of the memory_order enumeration class (note: C++ “consume”

is not part of SYCL), which can be supplied as arguments to fences and

atomic operations. Supplying a memory order argument to an operation

tells the compiler what memory ordering guarantees are required for all

other memory operations (to any address) relative to that operation, as

explained in the following:

• memory_order::relaxed

Read and write operations can be reordered before

or after the operation with no restrictions. There are

no ordering guarantees.

ChApTer 19 MeMorY ModeL And AToMiCS

537

• memory_order::acquire

Read and write operations appearing after the

operation in the program must occur after it (i.e.,

they cannot be reordered before the operation).

• memory_order::release

Read and write operations appearing before the

operation in the program must occur before it (i.e.,

they cannot be reordered after the operation),

and preceding write operations are guaranteed to

be visible to other work-items which have been

synchronized by a corresponding acquire operation

(i.e., an atomic operation using the same variable

and memory_order::acquire or a barrier function).

• memory_order::acq_rel

The operation acts as both an acquire and a release.

Read and write operations cannot be reordered

around the operation, and preceding writes must

be made visible as previously described for memory_

order::release.

• memory_order::seq_cst

The operation acts as an acquire, release, or

both depending on whether it is a read, write, or

read–modify–write operation, respectively. All

operations with this memory order are observed in a

sequentially consistent order.

There are several restrictions on which memory orders are supported

by each operation. The table in Figure 19-10 summarizes which

combinations are valid.

ChApTer 19 MeMorY ModeL And AToMiCS

538

Figure 19-10. Supporting atomic operations with memory_order

Load operations do not write values to memory and are therefore

incompatible with release semantics. Similarly, store operations do not

read values from memory and are therefore incompatible with acquire

semantics. The remaining read–modify–write atomic operations and

fences are compatible with all memory orderings.

MEMORY ORDER IN C++

The C++ memory model additionally includes memory_order::consume,

with similar behavior to memory_order::acquire. however, C++17

discourages its use, noting that its definition is being revised. its inclusion in

SYCL has therefore been left to consider for a future specification.

 The memory_scope Enumeration Class
The C++ memory model assumes that applications execute on a single

device with a single address space. Neither of these assumptions holds for

SYCL applications: various parts of the application execute on different

ChApTer 19 MeMorY ModeL And AToMiCS

539

devices (i.e., a host and one or more accelerator devices); each device has

multiple address spaces (i.e., private, local, and global); and the global

address space of each device may or may not be disjoint (depending on

USM support).

To address this, SYCL extends the C++ notion of memory order to

include the scope of an atomic operation, denoting the minimum set of

work-items to which a given memory ordering constraint applies. The set

of scopes are defined by way of a memory_scope enumeration class:

• memory_scope::work_item

The memory ordering constraint applies only to

the calling work-item. This scope is only useful for

image operations, as all other operations within

a work-item are already guaranteed to execute in

program order.

• memory_scope::sub_group, memory_scope::work_group

The memory ordering constraint applies only to

work- items in the same sub-group or work-group as

the calling work-item.

• memory_scope::device

The memory ordering constraint applies only to

work- items executing on the same device as the

calling work-item.

• memory_scope::system

The memory ordering constraint applies to all work-

items in the system.

ChApTer 19 MeMorY ModeL And AToMiCS

540

Barring restrictions imposed by the capabilities of a device, all memory

scopes are valid arguments to all atomic and fence operations. However, a

scope argument may be automatically demoted to a narrower scope in one

of three situations:

 1. If an atomic operation updates a value in work-

group local memory, any scope broader than

memory_scope::work_group is narrowed (because

local memory is only visible to work-items in the

same work-group).

 2. If a device does not support USM, specifying

memory_scope::system is always equivalent to

memory_scope::device (because buffers cannot be

accessed concurrently by multiple devices).

 3. If an atomic operation uses memory_order::relaxed,

there are no ordering guarantees, and the memory

scope argument is effectively ignored.

 Querying Device Capabilities
To ensure compatibility with devices supported by previous versions of

SYCL and to maximize portability, SYCL supports OpenCL 1.2 devices

and other hardware that may not be capable of supporting the full C++

memory model (e.g., certain classes of embedded devices). SYCL provides

device queries to help us reason about the memory order(s) and memory

scope(s) supported by the devices available in a system:

• atomic_memory_order_capabilities

Return a list of all memory orderings supported

by atomic operations on a specific device.

All devices are required to support at least

memory_order::relaxed.

ChApTer 19 MeMorY ModeL And AToMiCS

541

• atomic_fence_order_capabilities

Return a list of all memory orderings supported

by fence operations on a specific device.

All devices are required to support at least

memory_order::relaxed, memory_order::acquire,

memory_order::release, and memory_order::acq_rel.

Note that the minimum requirement for fences is

stronger than the minimum requirement for atomic

operations, since such fences are essential for

reasoning about memory order in the presence of

barriers.

• atomic_memory_scope_capabilities

 atomic_fence_scope_capabilities

Return a list of all memory scopes supported by

atomic and fence operations on a specific device.

All devices are required to support at least

memory_order::work_group.

It may be difficult at first to remember which memory orders and

scopes are supported for which combinations of function and device

capability. In practice, we can avoid much of this complexity by following

one of the two development approaches outlined in the following:

 1. Develop applications with sequential consistency
and system fences.

Only consider adopting less strict memory orders

during performance tuning.

ChApTer 19 MeMorY ModeL And AToMiCS

542

 2. Develop applications with relaxed consistency
and work- group fences.

Only consider adopting more strict memory orders

and broader memory scopes where required for

correctness.

The first approach ensures that the semantics of all atomic operations

and fences match the default behavior of C++. This is the simplest and

least error-prone option but has the worst performance and portability

characteristics.

The second approach is more aligned with the default behavior of

previous versions of SYCL and languages like OpenCL. Although more

complicated—since it requires that we become more familiar with the

different memory orders and scopes—it ensures that the majority of the

SYCL code we write will work on any device without performance penalties.

 Barriers and Fences
All previous usages of barriers and fences in the book so far have ignored

the issue of memory order and scope, by relying on default behavior.

By default, every group barrier in SYCL acts as an acquire-release

fence to all address spaces accessible by the calling work-item and makes

preceding writes visible to at least all other work-items in the same group

(as defined by the group’s fence_scope member variable). This ensures

memory consistency within a group of work-items after a barrier, in line

with our intuition of what it means to synchronize (and the definition of

the synchronizes-with relation in C++). It is possible to override this default

behavior by passing an explicit memory_scope argument to the group_

barrier function.

The atomic_fence function gives us even more fine-grained control

than this, allowing work-items to execute fences specifying both a memory

order and scope.

ChApTer 19 MeMorY ModeL And AToMiCS

543

 Atomic Operations in SYCL
SYCL provides support for many kinds of atomic operations on a variety

of data types. All devices are guaranteed to support atomic versions of

common operations (e.g., loads, stores, arithmetic operators), as well as

the atomic compare-and-swap operations required to implement lock-free

algorithms. The language defines these operations for all fundamental

integer, floating-point, and pointer types—all devices must support these

operations for 32-bit types, but 64-bit-type support is optional.

 The atomic Class

The std::atomic class from C++11 provides an interface for creating and

operating on atomic variables. Instances of the atomic class own their

data, cannot be moved or copied, and can only be updated using atomic

operations. These restrictions significantly reduce the chances of using the

class incorrectly and introducing undefined behavior. Unfortunately, they

also prevent the class from being used in SYCL kernels—it is impossible to

create atomic objects on the host and transfer them to the device! We are

free to continue using std::atomic in our host code, but attempting to use

it inside of device kernels will result in a compiler error.

ATOMIC CLASS DEPRECATED IN SYCL 2020

The SYCL 1.2.1 specification included a cl::sycl::atomic class that

is loosely based on the std::atomic class from C++11. We say loosely

because there are some differences between the interfaces of the two classes,

most notably that the SYCL 1.2.1 version does not own its data and defaults to

a relaxed memory ordering.

The cl::sycl::atomic class is deprecated in SYCL 2020. The

atomic_ref class (covered in the next section) should be used in its place.

ChApTer 19 MeMorY ModeL And AToMiCS

544

 The atomic_ref Class

The std::atomic_ref class from C++20 provides an alternative interface

for atomic operations which provides greater flexibility than std::atomic.

The biggest difference between the two classes is that instances of

std::atomic_ref do not own their data but are instead constructed from

an existing non-atomic variable. Creating an atomic reference effectively

acts as a promise that the referenced variable will only be accessed

atomically for the lifetime of the reference. These are exactly the semantics

needed by SYCL, since they allow us to create non-atomic data on the host,

transfer that data to the device, and treat it as atomic data only after it has

been transferred. The atomic_ref class used in SYCL kernels is therefore

based on std::atomic_ref.

We say based on because the SYCL version of the class includes three

additional template arguments as shown in Figure 19-11.

template <typename T, memory_order DefaultOrder,
memory_scope DefaultScope,
access::address_space AddressSpace>

class atomic_ref {
public:
using value_type = T;
static constexpr size_t required_alignment =

/* implementation-defined */;
static constexpr bool is_always_lock_free =

/* implementation-defined */;
static constexpr memory_order default_read_order =

memory_order_traits<DefaultOrder>::read_order;
static constexpr memory_order default_write_order =

memory_order_traits<DefaultOrder>::write_order;
static constexpr memory_order

default_read_modify_write_order = DefaultOrder;
static constexpr memory_scope default_scope =

DefaultScope;

explicit atomic_ref(T& obj);
atomic_ref(const atomic_ref& ref) noexcept;

};

Figure 19-11. Constructors and static members of the atomic_ref class

ChApTer 19 MeMorY ModeL And AToMiCS

545

As discussed previously, the capabilities of different SYCL devices

are varied. Selecting a default behavior for the atomic classes of SYCL is a

difficult proposition: defaulting to C++ behavior (i.e., memory_order::seq_

cst, memory_scope::system) limits code to executing only on the most

capable of devices; on the other hand, breaking with C++ conventions

and defaulting to the lowest common denominator (i.e., memory_

order::relaxed, memory_scope::work_group) could lead to unexpected

behavior when migrating existing C++ code. The design adopted by SYCL

offers a compromise, allowing us to define our desired default behavior

as part of an object’s type (using the DefaultOrder and DefaultScope

template arguments). Other orderings and scopes can be provided as

runtime arguments to specific atomic operations as we see fit—the

DefaultOrder and DefaultScope only impact operations where we do

not or cannot override the default behavior (e.g., when using a shorthand

operator like +=). The final (optional) template argument denotes the

address space in which the referenced object is allocated. Note that if the

final template argument is not specified, the referenced variable can be

allocated in any address space—although specifying an address space

here is optional, we recommend providing explicit address spaces (where

possible) to give compilers more information and to avoid unwanted

performance overheads.

An atomic reference provides support for different operations

depending on the type of object that it references. The basic operations

supported by all types are shown in Figure 19-12, providing the ability to

atomically move data to and from memory.

ChApTer 19 MeMorY ModeL And AToMiCS

546

void store(
T operand, memory_order order = default_write_order,
memory_scope scope = default_scope) const noexcept;

T operator=(
T desired) const noexcept; // equivalent to store

T load(memory_order order = default_read_order,
memory_scope scope = default_scope) const noexcept;

operator T() const noexcept; // equivalent to load

T exchange(
T operand,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

bool compare_exchange_weak(
T &expected, T desired, memory_order success,
memory_order failure,
memory_scope scope = default_scope) const noexcept;

bool compare_exchange_weak(
T &expected, T desired,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

bool compare_exchange_strong(
T &expected, T desired, memory_order success,
memory_order failure,
memory_scope scope = default_scope) const noexcept;

bool compare_exchange_strong(
T &expected, T desired,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

Figure 19-12. Basic operations with atomic_ref for all types

Atomic references to objects of integral and floating-point types extend

the set of available atomic operations to include arithmetic operations, as

shown in Figure 19-13 and Figure 19-14. Devices are required to support

atomic floating-point types irrespective of whether they feature native

support for floating-point atomics in hardware, and many devices are

expected to emulate atomic floating-point addition using an atomic

compare exchange. This emulation is an important part of providing

ChApTer 19 MeMorY ModeL And AToMiCS

547

performance and portability in SYCL, and we should feel free to use

floating-point atomics anywhere that an algorithm requires them—the

resulting code will work correctly everywhere and will benefit from future

improvements in floating-point atomic hardware without any modification!

Integral fetch_add(
Integral operand,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

Integral fetch_sub(
Integral operand,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

Integral fetch_and(
Integral operand,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

Integral fetch_or(
Integral operand,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

Integral fetch_min(
Integral operand,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

Integral fetch_max(
Integral operand,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

Integral operator++(int) const noexcept;
Integral operator--(int) const noexcept;
Integral operator++() const noexcept;
Integral operator--() const noexcept;
Integral operator+=(Integral) const noexcept;
Integral operator-=(Integral) const noexcept;
Integral operator&=(Integral) const noexcept;
Integral operator|=(Integral) const noexcept;

Figure 19-13. Additional operations with atomic_ref only for
integral types

ChApTer 19 MeMorY ModeL And AToMiCS

548

Floating fetch_add(
Floating operand,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

Floating fetch_sub(
Floating operand,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

Floating fetch_min(
Floating operand,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

Floating fetch_max(
Floating operand,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

Floating operator+=(Floating) const noexcept;
Floating operator-=(Floating) const noexcept;

Figure 19-14. Additional operations with atomic_ref only for
floating-point types

 Using Atomics with Buffers
As discussed in the previous section, there is no way in SYCL to allocate

atomic data and move it between the host and device. To use atomic

operations in conjunction with buffers, we must create a buffer of non-

atomic data to be transferred to the device and then access that data

through an atomic reference.

ChApTer 19 MeMorY ModeL And AToMiCS

549

q.submit([&](handler& h) {
accessor acc{buf, h};
h.parallel_for(N, [=](id<1> i) {

int j = i % M;
atomic_ref<int, memory_order::relaxed,

memory_scope::system,
access::address_space::global_space>

atomic_acc(acc[j]);
atomic_acc += 1;

});
});

Figure 19-15. Accessing a buffer via an explicitly created atomic_ref

The code in Figure 19-15 is an example of expressing atomicity in

SYCL using an explicitly created atomic reference object. The buffer stores

normal integers, and we require an accessor with both read and write

permissions. We can then create an instance of atomic_ref for each data

access, using the += operator as a shorthand alternative for the fetch_add

member function.

This pattern is useful if we want to mix atomic and non-atomic

accesses to a buffer within the same kernel, to avoid paying the

performance overheads of atomic operations when they are not required.

If we know that only a subset of the memory locations in the buffer will

be accessed concurrently by multiple work-items, we only need to use

atomic references when accessing that subset. Or, if we know that work-

items in the same work-group only concurrently access local memory

during one stage of a kernel (i.e., between two work-group barriers),

we only need to use atomic references during that stage. When mixing

atomic and non-atomic accesses like this, it is important to pay attention

to object lifetimes—while any atomic_ref referencing a specific object

exists, all accesses to that object must occur (atomically) via an instance of

atomic_ref.

ChApTer 19 MeMorY ModeL And AToMiCS

550

 Using Atomics with Unified Shared Memory
As shown in Figure 19-16 (reproduced from Figure 19-7), we can construct

atomic references from data stored in USM in exactly the same way as we

could for buffers. Indeed, the only difference between this code and the

code shown in Figure 19-15 is that the USM code does not require buffers

or accessors.

q.parallel_for(N, [=](id<1> i) {
int j = i % M;
atomic_ref<int, memory_order::relaxed,

memory_scope::system,
access::address_space::global_space>

atomic_data(data[j]);
atomic_data += 1;

}).wait();

Figure 19-16. Accessing a USM allocation via an explicitly created
atomic_ref

 Using Atomics in Real Life
The potential usages of atomics are so broad and varied that it would be

impossible for us to provide an example of each usage in this book. We

have included two representative examples, with broad applicability across

domains:

 1. Computing a histogram

 2. Implementing device-wide synchronization

ChApTer 19 MeMorY ModeL And AToMiCS

551

 Computing a Histogram
The code in Figure 19-17 demonstrates how to use relaxed atomics in

conjunction with work-group barriers to compute a histogram. The kernel

is split by the barriers into three phases, each with their own atomicity

requirements. Remember that the barrier acts both as a synchronization

point and an acquire-release fence—this ensures that any reads and writes

in one phase are visible to all work-items in the work-group in later phases.

The first phase sets the contents of some work-group local memory to

zero. The work-items in each work-group update independent locations in

work-group local memory by design—race conditions cannot occur, and

no atomicity is required.

The second phase accumulates partial histogram results in local

memory. Work-items in the same work-group may update the

same locations in work-group local memory, but synchronization

can be deferred until the end of the phase—we can satisfy the

atomicity requirements using memory_order::relaxed and memory_

scope::work_group.

The third phase contributes the partial histogram results to the

total stored in global memory. Work-items in the same work-group are

guaranteed to read from independent locations in work-group local

memory, but may update the same locations in global memory—we

no longer require atomicity for the work-group local memory and can

satisfy the atomicity requirements for global memory using memory_

order::relaxed and memory_scope::system as before.

ChApTer 19 MeMorY ModeL And AToMiCS

552

q.submit([&](handler& h) {
auto local = local_accessor<uint32_t, 1>{B, h};
h.parallel_for(

nd_range<1>{num_groups * num_items, num_items},
[=](nd_item<1> it) {
auto grp = it.get_group();

// Phase 1: Work-items co-operate to zero local
// memory
for (int32_t b = it.get_local_id(0); b < B;

b += it.get_local_range(0)) {
local[b] = 0;

}
group_barrier(grp); // Wait for all to be zeroed

// Phase 2: Work-groups each compute a chunk of
// the input. Work-items co-operate to compute
// histogram in local memory
const auto [group_start, group_end] =

distribute_range(grp, N);
for (int i = group_start + it.get_local_id(0);

i < group_end; i += it.get_local_range(0)) {
int32_t b = input[i] % B;
atomic_ref<uint32_t, memory_order::relaxed,

memory_scope::work_group,
access::address_space::local_space>(local[b])++;

}
group_barrier(

grp); // Wait for all local histogram
// updates to complete

// Phase 3: Work-items co-operate to update
// global memory
for (int32_t b = it.get_local_id(0); b < B;

b += it.get_local_range(0)) {
atomic_ref<uint32_t, memory_order::relaxed, memory_scope::system,

access::address_space::global_space>(histogram[b]) +=
local[b];

}
});

}).wait();

Figure 19-17. Computing a histogram using atomic references in
different memory spaces

ChApTer 19 MeMorY ModeL And AToMiCS

553

 Implementing Device-Wide Synchronization
Back in Chapter 4, we warned against writing kernels that attempt to

synchronize work-items across work-groups. However, we fully expect

several readers of this chapter will be itching to implement their own

device-wide synchronization routines atop of atomic operations and that

our warnings will be ignored.

device-wide synchronization is currently not portable and is best left
to expert programmers. Future versions of SYCL will address this.

The code discussed in this section is dangerous and should not be

expected to work on all devices, because of potential differences in device

hardware features and SYCL implementations. The memory ordering

guarantees provided by atomics are orthogonal to forward progress

guarantees, and, at the time of writing, work-group scheduling in SYCL

is completely implementation-defined. Formalizing the concepts and

terminology required to describe SYCL’s ND-range execution model and

the forward progress guarantees associated with work-items, sub-groups,

and work-groups is currently an area of active academic research—future

versions of SYCL are expected to build on this work to provide additional

scheduling queries and controls. For now, these topics should be

considered expert-only.

Figure 19-18 shows a simple implementation of a device-wide latch (a

single-use barrier), and Figure 19-19 shows a simple example of its usage.

Each work-group elects a single work-item to signal arrival of the group

at the latch and await the arrival of other groups using a naïve spin-loop,

while the other work-items wait for the elected work-item using a work-

group barrier. It is this spin-loop that makes device-wide synchronization

unsafe; if any work-groups have not yet begun executing or the currently

executing work-groups are not scheduled fairly, the code may deadlock.

ChApTer 19 MeMorY ModeL And AToMiCS

554

relying on memory order alone to implement synchronization
primitives may lead to deadlocks in the absence of sufficiently strong
forward progress guarantees!

For the code to work correctly, the following three conditions

must hold:

 1. The atomic operations must use memory orders at

least as strict as those shown, to guarantee that the

correct fences are generated.

 2. The elected leader of each work-group in the ND-

range must make progress independently of the

leaders in other work-groups, to avoid a single

work-item spinning in the loop from starving other

work-items that have yet to increment the counter.

 3. The device must be capable of executing all work-

groups in the ND- range simultaneously, with strong

forward progress guarantees, in order to ensure that

the elected leaders of every work-group in the ND-

range eventually reach the latch.

ChApTer 19 MeMorY ModeL And AToMiCS

555

struct device_latch {
 explicit device_latch(size_t num_groups)
 : counter(0), expected(num_groups) {}

 template <int Dimensions>
 void arrive_and_wait(nd_item<Dimensions>& it) {
 auto grp = it.get_group();
 group_barrier(grp);
 // Elect one work-item per work-group to be involved in
 // the synchronization. All other work-items wait at the
 // barrier after the branch.
 if (grp.leader()) {
 atomic_ref<size_t, memory_order::acq_rel,
 memory_scope::device,
 access::address_space::global_space>
 atomic_counter(counter);

 // Signal arrival at the barrier.
 // Previous writes should be visible to all work-items
 // on the device.
 atomic_counter++;

 // Wait for all work-groups to arrive.
 // Synchronize with previous releases by all
 // work-items on the device.
 while (atomic_counter.load() != expected) {
 }
 }
 group_barrier(grp);
 }

 size_t counter;
 size_t expected;
};

Figure 19-18. Building a simple device-wide latch on top of atomic
references

ChApTer 19 MeMorY ModeL And AToMiCS

556

Figure 19-19. Using the device-wide latch from Figure 19-18

Although this code is not guaranteed to be portable, we have included

it here to highlight two key points: (1) SYCL is expressive enough to enable

device-specific tuning, sometimes at the expense of portability; and (2)

SYCL already contains the building blocks necessary to implement higher-

level synchronization routines, which may be included in a future version

of the language.

 Summary
This chapter provided a high-level introduction to memory model and

atomic classes. Understanding how to use (and how not to use!) these

classes is key to developing correct, portable, and efficient parallel programs.

Memory models are an overwhelmingly complex topic, and our

focus here has been on establishing a base for writing real applications. If

more information is desired, there are several websites, books, and talks

dedicated to memory models referenced in the following.

ChApTer 19 MeMorY ModeL And AToMiCS

557

 For More Information
• A. Williams, C++ Concurrency in Action: Practical

Multithreading, Manning, 2012, 978-1933988771

• H. Sutter, “atomic<> Weapons: The C++ Memory Model

and Modern Hardware”, herbsutter.com/2013/02/11/

atomic-weapons-the-c-memory-model-and-modern-

hardware/

• H-J. Boehm, “Temporarily discourage memory_order_

consume,” wg21.link/p0371

• C++ Reference, “std::atomic,” en.cppreference.com/w/

cpp/atomic/atomic

• C++ Reference, “std::atomic_ref,” en.cppreference.

com/w/cpp/atomic/atomic_ref

Open Access This chapter is licensed under the terms of

the Creative Commons Attribution 4.0 International License

(https://creativecommons.org/licenses/by/4.0/), which permits use,

sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter’s Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter’s

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

ChApTer 19 MeMorY ModeL And AToMiCS

https://herbsutter.com/2013/02/11/atomic-weapons-the-c-memory-model-and-modern-hardware/
https://herbsutter.com/2013/02/11/atomic-weapons-the-c-memory-model-and-modern-hardware/
https://herbsutter.com/2013/02/11/atomic-weapons-the-c-memory-model-and-modern-hardware/
https://wg21.link/p0371
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic_ref
https://en.cppreference.com/w/cpp/atomic/atomic_ref
https://creativecommons.org/licenses/by/4.0/

559

CHAPTER 20

Backend
Interoperability
In this chapter we will learn about backend interoperability, a SYCL feature

that can incrementally add SYCL to an application that is already using

other data parallel techniques or APIs.

We will also learn how backend interoperability can be used by expert

programmers familiar with low-level APIs to “peek behind the curtain”

and use underlying data parallel APIs from SYCL programs directly. This

provides direct access to API-specific features, when necessary, while

retaining the portability and ease-of-use benefits of SYCL otherwise.

 What Is Backend Interoperability?
So far in this book we have referred to SYCL programs running on SYCL

devices, but in practice many SYCL implementations build upon lower-

level APIs such as OpenCL, Level Zero, CUDA, or others to access the

parallel hardware in a system. When a SYCL implementation is built upon

a lower-level API, we refer to the target API as a SYCL backend. Figure 20-1

shows the relationship between SYCL backends, platforms, and devices.

Most SYCL implementations can run SYCL programs on multiple SYCL

backends simultaneously to utilize all the parallel hardware in a system.

© Intel Corporation 2023
J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-9691-2_20

https://doi.org/10.1007/978-1-4842-9691-2_20

560

Figure 20-1. Relationship between SYCL backends, platforms,
and devices

We can query the SYCL backends in a system by first querying the

SYCL platforms and then querying the SYCL backend associated with

each platform, as shown in Figure 20-2. The output from this program will

depend on the number and type of SYCL devices in a system. If the same

device is supported by different SYCL backends, it may enumerate as a

SYCL device for each backend.

#include <iostream>
#include <sycl/sycl.hpp>
using namespace sycl;

int main() {
for (auto& p : platform::get_platforms()) {

std::cout << "SYCL Platform: "
<< p.get_info<info::platform::name>()
<< " is associated with SYCL Backend: "
<< p.get_backend() << std::endl;

}
return 0;

}

Example Output:
SYCL Platform: Portable Computing Language is associated with SYCL Backend: opencl
SYCL Platform: Intel(R) OpenCL HD Graphics is associated with SYCL Backend: opencl
SYCL Platform: Intel(R) OpenCL is associated with SYCL Backend: opencl
SYCL Platform: Intel(R) FPGA Emulation Platform for OpenCL(TM) is associated with SYCL
Backend: opencl
SYCL Platform: Intel(R) Level-Zero is associated with SYCL Backend:
ext_oneapi_level_zero
SYCL Platform: NVIDIA CUDA BACKEND is associated with SYCL Backend: ext_oneapi_cuda
SYCL Platform: AMD HIP BACKEND is associated with SYCL Backend: ext_oneapi_hip

Figure 20-2. Querying the SYCL backend for a SYCL platform

Chapter 20 BaCkend InteroperaBIlIty

561

The associated backend can be queried for most SYCL objects, not

just for SYCL platforms. For example, we can also query the associated

backend for a SYCL device, a SYCL context, or a SYCL queue.

Backend interoperability lets us use knowledge of the associated

backend to interact with and manipulate underlying native backend objects

that represent SYCL objects for the associated backend.

 When Is Backend Interoperability Useful?
Many SYCL programmers will never need to use backend interoperability.

In fact, using backend interoperability may be undesirable; backend

interoperability will frequently either make a program more complex

because it requires multiple code paths for multiple SYCL backends, or

it will make a program less portable because it will restrict execution to

devices with a single associated backend.

Still, backend interoperability is a useful tool to have in our toolbox

to solve some specific problems. In this section we will explore several

common use cases where backend interoperability is useful.

BACKEND INTEROPERABILITY IS LIKE AN INLINE ASSEMBLER

a useful mental model for backend interoperability is that backend

interoperability is to SyCl as inline assembler is to C++ host code: backend

interoperability is not necessary for learning SyCl or being productive with

SyCl, and backend interoperability is often undesirable because it increases

complexity or decreases portability. nevertheless, it is a useful tool to have in

our toolbox to solve specific problems.

Chapter 20 BaCkend InteroperaBIlIty

562

 Adding SYCL to an Existing Codebase
The SYCL programs in this book are designed to teach specific SYCL

concepts so they are intentionally straightforward and short. By contrast,

most real-world software is large and complex, consisting of thousands or

millions of lines of code, perhaps developed by many people over many

years. Even if we wanted to do so, completely rewriting a large application

to use SYCL may not be feasible.

One of the key benefits provided by backend interoperability is the

ability to incrementally add SYCL to an existing codebase that is already

using a low-level API, by creating SYCL objects from native backend

objects for that API. For example, let’s say we have a large OpenCL

application that creates an OpenCL context and OpenCL memory objects.

Backend interoperability has templated functions like make_context

and make_buffer which let us seamlessly create SYCL objects from these

OpenCL objects. After creating SYCL objects from the OpenCL objects,

they can be used by SYCL queues and SYCL kernels just like any other

SYCL object, as shown in Figure 20-3.

// Create SYCL objects from the native backend objects.
context c =

make_context<backend::opencl>(openclContext);
device d = make_device<backend::opencl>(openclDevice);
buffer data_buf =

make_buffer<backend::opencl, int>(openclBuffer, c);

// Now use the SYCL objects to create a queue and submit
// a kernel.
queue q{c, d};

q.submit([&](handler& h) {
accessor data_acc{data_buf, h};
h.parallel_for(size, [=](id<1> i) {

data_acc[i] = data_acc[i] + 1;
});

}).wait();

Figure 20-3. Creating SYCL objects from OpenCL objects

Chapter 20 BaCkend InteroperaBIlIty

563

The SYCL 2020 specification only defines interoperability with OpenCL

backends, but SYCL implementations may provide interoperability with

other backends via extensions. Figure 20-4 shows how SYCL objects may

be created from Level Zero objects using the sycl_ext_oneapi_backend_

level_zero extension.

// Create SYCL objects from the native backend objects.
device d = make_device<backend::ext_oneapi_level_zero>(

level0Device);
context c =

make_context<backend::ext_oneapi_level_zero>(
{level0Context,
{d},
ext::oneapi::level_zero::ownership::keep});

buffer data_buf =
make_buffer<backend::ext_oneapi_level_zero, int>(

{level0Ptr,
ext::oneapi::level_zero::ownership::keep},

c);

// Now use the SYCL objects to create a queue and submit
// a kernel.
queue q{c, d};

q.submit([&](handler& h) {
accessor data_acc{data_buf, h};
h.parallel_for(size, [=](id<1> i) {

data_acc[i] = data_acc[i] + 1;
});

}).wait();

Figure 20-4. Creating SYCL objects from Level Zero objects

Notice that the parameters that are passed to create the SYCL

objects are slightly different for the Level Zero backend. This will

generally be true for any supported backend interoperability because

each backend may require different information to properly create the

SYCL object. Otherwise, the same make_device, make_context, and

make_buffer functions are used for both OpenCL and Level Zero backend

interoperability.

Chapter 20 BaCkend InteroperaBIlIty

564

Notice also that ownership is handled differently by each backend.

For the OpenCL backend, the SYCL implementation uses the reference

counting provided by OpenCL to manage the lifetimes of the native

backend objects. For the Level Zero backend, the SYCL implementation

must be explicitly told whether it should take ownership of the native

backend object, or whether our application will keep ownership. If the

SYCL implementation takes ownership of the native backend object,

then the native backend object will be destroyed when the SYCL object is

destroyed; otherwise, our application is responsible for freeing the native

backend object directly.

 Using Existing Libraries with SYCL
Backend interoperability can also be used to extract native backend

objects from SYCL objects. This can be useful to use existing low-level

libraries or other helper functions with our SYCL applications. There are

two methods to do this: the first uses get_native free functions to get

native backend objects from SYCL objects. The second uses a host_task

and an interop_handle to get native backend objects from SYCL objects

from code that is scheduled by the SYCL runtime.

 Getting Backend Objects with Free Functions

For example, let’s say we have an optimized OpenCL library that we

would like to use with our SYCL application. We can call the backend

interoperability get_native functions to get native OpenCL objects from

our SYCL objects, which can then be used with the OpenCL library. For

simplicity, the code in Figure 20-5 just performs a query and allocates

some memory with the native OpenCL objects, but they could also be used

to perform more complicated operations like creating command queues,

compiling programs, and executing kernels.

Chapter 20 BaCkend InteroperaBIlIty

565

cl_device_id openclDevice =
get_native<backend::opencl>(d);

cl_context openclContext = get_native<backend::opencl>(c);

// Query the device name from OpenCL:
size_t sz = 0;
clGetDeviceInfo(openclDevice, CL_DEVICE_NAME, 0, nullptr,

&sz);
std::string openclDeviceName(sz, ' ');
clGetDeviceInfo(openclDevice, CL_DEVICE_NAME, sz,

&openclDeviceName[0], nullptr);
std::cout << "Device name from OpenCL is: "

<< openclDeviceName << "\n";

// Allocate some memory from OpenCL:
cl_mem openclBuffer = clCreateBuffer(

openclContext, 0, sizeof(int), nullptr, nullptr);

// Clean up OpenCL objects when done:
clReleaseDevice(openclDevice);
clReleaseContext(openclContext);
clReleaseMemObject(openclBuffer);

Figure 20-5. Extracting OpenCL objects from SYCL objects using
get_native free functions

The same get_native functions are also added for the Level Zero

backend as part of the sycl_ext_oneapi_backend_level_zero extension,

as shown in Figure 20-6.

Chapter 20 BaCkend InteroperaBIlIty

566

ze_device_handle_t level0Device =
get_native<backend::ext_oneapi_level_zero>(d);

ze_context_handle_t level0Context =
get_native<backend::ext_oneapi_level_zero>(c);

// Query the device name from Level Zero:
ze_device_properties_t level0DeviceProps = {};
level0DeviceProps.stype =

ZE_STRUCTURE_TYPE_DEVICE_PROPERTIES;

zeDeviceGetProperties(level0Device, &level0DeviceProps);

std::cout << "Device name from SYCL is: "
<< d.get_info<info::device::name>() << "\n";

std::cout << "Device name from Level Zero is: "
<< level0DeviceProps.name << "\n";

// Allocate some memory from Level Zero:
void* level0Ptr = nullptr;
ze_host_mem_alloc_desc_t level0HostAllocDesc = {};
level0HostAllocDesc.stype =

ZE_STRUCTURE_TYPE_HOST_MEM_ALLOC_DESC;
zeMemAllocHost(level0Context, &level0HostAllocDesc,

sizeof(int), 0, &level0Ptr);

// Clean up Level Zero objects when done:
zeMemFree(level0Context, level0Ptr);

Figure 20-6. Extracting Level Zero objects from SYCL objects using
get_native free functions

 Getting Backend Objects via an Interop Handle

Using the get_native free functions is an effective way to get backend-

specific objects for large sections of code that will use backend APIs

directly. In many cases, though, we only want to perform a specific

operation in the SYCL task graph using a backend API. In these cases,

we can perform the backend-specific operation using a SYCL host_task

with a special interop_handle parameter. The interop_handle represents

the state of the SYCL runtime when the host task is invoked and provides

access to native backend objects representing the SYCL queue, device,

context, and any buffers that were captured for the host task.

Chapter 20 BaCkend InteroperaBIlIty

567

Figure 20-7 shows how to use the interop_handle to get native

OpenCL objects from a host_task that is scheduled by the SYCL runtime.

For simplicity, this sample also only performs some queries using the

native OpenCL objects, but real application code would commonly

enqueue a kernel or call into a library using the native OpenCL objects.

Because these operations are performed from a host task, they will be

properly scheduled with any other operations in the SYCL queue.

q.submit([&](handler& h) {
accessor a{b, h};
h.host_task([=](interop_handle ih) {
// Get the OpenCL device from the interop handle:
auto openclDevice =

ih.get_native_device<backend::opencl>();

// Query the device name from the OpenCL device:
size_t sz = 0;
clGetDeviceInfo(openclDevice, CL_DEVICE_NAME, 0,

nullptr, &sz);
std::string openclDeviceName(sz, ' ');
clGetDeviceInfo(openclDevice, CL_DEVICE_NAME, sz,

&openclDeviceName[0], nullptr);
std::cout << "Device name from OpenCL is: "

<< openclDeviceName << "\n";

// Get the OpenCL buffer from the interop handle:
auto openclMem =

ih.get_native_mem<backend::opencl>(a)[0];

// Query the size of the OpenCL buffer:
clGetMemObjectInfo(openclMem, CL_MEM_SIZE, sizeof(sz),

&sz, nullptr);
std::cout << "Buffer size from OpenCL is: " << sz

<< " bytes\n";
});

});

Figure 20-7. Extracting OpenCL objects from SYCL objects using an
interop_handle

Notice that when getting native OpenCL objects for our accessor,

the get_native_mem member function of the interop_handle returns a

vector of cl_mem memory objects. This is a requirement in the SYCL 2020

Chapter 20 BaCkend InteroperaBIlIty

568

specification, where the return type of member functions of the interop_

handle must match the get_native free functions, but for the interop_

handle usage we can simply use the first element of the vector.

As with the get_native free functions, similar functionality may also

be provided for other SYCL backends via extensions. Figure 20-8 shows

how to perform similar operations with the Level Zero backend using the

sycl_ext_oneapi_backend_level_zero extension.

q.submit([&](handler& h) {
accessor a{b, h};
h.host_task([=](interop_handle ih) {
// Get the Level Zero device from the interop handle:
auto level0Device = ih.get_native_device<

backend::ext_oneapi_level_zero>();

// Query the device name from Level Zero:
ze_device_properties_t level0DeviceProps = {};
level0DeviceProps.stype =

ZE_STRUCTURE_TYPE_DEVICE_PROPERTIES;
zeDeviceGetProperties(level0Device,

&level0DeviceProps);
std::cout << "Device name from Level Zero is: "

<< level0DeviceProps.name << "\n";

// Get the Level Zero context and memory allocation
// from the interop handle:
auto level0Context = ih.get_native_context<

backend::ext_oneapi_level_zero>();
auto ptr =

ih.get_native_mem<backend::ext_oneapi_level_zero>(
a);

// Query the size of the memory allocation:
size_t sz = 0;
zeMemGetAddressRange(level0Context, ptr, nullptr,

&sz);
std::cout << "Buffer size from Level Zero is: " << sz

<< " bytes\n";
});

});

Figure 20-8. Extracting OpenCL objects from SYCL objects using an
interop_handle

Chapter 20 BaCkend InteroperaBIlIty

569

 Using Backend Interoperability for Kernels
This section describes how to use backend interoperability to compile

kernels and manipulate kernel bundles. This is an area that was

significantly redesigned in SYCL 2020 to increase robustness and to add

the flexibility that is required to support different SYCL backends.

Earlier versions of SYCL supported two interoperability mechanisms

for kernels. The first mechanism enabled creation of a kernel from an

API-defined handle. The second enabled creation of a kernel from an API-

defined source or intermediate representation, such as OpenCL C source

or SPIR-V intermediate representation. These two mechanisms still exist in

SYCL 2020, though the syntax for both mechanisms has been updated and

now uses backend interoperability.

 Interoperability with API-Defined Kernel Objects
With this form of interoperability, the kernel objects themselves are

created using the low-level API and then imported into SYCL using

backend interoperability. The code in Figure 20-9 shows how get an

OpenCL context from a SYCL context, how to create an OpenCL kernel

using this OpenCL context, and then how to create and use a SYCL kernel

from the OpenCL kernel object.

Chapter 20 BaCkend InteroperaBIlIty

570

// Get the native OpenCL context from the SYCL context:
auto openclContext = get_native<backend::opencl>(c);
const char* kernelSource =

R"CLC(
kernel void add(global int* data) {

int index = get_global_id(0);
data[index] = data[index] + 1;

}
)CLC";

// Create an OpenCL kernel using this context:
cl_program p = clCreateProgramWithSource(

openclContext, 1, &kernelSource, nullptr, nullptr);
clBuildProgram(p, 0, nullptr, nullptr, nullptr,

nullptr);
cl_kernel k = clCreateKernel(p, "add", nullptr);

// Create a SYCL kernel from the OpenCL kernel:
auto sk = make_kernel<backend::opencl>(k, c);

// Use the OpenCL kernel with a SYCL queue:
q.submit([&](handler& h) {
accessor data_acc{data_buf, h};

h.set_args(data_acc);
h.parallel_for(size, sk);

});

// Clean up OpenCL objects when done:
clReleaseContext(openclContext);
clReleaseProgram(p);
clReleaseKernel(k);

Figure 20-9. Kernel created from an OpenCL kernel object

Because the SYCL compiler does not have visibility into a SYCL kernel

that was created using the low-level API directly, any kernel arguments

must explicitly be passed using the set_arg() or set_args() interface.

Additionally, the SYCL runtime and the low-level API kernel must agree on

a convention to pass objects as kernel arguments. This convention should

be described as part of the backend interoperability specification. In this

example, the accessor data_acc is passed as the global pointer kernel

argument data.

Chapter 20 BaCkend InteroperaBIlIty

571

the SyCl 2020 standard leaves the precise semantics of set_arg()
and set_args() interfaces to be defined by each SyCl backend
specification. this allows flexibility but is another way how the code
using backend interoperability that we write is likely to be specific to
the backends we target.

 Interoperability with Non-SYCL
Source Languages
With this form of interoperability, the contents of the kernel are described

as source code or as an intermediate representation that is not defined by

SYCL. This form of interoperability allows reuse of kernel libraries written

in other source languages or use of domain-specific languages (DSLs) that

generate code in an intermediate representation.

Previous versions of SYCL included functions like build_with_source

to directly create a SYCL program from an API-defined source language

but this functionality was removed in SYCL 2020. When a backend directly

supports an API-defined source language, such as the OpenCL C kernel

used by the OpenCL backend in Figure 20-9, this removal is not a problem,

but what should we do if a backend does not directly support a specific

source language?

Chapter 20 BaCkend InteroperaBIlIty

572

Some SYCL implementations may provide an explicit online compiler

to compile from a source language that cannot be used directly by a

backend to a different format supported by a backend. Figure 20-10 shows

how to use the experimental sycl_ext_intel_online_compiler extension

to compile from OpenCL C source, which is not supported by the Level

Zero backend, to SPIR-V intermediate representation, which is supported

by the Level Zero backend. Using this method, a kernel can be used by any

backend so long as it can be compiled by the online compiler into a format

supported by the backend.

CAUTION, EXPERIMENTAL EXTENSION!

the sycl_ext_intel_online_compiler extension is an experimental

extension, so it is subject to change or removal! We have included it in this

book because it provides a way to achieve similar functionality as the previous

SyCl build_with_source function and because it is a convenient way

to demonstrate how domain-specific languages may interface with SyCl

backends to execute kernels.

Chapter 20 BaCkend InteroperaBIlIty

573

// Compile OpenCL C kernel source to SPIR-V intermediate
// representation using the online compiler:
const char* kernelSource =
 R"CLC(
 kernel void add(global int* data) {
 int index = get_global_id(0);
 data[index] = data[index] + 1;
 }
)CLC";
online_compiler<source_language::opencl_c> compiler(d);
std::vector<byte> spirv =
 compiler.compile(kernelSource);

// Get the native Level Zero context and device:
auto level0Context =
 get_native<backend::ext_oneapi_level_zero>(c);
auto level0Device =
 get_native<backend::ext_oneapi_level_zero>(d);

// Create a Level Zero kernel using this context:
ze_module_handle_t level0Module = nullptr;
ze_module_desc_t moduleDesc = {};
moduleDesc.stype = ZE_STRUCTURE_TYPE_MODULE_DESC;
moduleDesc.format = ZE_MODULE_FORMAT_IL_SPIRV;
moduleDesc.inputSize = spirv.size();
moduleDesc.pInputModule = spirv.data();
zeModuleCreate(level0Context, level0Device, &moduleDesc,
 &level0Module, nullptr);

ze_kernel_handle_t level0Kernel = nullptr;
ze_kernel_desc_t kernelDesc = {};
kernelDesc.stype = ZE_STRUCTURE_TYPE_KERNEL_DESC;
kernelDesc.pKernelName = "add";
zeKernelCreate(level0Module, &kernelDesc,
 &level0Kernel);

// Create a SYCL kernel from the Level Zero kernel:
auto skb =
 make_kernel_bundle<backend::ext_oneapi_level_zero,
 bundle_state::executable>(
 {level0Module}, c);
auto sk = make_kernel<backend::ext_oneapi_level_zero>(
 {skb, level0Kernel}, c);

// Use the Level Zero kernel with a SYCL queue:
q.submit([&](handler& h) {
 accessor data_acc{data_buf, h};

 h.set_args(data_acc);
 h.parallel_for(size, sk);
});

Figure 20-10. Kernel created using SPIR-V and the online compiler

Chapter 20 BaCkend InteroperaBIlIty

574

In this example, the kernel source string is represented as a C++ raw

string literal in the same file as the SYCL host API calls, but there is no

requirement that this is the case, and some applications may read the

kernel source string from a file or even generate it just-in-time.

As before, because the SYCL compiler does not have visibility into

a SYCL kernel written in an API-defined source language, any kernel

arguments must explicitly be passed using the set_arg() or set_args()

interface.

 Backend Interoperability Hints and Tips
This section describes practical hints and tips to effectively use backend

interoperability.

 Choosing a Device for a Specific Backend
The first requirement to properly use backend interoperability is to choose

a SYCL device associated with the required SYCL backend. There are

several ways to accomplish this.

The first is to integrate the required SYCL backend into existing custom

device selection logic, by querying the associated backend while scoring

each device. If our application is already using custom device selection

logic, this should be a straightforward addition. This mechanism is also

portable because it uses only standard SYCL queries.

For applications that do not already use custom device selection logic,

we can write a short C++ lambda expression to iterate over all devices

to find a device with the requested backend, as shown in Figure 20-11.

Because this version of find_device does not request a specific device

type, it is effectively a replacement for the standard default_selector_v.

Chapter 20 BaCkend InteroperaBIlIty

575

#include <iostream>
#include <sycl/sycl.hpp>
using namespace sycl;

int main() {
auto find_device = [](backend b,

info::device_type t =
info::device_type::all) {

for (auto d : device::get_devices(t)) {
if (d.get_backend() == b) {
return d;

}
}
throw sycl::exception(errc::runtime,

"Could not find a device with "
"the requested backend!");

};

try {
device d{find_device(backend::opencl)};
std::cout << "Found an OpenCL SYCL device: "

<< d.get_info<info::device::name>() << "\n";
} catch (const sycl::exception &e) {
std::cout << "No OpenCL SYCL devices were found.\n";

}

try {
device d{find_device(backend::ext_oneapi_level_zero)};
std::cout << "Found a Level Zero SYCL device: "

<< d.get_info<info::device::name>() << "\n";
} catch (const sycl::exception &e) {
std::cout << "No Level Zero SYCL devices were found.\n";

}

return 0;
}

Example Output:
Found an OpenCL SYCL device: pthread-12th Gen Intel(R) Core(TM) i9-12900K
Found a Level Zero SYCL device: Intel(R) UHD Graphics 770 [0x4680]

Figure 20-11. Finding a SYCL device with a specific backend

Finally, for fast prototyping some SYCL implementations can use

external mechanisms, such as environment variables, to influence the

SYCL devices they enumerate. As an example, the DPC++ SYCL runtime

can use the ONEAPI_DEVICE_SELECTOR environment variable to limit

enumerated devices to specific device types or associated device backends

(refer to Chapter 13). This is not an ideal solution for production code

Chapter 20 BaCkend InteroperaBIlIty

576

because it requires external configuration, but it is a useful mechanism for

prototype code to ensure that an application is using a specific device from

a specific backend.

 Be Careful About Contexts!
Recall from Chapters 6 and 13 that many SYCL objects, such as kernels

and USM allocations, are generally not accessible by a SYCL context if

they were created in a different SYCL context. This is still true when using

backend interoperability; therefore, a backend-specific context created

using a backend API generally will not have access to objects created

in a different SYCL context (and vice versa) even if the SYCL context is

associated with the same backend.

To safely share objects between SYCL and a backend, we should always

either create our SYCL context from a native backend context using

make_context, or we should get a native backend context from a SYCL

context using get_native.

always create a SyCl context from a native backend context or get a
native backend context from a SyCl context to safely share objects
between SyCl and a backend!

 Access Low-Level API-Specific Features
Occasionally a cutting-edge feature will be available in a low-level API

before it is available in SYCL, even as a SYCL extension. Some features

may even be so backend-specific or so device-specific that they will

never be exposed through SYCL. For example, some native backend APIs

may provide access to queues with specific properties or unique kernel

instructions for specific accelerator hardware. Although we hope and

expect these cases to be rare, when these types of features exist, we may

still gain access to them using backend interoperability.

Chapter 20 BaCkend InteroperaBIlIty

577

 Support for Other Backends
The examples in this chapter demonstrated backend interoperability

with OpenCL and Level Zero backends, but SYCL is a growing ecosystem

and SYCL implementations are regularly adding support for additional

backends and devices. For example, several SYCL implementations

supporting CUDA and HIP backends already have some support for

interoperability with these backends. Check the documentation for a SYCL

implementation to determine which SYCL backends are supported and

whether they support backend interoperability!

 Summary
In this chapter, we discovered how each SYCL object is associated with

an underlying SYCL backend and how to query the SYCL backends in a

system. We described how backend interoperability provides a mechanism

for our SYCL application to directly interact with an underlying backend

API. We discussed how this enables us to incrementally add SYCL to an

application that is directly using a backend API, or to reuse libraries or

utility functions written specifically for a backend API. We also discussed

how backend interoperability reduces application portability, by restricting

which SYCL devices the application will run on.

We specifically explored how backend interoperability for kernels

provides similar functionality in SYCL 2020 that was present in earlier

versions of SYCL. We examined how an online compiler extension can

enable the use of some source languages for kernels, even if they are not

directly understood by some SYCL backends.

Chapter 20 BaCkend InteroperaBIlIty

578

Finally, we reviewed practical hints and tips to effectively use backend

interoperability in our programs, such as how to choose a SYCL device

for a specific SYCL backend, how to set up a SYCL context for backend

interoperability, and how backend interoperability can provide access to

features even if they have not been added to SYCL.

Open Access This chapter is licensed under the terms of

the Creative Commons Attribution 4.0 International License

(https://creativecommons.org/licenses/by/4.0/), which permits use,

sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter’s Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter’s

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 20 BaCkend InteroperaBIlIty

https://creativecommons.org/licenses/by/4.0/

579

CHAPTER 21

Migrating CUDA Code
Many readers of this book have likely encountered data parallel code

written in CUDA. Some readers may even be CUDA experts! In this chapter

we will describe some of the similarities between CUDA and SYCL, some

of the differences, and useful tools and techniques to help migrate CUDA

code effectively and efficiently to C++ with SYCL.

 Design Differences Between CUDA
and SYCL
Before we dive into the details, it is first instructive to identify key design

differences between CUDA and SYCL. This can provide useful background

to inform why some differences exist, to understand which differences may

disappear in time and which differences are likely to remain.

 Multiple Targets vs. Single Device Targets
One of the biggest design differences between CUDA and SYCL is the

universe of devices they are designed to support. CUDA is designed to

support GPU devices from a single device vendor, so most CUDA devices

look relatively similar. As an example, all CUDA devices currently include

texture sampling hardware and all CUDA devices currently support the

same maximum work-group size. This reduces complexity, but also

reduces where a CUDA application may run.

© Intel Corporation 2023
J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-9691-2_21

https://doi.org/10.1007/978-1-4842-9691-2_21

580

By contrast, SYCL is designed to support a diverse set of heterogeneous

accelerators, including different devices from different device vendors.

This flexibility gives SYCL programs the freedom to take advantage of the

computing resources in a modern heterogeneous system; however, this

flexibility does come at a modest cost. For example, as SYCL programmers

we may need to enumerate the devices in the system, examine their

properties, and choose which device or devices are best suited to run

different parts of our program.

Of course, if our SYCL program does not intend to utilize all the

computing resources in our system, various shortcuts exist to reduce code

verbosity, such as standard device selectors. Figure 21-1 shows a basic

SYCL sample that uses a queue for the default device, chosen by the SYCL

implementation.

// Declare an in-order SYCL queue for the default device
queue q{property::queue::in_order()};
std::cout << "Running on device: "

<< q.get_device().get_info<info::device::name>()
<< "\n";

int* buffer = malloc_host<int>(count, q);
q.fill(buffer, 0, count);

q.parallel_for(count, [=](auto id) {
buffer[id] = id;

}).wait();

Figure 21-1. Running a kernel on the default SYCL device

This SYCL code is very similar to the equivalent CUDA code, shown in

Figure 21-2.

Chapter 21 Migrating CUDa CoDe

581

// The CUDA kernel is a separate function
__global__ void TestKernel(int* dst) {
auto id = blockIdx.x * blockDim.x + threadIdx.x;
dst[id] = id;

}

int main() {
// CUDA uses device zero by default
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, 0);
std::cout << "Running on device: " << deviceProp.name << "\n";

int* buffer = nullptr;
cudaMallocHost(&buffer, count * sizeof(int));
cudaMemset(buffer, 0, count * sizeof(int));

TestKernel<<<count / 256, 256>>>(buffer);
cudaDeviceSynchronize();
// ...

Figure 21-2. Running a kernel on the default CUDA device

Real-world SYCL code is usually more complicated. For example,

many SYCL applications will enumerate and choose a specific device or

a combination of devices to run on (refer to Chapter 2) by searching for

specific device characteristics (refer to Chapter 12). Concise options exist

when this complexity is not needed or desired, though, and SYCL is well

designed to support the additional complexity when it is required.

 Aligning to C++ vs. Extending C++
Another important design difference between CUDA and SYCL is how they

interact with other programming languages, especially C++. SYCL code is

standard C++ code, without any language extensions. By learning to read,

understand, and write C++ code, we are also able to read and understand

SYCL code. Similarly, if a compiler can parse C++ code, it can also parse

SYCL code.

Chapter 21 Migrating CUDa CoDe

582

CUDA made a different decision. Instead, CUDA extends C++ by

adding new keywords and a special syntax to execute kernels. At times,

the language extensions can be more concise, but they are also one more

syntax to learn and remember, and the language extensions mean that

CUDA code can only be compiled by a CUDA-enabled compiler.

To see this design difference in practice, notice how the SYCL example

in Figure 21-1 uses a standard C++ lambda expression to represent the

kernel code and a standard C++ function call to submit the kernel for

execution. The CUDA example in Figure 21-2 instead uses a special

__global__ keyword to identify the kernel code and a special <<< >>>

syntax to submit the kernel for execution.

 Terminology Differences Between CUDA
and SYCL
Now that we understand some of the key design differences between SYCL

and CUDA we are almost ready to start examining specific similarities

and differences. We have one more bit of background to take care of first,

though: because CUDA and SYCL often use different terms for similar

concepts, we need a decoder so we can meaningfully compare the two

APIs, such as the summary in Figure 21-3.

Chapter 21 Migrating CUDa CoDe

583

Concept SYCL Term CUDA Term
A function that is executed in

parallel on a device.

Kernel Kernel

The N-dimensional parallel

index space.

Range (generally), or

ND-Range (with

grouping)

Grid (always has

grouping)

A kernel instance executing at

a point in the parallel index

space.

Work-Item Thread

An application-de�ined group

of kernel instances in the

parallel index space that can

communicate and

synchronize.

Work-Group Block

An implementation-de�ined

group of kernel instances

with additional

communication and

synchronization capabilities.

Sub-Group Warp

Memory used to exchange

data among instances in a

group.

Local Memory Shared Memory

Function used to synchronize

instances in a group.

group_barrier() __syncthreads(),

__syncwarp(),

coop_group.sync()
Queue Stream

Figure 21-3. CUDA and SYCL decoder ring

Unlike the rest of this book where SYCL terminology was used

consistently, this chapter may use the CUDA terms and the SYCL terms

interchangeably.

 Similarities and Differences
This section describes some of the syntactic and behavioral similarities

between SYCL and CUDA as well as places where SYCL and CUDA differ.

Chapter 21 Migrating CUDa CoDe

584

 Execution Model
Fundamentally, both SYCL and CUDA use the same data-parallel kernel

execution model introduced in Chapter 4 and described throughout this

book. The terminology may be slightly different, for example, SYCL refers

to an ND-range and CUDA refers to a grid, but we can use our decoder ring

in Figure 21-3 to translate key concepts from SYCL to CUDA and vice versa.

 In-Order vs. Out-of-Order Queues

Despite the many execution model similarities, several differences do

exist. One difference is that CUDA streams are unconditionally in-order.

This means that any kernel or memory operation submitted to a CUDA

stream must complete before the next submitted kernel or memory copy

operation can start. SYCL queues instead are out-of-order by default but

may optionally be in-order by passing the in_order queue property when

the SYCL queue is created (refer to Chapter 8).

An in-order CUDA stream is simpler because it does not require

explicit scheduling or dependence management. This simplicity means

that CUDA applications typically do not use mechanisms like accessors

or depends_on to order operations in a stream. The in-order semantics

also constrain execution, though, and do not offer any opportunity for

overlapping execution of two commands in a single stream. Because a

CUDA application cannot overlap execution of two commands in a single

stream, when a CUDA application would like to (potentially) execute

commands simultaneously, it will submit the commands to different

CUDA streams, because commands in different CUDA streams may

execute simultaneously.

This same pattern of submitting to multiple in-order queues to

potentially execute kernels or memory operations simultaneously works

in SYCL also, and many SYCL implementations and SYCL devices are

Chapter 21 Migrating CUDa CoDe

585

optimized to handle this case. Out-of-order SYCL queues provide an

alternative mechanism to overlap execution with just a single queue,

though, and many SYCL implementations and SYCL devices are optimized

to handle this case as well.

Ultimately, whether to use multiple in-order SYCL queues or

fewer out-of-order SYCL queues is a matter of personal preference and

programming style, and we can choose whichever option makes the most

sense for our SYCL programs. The SYCL examples in this chapter create

in-order SYCL queues to stay as close to the equivalent CUDA examples as

possible.

 Contiguous Dimension

Another difference that is likely to confuse novice and expert CUDA

programmers alike concerns multidimensional SYCL ranges or CUDA

grids: SYCL aligns its convention with multidimensional arrays in standard

C++, so the last dimension is the contiguous dimension, also known as

the unit-stride dimension or the fastest moving dimension. CUDA instead

aligns to graphics conventions, so the first dimension is the contiguous

dimension. Because of this difference, multidimensional SYCL ranges will

appear to be transposed compared to the equivalent CUDA code, and the

highest dimension of a SYCL id will correspond to the x-component of the

comparable CUDA built-in variables, not the lowest dimension.

To demonstrate this difference, consider the CUDA example in

Figure 21-4. In this example, each CUDA thread exchanges its value of

threadIdx.x with its neighbor. Because the x-component is the fastest

moving component in CUDA, we do not expect a CUDA thread’s value to

match its neighbor thread’s value.

Chapter 21 Migrating CUDa CoDe

586

__global__ void ExchangeKernel(int* dst) {
auto index = get_global_linear_id(); // helper function
auto fastest = threadIdx.x;
auto neighbor = __shfl_xor_sync(0xFFFFFFFF, fastest, 1);
dst[index] = neighbor;

}
...
dim3 threadsPerBlock(16, 2);
ExchangeKernel<<<1, threadsPerBlock>>>(buffer);
cudaDeviceSynchronize();

Figure 21-4. x-component is the contiguous dimension in CUDA

The equivalent SYCL example is shown in Figure 21-5. Notice that in

the SYCL example the ND-range is {2, 16} rather than (16, 2) in the

CUDA example, so the parallel index space appears to be transposed. The

SYCL example also describes the ND-range as a {2, 16} global range

divided into work-groups of size {2, 16}, whereas the CUDA example

describes a grid of one block with (16, 2) CUDA threads per block.

Additionally, notice that each SYCL work-item exchanges the value of

its item.get_local_id(1) (not item.get_local_id(0)!) with its neighbor,

because the last dimension is the fastest moving component in SYCL. In

this SYCL example, we also do not expect a SYCL work-item’s value to

match its neighbor work-item’s value.

q.parallel_for(nd_range<2>{{2, 16}, {2, 16}},
[=](auto item) {

auto index = item.get_global_linear_id();
auto fastest = item.get_local_id(1);
auto sg = item.get_sub_group();
auto neighbor =

permute_group_by_xor(sg, fastest, 1);
buffer[index] = neighbor;

})
.wait();

Figure 21-5. Last dimension is the contiguous dimension in SYCL

Chapter 21 Migrating CUDa CoDe

587

 Sub-Group Sizes (Warp Sizes)

There are a few more differences we can spot if we look carefully at these

examples, specifically relating to the function used to exchange data with a

neighbor.

The CUDA example uses the function __shfl_xor_sync(0xFFFFFFFF,

fastest, 1) to exchange data with a neighbor. For this function, the first

argument 0xFFFFFFFF is a bitfield mask indicating the set of CUDA threads

participating in the call. For CUDA devices, a 32-bit mask is sufficient,

because the warp size is currently 32 for all CUDA devices.

The SYCL example uses the function permute_group_by_xor(sg,

fastest, 1) to exchange data with its neighbor. For this function, the first

argument describes the set of work-items participating in the call. In this

case, sg represents the entire sub-group. Because the set of work-items is

specified by a group object rather than a bitfield mask, it can represent sets

of arbitrary sizes. This flexibility is desirable because the sub-group size

may be less than or greater than 32 for some SYCL devices.

In this specific case, the CUDA example can be rewritten to use the

more modern CUDA cooperative groups syntax rather than the older

__shfl_xor_sync syntax. The CUDA cooperative groups equivalent is

shown in Figure 21-6. This version looks a lot more like the SYCL kernel

and is a good example how the later versions of CUDA and SYCL 2020 are

growing even closer together.

__global__ void ExchangeKernelCoopGroups(int* dst) {
namespace cg = cooperative_groups;
auto index = cg::this_grid().thread_rank();
auto fastest = threadIdx.x;
auto warp = cg::tiled_partition<32>(cg::this_thread_block());
auto neighbor = warp.shfl_xor(fastest, 1);
dst[index] = neighbor;

}

Figure 21-6. Exchanging data with CUDA cooperative groups

Chapter 21 Migrating CUDa CoDe

588

 Forward Progress Guarantees

We can find one more difference if we look very carefully at the examples

in Figures 21-4 and 21-5, although this difference is more subtle. Once

again, the difference is related to the __shfl_xor_sync function used to

exchange data with a neighbor, and in this case the difference is implied by

the _sync suffix on the function. The _sync suffix indicates this function is

synchronizing the CUDA threads, though this naturally may lead us to ask,

why may the CUDA threads be unsynchronized in the first place, before

calling this function?

In Chapters 15 and 16, we developed a mental model for a data-

parallel kernel executing on a CPU or GPU where a group of work-items is

processed simultaneously, in lockstep, using SIMD instructions. While this

is a useful mental model for CPUs and GPUs from many vendors, it is not

the only way a data-parallel kernel may be executed using SYCL or CUDA,

and one of the cases where this mental model breaks is for newer CUDA

devices supporting a feature called independent thread scheduling.

For CUDA devices with independent thread scheduling, the individual

CUDA threads make progress independently, rather than as a group. These

additional forward progress guarantees enable code patterns to execute

safely on a CUDA device that may not execute correctly on a SYCL device

without the stronger forward progress guarantees. The _sync suffix on the

__shfl_xor_sync function was added in CUDA to clearly indicate that the

function requires synchronization and to specify the CUDA threads that

are synchronizing using the 32-bit mask.

Forward progress guarantees are an active topic in the SYCL

community, and it is very likely that a future version of SYCL will add

queries to determine the forward progress capabilities of a device, along

with properties to specify the forward progress requirements of a kernel.

For now, though, we should be aware that a syntactically correct SYCL

program that was ported from CUDA may not execute correctly on all

SYCL devices due to independent thread scheduling.

Chapter 21 Migrating CUDa CoDe

589

 Barriers

One final, subtle execution model difference we should be aware of

concerns the CUDA __syncthreads function compared to the SYCL

group_barrier equivalent. The CUDA __syncthreads function

synchronizes all non-exited CUDA threads in the thread block, whereas the

SYCL group_barrier function synchronizes all work-items in the work-

group. This means that a CUDA kernel will run correctly if some CUDA

threads early exit before calling __syncthreads, but there is no guarantee

that a SYCL kernel like the one shown in Figure 21-7 will run correctly.

std::cout << "WARNING: May deadlock on some devices!\n";
q.parallel_for(nd_range<1>{64, 64}, [=](auto item) {

int id = item.get_global_id(0);
if (id >= count) {

return; // early exit
}
group_barrier(item.get_group());
buffer[id] = id;

}).wait();

Figure 21-7. Possible SYCL barrier deadlock

In this case, the fix is straightforward: the range check can be moved

after the group_barrier, or in this specific case, the group_barrier can

be removed entirely. This is not always the case though, and other kernels

may require restructuring to ensure all work-items always reach or always

skip a group_barrier.

 Memory Model
Fundamentally, both CUDA and SYCL use a similar weakly-ordered

memory model. Luckily there are only a few memory model differences we

need to keep in mind when we are migrating a CUDA kernel to SYCL.

Chapter 21 Migrating CUDa CoDe

590

 Barriers

By default, the CUDA __syncthreads barrier function and the SYCL

group_barrier barrier function has the same effects on the memory

model, assuming the group passed to the SYCL group_barrier is a work-

group. Likewise, the CUDA __syncwarp barrier function has the same

effects as the SYCL group_barrier barrier function, assuming the group

passed to the SYCL group_barrier is a sub-group.

The SYCL group_barrier accepts an optional parameter to specify the

fence_scope for the barrier, but in most cases, this can be omitted. A wider

scope can be passed to group_barrier, such as memory_scope::device,

but this usually is not required, and it may cause the SYCL group_barrier

to be more expensive than the CUDA __syncthreads barrier.

The code in Figure 21-8 shows the equivalent barrier syntax for CUDA

and SYCL. Notice how the newer CUDA cooperative groups syntax using

this_thread_block and tiled_partition has a sync function that is even

closer to the SYCL group_barrier. This is another good example how later

versions of CUDA and SYCL 2020 are becoming more and more similar.

 Atomics and Fences

Both CUDA and SYCL support similar atomic operations, though as with

barriers there are a few important differences we should be aware of. The

most important difference concerns the default atomic memory order.

q.parallel_for(nd_range<1>{16, 16}, [=](auto item) {
// Equivalent of __syncthreads, or
// this_thread_block().sync():
group_barrier(item.get_group());

// Equivalent of __syncwarp, or
// tiled_partition<32>(this_thread_block()).sync():
group_barrier(item.get_sub_group());

}).wait();

Figure 21-8. CUDA and SYCL barrier equivalents

Chapter 21 Migrating CUDa CoDe

591

Many CUDA programs are written using an older C-like atomic syntax

where the atomic function takes a pointer to memory, like atomicAdd.

These atomic functions are relaxed atomics and operate at device scope.

There are also suffixed versions of these atomic functions that operate at

a different scope, such as atomicAdd_system and atomicAdd_block, but

these are uncommon.

The SYCL atomic syntax is a little different and is based on

std::atomic_ref from C++20 (refer to Chapter 19 for details about the

SYCL atomic_ref class and how it compares to std::atomic_ref). If we

want our SYCL atomic to be equivalent to the CUDA atomicAdd function,

we will want to declare our SYCL atomic_ref to have a similar memory_

order::relaxed memory order and memory_scope::device scope, as

shown in Figure 21-9.

q.parallel_for(count, [=](auto id) {
// The SYCL atomic_ref must specify the default order
// and default scope as part of the atomic_ref type. To
// match the behavior of the CUDA atomicAdd we want a
// relaxed atomic with device scope:
atomic_ref<int, memory_order::relaxed,

memory_scope::device>
aref(*buffer);

// When no memory order is specified, the defaults are
// used:
aref.fetch_add(1);

// We can also specify the memory order and scope as
// part of the atomic operation:
aref.fetch_add(1, memory_order::relaxed,

memory_scope::device);
});

Figure 21-9. CUDA and SYCL atomic equivalents

Chapter 21 Migrating CUDa CoDe

592

Newer CUDA code may use the cuda::atomic_ref class from the

CUDA C++ Standard Library. The cuda::atomic_ref class looks more like

the SYCL atomic_ref class, but there are some important differences to be

aware of with it, also:

• The scope is optional for a CUDA atomic_ref, but

defaults to the entire system if unspecified. The SYCL

atomic_ref must specify an atomic scope in all cases.

• The default atomic order for a CUDA atomic_ref

is unconditionally sequential consistency, whereas

the SYCL atomic_ref may specify a different default

atomic order. By specifying a default atomic order, our

SYCL code can be more concise and use convenience

operators like += even when the atomic order is

something other than sequential consistency.

There is one final concern we need to keep in mind when our code or

algorithm requires atomics: some atomic operations and atomic scopes

are not required by the SYCL specification and may not be supported by

all SYCL devices. This is also true for CUDA devices, but it is especially

important to remember for SYCL due to the diversity of SYCL devices.

Please refer to Chapter 12 for more detail on how to query properties of a

SYCL device and to Chapter 19 for descriptions of the atomic capabilities

that may be supported by a SYCL device or context.

 Other Differences
This section describes a few other miscellaneous differences to keep in

mind when we are porting CUDA code to SYCL.

Chapter 21 Migrating CUDa CoDe

593

 Item Classes vs. Built-In Variables

One of the bigger stylistic differences between CUDA and SYCL is the way

kernel instances identify their location in the N-dimensional parallel index

space. Recall from Chapter 4 that every SYCL kernel must take an item,

an nd_item, an id, or in some cases an integral argument identifying the

work-item in the parallel index space. The item and nd_item classes can

also be used to query information about the parallel index space itself,

such as the global range, the local range, and the different groups that the

work-item belongs to.

CUDA kernels do not include any arguments to identify the CUDA

thread in the parallel index space. Instead, CUDA threads use built-in

variables such as blockIdx and threadIdx to identify the location in the

parallel index space and built-in variables such as gridDim and blockDim

to represent information about the parallel index space itself. Newer CUDA

kernels that use cooperative groups can also construct certain cooperative

groups implicitly by calling built-in functions like this_thread_block.

This is usually only a syntactic difference that does not functionally

affect the code we can write, though it does mean that SYCL kernels may

pass an item or an nd_item to called functions in more cases, say if a called

function needs to know the work-item index.

 Contexts

Another conceptual difference between CUDA and SYCL is the idea of a

SYCL context. Recall that a SYCL context is an object that stores the state

of a SYCL application for a set of SYCL devices. As an example, a SYCL

context may store information about memory allocations or compiled

programs. Contexts are an important concept to a SYCL application

because a single SYCL application may support devices from multiple

vendors, perhaps using multiple backend APIs.

Chapter 21 Migrating CUDa CoDe

594

In most cases our SYCL programs can be blissfully unaware that

contexts exist, and most of the example programs in this book do not

create or manipulate contexts. If we do choose to create additional SYCL

contexts in our programs though, either implicitly or explicitly, we need

to be careful not to use context-specific SYCL objects from one context

with a different SYCL context. At best, careless use of multiple contexts

may cause our programs to run inefficiently, say if we end up compiling

our SYCL kernels multiple times, once for each context. At worst, mixing

SYCL objects across contexts may result in undefined behavior, causing

our programs to become non-portable or executing improperly on some

backends or devices.

For completeness, note that CUDA has a concept of contexts as well,

though CUDA contexts are only exposed by the lower-level CUDA driver

APIs. Most CUDA programs do not create or manipulate contexts, either.

 Error Checking

One final difference to consider relates to error checking and error

handling. Because of CUDA’s C heritage, errors in CUDA are returned via

error codes from CUDA function calls. For most CUDA functions, a failing

error code indicates an error in the function returning the error, such as

an incorrect parameter to the function. For some other CUDA functions

though, like cudaDeviceSynchronize, the error value can also return

asynchronous errors that occurred on the device.

SYCL also has synchronous and asynchronous errors, though both

types of errors are reported using SYCL exceptions rather than return

values from SYCL functions. Please refer to Chapter 5 for more information

about error detection and error handling in SYCL.

Chapter 21 Migrating CUDa CoDe

595

 Features in CUDA That Aren’t In SYCL… Yet!
So far, we have described cases where features are in both CUDA and SYCL

but are expressed differently. This section describes several features that

are in CUDA but that do not (currently) have equivalents in SYCL. This is

not an exhaustive list, but it is intended to describe some of the features

that are commonly used by CUDA applications that may require more

effort when migrating to SYCL.

Please note that vendor-specific features are an important part of the

standardization process, regardless of whether they are extensions to a

standard or defined in a completely vendor-specific API. Vendor-specific

features provide important implementation experience and allow a feature to

prove its value before it is refined and incorporated into a standard. Many of

these features are already in active development for inclusion into the SYCL

standard, and some may already be available as extensions to the standard.

GET INVOLVED!

Feedback from users and developers is another important part of the

standardization process. if you have an idea for a new feature, or if you have

found an extension or a feature from another api valuable, please consider

becoming involved! SYCL is an open standard and many SYCL implementations

are open source, making it easy to participate in the growing SYCL community.

 Global Variables
Although programmers are told early on to never use global variables,

sometimes a global variable is the right tool for the job. We might choose

to use a global variable to store a useful constant, or a lookup table, or

some other value that we would like to be accessible to all the work-items

executing our data parallel kernel.

Chapter 21 Migrating CUDa CoDe

596

CUDA supports global variables in different address spaces and

therefore with different lifetimes. For example, a CUDA program can

declare a __device__ global variable in the global memory space that is

unique for each device. These global variables can be set by or read from

the host and accessed by all the CUDA threads executing a kernel. A CUDA

program can also declare a __shared__ global variable in the CUDA shared

memory space (remember, this is the equivalent of a variable declared in

SYCL local memory) that is unique for every CUDA block and can only be

accessed by the CUDA threads in that block.

SYCL does not support global variables in device code yet, though

there are extensions in the works to provide similar functionality.

 Cooperative Groups
As described earlier in this chapter, recent versions of CUDA support

cooperative groups, which provide an alternative syntax for collective

operations like barriers and shuffle functions. The SYCL group object

and the SYCL group algorithms library have many similarities to CUDA

cooperative groups, but some key differences remain.

The biggest difference is that the SYCL group functions currently

work only on the predefined SYCL work-group and sub-group classes,

whereas CUDA cooperative groups are more flexible. For example, a

CUDA program may create fixed-size tiled_partition groups that divide

an existing group into a set of smaller groups, or a CUDA program may

represent the set of CUDA threads in a CUDA warp that are currently active

as a coalesced_group.

A CUDA program may additionally create cooperative groups that are

larger than a work-group. For example, a CUDA program may create a

grid_group representing all the CUDA threads in the grid (equivalently, all

the work-items in the global range), or a cluster_group representing all

the CUDA threads in a thread block cluster. To effectively use these newer

Chapter 21 Migrating CUDa CoDe

597

and larger groups, a CUDA kernel must be launched using special host API

functions to ensure that all the CUDA threads in a grid may cooperate, or

to specify the thread block cluster dimensions.

SYCL does not support all the cooperative group types in CUDA yet,

though there are extensions in the works to add additional group types to

SYCL. The introduction of the group object and group algorithms in SYCL

2020 has SYCL well positioned to support this functionality.

 Matrix Multiplication Hardware
The final feature we will describe in this section is access to matrix

multiplication hardware, also referred to as matrix multiply and

accumulate (MMA) hardware, tensor cores, or systolic arrays. These are

all different names for dedicated hardware engines that are purpose-

built to accelerate the matrix multiplication operations that are key to

many artificial intelligence (AI) workloads. If we want to customize these

workloads, it is important that we have access to matrix multiplication

hardware in our data parallel kernels to achieve peak performance.

CUDA provides access to matrix multiplication hardware via warp

matrix multiplication and accumulation (WMMA) functions. These

functions effectively allow the CUDA threads in a warp (equivalently,

work-items in a sub-group) to cooperate to perform a matrix multiply

and accumulate operation on smaller matrix tiles. The elements of these

matrix tiles can be 32-bit floats or 64-bit doubles for some devices and

algorithms, but more commonly use lower-precision types like as 8-bit

chars, 16-bit halfs, or specialized AI types like bfloat16s (bf16).

Both CUDA and SYCL are actively evolving their support for matrix

multiplication hardware. This is a good example of how different vendors

will add support for their vendor-specific functionality via vendor-specific

mechanisms initially, then a feature will be refined, and common best

practices will be added to the standard.

Chapter 21 Migrating CUDa CoDe

598

 Porting Tools and Techniques
Luckily, when we choose to migrate an application from CUDA to SYCL, it

does not need to be a manual process, and we can use tools to automate

parts of the migration. This section will describe one of these tools and

techniques to assist with migration.

 Migrating Code with dpct and SYCLomatic
In this section we will describe the DPC++ Compatibility Tool (dpct) and

the related open source SYCLomatic tool. We will use dpct to automatically

migrate a CUDA sample to SYCL, though the concepts described in this

section apply equally well to SYCLomatic.

Figure 21-10 shows the important parts of the simple CUDA sample

we will be migrating. This sample reverses blocks of a buffer. This is not a

very useful sample in practice, but it has interesting cases that our auto-

migration tool will need to handle, such as a CUDA shared memory global

variable, a barrier, a device query, memory allocation and initialization,

the kernel dispatch itself, and some basic error checking.

Chapter 21 Migrating CUDa CoDe

599

__shared__ int scratch[256];
__global__ void Reverse(int* ptr, size_t size) {
auto gid = blockIdx.x * blockDim.x + threadIdx.x;
auto lid = threadIdx.x;

scratch[lid] = ptr[gid];
__syncthreads();
ptr[gid] = scratch[256 - lid - 1];

}

int main() {
std::array<int, size> data;
std::iota(data.begin(), data.end(), 0);

cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, 0);
std::cout << "Running on device: " << deviceProp.name << "\n";

int* ptr = nullptr;
cudaMalloc(&ptr, size * sizeof(int));
cudaMemcpy(ptr, data.data(), size * sizeof(int),

cudaMemcpyDefault);
Reverse<<<size / 256, 256>>>(ptr, size);
cudaError_t result = cudaDeviceSynchronize();
if (result != cudaSuccess) {

std::cout << "An error occurred!\n";
}
// ...

Figure 21-10. A simple CUDA program we will
automatically migrate

 Running dpct

Because this is a simple example, we can simply invoke dpct and pass

the CUDA source file we would like to migrate. For more complicated

scenarios, dpct can be invoked as part of the application build process to

identify the CUDA source files to migrate. Please refer to the links at the

end of this chapter for more information and additional training material.

Chapter 21 Migrating CUDa CoDe

600

When we run dpct on our sample CUDA source file, we may see

output like that shown in Figure 21-11. We can make several observations

from this output. First, our file was processed successfully, which is great!

There were a few warnings though, indicating cases that dpct was not

able to able to migrate. For our example, all three warnings are due to the

error checking differences between CUDA and SYCL. For our program,

dpct was able to generate SYCL code that will behave correctly when the

program does not generate an error, but it was not able to migrate the error

checking.

The error checking warning is a good example how migration tools

like dpct and SYCLomatic will not be able to migrate everything. We

should expect to review and adjust the migrated code to address any

migration issues, or to otherwise improve the migrated SYCL code for

maintainability, portability, or performance.

$ dpct source_file.cu
NOTE: Could not auto-detect compilation database for file
'source_file.cu' in '/path/to/your/file' or any parent directory.
The directory "dpct_output" is used as "out-root"
Processing: /path/to/your/file/source_file.cu
/path/to/your/file/source_file.cu:38:5: warning: DPCT1001:0: The
statement could not be removed.

std::cout << "An error occurred!\n";
^

/path/to/your/file/source_file.cu:37:3: warning: DPCT1000:1: Error
handling if-stmt was detected but could not be rewritten.
if (result != cudaSuccess) {
^

/path/to/your/file/source_file.cu:36:24: warning: DPCT1003:2: Migrated
API does not return error code. (*, 0) is inserted. You may need to
rewrite this code.
cudaError_t result = cudaDeviceSynchronize();

^
Processed 1 file(s) in -in-root folder "/path/to/your/file"

Figure 21-11. Sample dpct output when migrating this
CUDA program

Chapter 21 Migrating CUDa CoDe

601

For this example, though, we can use the migrated code as-is.

Figure 21-12 shows how to compile our migrated code using the DPC++

compiler with NVIDIA GPU support and then shows successful execution

of our migrated program on an Intel GPU, an Intel CPU, and an NVIDIA

GPU. Note, if we were to run the migrated program on a different system

with different devices, the output may look different, or it may fail to run if

the selected device does not exist in the system.

$ icpx -fsycl -fsycl-targets=spir64,nvptx64-nvidia-cuda \
migrated.cpp -o migrated

$./migrated
Running on device: Intel(R) UHD Graphics 770
Success.
$ ONEAPI_DEVICE_SELECTOR=opencl:cpu ./migrated
Running on device: 12th Gen Intel(R) Core(TM) i9-12900K
Success.
$ ONEAPI_DEVICE_SELECTOR=ext_oneapi_cuda:gpu ./migrated
Running on device: NVIDIA GeForce RTX 3060
Success.

Figure 21-12. Compiling and running our migrated CUDA program

 Examining the dpct Output

If we examine the migrated output, we can see that dpct handled many

of the differences described in this chapter. For example, in the generated

SYCL kernel shown in Figure 21-13, we see that the __shared__ global

variable scratch was turned into a local memory accessor and passed

into the kernel. We can also see that the built-in variables blockIdx and

threadIdx were replaced by calls into an instance of the nd_item class and

that the differing conventions for the contiguous dimension were properly

handled, for example, by replacing the use of threadIdx.x with a call to

item_gt1.get_local_id(2).

Chapter 21 Migrating CUDa CoDe

602

void Reverse(int *ptr, size_t size,
const sycl::nd_item<3> &item_ct1,
int *scratch) {

auto gid =
item_ct1.get_group(2) * item_ct1.get_local_range(2) +
item_ct1.get_local_id(2);

auto lid = item_ct1.get_local_id(2);

scratch[lid] = ptr[gid];
item_ct1.barrier(sycl::access::fence_space::local_space);
ptr[gid] = scratch[256 - lid - 1];

}

Figure 21-13. SYCL kernel migrated from CUDA

We can also see that dpct handled some of the host code differences by

using several dpct utility functions, such as for the migrated device query

shown in Figure 21-14. These helper functions are intended to be used by

migrated code only. For portability and maintainability, we should prefer

to use standard SYCL APIs directly for our additional development.

dpct::device_info deviceProp;
dpct::dev_mgr::instance().get_device(0).get_device_info(

deviceProp);
std::cout << "Running on device: "

<< deviceProp.get_name() << "\n";

Figure 21-14. SYCL device name query migrated from CUDA

In general, though, the SYCL code that dpct generates is readable and

the mapping between the CUDA code and the migrated SYCL code is clear.

Even though additional hand-editing is often required, using automated

tools like dpct or SYCLomatic can save time and reduce errors during

migration.

Chapter 21 Migrating CUDa CoDe

603

 Summary
In this chapter, we described how to migrate an application from CUDA to

SYCL to enable an application to run on any SYCL device, including CUDA

devices by using SYCL compilers with CUDA support.

We started by looking at the many similarities between CUDA

and SYCL programs, terminology aside. We saw how CUDA and SYCL

fundamentally use the same kernel-based approach to parallelism,

with a similar execution model and memory model, making it relatively

straightforward to migrate a CUDA program to SYCL. We also explored

a few places where CUDA and SYCL have subtle syntactic or behavioral

differences and are therefore good to keep in mind as we are migrating our

CUDA applications to SYCL. We also described several features that are in

CUDA but are not in SYCL (yet!), and we described how vendor-specific

features are an important part of the standardization process.

Finally, we examined several tools to automate parts of the migration

process and we used the dpct tool to automatically migrate a simple

CUDA example to SYCL. We saw how the tool migrated most of the code

automatically, producing functionally correct and readable code. We were

able to run the migrated SYCL example on different SYCL devices after

migration, even though additional reviewing and editing may be required

for more complex applications.

Chapter 21 Migrating CUDa CoDe

604

 For More Information
Migrating CUDA code to SYCL is a popular topic and there are many other

resources available to learn more. Here are two resources the authors have

found helpful:

• General information and tutorials showing how to

migrate from CUDA to SYCL (tinyurl.com/cuda2sycl)

• Getting Started Guide for the DPC++ Compatibility

Tool (tinyurl.com/startDPCpp)

Open Access This chapter is licensed under the terms of

the Creative Commons Attribution 4.0 International License

(https://creativecommons.org/licenses/by/4.0/), which permits use,

sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter’s Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter’s

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 21 Migrating CUDa CoDe

https://creativecommons.org/licenses/by/4.0/

605

 EPILOGUE

Future Direction
of SYCL
Take a moment now to feel the peace and calm of knowing that we have

covered programming using C++ with SYCL. All the pieces have fallen

into place.

We’ve endeavored to ensure that the code samples in previous chapters

use standard SYCL 2020 functionality and execute on a wide range of

hardware, and the few places we used extensions (e.g., interoperability and

FPGA-specific extensions), we call it out. However, the future-looking code

shown in this epilogue does not compile with any compiler as of mid-2023.

In this epilogue, we speculate on the future. Our crystal ball can be a

bit difficult to read—this epilogue comes without any warranty. Some of

the predictions we made in the first edition of this book came true, but

others did not.

This epilogue provides a sneak peek of upcoming SYCL features and

DPC++ extensions that we are very excited about. We offer no guarantees

that the code samples printed in this epilogue compile: some may already

be compatible with a compiler released after the book, while others may

compile only after some massaging of syntax. Some features may be

released as extensions or incorporated into future versions of SYCL, while

others may remain experimental features indefinitely. The code samples

in the GitHub repository associated with this book may be updated to

use new syntax as it evolves. Likewise, we will have an erratum for the

© Intel Corporation 2023
J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-9691-2

https://doi.org/10.1007/978-1-4842-9691-2

606

book, which may get additions made from time to time. We recommend

checking for updates in these two places (code repository and book

errata—links can be found early in Chapter 1).

 Closer Alignment with C++11, C++14,
and C++17
Maintaining close alignment between SYCL and C++ has two advantages.

First, it enables SYCL to leverage the newest and greatest features of C++

to improve developer productivity. Second, it increases the chances of

heterogeneous programming features introduced in SYCL successfully

influencing the future direction of C++.

SYCL 1.2.1 was based on C++11, and many of the biggest improvements

to the interfaces of SYCL 2020 are only possible because of language

features introduced in C++14 (e.g., generic lambdas) and C++17 (e.g., class

template argument deduction—CTAD). We expect SYCL and C++ to grow

closer over time, and there are several exciting efforts already underway.

The C++ Standard Template Library (STL) contains several algorithms

which correspond to the parallel patterns discussed in Chapter 17. The

algorithms in the STL typically apply to sequences specified by pairs of

iterators and—starting with C++17—support an execution policy argument

denoting whether they should be executed sequentially or in parallel.

The standard allows for implementations to define their own execution

policies, too, and the oneAPI DPC++ Library (oneDPL) covered in Chapter

18 leverages such a custom execution policy to enable algorithms to

execute on SYCL devices. The result is a high-productivity approach to

programming heterogeneous devices—if an application can be expressed

solely using functionality of the STL algorithms, oneDPL makes it possible

to make use of the accelerators in our systems without writing a single line

of SYCL kernel code! There are still open questions about how the STL

algorithms should interact with certain SYCL concepts (e.g., buffers), and

EPILOGUE FUtUrE DIrEctIOn OF SYcL

607

how to ensure that all the standard library classes we might want (e.g.,

std::complex, std::atomic) are available in device code, but oneDPL is

the first step on a long path toward unifying our host and device code.

 Adopting Features from C++20, C++23
and Beyond
The SYCL specification deliberately trails behind C++ to ensure that the

features it uses have broad compiler support. However, SYCL committee

members—many of whom are also involved in ISO C++ committees—are

keeping a close eye on how future versions of C++ are developing.

Adopting C++ or SYCL features we discuss here that are not finalized

yet into a specification could be a mistake—features may change

significantly before making it into a standard. Nevertheless, there are a

number of features under discussion that may change the way that future

SYCL programs look and behave which are worth discussing.

Some of the features in SYCL 2020 were informed by C++20 (e.g.,

std::atomic_ref) and others were pre-adopted into the sycl::

namespace (e.g., std::bit_cast, std::span). As we move toward

the next official release of SYCL, we expect to align with C++20 more

closely and incorporate the most useful parts of it. For example, C++20

introduced some additional thread synchronization routines in the form

of std::latch and std::barrier; we already explored in Chapter 19 how

similar interfaces could be used to define device-wide barriers, and it

may make sense to reexamine sub-group and work-group barriers in the

context of the new C++20 syntax as well.

One of the most exciting features in C++23 is mdspan, a non-owning

view of data that provides both multidimensional array syntax for pointers

and an AccessorPolicy as an extension point for controlling access to

the underlying data. These semantics are very similar to those of SYCL

EPILOGUE FUtUrE DIrEctIOn OF SYcL

608

accessors, and mdspan would enable accessor-like syntax to be used for

both buffers and USM allocations, as shown in Figure EP-1.

queue q;
constexpr int N = 4;
constexpr int M = 2;
int* data = malloc_shared<int>(N * M, q);

stdex::mdspan<int, N, M> view{data};
q.parallel_for(range<2>{N, M}, [=](id<2> idx) {
 int i = idx[0];
 int j = idx[1];
 view(i, j) = i * M + j;
 }).wait();

Figure EP-1. Attaching accessor-like indexing to a USM pointer
using mdspan

Hopefully it is only a matter of time until SYCL officially supports

mdspan. In the meantime, we recommend that interested readers

experiment with the open source production-quality reference

implementation available as part of the Kokkos project.

 Mixing SPMD and SIMD Programming
Another exciting, proposed feature for C++ is the std::simd class template,

which seeks to provide a portable interface for explicit vector parallelism

in C++. Adopting this interface would provide a clear distinction between

the two different uses of vector types described in Chapter 11: uses of

vector types for programmer convenience and uses of vector types by ninja

programmers for low-level performance tuning. The presence of support

for both SPMD and SIMD programming styles within the same language

also raises some interesting questions: how should we declare which style

a kernel uses, and should we be able to mix and match styles within the

same kernel?

EPILOGUE FUtUrE DIrEctIOn OF SYcL

609

We have started to explore potential answers to this question in the

form of a DPC++ extension (sycl_ext_oneapi_invoke_simd), which provides

a new invoke_simd function (modelled on std::invoke) that allows

developers to call explicitly vectorized (SIMD) code from within an SPMD

kernel. The call to invoke_simd acts as a clear boundary between the two

execution models implied by the two programming styles and defines

how data should flow between them. The code in Figure EP-2 shows a

very simple example of invoke_simd’s usage, calling out to a function that

expects to receive a combination of scalar and vector (simd) arguments.

Figure EP-2. A simple example of invoking a SIMD function from a
SPMD kernel

The approach taken by invoke_simd has several advantages. First,

there can be no nasty surprises— functions with a different execution

model are invoked explicitly, and the user is responsible for describing

how to marshal data back and forth. Second, the mechanism allows

EPILOGUE FUtUrE DIrEctIOn OF SYcL

610

for fine-grained specialization—it is possible to write just a few lines of

explicitly vectorized code (e.g., for performance tuning) without having

to throw away the rest of our SPMD code. Finally, it is straightforward to

extend—invoke_simd itself can be extended to support new groups or

new argument mappings via simple overloading, and similar invoke_*

functions could be introduced to handle interoperability with different

contexts (e.g., code written in a language that isn’t SYCL).

 Address Spaces
The introduction of generic address space support in SYCL 2020 has the

potential to greatly simplify many codes, by allowing us to use regular

C++ pointers without worrying about what kind of memory is being used.

Many modern architectures provide hardware support for the generic

address space, and so we can expect code using regular C++ pointers to

work across a wide variety of machines and with minimal performance

overhead.

However, there are some (older, or more special purpose) architectures

on which generic address space support is a more complicated story.

Some hardware may use different instructions to access different kinds

of memory, requiring compilers to identify a concrete address space at

compile time (i.e., to generate the correct instructions). There may also

be SYCL backends incapable of representing a generic address space

(e.g., OpenCL 1.2). SYCL 2020 makes allowances for such hardware and

backends via a set of inference rules for deducing address spaces.

The address space deduction rules were inherited from SYCL 1.2.1, and

the SYCL 2020 specification includes a note that the rules will be revisited

in a future version of SYCL. Although it is unclear at the time of writing

exactly how these rules will change, SYCL’s long-term thinking is clear: in

most cases, we should not be concerned with address space management

and should trust the compiler and hardware to do the right thing.

EPILOGUE FUtUrE DIrEctIOn OF SYcL

611

 Specialization Mechanism
There are plans to introduce compile-time queries enabling kernels to

be specialized based on properties (aspects) of the targeted device (e.g.,

the device type, support for a specific extension, the size of work-group

local memory, the sub-group size selected by the compiler). Such queries

require a new kind of constant expression not currently present in C++—

they are not necessarily constexpr when the host code is compiled but

become constexpr when the target device becomes known.

The exact mechanism used to expose this “device-constant

expression” concept is still being designed. We expect it to build on the

specialization constants feature introduced in SYCL 2020 and to look and

behave similarly to the code shown in Figure EP-3.

 Compile-Time Properties
SYCL allows the behavior of certain classes (e.g., buffers, accessors) to be

modified by passing a property list into the constructor. These properties

are already very powerful, but their power is limited by the fact that the

properties passed to a constructor are not known until runtime. Allowing

for certain properties to be declared at compile time has the potential to

h.parallel_for(range{1}, [=](id<1> idx) {
 if_device_has<aspect::cpu>([&]() {
 /* Code specialized for CPUs */
 out << "On a CPU!" << endl;
 }).else_if_device_has<aspect::gpu>([&]() {
 /* Code specialized for GPUs */
 out << "On a GPU!" << endl;
 });
});

Figure EP-3. Specializing kernel code based on device aspects at
kernel compile time

EPILOGUE FUtUrE DIrEctIOn OF SYcL

612

significantly improve performance, by reducing the number of runtime

checks and by enabling compilers to aggressively specialize both host and

device code in the presence of specific properties.

The DPC++ compiler supports an experimental extension for compile-

time properties (sycl_ext_oneapi_properties), and it already enables a

wide variety of other extensions:

• Pointers annotated with information extending beyond

just address spaces, which could inform the future of

sycl::multi_ptr (sycl_ext_oneapi_annotated_ptr)

• Kernel configuration controls, which could replace

C++ attributes and increase the capabilities of library-

only SYCL implementations (sycl_ext_oneapi_kernel_

properties)

• Descriptions of desired memory behavior and access

controls (sycl_ext_oneapi_device_global, sycl_ext_

oneapi_prefetch)

Our early experience with compile-time properties has been very

positive, and we’re finding more and more potential use cases for them all

the time. Given their wide applicability, we are keen to see some version of

compile-time properties adopted in a future SYCL specification.

 Summary
There is already a lot of excitement around SYCL, and this is just the

beginning! We (as a community) have a long path ahead of us, and

it will take significant continued effort to distill the best practices for

heterogeneous programming and to design new language features

that strike the desired balance between performance, portability, and

productivity.

EPILOGUE FUtUrE DIrEctIOn OF SYcL

613

We need your help! If your favorite feature of C++ (or any other

programming language) is missing from SYCL, please reach out to us.

Together, we can shape the future direction of SYCL and C++.

 For More Information
• Khronos SYCL Registry, www.khronos.org/

registry/SYCL

• H. Carter Edwards et al., “mdspan: A Non-Owning

Multidimensional Array Reference,” wg21.link/p0009

• D. Hollman et al., “Production-Quality mdspan

Implementation,” github.com/kokkos/mdspan

• Intel DPC++ Compiler Extensions, tinyurl.com/

syclextend

EPILOGUE FUtUrE DIrEctIOn OF SYcL

http://www.khronos.org/registry/SYCL/
http://www.khronos.org/registry/SYCL/
http://wg21.link/p0009
http://github.com/kokkos/mdspan
http://tinyurl.com/syclextend
http://tinyurl.com/syclextend

615

Index

A
Accelerated vs. Heterogeneous

systems, 1
Accelerator devices

GPU (see Graphics processing
unit (GPU))

Ahead-of-time (AOT)
compilation, 316

all_of_group, 242
Amdahl, Gene, 10
Amdahl’s Law, 10
Anonymous lambdas, 346–347
any_of_group, 242
Application programming interface

(API), 264
See also Backend

interoperability
Array-of-Struct (AOS)

structures, 442–444
Aspects, 52

See also Device aspects
Asynchronous

error, 139
host program

execution, 35
queues (out-of-order), 21

Atomic operations

atomic_fence, 542
atomic_fence_order_

capabilities, 541
atomic_fence_scope_

capabilities, 541
atomic_memory_order_

capabilities, 540
atomic_memory_scope_

capabilities, 541
atomic_ref class, 543
cl::sycl::atomic class

(deprecated in SYCL
2020), 543

cl::sycl::atomic (deprecated in
SYCL 2020), 543

data races, 524
device-wide

synchronization, 553–556
std::atomic class, 543
std::atomic_ref class, 544–548
unified shared memory, 550

B
Backend interoperability, 559

backends, 560
get_native functions, 564–566
interop_handle, 566

© Intel Corporation 2023
J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-9691-2

https://doi.org/10.1007/978-1-4842-9691-2

616

kernels, 569–574
key benefits, 562
low-level API features, 576

Barrier synchronization, 530
Buffers, 67, 72, 78

accessor, 78–80, 180
access targets, 190
deduction tags, 195, 197
get_access method, 192
modes, 190
name—access data, 198
placeholder accessor,

191, 197
coding preferences, 181
command group (CG), 207
myDoubles array, 183
properties, 186

context_bound, 188
use_host_ptr, 187
use_mutex, 187

set_final_data method, 189
set_write_back method, 189
USM (see Unified shared

memory (USM))

C
Cache-coherent non-uniform

memory access
(cc-NUMA), 419

Central processing units (CPUs)
architecture, 420
cc-NUMA system, 419–421

hardware threads, 421
multicore, 419–421
multicore processors, 417
parallelism, 417
performance, 418–419
SIMD instruction

hardware, 422–428
vectorization, 436–448

sockets, 421
thread-level

parallelism, 428–436
Class template argument

deduction (CTAD), 181
Clock frequency, 500–501
cl::sycl::atomic (deprecated in

SYCL 2020), 543
Code execution, see Host devices
Collective functions,

communication
broadcast function, 241
exclusive/inclusive

scans, 244
features, 241
permute_group_by_xor, 245
shift_group_left, 244
shuffle functions, 243–246
sub-groups, 245
vote functions, 242
XOR operation, 244

Command group (CG)
actions, 203
description, 202, 203
event-based dependences, 203
execution, 213

 Backend interoperability (cont.)

INDEX

617

linear dependence chains
buffers/accessors, 207, 208
events, 207
in-order queues, 205, 206
task execution, 204

“Y” pattern
accessors, 212
events, 210
in-order queues, 208, 209
out-of-order queues,

209, 210
Communication

barrier function
synchronization, 223–225

collective function,
225, 241–246

matrix multiplication kernel
implicit/explicit cache, 229

sub-groups
broadcast function, 237
collective functions, 237–239
definition, 235
ND-range parallel_

for, 240–241
synchronization, 236

work-group local memory
compiler optimizations, 226
info::device::local_mem_

type, 227
matrix multiplication

kernel, 227–231
memory subsystems, 226
ND-range kernels, 231–235

Compile-time properties, 612–613

Concurrent vs. parallelism, 28–29
Contexts, 157, 319, 320, 576
copy method, 214
C++ programming, 5

asynchronous, 20
concurrency vs. parallelism,

22, 28–29
data-parallel programming, 6
deadlocks, 22
key attributes, 14
migrate CUDA code, 581
platform model, 321–322
poor algorithm design, 22
portability/performance

portability, 26–28
std::memcpy, 19–22

C++ standard library
CPU/GPU/FPGA coverage,

508, 509
cross-architecture

portability, 510
DPC++ compiler, 509
memory model, 535
std::swap, 507, 508
SYCL devices, 507

CUDA
migration (see Migrate

CUDA code)
Curious

descriptors, 303
detailed enumeration

code, 301–302
get_info<>, 300–301
has() interface, 303

INDEX

618

Custom memory systems
memory access, 495, 497
optimization, 496
stages, 495, 496
static coalescing, 497
structure, 497

D
Data management

explicit, 70
implicit, 71
local accesses, 69
parallelism/feeding data, 67

Data movement
accessor, 215
application performance, 213
command groups, 215
explicit, 167–169, 213
graph (see Graph scheduling)
host and shared allocations, 215
implicit, 214

data migration, 169
data movement, 170
fine-grained

control, 172–174
host allocations, 169
memcpy, 169
migration, 170–171
prefetch/mem_advise, 173
shared allocations, 169

memcpy method, 167, 214
prefetch operation, 215
update_host method, 214

Data parallelism
architectures, 98
data-parallel kernels

C++ classes, 109
descriptive

programming, 105
execution space, 105–106
id class, 110–111
item class, 111–112
matrix multiplication,

108, 109
operations, 105
parallel_for

function, 107–109
range class, 109–110
simplified definition, 110
SPMD programming

model, 105
device-specific

optimizations, 98
hardware resources, 98
hierarchical data, 104
host/device code, 102–103
kernel-based

programming, 101
kernel forms, 103–105

features, 132
flowchart, 130, 131
functionality, 130

language features, 102
loops vs. kernels, 99–101
multidimensional

kernels, 101–102
ND-range, 104

INDEX

619

performance/portability/
productivity, 99

programmer productivity, 98
sequential semantics, 99
two-dimensional range, 102
work-items

data and execution
ranges, 129

many-to-one
mapping, 128–129

mapping computation, 128
one-to-one mapping, 128

Data-parallel programming, 13
Deadlock, 21
Debugging process

compiler options, 324
deadlocking, 324
host/device, 323
queue profiling, 330–334
runtime error, 327–330
sycl::stream, 326
tracing and profiling

tools, 334–335
Debugging technique, 21
Device aspects, 51, 296, 297
Device code, 34
Device-constant expression, 611
Device information

all_devices_have_
v<aspect>, 308

any_device_has_v<aspect>, 308
compile-time properties vs.

runtime, 308
correctness

device queries, 305–306
fetching parameters, 304
parameters, 304

custom device selectors, 298
descriptors, 303
enumeration method

aspects, 296–297
curious, 300–302
custom device

selector, 298–299
device class, 300
device query

mechanisms, 300
device selectors, 294
get_info<>, 300–301
implementation, 293
get_info plus has(), 303
kernel specialization, 296
output program, 301
preferred solution, 299
robust application, 296
try-catch, 294, 295

kernels
information

descriptors, 303
kernel specialization, 309–311
properties, 291
specialization constants, 308
SYCL specification, 290
templated kernels, 308
tuning/optimization

kernel queries, 308
Device selection, 36, 289, 291,

293, 298

INDEX

620

Device-wide synchronization, 553
atomic references, 555
implementation, 553
ND-range, 554

Dining Philosophers problem, 21
Double-precision A times X Plus Y

(DAXPY), 17–18
Download code samples, 313
Download SYCL compiler, 313
DPC++ compiler, 313, 503

See also oneAPI DPC++ Library
(oneDPL)

DPC++ Compatibility Tool (dpct)
compiling and running

program, 601–603
CUDA program, 599
helper functions, 602–603
migration code, 598–602
output process, 601–602

DPC++ Library (oneDPL), 606

E
Error handling

application strategies, 140–149
asynchronous

definition, 138
detection/reporting, 141
devices, 149, 150
heterogeneous

programming, 136
host program/task graph

executions, 137
key capabilities, 135

safety, 135–136
std::function, 145
std::terminate, 142
synchronous

definition, 137
types, 136–138

Execution policy, 606

F
Fat binary, 315
Fencing memory model, 223
Field Programmable Gate

Arrays (FPGAs)
building blocks

elements, 498
look-up tables, 498
math engines, 498
off-chip hardware, 499
on-chip memory, 499
routing fabric, 499, 500

custom memory
systems, 495–497

data flow architectures, 462
definition, 451
kernels consume chip, 459–460
loop initiation interval

incremental random
number, 485, 486

iteration
processes, 486, 487

iterations, 485
stages, 487, 488

pipeline parallelism

INDEX

621

backward
communication, 480

efficient utilization, 474
generation function, 477
loop-carried data

dependence, 479–481
loop initiation

interval, 483–488
ND-range execution

model, 475–478
spatial

implementation, 481–483
stages, 472–474
successive iterations, 482
work-item, 475

pipes
automatic selection, 493
blocking/non-blocking, 494
FIFO, 489, 490
information, 495
kernels, 491, 492
modular design/access, 490
parameterization, 492, 493
properties, 489
types, 491

runtime device
ahead-of-time, 470–471
fpga_selector, 467

SYCL, 452
Fine-grained specialization, 610
First-in first-out (FIFO), 489, 490
Functors, 255–258
Future Direction, 605

G
Generic address spaces, 610
Graphics processing unit (GPU)

accessing global
memory, 405–409

caches/memory, 385
compilation process, 317
compute bound, 405
execution resources, 384
fixed functions, 384
hide latency, 398–399
high-level building

blocks, 384–385
instruction streams, 399
memory bound, 405
occupancy, 399
offloading kernels

abstraction, 400
cost of, 403–404
device memory/remote

memory/host memory, 404
SYCL runtime library, 400

optimization
math functions, 413
small data types, 412, 413

performance, 383
SIMD instructions, 391
simpler processors

advantage, 386
features, 386
matrix multiplication,

386–388, 391
oneMKL project, 387

INDEX

622

parallelism, 389–391
processor resources, 390
task kernel, 388
tradeoffs, 386

specialized functions/
extensions, 414

sub-group collective
functions, 412

work-group local
memory, 409–411

Graph scheduling
CG (see Command group (CG))
data dependences, 202
data movement, 213–216
host synchronization, 216–218

Group algorithms, 115, 366
Gustafson, John, 10

H
Hello, world!, 6–7
Heterogeneous system, 1
Host code, 33
Host devices

cpu_selector_v, 45
development/debugging/

deployment, 43–46
device code

classes, 61
host tasks, 63–65
submission, 56
task graph, 55–57

device selection, 51
aspects, 51–53
mechanisms, 54

GPU, 45–50
queue class, 58
queues, 37–42
single-source file

device code, 34–35
Host tasks, 63

I
id class, 110
Images, 72
In-order queues, 84
invoke_simd, 609
item class, 111

J
Just-in-time (JIT) compilation, 316

K
Kernels

accelerator types, 250
accessing outputs/data

initialization, 336
advantages/disadvantages, 249
ahead-of-time (AOT), 259
correctness, 306–307
direct programming, 370
enumeration method, 296
explicit/selective object, 262

Graphics processing unit
(GPU) (cont.)

INDEX

623

interoperability, 264
API-defined objects, 569, 570
non-SYCL source

languages, 571–574
set_arg() and set_args()

interfaces, 570
source/intermediate

representation, 569
SPIR-V, 573

just-in-time (JIT), 259
kernel objects/kernel

bundles, 259
matrix multiplication, 227–231
memory model, 528
named function object

definition, 255–258
elements, 256
operator() function, 256–258
optional attributes, 258

object files, 259
precompiled kernel bundle, 260
querying kernels, 263
representation, 249
tuning/optimization, 308

L
Lambda expressions, 23

anonymous, 26
anonymous/unnamed function

objects/closures, 251
capture-list, 23
data parallelism, 102, 103
demonstration code, 25

elements, 252–255
function object, 26
identification, 254–255
implicit/explicit, 254
kernels, 249
named function

objects, 256–259
parameters, 24
template parameter, 254
unnamed parameter, 255

Libraries
built-in functions

host and device, 504
host/device, 504
sycl::, 506

C++ standard library, 507–510
SYCL implementations, 503

M
Map pattern, 351–352, 370
Math array type (marray), 271–273
marray class, 267, 271, 273
Masking and predication, 394
Matrix multiply and accumulate

(MMA), 597
Memory (consistency) model

acquire-release ordering, 533
atomic/non-atomic

operations, 531–532
atomic operations, 534
atomic_ref class, 531
barrier function

synchronization, 223

INDEX

624

barriers/memory
fences, 529–530

C++ thread, 524
core concepts, 525
data races/

synchronization, 526–529
features/capabilities, 523
heterogeneous systems, 524
instructions/micro-

operations, 526
Kernel, 528
memory model (see

Memory model)
memory ordering, 532–534
parallel application

development, 527
reorder operations, 532
sequential execution, 526
SYCL specifications, 525

Memory model
atomic and fence

operations, 540
atomic_fence function, 542
atomics (see Atomic operations)
barriers and fences, 542
C++ standard library, 535
concepts, 534
development approaches, 541
language features, 535
load operations, 538
memory_order enumeration

class, 536–538

memory_scope enumeration
class, 539–541

querying device
capabilities, 540–542

SYCL memory models, 536
Migrate CUDA code, 579

C++ code, 581
cooperative groups, 596
features, 595
global variables, 595
group algorithms, 596
matrix multiplication

hardware, 597–599
memory model, 589

atomic operations, 590–592
equivalent barrier, 590
fences, 591–593

miscellaneous differences
contexts, 593
error checking/error

handling, 594
item classes vs. built-in

variables, 592, 593
multiple targets vs. single device

targets, 579–581
porting tools/

techniques, 598–602
real-world SYCL code, 581
similarities/differences, 583

barrier deadlock, 589
contiguous dimension, 585
execution model, 584
forward progress

guarantees, 588

Memory (consistency) model (cont.)

INDEX

625

independent thread
scheduling, 588

in-order vs. out-of-
order, 584–585

sub-group size (warp
sizes), 587

standardization process, 595
terminology, 583
thread block cluster, 596

Multiarchitecture binary, 315
Multiple translation units, 344–345
multi_ptr, 612

N
N-dimensional range (ND-range)

communication/
synchronization, 221

data-parallel kernel, 360
device-wide

synchronization, 554
get_global_id() function, 123
get_local_id() function, 123
group class, 124–126
group_barrier function, 233
kernels form

execution range, 113–114
explicit, 113
forward progress

guarantees, 116
implementation-

defined, 114
prescriptive construct, 113
shuffle operations, 118

SIMD lane, 120
sub-groups, 113, 117–120
task-based programming

model, 117
vectorization, 117
work-groups, 113, 115–117
work-items, 113, 115, 116

local accessor, 231–232
nd_item class, 124–125
nd_range class, 122, 123
parallel_for, 121
pipeline parallelism, 475–478
sub_group class, 126–127
synchronization

functions, 232–233
two-dimensional

range, 222
work-groups/work-item,

221–222, 233–235
nd_range class, 122

See also N-dimensional range
(ND-range)

none_of_group, 242

O
oneAPI DPC++ Library

(oneDPL), 510
binary_search, 516
error handling model, 520
policy and host-side

iterators, 515
Online resources, 313
Out-of-order queues, 84, 92

INDEX

626

P
Pack, 377–379
Pack pattern, 358–359
parallel_for, 107
Parallel patterns

direct programming
gather/scatter

operations, 377
map pattern, 370
pack, 377–379
reduction patterns, 373–374
stencil pattern, 371–373

hardware devices, 350
high-level overview, 350
map pattern, 351–352
pack, 358
properties, 349
reduction, 356–358
scan, 356–357
stencil, 352–354
STL’s algorithms, 367
unpack, 359
vendor-provided libraries, 370

Parallel programming
Amdahl, Gene/Gustafson,

John, 10
data-parallel programming, 13
heterogeneous system, 11
Think Parallel, 9

See also Data parallelism
Performance portability, 98, 290
Platform model

advantages, 320
compilation process

ahead-of-time/just-in-time
options, 319

offload bundler/
unbundler, 319

Portability, 98, 317
Predication and masking, 394
printf and sycl::stream, 326
Profiling queues, 330

Q
Queues

definition, 37–39
device selector, 41
device_selector class, 41–42
in-order vs. out-of-order, 21
member functions, 39
multiple queues, 40, 41
out-of-order vs. in-order, 21
profiling, 330
work execution, 39, 40

R
Race condition, 19
range class, 109
Read-after-Write (RAW), 202
reducer class, 363
Reduction, 354
reduction class, 361
Reduction library, 360

INDEX

627

Reduction patterns,
356–358, 373–374

Resources online, 313

S
Scaling, 11
Scan pattern, 356–357
Single instruction, multiple data

(SIMD), 98, 608
addition, 285
central processing units

hardware thread, 423
instruction-level

parallelism, 423
multilevel parallelism, 425
multiple calculations, 422
parallel processing

hardware, 425
performance benefit, 422
STREAM Triad

program, 425–427
thread-level parallelism, 424
vectorization, 436–448
x86 architecture, 422

convenience types, 281, 283
hardware instructions, 271
mental model, 269
vectors, 269

Single program, multiple data
(SPMD), 105, 393, 608

programming models, 269
Single-source, 31

Specialization mechanism, 611
SPMD/SIMD programming

styles, 608–610
Standard Template Library

(STL), 606
std::simd, 608
Stencil pattern, 352–354, 371–373
stream (sycl::stream), 326
Structure-of-Arrays (SOA), 443
Sub-group, 113
Submit, 39
SYCL_EXTERNAL, 344
SYCLomatic tool, 598–602
SYCL standard, 1, 2, 313
Synchronization

accessors, 217
barrier function, 223–225
device-wide, 553
events, 216
graph execution, 216
ND-range kernel, 232–233
queue objects, 216
sub-groups

communication, 236
thread-level parallelism, 431
use_mutex, 217
vectors, 438

Synchronous, 139
error, 139
error handling

catch exceptions, 144
definition, 137
sub-buffer, 139

INDEX

628

sycl::exception, 143
try-catch structure, 143–144
unhandled C++

exception, 141
queues (in-order), 21

T
Task graph data

command groups, 84
data dependences, 86
depends_on() method, 85
disjoint dependences, 82
events, 85
execution, 80
host device, 55–57
Read-after-Read (RAR)

scenario, 88
Thread-level parallelism

affinity insight, 431–434
elements, 430
exploiting parallelism, 435
mapping, 430
memory, 435–436
parallel_for kernel code,

428, 429
SYCL program, 430
TBB partitioner, 434
work-group scheduling, 430

throw_asynchronous, 148
Timing and profiling, 330

Tracing and profiling tools
interfaces, 334

Translation unit, 31, 344, 345

U
Unified shared memory (USM),

67, 92, 153
advantage of, 72
allocation types, 73
atomic operations, 550
characteristics, 154
communication, 225–227
data initialization, 165–166
data initialization and data

movement, 165
definition, 154
device allocation, 154, 157
host allocation, 155
malloc, 72
memory allocation, 156

aligned_malloc functions, 164
C++ allocator–style,

158, 162–163
C++-style, 158, 160–161
context object, 157
C-style, 158–159
deallocation, 164–165
malloc functions, 158
new/malloc/allocators, 156

memset function, 166
movement (see Data movement)
queries, 174–177

Synchronous (cont.)

INDEX

629

shared allocation, 155
unified virtual address, 73

Unit-stride/fastest moving
dimension, 585–586

Unpack pattern, 359, 379–380

V
vec class, 267, 273
Vectors

convenience types, 268
address escaping, 284
compilers, 281
hardware

implementation, 280
hardware instruction, 282
implicit, 282
kernel execution, 281
memory access, 283
parallelism, 281, 282
SIMD/SPMD

instructions, 281
work-items, 282

CPU SIMD
AOS (Array-of-Struct)

structures, 442–444
computational

complexity, 448
data type impact, 444–446
destination register, 441
execution model, 437–440
gather/scatter

instructions, 445

hardware, 436–448
instruction stream, 436
masking and cost, 440–442
single_task, 446–448
sub-group barrier, 438
unit-stride vector, 444
work-items/work-group, 438

data collection, 268–269
elements/element type, 274
explicit code, 269
implicit, 270
instruction/clock cycle, 270
interoperability/backend-native

functions, 276
load() member function, 274
load/store operations, 274–276
memory layout, 281
NumElements

parameter, 274
scalar operations, 267
SIMD mappings, 269
SIMD types, 284–285
store() member function, 274
sub-group barriers and

shuffles, 269–271
swizzled_vec__ class, 279
swizzle operations, 276–279
swizzles, 273
SYCL 1.2.1 specification, 268
vec class, 274
work-item, 270

Virtual functions, 17
Vote functions, 242

INDEX

630

W, X
wait, 7, 19, 20, 39
wait_and_throw, 39, 148
Warp matrix multiplication and

accumulation
(WMMA), 597

Websites, 313
Work-group, 113

Work-group barriers, 115
Work-group local memory, 115
Work-item, 113
Write-after-Read (WAR), 202

Y, Z
“Y” pattern, 204, 205, 211

INDEX

	Table of Contents
	About the Authors
	Preface
	Foreword
	Acknowledgments
	Chapter 1: Introduction
	Read the Book, Not the Spec
	SYCL 2020 and DPC++
	Why Not CUDA?
	Why Standard C++ with SYCL?
	Getting a C++ Compiler with SYCL Support
	Hello, World! and a SYCL Program Dissection
	Queues and Actions
	It Is All About Parallelism
	Throughput
	Latency
	Think Parallel
	Amdahl and Gustafson
	Scaling
	Heterogeneous Systems
	Data-Parallel Programming

	Key Attributes of C++ with SYCL
	Single-Source
	Host
	Devices
	Sharing Devices

	Kernel Code
	Kernel: Vector Addition (DAXPY)

	Asynchronous Execution
	Race Conditions When We Make a Mistake
	Deadlock
	C++ Lambda Expressions
	Functional Portability and Performance Portability

	Concurrency vs. Parallelism
	Summary

	Chapter 2: Where Code Executes
	Single-Source
	Host Code
	Device Code

	Choosing Devices
	Method#1: Run on a Device of Any Type
	Queues
	Binding a Queue to a Device When Any Device Will Do

	Method#2: Using a CPU Device for Development, Debugging, and Deployment
	Method#3: Using a GPU (or Other Accelerators)
	Accelerator Devices
	Device Selectors
	When Device Selection Fails

	Method#4: Using Multiple Devices
	Method#5: Custom (Very Specific) Device Selection
	Selection Based on Device Aspects
	Selection Through a Custom Selector
	Mechanisms to Score a Device

	Creating Work on a Device
	Introducing the Task Graph
	Where Is the Device Code?
	Actions
	Host tasks

	Summary

	Chapter 3: Data Management
	Introduction
	The Data Management Problem
	Device Local vs. Device Remote
	Managing Multiple Memories
	Explicit Data Movement
	Implicit Data Movement
	Selecting the Right Strategy

	USM, Buffers, and Images
	Unified Shared Memory
	Accessing Memory Through Pointers
	USM and Data Movement
	Explicit Data Movement in USM
	Implicit Data Movement in USM

	Buffers
	Creating Buffers
	Accessing Buffers
	Access Modes

	Ordering the Uses of Data
	In-order Queues
	Out-of-Order Queues
	Explicit Dependences with Events
	Implicit Dependences with Accessors

	Choosing a Data Management Strategy
	Handler Class: Key Members
	Summary

	Chapter 4: Expressing Parallelism
	Parallelism Within Kernels
	Loops vs. Kernels
	Multidimensional Kernels
	Overview of Language Features
	Separating Kernels from Host Code

	Different Forms of Parallel Kernels
	Basic Data-Parallel Kernels
	Understanding Basic Data-Parallel Kernels
	Writing Basic Data-Parallel Kernels
	Details of Basic Data-Parallel Kernels
	The range Class
	The id Class
	The item Class

	Explicit ND-Range Kernels
	Understanding Explicit ND-Range Parallel Kernels
	Work-Items
	Work-Groups
	Sub-Groups

	Writing Explicit ND-Range Data-Parallel Kernels
	Details of Explicit ND-Range Data-Parallel Kernels
	The nd_range Class
	The nd_item Class
	The group Class
	The sub_group Class

	Mapping Computation to Work-Items
	One-to-One Mapping
	Many-to-One Mapping

	Choosing a Kernel Form
	Summary

	Chapter 5: Error Handling
	Safety First
	Types of Errors
	Let’s Create Some Errors!
	Synchronous Error
	Asynchronous Error

	Application Error Handling Strategy
	Ignoring Error Handling
	Synchronous Error Handling
	Asynchronous Error Handling
	The Asynchronous Handler
	Invocation of the Handler

	Errors on a Device
	Summary

	Chapter 6: Unified Shared Memory
	Why Should We Use USM?
	Allocation Types
	Device Allocations
	Host Allocations
	Shared Allocations

	Allocating Memory
	What Do We Need to Know?
	Multiple Styles
	Allocations à la C
	Allocations à la C++
	C++ Allocators

	Deallocating Memory
	Allocation Example

	Data Management
	Initialization
	Data Movement
	Explicit
	Implicit
	Migration
	Fine-Grained Control

	Queries
	One More Thing
	Summary

	Chapter 7: Buffers
	Buffers
	Buffer Creation
	Buffer Properties
	use_host_ptr
	use_mutex
	context_bound

	What Can We Do with a Buffer?

	Accessors
	Accessor Creation
	What Can We Do with an Accessor?

	Summary

	Chapter 8: Scheduling Kernels and Data Movement
	What Is Graph Scheduling?
	How Graphs Work in SYCL
	Command Group Actions
	How Command Groups Declare Dependences
	Examples
	When Are the Parts of a Command Group Executed?

	Data Movement
	Explicit Data Movement
	Implicit Data Movement

	Synchronizing with the Host
	Summary

	Chapter 9: Communication and Synchronization
	Work-Groups and Work-Items
	Building Blocks for Efficient Communication
	Synchronization via Barriers
	Work-Group Local Memory

	Using Work-Group Barriers and Local Memory
	Work-Group Barriers and Local Memory in ND-Range Kernels
	Local Accessors
	Synchronization Functions
	A Full ND-Range Kernel Example

	Sub-Groups
	Synchronization via Sub-Group Barriers
	Exchanging Data Within a Sub-Group
	A Full Sub-Group ND-Range Kernel Example

	Group Functions and Group Algorithms
	Broadcast
	Votes
	Shuffles

	Summary

	Chapter 10: Defining Kernels
	Why Three Ways to Represent a Kernel?
	Kernels as Lambda Expressions
	Elements of a Kernel Lambda Expression
	Identifying Kernel Lambda Expressions

	Kernels as Named Function Objects
	Elements of a Kernel Named Function Object

	Kernels in Kernel Bundles
	Interoperability with Other APIs
	Summary

	Chapter 11: Vectors and Math Arrays
	The Ambiguity of Vector Types
	Our Mental Model for SYCL Vector Types
	Math Array (marray)
	Vector (vec)
	Loads and Stores
	Interoperability with Backend-Native Vector Types
	Swizzle Operations

	How Vector Types Execute
	Vectors as Convenience Types
	Vectors as SIMD Types

	Summary

	Chapter 12: Device Information and Kernel Specialization
	Is There a GPU Present?
	Refining Kernel Code to Be More Prescriptive
	How to Enumerate Devices and Capabilities
	Aspects
	Custom Device Selector
	Being Curious: get_info<>
	Being More Curious: Detailed Enumeration Code
	Very Curious: get_info plus has()

	Device Information Descriptors
	Device-Specific Kernel Information Descriptors
	The Specifics: Those of “Correctness”
	Device Queries
	Kernel Queries

	The Specifics: Those of “Tuning/Optimization”
	Device Queries
	Kernel Queries

	Runtime vs. Compile-Time Properties
	Kernel Specialization
	Summary

	Chapter 13: Practical Tips
	Getting the Code Samples and a Compiler
	Online Resources
	Platform Model
	Multiarchitecture Binaries
	Compilation Model

	Contexts: Important Things to Know
	Adding SYCL to Existing C++ Programs
	Considerations When Using Multiple Compilers
	Debugging
	Debugging Deadlock and Other Synchronization Issues
	Debugging Kernel Code
	Debugging Runtime Failures
	Queue Profiling and Resulting Timing Capabilities
	Tracing and Profiling Tools Interfaces

	Initializing Data and Accessing Kernel Outputs
	Multiple Translation Units
	Performance Implication of Multiple Translation Units

	When Anonymous Lambdas Need Names
	Summary

	Chapter 14: Common Parallel Patterns
	Understanding the Patterns
	Map
	Stencil
	Reduction
	Scan
	Pack and Unpack
	Pack
	Unpack

	Using Built-In Functions and Libraries
	The SYCL Reduction Library
	The reduction Class
	The reducer Class
	User-Defined Reductions

	Group Algorithms

	Direct Programming
	Map
	Stencil
	Reduction
	Scan
	Pack and Unpack
	Pack
	Unpack

	Summary
	For More Information

	Chapter 15: Programming for GPUs
	Performance Caveats
	How GPUs Work
	GPU Building Blocks
	Simpler Processors (but More of Them)
	Expressing Parallelism
	Expressing More Parallelism

	Simplified Control Logic (SIMD Instructions)
	Predication and Masking
	SIMD Efficiency
	SIMD Efficiency and Groups of Items

	Switching Work to Hide Latency

	Offloading Kernels to GPUs
	SYCL Runtime Library
	GPU Software Drivers
	GPU Hardware
	Beware the Cost of Offloading!
	Transfers to and from Device Memory

	GPU Kernel Best Practices
	Accessing Global Memory
	Accessing Work-Group Local Memory
	Avoiding Local Memory Entirely with Sub-Groups
	Optimizing Computation Using Small Data Types
	Optimizing Math Functions
	Specialized Functions and Extensions

	Summary
	For More Information

	Chapter 16: Programming for CPUs
	Performance Caveats
	The Basics of Multicore CPUs
	The Basics of SIMD Hardware
	Exploiting Thread-Level Parallelism
	Thread Affinity Insight
	Be Mindful of First Touch to Memory

	SIMD Vectorization on CPU
	Ensure SIMD Execution Legality
	SIMD Masking and Cost
	Avoid Array of Struct for SIMD Efficiency
	Data Type Impact on SIMD Efficiency
	SIMD Execution Using single_task

	Summary

	Chapter 17: Programming for FPGAs
	Performance Caveats
	How to Think About FPGAs
	Pipeline Parallelism
	Kernels Consume Chip “Area”

	When to Use an FPGA
	Lots and Lots of Work
	Custom Operations or Operation Widths
	Scalar Data Flow
	Low Latency and Rich Connectivity
	Customized Memory Systems

	Running on an FPGA
	Compile Times
	The FPGA Emulator
	FPGA Hardware Compilation Occurs “Ahead-of-Time”

	Writing Kernels for FPGAs
	Exposing Parallelism
	Keeping the Pipeline Busy Using ND-Ranges
	Pipelines Do Not Mind Data Dependences!
	Spatial Pipeline Implementation of a Loop
	Loop Initiation Interval
	Pipes
	Blocking and Non-blocking Pipe Accesses
	For More Information on Pipes

	Custom Memory Systems

	Some Closing Topics
	FPGA Building Blocks
	Clock Frequency

	Summary

	Chapter 18: Libraries
	Built-In Functions
	Use the sycl:: Prefix with Built-In Functions

	The C++ Standard Library
	oneAPI DPC++ Library (oneDPL)
	SYCL Execution Policy
	Using oneDPL with Buffers
	Using oneDPL with USM
	Error Handling with SYCL Execution Policies

	Summary

	Chapter 19: Memory Model and Atomics
	What’s in a Memory Model?
	Data Races and Synchronization
	Barriers and Fences
	Atomic Operations
	Memory Ordering

	The Memory Model
	The memory_order Enumeration Class
	The memory_scope Enumeration Class
	Querying Device Capabilities
	Barriers and Fences
	Atomic Operations in SYCL
	The atomic Class
	The atomic_ref Class

	Using Atomics with Buffers
	Using Atomics with Unified Shared Memory

	Using Atomics in Real Life
	Computing a Histogram
	Implementing Device-Wide Synchronization

	Summary
	For More Information

	Chapter 20: Backend Interoperability
	What Is Backend Interoperability?
	When Is Backend Interoperability Useful?
	Adding SYCL to an Existing Codebase
	Using Existing Libraries with SYCL
	Getting Backend Objects with Free Functions
	Getting Backend Objects via an Interop Handle

	Using Backend Interoperability for Kernels
	Interoperability with API-Defined Kernel Objects
	Interoperability with Non-SYCL Source Languages

	Backend Interoperability Hints and Tips
	Choosing a Device for a Specific Backend
	Be Careful About Contexts!
	Access Low-Level API-Specific Features
	Support for Other Backends

	Summary

	Chapter 21: Migrating CUDA Code
	Design Differences Between CUDA and SYCL
	Multiple Targets vs. Single Device Targets
	Aligning to C++ vs. Extending C++

	Terminology Differences Between CUDA and SYCL
	Similarities and Differences
	Execution Model
	In-Order vs. Out-of-Order Queues
	Contiguous Dimension
	Sub-Group Sizes (Warp Sizes)
	Forward Progress Guarantees
	Barriers

	Memory Model
	Barriers
	Atomics and Fences

	Other Differences
	Item Classes vs. Built-In Variables
	Contexts
	Error Checking

	Features in CUDA That Aren’t In SYCL… Yet!
	Global Variables
	Cooperative Groups
	Matrix Multiplication Hardware

	Porting Tools and Techniques
	Migrating Code with dpct and SYCLomatic
	Running dpct
	Examining the dpct Output

	Summary
	For More Information

	Epilogue: Future Direction of SYCL
	Closer Alignment with C++11, C++14, and C++17
	Adopting Features from C++20, C++23 and Beyond
	Mixing SPMD and SIMD Programming
	Address Spaces
	Specialization Mechanism
	Compile-Time Properties
	Summary
	For More Information

	Index

