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CHAPTER 8

Compiler Backends
For a numerical library, it is always beneficial and challenging to extend to multiple 

execution backends. We have seen how we support accelerators such as the GPU by 

utilizing a symbolic representation and computation graph standard such as ONNX. In 

this chapter, we introduce how Owl can be used on more edge-oriented backends, 

including JavaScript and unikernel.

8.1 � Base Library
Before we start, we need to understand how Owl enables compiling to multiple 

backends by providing different implementations. Owl, as well as many of its external 

libraries, is actually divided into two parts: a base library and a core library. The base 

library is implemented with pure OCaml. For some backends such as JavaScript, we can 

only use the functions implemented in OCaml.

You may wonder how much we will be limited by the base library. Fortunately, the 

most advanced modules in Owl are often implemented in pure OCaml, and they live 

in the base, which includes the modules we have introduced in the previous chapters: 

algorithmic differentiation, optimization, even neural networks, and many others. 

Figure 8-1 shows the structure of the core functor stack in Owl.

As we have introduced in Chapter 2, the Ndarray module is the core building block 

in Owl. The base library aims to implement all the necessary functions as the core 

library Ndarray module. The stack is implemented in such a way that the user can switch 

between these two different implementations without the modules of higher layer. In the 

Owl functor stack, Ndarray is used to support the computation graph module to provide 

lazy evaluation functionality. Here, we use the Owl_base_algodiff_primal_ops module, 

which is simply a wrapper around the base Ndarray module. It also includes a small 

number of matrix and linear algebra functions. By providing this wrapper instead of 
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using the Ndarray module directly, we can avoid mixing all the functions in the Ndarray 

module and make it a large Goliath.

Next, the algorithmic differentiation can build up its computation module based on 

normal ndarray or its lazy version. For example, you can have an AD that relies on the 

normal single-precision base ndarray module:

module AD = Owl_algodiff_generic.Make

  (Owl_base_algodiff_primal_ops.S)

Or it can be built on a double-precision lazy evaluated core Ndarray module:

module CPU_Engine = Owl_computation_cpu_engine.Make

  (Owl_algodiff_primal_ops.D)

module AD = Owl_algodiff_generic.Make (CPU_Engine)

Going up even further on the stack, we have the more advanced optimization and 

neural network modules. They are both based on the AD module. For example, the 

following code shows how we can build a neural graph module by layers of functors from 

the base Ndarray:

module G = Owl_neural_graph.Make

            (Owl_neural_neuron.Make

              (Owl_optimise_generic.Make

                (Owl_algodiff_generic.Make

                  (Owl_base_algodiff_primal_ops.S))))

Figure 8-1.  Core functor stack in Owl
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Normally, the users do not have to care about how these modules are constructed 

layer by layer, but understanding the functor stack and typing is nevertheless beneficial, 

especially when you are creating new module that relies on the base ndarray module.

These examples show that once we have built an application with the core Ndarray 

module, we can then seamlessly switch it to base Ndarray without changing anything 

else. That means that all the code and examples we have seen so far can be used directly 

on different backends that require pure implementation.

The base library is still an ongoing work, and there is still a lot to do. Though the 

Ndarray module is a large part in the base library, there are other modules that also need 

to be reimplemented in OCaml, such as the linear algebra module. We need to add more 

functions such as SVD factorization. Even for the Ndarray itself, we still have not totally 

covered all the functions yet.

Our strategy is to add the base Ndarray functions gradually. We put most of 

the signature files in the base library, and the core library signature file includes its 

corresponding signature file from the base library, plus functions that are currently 

unique to the core library. The target is to total coverage so that the core and base 

libraries provide exactly the same functions.

As can be expected, the pure OCaml implementation normally performs worse than 

the C code implemented version. For example, for the convolution operation, without 

the help of optimized routines from OpenBLAS, etc., we can only provide the naive 

implementation that includes multiple for-loops. Its performance is orders of magnitude 

slower than the core library version. Currently, our priority is to implement the 

functions themselves instead of caring about function optimization, nor do we intend to 

outperform C code with pure OCaml implementation.

8.2 � Backend: JavaScript
At first glance, JavaScript has very little to do with high-performance scientific 

computing. One important reason we aim to include that in Owl is that the web 

browser is arguably the most widely deployed technology on various edge devices, for 

example, mobile phones, tablets, laptops, etc. More and more functionalities are being 

pushed from data centers to edge for reduced latency, better privacy, and security. And 

JavaScript applications running in a browser are getting more complicated and powerful. 

Moreover, JavaScript interpreters are being increasingly optimized, and even relatively 

complicated computational tasks can run with reasonable performance.
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This chapter uses two simple examples to demonstrate how to compile Owl 

applications into JavaScript code so that you can deploy the analytical code into 

browsers, using both native OCaml code and Facebook Reason. It additionally requires 

the use of dune, a build system designed for OCaml/Reason projects. As you will see, this 

will make the compilation to JavaScript effortless.

�Native OCaml
We rely on the tool js_of_ocaml to convert native OCaml code into JavaScript. Js_of_

ocaml is a compiler from OCaml bytecode programs to JavaScript. The process can 

thus be divided into two phases: first, compile the OCaml source code into bytecode 

executables, and then apply the js_of_ocaml command to it. It supports the core 

Bigarray module among most of the OCaml standard libraries. However, since the Sys 

module is not fully supported, we are careful to not use functions from this module in 

the base library.

We have described how algorithmic differentiation plays a core role in the ecosystem 

of Owl, so now we use an example of AD to demonstrate how we convert a numerical 

program into JavaScript code and then get executed. The example is about optimizing 

the mathematical function sin. The first step is writing down our application in OCaml 

as follows, then save it into a file demo.ml.

module AlgodiffD = Owl_algodiff_generic.Make

    (Owl_base_algodiff_primal_ops.D)

open AlgodiffD

let rec desc ?(eta=F 0.01) ?(eps=1e-6) f x =

    let g = (diff f) x in

    if (unpack_flt g) < eps then x

    else desc ~eta ~eps f Maths.(x - eta * g)

let _ =

    let f = Maths.sin in

    let y = desc f (F 0.1) in

    Owl_log.info "argmin f(x) = %g" (unpack_flt y)
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The code is very simple: the desc defines a gradient descent algorithm, and then we 

use desc to calculate the minimum value of the Maths.sin function. In the end, we print 

out the result using the Owl_log module’s info function. Note that we pass in the base 

Ndarray module to the AD functor to create a corresponding AD module.

In the second step, we need to create a dune file as follows. This file will instruct how 

the OCaml code will be first compiled into bytecode and then converted into JavaScript 

by calling js_of_ocaml.

(executable

  (name demo)

  (modes byte js)

  (libraries owl-base))

With these two files in the same folder, we can then run the following command in 

the terminal:

dune build demo.bc && js_of_ocaml _build/default/demo.bc

Or even better, since js_of_ocaml is natively supported by dune, we can simply 

execute:

dune build

The command builds the application and generates a demo.bc.js in the _build/

default/ folder. Finally, we can run the JavaScript using Node.js (or loading into a 

browser using an appropriate HTML page).

node _build/default/demo.bc.js

As a result, we should be able to see the output result showing a value that minimizes 

the sin function and should be similar to

argmin f(x) = -1.5708

Even though we present a simple example here, the base library can be used to 

produce more complex and interactive browser applications.
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�Facebook Reason
Facebook Reason leverages OCaml as a backend to provide type-safe JavaScript. It is 

gaining its momentum and becoming a popular choice of developing web applications. 

It actually uses another tool, BuckleScript, to convert the Reason/OCaml code to 

JavaScript. Since Reason is basically a syntax layer built on top of OCaml, it is very 

straightforward to use Owl in Reason to develop advanced numerical applications.

In this example, we use reason code to manipulate multidimensional arrays, the core 

data structure in Owl. First, we save the following code into a reason file called demo.re. 

Note the suffix is .re now. It includes several basic math and Ndarray operations in Owl.

  open! Owl_base;

  /* calculate math functions */

  let x = Owl_base_maths.sin(5.);

  Owl_log.info("Result is %f", x);

  /* create random ndarray then print */

  let y = Owl_base_dense_ndarray.D.uniform([|3,4,5|]);

  Owl_base_dense_ndarray.D.set(y,[|1,1,1|],1.);

  Owl_base_dense_ndarray.D.print(y);

  /* take a slice */

  let z = Owl_base_dense_ndarray.D.get_slice([[],[],[0,3]],y);

  Owl_base_dense_ndarray.D.print(z);

The preceding code is simple. It creates a random ndarray, takes a slice, and then 

prints them out. The Owl library can be seamlessly used in Reason. Next, instead of 

using Reason’s own translation of this frontend syntax with bucklescript, we still turn to 

js_of_ocaml for help. Let’s look at the dune file, which turns out to be the same as that in 

the previous example:

  (executable

   (name demo)

   (modes js)

   (libraries owl-base))
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As in the previous example, you can then compile and run the code with the 

following commands:

  dune build

  node _build/default/demo.bc.js

As you can see, except that the code is written in different languages, the rest of the 

steps are identical in both example thanks to js_of_ocaml and dune.

8.3 � Backend: MirageOS
Besides JavaScript, another choice of backend we aim to support is the MirageOS. It 

is an approach to build unikernels. A unikernel is a specialized, single address space 

machine image constructed with library operating systems. Unlike a normal virtual 

machine, it only contains a minimal set of libraries required for one application. It can 

run directly on a hypervisor or hardware without relying on operating systems such as 

Linux and Windows. The unikernel is thus concise and secure, and extremely efficient 

for distribution and execution on either cloud or edge devices.

MirageOS is one solution to building unikernels. It utilizes the high-level language 

OCaml and a runtime to provide an API for operating system functionalities. In using 

MirageOS, the users can think of the Xen hypervisor as a stable hardware platform, 

without worrying about the hardware details such as devices. Furthermore, since 

the Xen hypervisor is widely used in platforms such as Amazon EC2 and Rackspace 

Cloud, MirageOS-built unikernel can be readily deployed on these platforms. Besides, 

benefiting from its efficiency and security, MirageOS also aims to form a core piece of the 

Nymote/MISO tool stack to power the Internet of Things.

�Example: Gradient Descent
Since MirageOS is based around the OCaml language, we can safely integrate the Owl 

library with it. To demonstrate how we use MirageOS as a backend, we again use the 

previous algorithmic differentiation–based optimization example. Before we start, please 

make sure to follow the installation instruction of the MirageOS. Let’s look at the code:
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module A = Owl_algodiff_generic.Make

  (Owl_algodiff_primal_ops.S)

open A

let rec desc ?(eta=F 0.01) ?(eps=1e-6) f x =

  let g = (diff f) x in

  if (unpack_flt (Maths.abs g)) < eps then x

  else desc ~eta ~eps f Maths.(x - eta * g)

let main () =

  let f x = Maths.(pow x (F 3.) - (F 2.) *

    pow x (F 2.) + (F 2.)) in

  let init = Stats.uniform_rvs ~a:0. ~b:10. in

  let y = desc f (F init) in

  Owl_log.info "argmin f(x) = %g" (unpack_flt y)

This part of the code is mostly the same as before. By applying the diff function of 

the algorithmic differentiation module, we use the gradient descent method to find the 

value that minimizes the function x3 − 2x2 + 2. Then we need to add something different:

module GD = struct

  let start = main (); Lwt.return_unit

end

Here, the start is an entry point to the unikernel. It performs the normal OCaml 

function main and then returns an Lwt thread that will be evaluated to unit. Lwt is a 

concurrent programming library in OCaml. It provides the “promise” data type that can 

be determined in the future.

All the preceding code is written to a file called gd_owl.ml. To build a unikernel, 

next we need to define its configuration. In the same directory, we create a file called 

configure.ml:

open Mirage

let main =

  foreign

    ~packages:[package "owl"]

    "Gd_owl.GD" job
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let () =

  register "gd_owl" [main]

It’s not complex. First, we need to open the Mirage module. Then we declare a 

value main (or you can name it any other name). It calls the foreign function to specify 

the configuration. First, in the package parameter, we declare that this unikernel 

requires the Owl library. The next string parameter “Gd_owl.GD” specifies the name 

of the implementation file and in that file the module GD that contains the start entry 

point. The third parameter job declares the type of devices required by a unikernel, 

such as network interfaces, network stacks, file systems, etc. Since here we only do the 

calculation, there is no extra device required, so the third parameter is a job. Finally, we 

register the unikernel entry file gd_owl with the main configuration value.

That’s all it takes for coding. Now we can take a look at the compiling part. MirageOS 

itself supports multiple backends. The crucial choice therefore is to decide which one 

to use at the beginning by using mirage configure. In the directory that holds the 

previous two files, you run mirage configure -t unix, and it configures to build the 

unikernel into a Unix ELF binary that can be directly executed. Or you can use mirage 

configure -t xen, and then the resulting unikernel will use the hypervisor backend like 

Xen or KVM. Either way, the unikernel runs as a virtual machine after starting up. In this 

example, we choose to use Unix as backends. So we run

mirage configure -t unix

This command generates a Makefile based on the configuration information. It 

includes all the building rules. Next, to make sure all the dependencies are installed, we 

need to run

make depend

Finally, we can build the unikernels by simply running

make

and it calls the mirage build command. As a result, now the current directory contains 

the _build/gd_owl.native executable, which is the unikernel we want. Executing it 

yields a similar result as before:

argmin f(x) = 1.33333
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�Example: Neural Network
As a more complex example, we have also built a simple neural network to perform the 

MNIST handwritten digit recognition task with MirageOS:

module N  = Owl_base_algodiff_primal_ops.S

module NN = Owl_neural_generic.Make (N)

open NN

open NN.Graph

open NN.Algodiff

let make_network input_shape =

  input input_shape

  |> lambda (fun x -> Maths.(x / F 256.))

  |> fully_connected 25 ~act_typ:Activation.Relu

  |> linear 10 ~act_typ:Activation.(Softmax 1)

  |> get_network

This neural network has two hidden layers, has a small weight size (146KB), and 

works well in testing (92% accuracy). We can write the weight into a text file. This file is 

named simple_mnist.ml, and similar to the previous example, we can add a unikernel 

entry point function in the file:

module Main = struct

  let start = infer (); Lwt.return_unit

end

Here, the infer function creates a neural network, loads the weight, and then 

performs inference on an input image. We also need a configuration file. Again, it’s 

mostly the same:

open Mirage

let main =

  foreign

    ~packages:[package "owl-base"]

   "Simple_mnist.Main" job

let () =

  register "Simple_mnist" [main]
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Figure 8-2.  Performance of map and fold operations on ndarray on a laptop and 
Raspberry Pi

Once compiled to MirageOS unikernel with Unix backends, the generated binary is 

10MB. You can also try compiling this application to JavaScript.

By these examples, we show that the Owl library can be readily deployed into 

unikernels via MirageOS. The numerical functionality can then greatly enhance the 

express ability of possible OCaml-MirageOS applications. Of course, here we cannot 

cover all the important topics about MirageOS; please refer to the documentation of 

MirageOS and Xen Hypervisor for more information.

8.4 � Evaluation
In this section, we mainly compare the performance of different backends. Specifically, 

we observe three representative groups of operations: (1) map and fold operations on 

ndarray; (2) using gradient descent, a common numerical computing subroutine, to 

get argmin of a certain function; (3) conducting inference on complex DNNs, including 

SqueezeNet and a VGG-like convolution network. The evaluations are conducted on 

a ThinkPad T460S laptop with an Ubuntu 16.04 operating system. It has an Intel Core 

i5-6200U CPU and 12GB RAM.

The OCaml compiler can produce two kinds of executables: bytecode and native. 

Native executables are compiled for specific architectures and are generally faster, while 

bytecode executables have the advantage of being portable.

For JavaScript, we use the js_of_ocaml approach as described in the previous 

sections. Note that for convenience we refer to the pure implementation of OCaml and 

the mix implementation of OCaml and C as base-lib and owl-lib separately, but they 

are in fact all included in the Owl library. For Mirage compilation, we use both libraries.
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Figure 8-2 shows the performance of map and fold operations on ndarray. We use 

simple functions such as plus and multiplication on 1-d (size <1, 000) and 2-d arrays. 

The log-log relationship between the total size of ndarray and the time each operation 

takes keeps linear. For both operations, owl-lib is faster than base-lib, and native 

executables outperform bytecode ones. The performance of Mirage executives is close to 

that of native code. Generally, JavaScript runs the slowest, but note how the performance 

gap between JavaScript and the others converges when the ndarray size grows. For the 

fold operation, JavaScript even runs faster than bytecode when size is sufficiently large.

Note that for the fold operation, there is an obvious increase in time used at around 

input size of 103 for fold operations, while there is no such change for the map operation. 

That is because I change the input from one-dimensional ndarray to two-dimensional 

starting that size. This change does not affect the map operation, since it treats an input 

of any dimension as a one-dimensional vector. On the other hand, the fold operation 

considers the factor of dimension, and thus its performance is affected by this change.

In Figure 8-3, we want to investigate if the preceding observations still hold in more 

complex numerical computation. We choose to use a gradient descent algorithm to 

find the value that locally minimizes a function. We choose the initial value randomly 

between [0, 10]. For both sin(x) and x3 − 2x2 + 2, we can see that JavaScript runs the 

slowest, but this time the base-lib slightly outperforms owl-lib.

We further compare the performance of DNN, which requires large amount of 

computation. We compare SqueezeNet and a VGG-like convolution network. They have 

different sizes of weight and network structure complexities.

Table 8-1 shows that though the performance difference between owl-lib and 

base-lib is not obvious, the former is much better. So is the difference between native 

and bytecode for base-lib. JavaScript is still the slowest. The core computation required 

for DNN inference is the convolution operation. Its implementation efficiency is the 

key to these differences. Currently, we are working on improving its implementation in 

base-lib.
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Figure 8-3.  Performance of gradient descent on function f

Table 8-1.  Inference Speed of Deep Neural Networks

Time (ms) VGG SqueezeNet

owl-native 7.96 (± 0.93) 196.26(± 1.12)

owl-byte 9.87 (± 0.74) 218.99(± 9.05)

base-native 792.56(± 19.95) 14470.97 (± 368.03)

base-byte 2783.33(± 76.08) 50294.93 (± 1315.28)

mirage-owl 8.09(± 0.08) 190.26(± 0.89)

mirage-base 743.18 (± 13.29) 13478.53 (± 13.29)

JavaScript 4325.50(± 447.22) 65545.75 (± 629.10)

We have also conducted the same evaluation experiments on Raspberry Pi 3 Model B.  

Figure 8-2c shows the performance of the fold operation on ndarray. Besides the fact that 

all backends run about one order of magnitude slower than that on the laptop, previous 

observations still hold. This figure also implies that, on resource-limited devices such as 

Raspberry Pi, the key difference is between native code and bytecode, instead of owl-lib 

and base-lib for this operation.
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Finally, we also briefly compare the size of executables generated by different 

backends. We take the SqueezeNet, for example, and the results are shown in Table 8-2. 

It can be seen that owl-lib executives have larger size compared to base-lib ones, and 

JavaScript code has the smallest file size. There does not exist a dominant method of 

deployment for all these backends. It is thus imperative to choose a suitable backend 

according to the deployment environment.

Table 8-2.  Size of Executables Generated by Backends

Size (KB) Native Bytecode Mirage JavaScript

Base 2437 4298 4602 739

Native 14,875 13,102 16,987 -

8.5 � Summary
The base library in Owl was separated from the core module mainly to accommodate 

multiple possible execution backends. This chapter introduced how the base module 

works. Then we showed two possible backends: the JavaScript and the unikernel virtual 

machine. Both backends are helpful to extend the application of Owl to more devices. 

Finally, we used several examples to demonstrate how these backends are used and their 

performances.

Open Access   This chapter is licensed under the terms of the Creative 

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the 

original author(s) and the source, provide a link to the Creative Commons license and 

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s 

Creative Commons license, unless indicated otherwise in a credit line to the material. If 

material is not included in the chapter’s Creative Commons license and your intended 

use is not permitted by statutory regulation or exceeds the permitted use, you will need 

to obtain permission directly from the copyright holder.
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