
Software
Engineering for
Absolute Beginners

Your Guide to Creating Software
Products
—
Nico Loubser

Software Engineering
for Absolute Beginners

Your Guide to Creating
Software Products

Nico Loubser

Software Engineering for Absolute Beginners

ISBN-13 (pbk): 978-1-4842-6621-2 ISBN-13 (electronic): 978-1-4842-6622-9
https://doi.org/10.1007/978-1-4842-6622-9

Copyright © 2021 by Nico Loubser

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Spandana Chatterjee
Development Editor: James Markham
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York,
1 New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, email orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978- 1- 4842- 6621- 2. For more detailed information, please visit www.apress.com/source- code.

Printed on acid-free paper

Nico Loubser
London, UK

https://doi.org/10.1007/978-1-4842-6622-9

This book is dedicated to Kim,
who keeps me going when I feel like stopping.

v

Chapter 1: Editors ���1

The Different Families of Programming Editors ��2

Shell-Based Editors ���2

Text Editors ��3

IDEs ���4

The Benefits of an IDE or an Editor like VS Code ��5

Installing Visual Studio Code ���6

Workspaces ���6

Built-In Features ��7

Features to Install ��9

Summary���10

Chapter 2: Containerizing Your Environment ��������������������������������������11

What Are Containers? ���11

The Main Components of Docker Explained ���14

The Dockerfile ���14

The Docker Image ���15

Docker Containers ���16

Table of Contents

About the Author ��xv

About the Technical Reviewer ��xvii

Acknowledgments ���xix

Introduction ���xxi

vi

Setup and Usage ���16

Preparation ��16

How to Install Docker ��17

Creating the Dockerized Environments for Your Software’s Infrastructure ������19

Preparations Before You Start Cooking ��20

First Docker Image and Container ���20

Building the Image and Pushing It to the Repository ������������������������������������22

Pushing the Image to a Docker Repository ���26

Docker Orchestration with Docker Compose ���27

Final Docker Experiment ���31

Docker Checklist and Cheat Sheet ��34

Docker Commands ��34

Docker-compose Commands���35

Chapter 3: Repositories and Git ��37

A Word About Windows Git Usage and Hidden Files ���37

What Is Source Control? ��38

Additional Functionality ���41

Installing Git and Creating a GitLab Account ���41

Using GitLab ��42

Commits ��44

Branches ���45

A More Advanced Use Case ��49

Merging Conflicts ��51

Removing the Need to Type Your Password Every Time: SSH �����������������������������54

Gitignore ��56

git stash ��57

git reset and revert ���58

Cheat Sheet ���60

Table of ConTenTs

vii

Chapter 4: Programming in Python ��63

What Is Programming? ���64

Python ���65

Setup for This Chapter and How to Use It ��65

Basics ��66

Commenting Your Code ���67

Variables ��67

Sequences and Maps ��75

Lists and Strings ��76

Tuples ��79

When to Use a List and When to Use a Tuple ���79

Dictionaries ���80

Decision-Making Operators and Structures ��81

Operators ���81

Scope and Structure of Python Code ���90

Control Statements ��91

Functions ���99

Custom Functions ��99

Classes and Objects ��106

The Anatomy of a Class ���108

Instantiating the Class ���109

Inheritance ��113

Polymorphism ��115

Composition ���116

Magic Methods ��116

Exceptions ���118

The Anatomy of an Exception ��119

Raising an Exception ���120

Table of ConTenTs

viii

Catching an Exception ���121

Writing an Exception��121

Imports ��122

Static Access to Classes ���124

Cheat Sheet ���125

Scope ���125

Variables ��126

Arrays ��126

Control statements ��127

Functions ���127

Classes ��128

Exceptions ���129

Import ��129

Reference ��129

Chapter 5: Object Calisthenics, Coding Styles, and Refactoring �������131

Object Calisthenics ���132

1� Do not exceed one level of indentation per method� (Or rather,
limit the levels of indentation as much as you can�) �������������������������������133

2� Do not use the else keyword ���134

3� Wrap all primitives and strings ��136

4� Use only one dot per line ���137

5� Do not abbreviate ��140

6� Keep entities small ��140

7� Limit classes to use no more than two instance variables ����������������������140

8� Use first-class collections ���141

Refactoring Code ��143

Table of ConTenTs

ix

Coding Styles ��144

Linting ��145

Commenting Your Code ���145

Maximum Line Length ���149

Indentation ��149

Blank Lines ��151

Encoding ��151

Imports ��152

Whitespace ��152

Naming Conventions��153

Chapter Summary ���156

References ��157

Chapter 6: Databases and Database Design �������������������������������������159

Three Things You Can Do with Data ��160

Overview of Database System Components ���161

Setting Up Your DBMS ���162

Ports ��163

Environment ��163

Volumes ���164

The Final Docker File ���164

Viewing Your Database Using Adminer ��165

Cleaning Up and Pushing to the Remote ���168

Preparing Your Database ���169

Primary Keys ���170

Indexes ��170

Index Caveats ��171

Table of ConTenTs

x

Data Types ���171

Creating a Database ��172

Creating the Table ��174

Filling the Database with Data ��175

Your First SQL Queries ���175

Normalizing the Current Classes Table ���180

First Normal Form ���181

Second Normal Form ���182

Third Normal Form ��188

Last Word on Joins ��190

Conclusion ��191

Cheatsheet and Checklist ���191

References ��192

Chapter 7: Creating a RESTful API: Flask ��193

The Project ��194

What Is REST? ���195

JSON ��196

HTTP Verbs ��197

REST Query Routes ��199

HTTP Status Code ��199

HATEOAS ��200

The Technology You Will Use ���201

Setting Up the Environment ��202

Creating the GitLab Project ��202

Project Layout ��203

Creating the docker-compose and Docker Files ��204

The Final Steps: Coding ���216

Table of ConTenTs

xi

The ORM Version ���228

GET Endpoint ���231

POST Endpoint ���231

PATCH Endpoint ���232

DELETE Endpoint ���232

Takeaway of This Chapter ���233

References ��233

Chapter 8: Testing and Code Quality ���235

Overview of Code Quality Steps ��236

Automated Testing ��237

Unit Tests ���238

How to Run the Unit Test ���242

Integration Tests ��242

How to Run the Integration Test ��244

A Last Issue and Some Refactoring ���247

Testing the New Code ��250

The Downside of Automated Testing ���252

The Validity of the Tests ���252

Time Pressure ��253

Peer Reviews ��253

Walk-Through ���255

Staging Environment and UAT ���256

Chapter 9: Planning and Designing Your Code ���������������������������������257

Software Development Lifecycle ��258

Why Use a Software Development Lifecycle? ���258

Steps in the SDLC ��259

Table of ConTenTs

xii

Modelling ��263

Where Does Modelling Fit In the SDLC? ��263

Why Create Diagrams and Models? ��264

Tools ��265

High-Level Models and Diagrams��265

Low-Level Models ���275

Summary���291

Chapter 10: Security ���293

Securing Your Code ���294

Code-Level Security ��295

SQL Injection ���295

Cleaning Variables ���297

Keeping Errors a Secret ���300

XSS ��301

CSRF ��303

Session Management ��304

System-Level Security ��305

Keep Your Systems Up to Date ��305

Database Users ���306

Ports ��307

Docker Images ���307

HTTPS ��307

Password Policy ��308

Social Engineering ��309

Summary���310

Table of ConTenTs

xiii

Chapter 11: Hosting and CI/CD ���313

Types of Hosting ��314

Cloud and Serverless Technologies ���314

Shared Hosting ��315

Virtual Private Hosting ���316

Cloud Hosting ��316

Serverless ��317

Which Hosting Technology to Choose? ��317

Continuous Integration and Continuous Deployment (CI/CD) ����������������������������318

Creating the Pipeline ���319

Summary���323

 Index ���325

Table of ConTenTs

xv

About the Author

Nico Loubser is a software engineer

by trade, with 16 years of experience in

various industries and technologies. As an

experienced team lead, he has mentored

numerous developers and has developed a

passion for it, which was the inspiration for

writing this book. He believes that the

so-called software crisis1 can be alleviated by

proper mentorship, but that mentorship is not

always available. He currently lives in London, where he seeks exposure

to an even greater variety of ideas, methods, and technologies in today’s

software development industry. He holds a post-graduate degree in

software engineering from the University of South Africa.

1 https://en.wikipedia.org/wiki/Software_crisis

https://en.wikipedia.org/wiki/Software_crisis

xvii

About the Technical Reviewer

Andy Beak is an experienced technical

manager with an extensive development

background and sound decision-making

skills. He is the author of a cybersecurity

microdegree course for the EC Council and the

author of the Zend PHP study guide published

by Apress. He’s naturally entrepreneurial and

able to zoom in on implementation details

while retaining a “30,000 feet” overview of

the organizational strategical context in which development occurs. An

evangelist for agile working practices and delivery automation, he follows

the entire development process and has a high degree of ownership for the

quality of the finished product.

xix

Acknowledgments

This book would not have been possible without all of the junior

developers I have mentored over the years, as this is where my inspiration

for this book originated.

I would also like to thank Andy Beak for reviewing this book, and in

doing so, improving the quality of it.

Lastly, to the team at Apress who helped me produce and publish this

book, thank you very much.

xxi

Introduction

Writing software is a multi-disciplinary exercise. This makes it especially

difficult for people who want to learn how to create software but are

without someone guiding them and helping them navigate their way

between all of the technologies and methodologies there are to learn.

The aim of this book is not just to teach, but also to guide the newcomer,

showing where the learning efforts should be concentrated, what is good

practice, and what are some of the industry standards in the current

software development industry. This book bridges the divide between just

writing code and creating software systems.

 About This Book
This book is not just for the complete newcomer. It is also for someone

who can already write code, but is interested in creating complete software

projects, from inception to delivery, as well as software design practices.

As a software developer, I can wholeheartedly tell you that writing code

is only a part of today’s software development paradigm. In today’s world,

you need to have learned, and in some cases mastered, a set of specific tools,

skills, and methodologies that will help you achieve your goals as a creator

of software. Whether that goal is to become a hobbyist developer, whether

you want to create a startup or work for a corporation, good software

engineering skills are very important. Most people will pick up a book about

programming, or go on the Internet and start learning how to write code.

Very few people will read a book on software engineering principles, and not

everyone is so lucky to start in a job where serious engineering principles are

followed and enforced and where proper tools are used.

xxii

 Why Are Good Practices Essential?
Certain principles in software development remain the same, regardless

of which company you work for. If you consider a company with 200

employees and a 1,000,000 clients, and compare it to a company with 2

employees and 150 customers, you should notice two things. The bigger

company has different problems to solve with regards to infrastructure,

scalability, and keeping their code base clean with a potentially large

development team. The second thing you should notice is that both

companies also have similar problems to solve, such as security, keeping

the code base clean, deployments, writing clean code, and using proper

software engineering principles to design good code. Even if you build a

website for your cousin’s brake skimming business, security, proper coding

principles, and architectural principles are very important.

A company that serves 100 customers a month should not have

its software written in an ad hoc, shoot-from-the-hip fashion. If your

complete user base, whether it is 100 people or 1,000,000 people, depends

on a software product, then it means buggy code will affect 100% of your

client base. No company can afford to have their client base affected to this

extent.

By no means does this book suggest to over-engineer your software

solutions. If you are writing software that reads the temperature in your

garden into a database every minute of every day, emails you a graph

every month, and your brother can log in online to check the temperature

in your garden, then you don’t need a supercool Kubernetes cluster on

AWS. You do, however, need a clean code design that is easily modifiable,

secure code, and version control. You may think no one will hack into your

system, and you will be dead wrong. Not all hacking is for financial gain.

Some hacking attempts are for bragging rights, which is more than enough

incentive to deface your website. If a simple input field is left unprotected,

like a telephone number input field, your whole database can be trashed,

stolen, or corrupted.

InTroduCTIon

xxiii

 Why Did I Write This Book?
A while ago a friend started to learn how to program. He struggled

initially because some of the concepts that were covered were intended

for someone with a coding background. Reviewing the literature he was

using, I noticed that they also basically all excluded a comprehensive

approach to creating software. I saw this as two problems. Firstly, some

of the beginner material out there caters to people with some knowledge

about programming. This is not the end of the world. You are all intelligent

enough to put the pieces together and learn from material that is intended

for someone with more knowledge. But it was this aspect that made

learning more difficult for my friend. Secondly, there was also the absence

of the processes to build comprehensively good systems. So I decided to

create this book.

My aim for this book is to show a complete beginner the cornerstones

of creating easily readable, maintainable, editable, and releasable software

that can be adapted and changed as needed. I wanted to touch on the

principles and knowledge needed to create great software products—more

aspects of software development than just writing code. As mentioned,

software engineering is a vast discipline that requires many technical skills

and knowledge to create great software products.

Good software methodologies, tools, and approaches go back a

very long time. Having said that, today’s software development world is

different from what I was generally exposed to when I started out in the

early 2000s. Back then, we manually FTP’d our files to the server. Before

we FTP’d anything, we would make a copy of that script on the server. It

was not uncommon to see files with names such as index_1.php, index_

backup.php, and index_final_backup.php. File management is now

handled by version control software. Version control systems are not new,

but I believe they are now incredibly widespread and more commonplace

than ever before. I also believe they are imperative to a programming

project.

InTroduCTIon

xxiv

 How This Book Is Organized
Since the intent of this book is to teach you most of the basic aspects of

creating software products, it has been designed so that the chapters build

on each other.

The first three chapters look at setting up your system. Chapter 1

looks at software editors, Chapter 2 looks at setting up your software

environment using containerization, and Chapter 3 looks at setting up

your source control system where you can save your project remotely.

These first three chapters form the basis on which you create software and

what your software runs on.

Chapter 4 teaches you how to write code using Python. The work

in Chapters 1, 2 and 3 contribute to this chapter. Chapter 5 builds on

Chapter 4, showing you how to write better code. Chapter 6 shows how to

design databases.

Taking Chapters 4, 5 and 6 in consideration, you can move on to

Chapter 7, in which you build a small project using the skills you learned in

the preceding chapters.

Chapter 8 teaches you how to test for code quality, and Chapter 9 looks

at design concepts.

Chapter 10 looks at security issues, and we round it all off with

Chapter 11, where you look at hosting your software, as well as continuous

integration and deployment.

InTroduCTIon

1© Nico Loubser 2021
N. Loubser, Software Engineering for Absolute Beginners,
https://doi.org/10.1007/978-1-4842-6622-9_1

CHAPTER 1

Editors
Creating software is all about solving problems. And your software

development editor is a great place to increase productivity and lessen the

cognitive load you will experience while solving these problems. Within

your editor lies the ability to automate some of your tasks. It will allow you

to defer some tasks that would have strained your memory or would have

consumed too much time, to your editor. A decent editor will allow you

to optimize the layout of your screen so that your database browser, shell,

and code editor are easily and readily available within seconds. It will have

a large collection of shortcut keys to simplify certain actions. It will also

allow you to change the look of your editor, to soften the colors, and to

choose a font that is easier on the eyes to lessen eye strain.

In this chapter, we will look at the differences, and benefits, of the

different styles of editors available for software development. Selecting an

editor may sound like a very trivial issue, but in the end it can lead to bad

decisions that can affect your productivity. When we program, we basically

create a text file containing different commands. This file will not have a

text file extension (.txt for example), but rather an extension indicating

what language it was written in, for instance .php or .py. But it is nothing

but a text file. These files containing the commands are interpreted

(or compiled) and executed by your chosen language’s interpreter (or

compiler). Because of this, we can, in general, create our programming

language’s code files in almost any editor we choose, as long as we can

give it the right file extension. Because we can choose almost any editor,

there are many editors to choose from. This makes the decision more

https://doi.org/10.1007/978-1-4842-6622-9_1#DOI

2

complex. This chapter will highlight some of the editors available and their

drawbacks and benefits.

Before we delve into our discussion about editors, just some

background about why we selected the editors we did in the section below.

The language we will use is called Python. It is a very popular and powerful

language, plus it’s easy to learn. And like most languages, you can use a

myriad of editors to achieve your goal of creating software.

 The Different Families of Programming
Editors
There are three broad sets of editors to use to write your code, and

each set is useful in its own way. Using and supporting a specific editor is

normally a matter of experience. It may literally take you weeks or months

to realize there is something about your editor that you just do not like.

A certain editor may give you a slick modern look, but may be slow when

it opens files. Or you may be forced to choose one with specific built-in

functionality, like support for FTP. Editors often have quirks that will slow

you down or start to irritate you as time goes by, and in many cases, you

will only learn about these quirks when you test the editors yourself. You

should also consider the non-programming aspects of an editor, things

like background color, font types, font sizes, and font colors. Staring into

a screen for hours on end is very hard on your eyes, and being able to

customize your setup to lessen eye strain is important.

 Shell-Based Editors
The first set of editors consists of shell-based editors like Vi, Vim, and

Nano. Shell-based editors run in a Windows, Linux, or Macintosh

command shell. You will get some exposure to command shells in

this book, but not with shell-based editors. Shell-based editors have a

Chapter 1 editors

3

high learning curve, are purely text-based with no fancy graphical user

interface, and are indispensable in certain circumstances. For instance,

they’re great for fixing code or putting in a temporary code fix on a remote

system that has no graphical user interface while someone works on a

permanent fix. In a lot of instances, if your career is going the Linux route,

you will encounter Vi or Vim. You can also get Vim for Windows but I

doubt you will ever need to use it. Vim is quite powerful, but can be made

even more powerful if you install the plugin SPF13 for Vim. I believe that

these editors have their place in software engineering, but they should not

be considered your primary editor.

 Text Editors
The second group is text editors like Notepad, Gedit, Atom, Sublime,

and Visual Studio Code (also known as VS Code). Text editors are a cost-

effective way of getting a GUI-based editor to write your code in (they vary

from low-powered to very high-powered). In the case of an editor like the

Windows-based Notepad, you get absolutely no features and you cannot

add any features. Yet you can create files with the correct extensions which

can be interpreted or executed by a programming language. I absolutely

do not recommend Notepad, but I include it in the list to prove my point

that you can make bad decisions when choosing editors.

Linux’s Gedit is good for a quick test script, and it gives some basic

features which can aid in development. Just like Notepad, I don’t

recommend it, unless you need to churn out a 30-line script that does

something small.

Under the same umbrella as these text editors, you will also find

editors that can be very powerful. Two of these editors are worthy of a

mention: Atom and Visual Studio Code. Both come with a myriad of

plugins and built-in features, and are customizable to a degree. It may be

difficult to choose between the two, and since both are free, I feel there is

no harm in you trying out both.

Chapter 1 editors

4

Atom comes across as very modern and approachable, but Visual

Studio Code is elegant and in some cases boasts faster startup times than

Atom. According to the website www.software.com, VS Code leads the

race in the most popular free editor for software developers. But both can

deliver the power you need for a perfectly free, feature-rich development

experience. In this chapter, we will look at VS Code, but I will encourage

you to experiment and play around with a lot of editors. This experience

will help you notice certain drawbacks or benefits between editors.

Personally, I like text editors, but I am not fond of searching for plugins.

There are also potential speed issues compared to IDEs, such as when

opening large projects or indexing your files to improve searching.

 IDEs
A third option is an IDE (integrated development environment) like

Pycharm, Eclipse, and Wing (to name a few). They come packed with a

debugger, interpreter or compiler, web server, shell terminal, database

editor, and fully fledged code editor. An IDE can also syntactically evaluate

your code based on the version of the programming language you are

using. Some are also integrated with different version control systems, and

even keep a local history, just in case you delete something by accident.

Some IDEs come at a price, but normally they are well worth it.

By default, your IDE will index your projects, making them instantly

searchable. You can follow code from implementation to integration and

back again. There are also many shortcuts that speed up certain actions.

Granted, some of these features can be added to a text editor via plugins,

but speed-wise I have not yet seen editors perform at the same level as IDEs

do. On the topic of plugins, IDEs normally also come with a plugin system.

I have used many IDEs. At the time of writing, I am using Pycharm, which

is really hitting the spot with me. Jetbrains, the company that produces

Pycharm, offers a free community edition, which has less functionality than

the professional edition (which has a fee) but is still packed full of features.

Chapter 1 editors

http://www.software.com

5

 The Benefits of an IDE or an Editor
like VS Code
Having your work environment set up in the best possible way has quite

a few benefits. You will definitely increase your productivity if you get to

understand aspects like code navigation and debugging. A few IDEs allow

you to query your database and run your shell commands in different

panes next to where you are coding. This may not seem like a big deal

but it does increase your productivity. Source code navigation and code

completion will absolutely increase your productivity, while the ability to

step through your code line by line during execution time, and injecting

data into it at runtime, are incredibly powerful tools.

Let’s go back to code completion. Code completion is such a simple

concept. But using code completion frees up your mind so that you do not

have to worry about remembering all of the different keywords you find in

programming languages, for instance, or even how to implement different

program-specific aspects, since the IDE can remind you how to do them. It

is great to know these aspects by heart, but remember that writing software

can be very taxing on your cognitive system, and breaking your train of

thought while solving a complex problem can be problematic, especially if

you had to do so just because you could not remember a specific keyword.

Having code completion alleviates that burden.

This is the premise on which this whole chapter hinges. Choose an

editor, whether it is a text editor with the correct plugins or an IDE that

takes the strain off of you having to remember simple things that the editor

can just remind you about, and do automatically (or a 100 times faster) the

things you did manually, and you can get on with what creating software is

all about: solving problems.

Chapter 1 editors

6

 Installing Visual Studio Code
I suggest that you install Visual Studio Code because it is a great editor with

great features. After installing it, you will take a quick look at some of the

features of VS Code. At time of writing, VS Code can be installed from the

following location: https://code.visualstudio.com/download.

The default layout of VS Code has two sections. The left-hand pane

contains the structure of your folders as well as files. The pane on the right-

hand side has the code editor in it. The left-hand pane also contains your

workspaces, as explained below.

To create a file, just click the File menu item and select New File. When

you save this file, remember to save it with a .py extension in order for VS

Code to recognize it as a Python file.

 Workspaces
A workspace shows a project’s contents. The files and folders that make up

the project are visible in the workspace in the left-hand pane of the editor.

It is not mandatory to have workspaces. You may just reopen the directory

with your project’s code each time. However, workspaces give you a

convenient way to organize your projects. Creating a workspace is easy.

 1. From the File dropdown menu on the top menu bar,

select Open.

 2. From there, open the project directory, with your

code in it.

 3. Once that is open in the left hand-pane in VS

Code, open the File menu once again, select Save

Workspace As, and give it a name.

Chapter 1 editors

https://code.visualstudio.com/download

7

You will see that in the left-hand pane, you have created a workspace

with the name you gave it and (Workspace) after it. To reopen a workspace,

you have two choices:

 4. From the file menu, select Open Recent.

 5. From the file menu, select Open Workspace. From

there, look for your project directory, and click the

file inside that directory with this name: the-name-

you-gave-it.code-workspace.

What happens in the background is that VS Code creates a file in

the directory your project is in, and now considers that directory your

workspace. Inside this file you will find the following text. This file is

a skeleton and can be filled out to be more complete, but we are not

concerned with that. It is noteworthy, though, that the path value in this

file points towards your workspace. You can move this file to another

location as long as you update the path value. This is good to know, but not

something we are going to do now. The default values will do just fine.

{

 "folders": [

 {

 "path": "."

 }

],

 "settings": {}

}

 Built-In Features
VS Code comes with some handy built-in features, such as syntax

highlighting. Syntax highlighting is when an editor presents different

words, which have specific meanings in a programming language, in

Chapter 1 editors

8

different colors. These words can also be grouped by color; for instance,

specific keywords belonging to Python, even though not the same word,

will have the same color because they belong to the same group called

keywords. See Figure 1-1.

In Figure 1-1, you can see that specific keywords (in this case, class,

def, and True) are in blue. The numbers (1 and 2) are in light green, and

words indicating function names (we will get to functions later in this

book) are in yellow.

Taking the above code into consideration, when you implement the

code, you won’t have the function written in front of you. You will only

use the names, in this case Test and testFunction. This means that if you

need to see how testFunction works on the inside, you need to browse

to the page where test function is written. But with a decent editor like

VS Code, this becomes a lot easier. The following may all be a bit hard to

envision at this very moment, but once you start writing code, it will all

start to make sense. See Figure 1-2. With VS Code, you can view the code

written even though you are in another script by hovering your mouse

over the word testFunction() and pressing Shift + Ctrl. A popup will

appear with the code in it. Holding Shift down and clicking the name of

the function will actually take you to where the implementation is written.

These two small portions of functionality make it a hundred times easier to

navigate a codebase and take the task of browsing out of your hands.

Figure 1-1. Keywords

Chapter 1 editors

9

 Features to Install
You may find that some of the features you want are not built in. They are

called extensions and they are installable via the Extensions Marketplace.

To install an extension, click the four squares in the left-hand shortcut

menu, as seen in Figure 1-3. This will open the Extensions Marketplace,

allowing you to search for extension that can make your life even easier. In

this example, I searched for “git” in the search text box, and underneath it,

all of the potential extensions appeared.

Figure 1-2. Code popup

Figure 1-3. Searching for extensions

Chapter 1 editors

10

 Summary
This was an easy chapter, but the subject is no laughing matter. Choosing

an editor that is right for you is important, but may take some practice. I

still remember how I thought the editor I used back in 2003 was the best

PHP editor ever and that I would not need anything else in my life. Now,

many editors and many years later, I can reflect on that simple choice and

clearly see the error of my ways. You took a quick look at VS Code, but it

should be enough to get you going and a good first step as you learn how to

create software.

Chapter 1 editors

11© Nico Loubser 2021
N. Loubser, Software Engineering for Absolute Beginners,
https://doi.org/10.1007/978-1-4842-6622-9_2

CHAPTER 2

Containerizing Your
Environment
It is important to finish this chapter because the next chapter requires it.

Gone are the days of struggling to deploy your software on different

machines, or having to rig and clutter your development machine in

inventive ways to simulate your staging or production environment to

some degree. Gone are the days of a new colleague starting to work at

your company and slowly installing the development environment over

a matter of a few days. Gone are the days when you deployed code and

struggled with missing dependencies. Virtualization and containerization

have completely changed all of this. Containerization especially has had a

profound effect on how we create software. In the modern world, that new

employee will just need access to your container orchestration file and to

the repository with the source code. The next two chapters will deal with

containerization and repositories. In this chapter, we will discuss how to

implement containerization and not virtualization.

 What Are Containers?
One overly simplified way to think of containers is that they create separate

servers on your computer. Potentially each of these servers can be set up

to serve a single purpose only, so one server can be your database and

another can be your webserver. They can be set up to easily communicate

https://doi.org/10.1007/978-1-4842-6622-9_2#DOI

12

with each other. In this overly simplified explanation, you will end up

with a distributed system of servers on your computer at home or at

work that does not cost your machine a lot of resources. A more complex

way to explain it is that containers create isolated environments for your

executable code on your computer. They don’t isolate the underlying

operating system’s kernel; it is shared between containers. This allows for

the containers to remain very small, with fast start-up times of often less

than a second. The containers run in a headless state, which means you

will not have a graphical user interface to interact with, just the command

line. The program the container serves may have a user interface. The

container itself won’t.

Although it is not a requirement to know how containers and virtual

machines work in the background, I want to offer a quick word about

containers vs. virtualization. One difference between the two technologies

is that the virtualized environment offers complete isolation from the

machine it is running on, in contrast with containers, which only isolate

the execution environment. This makes virtualized environments much

bigger and more resource-heavy than containers because they represent

complete, isolated servers. They also take longer to start up. A big benefit

of using containers is that because of the shared underlying operating

system model, which leads to size reduction of the running containers, you

can pack a lot more containers into an individual system and spin them up

and down quickly.

Even though learning about containers adds a slight bit of complexity

before you start to learn how to code, it is well worth the effort. The

container technology we will use is called Docker, and it has had a major

impact on how we develop, deploy, and distribute software. When

we build containers using Docker, we refer to it as “dockerizing our

application.”

Chapter 2 Containerizing Your environment

13

Some benefits of dockerizing your environment and applications:

• You can emulate your staging and production

environments a lot better.

• You can distribute your software with all dependencies

available, without worrying whether they exist in your

production environments.

• You can add functionality in the form of containers

without needing to install that functionality locally.

For instance, if you want to test or play around with

MongoDb, you can just use a container instead of

installing MongoDb locally.

• It vastly simplifies setting up your complete software

system on other machines.

One potential drawback of containerization vs. virtualization is that

containers can be less secure than virtual machines. Therefore, it is very

important that you construct your Docker containers properly and not

blindly use prebuilt images from untrusted sources.

A great benefit of dockerizing your applications is that you do not need

to worry about whether the machine you will deploy on, be it your own

computer, your friend’s computer, or AWS, has the modules or software

your program needs. It is all contained and assembled inside your Docker

image. If you have set up your image correctly, it will yield the exact same

container each and every time you use it.

Chapter 2 Containerizing Your environment

14

 The Main Components of Docker Explained
In Docker terminology, you get three main components, which we will

discuss:

• A Dockerfile

• A Docker image

• A Docker container

When we dockerize an application, we, in general, work in the above

order. We create a Dockerfile first. Then we create the Docker image using

the Dockerfile. Then, with the Docker image, we create our container.

 The Dockerfile
A Dockerfile is a type of recipe telling Docker how to build an image. You

place text instructions in your Dockerfile, such as what base image to

use (this can be an operating system, or an application with an operating

system, or even an image you created previously), what operating system

commands to run, how to share files with your local directories, what

additional software to install, and so on. It basically takes a base image,

and from there you can extend its functionality.

Some sample commands you will encounter in a Dockerfile will look

like this:

• FROM specifies which base image to use.

• COPY copies files from the machine the Dockerfile is

running on into the image.

• RUN runs various commands, such as installing extra

software that is not available on the base image.

• CMD specifies a command to run once the container has

started.

Chapter 2 Containerizing Your environment

15

 The Docker Image
There are two ways to create a Docker image. I will discuss the Dockerfile

method in more detail, but just for the record, let’s talk about the other

method quickly without going into much detail.

 The Step-by-Step Way to Create a Docker Image

With this way, you will start with an already existing base image. Let’s

assume you selected an Ubuntu image with PHP and Python installed.

You will spin up a container from the image and mount the container. I

will discuss mounting containers later. Now, inside the container, you can

manually install and remove aspects of the container you do not need. You

can, for instance, take an image that has both PHP and Python installed

and remove Python. You can then install Golang. From this point, you can

save it as a new image using the container as a template. We are not too

concerned with using this method at the moment. We are more interested

in the Dockerfile method at the moment, as you can share the Dockerfile

and let anyone get the exact same results.

 The Dockerfile Method

This is the method we will look at in this book. You can use Docker’s build

command and the Dockerfile in order to create the Docker image. As with

the step-by-step method, you still need a base image, which you will select

based on the functionality you need. But unlike the step-by-step method,

you will have all of your requirements written down in a file. Docker will

read the file and create your image. The image, after it has been built,

remains inert and cannot be interacted with. It is basically a file, or rather

set of files, containing all the steps needed to spin up your container. The

Docker image can also be distributed via a Docker image repository, and

this is something we will also look at later.

Chapter 2 Containerizing Your environment

16

 Docker Containers
A Docker image serves a very important function. The image is used to create

a container. The container is the running software that will execute your

code and react to your commands. Note that a container has two states:
stopped and running. This is important. You can also mount a container and

run programs in it as if you are in a separate server. So in short, you build an

image from a Dockerfile. When you run your image, you create a container.

A container can operate in more than one way. One way it can operate is as

a server that awaits requests, like a webserver. In this case, the service will

stay alive and can be inspected and mounted. A container like this needs to

be explicitly killed. A container can also live for a very short time, where the

container spins down once the software has executed successfully. In these

instances, the container spins up again on a next request. It is important

to know about short-lived containers and long-lived containers, and even

the fact that you can create a container in a stopped state. Not knowing this

can cause some confusion for beginners when they inspect their container

environment and don’t see any containers. They may be expecting to see

a container running permanently when in fact they should have been

expecting a short-lived container that only lives as long as your code executes.

You will encounter both containers in this chapter and inspect them.

It should be mentioned that even though you can find many very helpful

prebuilt images on the Internet, you cannot just implicitly trust them. In a

high-security environment, it is advisable to build your own image.

 Setup and Usage
 Preparation
You will execute the Docker commands in a command-line environment.

If you have command line knowledge, you can skip this preparation part.

Windows, Linux, and Mac come with command-line utilities.

Chapter 2 Containerizing Your environment

17

You only need some basic operating system command-line knowledge.

The rest of the Docker-based commands will be shown during the tutorials

and repeated in the cheat sheet section at the end of the chapter. The aim

is to keep things simple and understandable, so you will only concentrate

on the command line tools you need. Here is a list of basic commands and

what they mean:

• cd changes to a new directory.

• cd ~ will always take you to your home directory.

• cd .. will take you one directory back.

• cd /app will take you to a directory called app (if it

exists) in your root directory.

• cd ./app (notice the dot before the slash) will take

you to an app directory in the directory you are

currently in.

• mkdir creates a new directory.

• mkdir /app creates an app directory in the system root.

• mkdir ./app creates an app directory in the

directory you are currently in.

• pwd prints the directory path you are currently in.

• ls lists all the files in the directory you are in.

 How to Install Docker
You need to install the Docker engine in order to use Docker. The

instructions on how to install Docker are well documented on the Docker

website. I am omitting the install instructions here but I do need to make

a special note about installing Docker on Windows. Installing Docker on

Windows introduces some issues, but fortunately there are two solutions

Chapter 2 Containerizing Your environment

18

for you to try. This first solution is to use the Windows subsystem for Linux.

This is the preferred solution to this problem. It allows Linux containers

to run natively on Windows. Instructions on how to install it can be found

at https://docs.docker.com/docker- for- windows/wsl/. The second

solution is to use the Docker toolbox. At the time of writing, the toolbox

lives at https://docs.docker.com/toolbox/toolbox_install_windows/.

One step that I disagree with in the website’s install instructions that the

website suggests to just accept the default settings as provided by the

installer. The installer will ask you whether you want to install VirtualBox.

Make sure you select this option as well, because by default it is set to

Off. This system will run in VirtualBox and therefore it is mandatory that

you select it. You can always attempt to install Docker directly on your

Windows computer, as that is supported. But it is only supported for the

very latest versions of Windows.

 Important for Windows Users

Once you have installed the Docker toolbox, you will have a Docker
quickstart terminal link on your computer. Always use this link to start up

your Docker environment and allow it a minute or so to boot up. This runs

in a virtualized Linux environment and gives you a nice Linux command

line environment to run your tests in. It will also allow you to use all the

commands in the book, as they are Linux-based.

The Docker website does a great job explaining how to install Docker,

and including the instructions for all possible operating systems in this

book may detract you from what this chapter is about, which is using

and understanding Docker. The website can be found at https://docs.

docker.com/. Select your operating system and install the software

according to the instructions.

Chapter 2 Containerizing Your environment

https://docs.docker.com/docker-for-windows/wsl/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/
https://docs.docker.com/

19

 Creating the Dockerized Environments for Your
Software’s Infrastructure
Once Docker is installed, you should be able to create images and

containers. There are many ways of creating your software’s underlying

architecture with Docker, and normally a good amount of thought must

go into designing your infrastructure. For your purposes in this book, you

will have an image for Python, an image for your database, and an image to

browse your database with.

But it is not necessary to have a different image for each aspect of your

architecture. All three technologies can easily live in one image. However,

there are some good benefits to having multiple images. Simplified

deployments and improved resource management per container are two

bonuses. You can also completely switch off, for instance, your database

container, while letting the webserver run and serve up a maintenance

page. This is already a lot better than having both services run in one

Docker container and having to switch off the complete system. Whereas it

will certainly annoy some of your customers, it will not cause them to think

your company does not exist anymore, or that you do not have a grasp on

the technical aspect of your company.

The main reason you will be using different images in this book is not

an architectural decision. It is to get a better understanding of Docker

orchestration software and get a better feel for networking between Docker

containers.

Chapter 2 Containerizing Your environment

20

 Preparations Before You Start Cooking
As part of this chapter you will push your image to the Docker Hub registry.

This registry serves as a place to store and distribute your Docker image.

• In your web browser, go to https://hub.docker.com/

and sign up for a free plan.

• You will see a Create Repository button.

• For this exercise, name the repository python-docker-

tutorial.

• You can keep the repository set as public.

Two points to remember:

• The repository name will be prepended with your

Docker login name. If your username is abcde, then

your repository name will be abcde/python-docker-

tutorial. You will use your username, password, and

repository name later in the chapter.

• Your Docker engine needs to run for any of the Docker

commands to work.

 First Docker Image and Container
In this section, you will create a very simple Python application server. You

will create it using a Docker file.

Create a directory in your home directory (or wherever you can easily

find it) and call it software-projects. Inside that directory, create a file

called Dockerfile. The file can be called anything, but let’s stick to the

defaults for now. This file does not have a file extension. It is just called

Dockerfile. If you are using Sublime, you should be able to create your

Dockerfile using Sublime.

Chapter 2 Containerizing Your environment

https://hub.docker.com

21

Add these three lines into your Dockerfile:

FROM python:3.7.5-slim

RUN python -m pip install DateTime

RUN apt update && apt -y install vim

FROM python:3.7.5-slim indicates what base image should be used.

This will correlate to an operating system (normally very trimmed down)

with some selected programs. In this case, it is Python version 3.7.5. The

version number can be omitted, but you’re including it to tie the service

down to a specific version. Without it, the service will install a later version

of Python the next time you build your image or when someone else builds

your image. This can cause unpleasant surprises if you are using libraries

that are incompatible with a newer version of Python. This image must live

in the Docker image repository. Note that you want your image to be as

slim as possible. Consider the following example command:

#Example

FROM ubuntu:18.04

RUN apt-get install Python

Now you will get the larger Ubuntu operating system, which will just

fill your image with components you don’t need, making it heavier to

distribute. Instead, start minimal and install what you need along the way.

RUN python -m pip install DateTime indicates the system

commands to run after the image has been installed. Both pip and apt

are package managers. So in this example, you are running pip, which is

Python’s package manager and installing a Python date utility.

RUN apt update & apt -y install vim first updates the local

package lists for your operating system and then installs a package called

Vim. -y means that every time during the install process, when the system

prompts for a yes or a no, the install process will respond with a yes.

Chapter 2 Containerizing Your environment

22

 Building the Image and Pushing It
to the Repository
Make sure you are in the directory where the Dockerfile is located. Also,

refer to the steps in the “Preparations Before You Start Cooking” section.

Run the following command in a shell:

docker build -t your-user-name/python-docker-tutorial:v1.0.0 .

Explanation of the command:

• docker runs the docker executable. Note that the

Docker engine still needs to run for this to work.

• build tells Docker it is going to build an image.

• -t means you are going to name and tag your image.

• your-user-name/python-docker-tutorial:v1.0.0 is

the actual name and tag.

• . is a full stop and it means the Dockerfile is located in

the directory the command is being run in and that it is

using the default name for a Dockerfile.

When you run this command, you should see something like Figure 2- 1.

Figure 2-1. Docker build output

Chapter 2 Containerizing Your environment

23

To verify that you have a tagged image, use the following command in

your shell:

docker images

This command lists all of your images, and you should see output like

this:

REPOSITORY TAG IMAGE ID CREATED SIZE

nicoloubser/python-test v1.0.0.0 Bc43827bd 1 hour ago 188mb

Now that your image is created and tagged, you have a few options of

what you can do. So firstly, you know that the docker build command

builds an image from the Dockerfile. An image is inert and needs to be

used to create a container. As mentioned, a container can be in a stopped

state or a running state. So now you have two commands to achieve those

two states:

• docker create creates the container from an image

and prepares it for running but does not run it.

• docker run creates the container from an image and

runs it.

After running either of these commands, you will have a container

on your computer. Whether the container is running or stopped is not

just dependent on the create and run command; it is also dependent

on what the container is supposed to do. Some containers are long-lived

and some are short-lived. Some are designed to finish executing in less

than a second. They live only as long as it takes the software on it to run

to completion. And some are long-running services that live as long as

the container is not stopped on purpose, or crashes due to some system

failure.

Chapter 2 Containerizing Your environment

24

You will use the run command. This will build the container. Name it

my_service and run it.

docker run --name my_service your-user-name/python-docker-

tutorial:v1.0.0

You will notice how nothing really happens. You will fix that soon. For

now, I want you to inspect the containers on your system. This command

will show all running containers on your system. If this is your first time

with Docker, I suspect the output will be clean, with only the headers of the

empty columns as output:

docker ps

Now run the following command. The -a flag means show all:

docker ps -a

If everything went according to plan, you should see something that

resembles the following:

Container
ID

IMAGE COMMAND STATUS NAMES

Db9803bc nicoloubser/python-

test:v1.0.0

python3 exited 2

minutes ago

my- service

You now have a stopped container on your system. The first command

shows only running containers, and the second command shows all

containers, regardless of their stopped or start state.

Remember the name you gave your container when you ran the run

command? You can start your container using that name:

docker start my_service

Chapter 2 Containerizing Your environment

25

Once again, there is no output when you run this command, even

though your environment has successfully executed. Let’s go through the

steps to make the image a bit more interesting.

You will do this in two ways. This first is through Docker commands,

and the second way will be using a Docker orchestration tool, which you

will study in the next section of this chapter. For this exercise, you will

create a very small script that prints out the words “Hello world, from

python.” You will write the one-line script in Python. For simplicity’s sake,

create a directory called test in the same directory as the one where your

Dockerfile is located. This will make it easier to have everything in the

same directory for now.

Open your editor and create a Python script called hello.py.

Inside the file, add this line:

print ("Hello world, from python")

At this stage, you cannot execute this script on your local machine,

unless you already have Python installed on your computer. But you are

interested in executing it inside your containerized environment. Make

the following changes to your Dockerfile. Add these two lines after the first

three lines of your Dockerfile. Make sure that the first path in your COPY

command exists. If you have followed the tutorial verbatim, it should.

COPY ./test/test.py /home

CMD ["python", "/home/test.py"]

 Explanation

COPY: You copy your test script, which is in the test directory, into your

images /home directory.

CMD: Once the container is running, it will execute the parameters

between square brackets that you pass to CMD. Between the square

brackets, "python" refers to the application that will do the execution, and

"/home/test/test.py" refers to the script that will be executed.

Chapter 2 Containerizing Your environment

26

Your Dockerfile should now resemble this:

FROM python:3.7.5-slim

RUN python -m pip install DateTime

COPY ./test/test.py /home

CMD ["python", "/home/test.py"]

Because you reconfigured your Dockerfile, you need to rebuild it. So

rebuild the image. Also, change the version number.

docker build -t your-user-name/python-test:v2.0.0 .

Let’s create your container in a stopped state and give it the name

hello-test:

docker create --name hello-test your-user-name/python-

test:v2.0.0

Now, let’s run it! Add the -a flag in order for the output to be printed to

the screen:

docker start hello -a

Voila! You should now see the sentence “Hello world, from python”

printed on your screen.

 Pushing the Image to a Docker Repository
At this stage, you have your Docker Hub username and password, which

you set up at the beginning of the chapter. You will use these account

details to push your image from your local machine to the Docker

repository. This action will happen from the command line.

Using your command-line utility, type the following command. This

will allow you to log into your Docker Hub account. When you press Enter,

Chapter 2 Containerizing Your environment

27

it will ask for your username and password. This is the username and

password you provided when you first set up your account.

docker login

Once logged in, you will be able to push your image to the repo using

this account.

docker push your-user-name/python-test:v2.0.0

If you log into your Docker Hub account now, you will see your image,

tagged and ready to be used!

What I have shown you is more of a way to dockerize your application

than it is a way for development and testing. This will be a bit cumbersome

for testing. A drawback of this technique is that you need to rebuild every

time you make a change in your code. In the next section, I will show you a

very valuable tool called Docker Compose. You will use it to manage your

containers and to aid a little in setting up a development environment.

 Docker Orchestration with Docker Compose
Where Docker is a container technology, Docker Compose is a container

orchestration tool. It is used to run and maintain multiple Docker

instances that work together as one, and it allows you to orchestrate all

your containers from one single setup file. A lot of applications will need

multiple services, like a database, web server, and application server

like Python in order to execute their software successfully. I believe that

Docker Compose simplifies things a lot. Also, I find the Docker Compose

file very easy to maintain and read.

Chapter 2 Containerizing Your environment

28

 Installing Docker Compose

As with Docker, I will leave the setup instructions up to the Docker website

to explain. The website does a great job, and once again, it allows the book

to do what it is intended to do: to show you how to use the tools. Here is the

link to the install setup: https://docs.docker.com/compose/install/.

 Docker Compose Explanation

Docker Compose’s task is, among other things, to build images and

maintain, spin up, and spin down your Docker containers. Whereas a

single Dockerfile helps you build one image, Docker Compose manages

the creation of multiple different images. You will create a docker-

compose.yml file, which is very similar to the Dockerfile, consisting of

commands on how to build images and run your containers. You can

also build an image from your Dockerfile within your Docker Compose

file. This is what you will do in this tutorial. The docker-compose file is

in a format called YAML. YAML is a layout that is especially useful in

configuration files. Your docker-compose file for this tutorial will be super

simple. You will use your current Dockerfile and add it to your docker-

compose file. Then you will share the local folder where the code lives

between the local folder and the Docker instance. And at this point, you

will be able to edit code and spin up your container with the edited code,

without rebuilding the image. In subsequent chapters, you will add more

complexity and services to your Docker file.

You can create your docker-compose.yml file in most editors. You

should create this file in the same directory as your Dockerfile.

Add the following code to the docker-compose.yml file:

NB: A hint about YAML files: indentation matters! Your file won’t be

interpreted if you have your indentation wrong. Indentation can be two

spaces.

Chapter 2 Containerizing Your environment

https://docs.docker.com/compose/install/

29

version: "3"

services:

 python-dev:

 container_name: python-dev-container

 build:

 context: .

 dockerfile: Dockerfile

 volumes:

 - ./test:/home

This file can be interpreted as follows:

• python-dev: Name of the image. You can use this name

to spin up the container.

• container_name: Name of the container.

• build: Gives information about how to build the image.

In this instance, you are building it using a Dockerfile.

• build>context: Location of the Dockerfile. A full stop

means the directory the docker-compose file is in.

• volumes: Here you map your local folder, ./test, up

to a folder in your Docker container, /home. The colon

is the separator. Remember that ./ refers to the local

directory and / refers to the root directory.

With regards to the volumes directory, remember that in the Docker

file you have this command:

CMD ["python", "/home/test.py"]

Chapter 2 Containerizing Your environment

30

Since the test.py file is located in the ./test directory, and the

docker-compose mounts that directory in its own /home directory, the CMD

["python", "/home/test.py"] will execute perfectly.

Next, make a change in your ./test/test.py file. Add this additional

line underneath the current line of code:

print ("First change.")

Save this change to the file. Now build your image first and create a

stopped container using docker-compose using the following command.

You build the images using the docker-compose build command:

docker-compose build

The following command creates a stopped container:

docker-compose up --no-start

If you run one of the following commands, you will see the stopped

container:

docker-compose ps , or docker ps -a

Now run the following command:

docker-compose up

You will see the changes you made to the test.py file. You may also

realize that this is not so special. Since you ran the build command, the

image was rebuilt and I promised you no more frequent rebuilds! You

would be right. Now go to the test.py script, and add another line to it.

For instance,

print ("Second change")

Now without building the image, just spin the container up:

docker-compose up

Chapter 2 Containerizing Your environment

31

or

docker-compose up python-dev

You will see the changes to the test.py reflected without rebuilding

the image. This is very useful especially in instances when you are running

a web server, which you will do later in the book.

 Final Docker Experiment
In order to prepare you for chapters later in this book, I want you to create

a long-lived Docker process in order to mount it. This will be very easy. It

consists of five steps.

• Two temporary changes, which you will revert after this

process is done

• Adding a specific command to the docker-compose file

• Commenting out a command in the Dockerfile

• Rebuilding the images using Docker Compose

• Spinning up a container

• Inspecting the container

Let’s go through the steps.

In your docker-compose file, add the following directive, marked here

in bold:

version: "3"

services:

 python-dev:

 container_name: python-dev-container

 build:

Chapter 2 Containerizing Your environment

32

 context: .

 dockerfile: ./Dockerfile

 volumes:

 - ./test:/home

 tty: true

Change your Dockerfile to look like this:

FROM python:3.7.5-slim

RUN python -m pip install DateTime

COPY ./test/test.py /home

The hash is meant for commenting and commands next to it will

be ignored

#CMD ["python", "/home/test.py"]

Now run the following commands:

docker-compose build

docker-compose up -d

Notice on the last command you added a -d flag. This allows the

Docker command to detach from this shell terminal and run in the

background so that you can keep on using your terminal.

Then, you run either of these two commands:

docker-compose ps

docker ps

At this stage, you can also mount the container or execute code that
is inside the container.

To mount the container, you need to know the name of the container.

This you get by running the docker-compose ps command. But in fact, you

already know the name is python-dev-container. To execute code in your

running container, you use this command:

docker exec python /home/test.py

Chapter 2 Containerizing Your environment

33

Remember that in your Dockerfile you copied your Python script to

/home/test.py. You specify this as a parameter when you run exec on

your container. When you run this command, you should see the text you

added to the test.py script printed to your screen.

In order to mount the container, use this command:

docker exec -it python-dev-container bash

-it means you will get an interactive input/output screen, and bash

means in a bash terminal.

Once inside the environment, type

ls /home

You should now see test.py printed to your screen. This means you

have successfully mounted your container, and you can see the file inside it!

Both of these commands will now show a running container. You can

kill this long-running container in various ways. One of the commands you

can use is

docker-compose down

Lastly, do not forget to revert the changes you have just made to your

docker-compose file and Dockerfile.

This guide should have given you the knowledge to start using Docker

in a capacity where it is useful. Docker has a lot more to offer, but what

I have shown you is a great starting place. You’ve learned commands

you will use quite often. As a reminder, I include a cheat sheet of the

commands.

Chapter 2 Containerizing Your environment

34

 Docker Checklist and Cheat Sheet
Check

• Is your Docker engine running?

• You can check using this command: docker info.

• If you are using Windows and couldn’t do a normal

Docker install (you had to use the Docker toolbox), are

you using the Docker quickstart terminal?

• Do you have a Dockerfile?

• Do all of the paths to files in your Dockerfile and

docker-compose file exist?

 Docker Commands
docker login logs into the remote Docker Hub

system.

docker build creates the image.

docker create creates the container from an image

and prepares it for running but does not run it.

docker run creates the container from an image

and runs it.

docker start starts the container. Add -a if you

need the output to be printed to screen.

docker images shows all images.

docker ps shows running containers.

docker ps -a shows running and stopped

containers.

Chapter 2 Containerizing Your environment

35

docker rm removes a container.

docker rmi removes an image.

docker exec -it 'name/id of container' bash

mounts the container.

docker exec 'name/id of container' 'command

to run' executes a command in the container.

 Docker-compose Commands
docker-compose build builds the orchestration

environment.

docker compose up runs the environment.

docker-compose up -d runs the environment but

detaches from the terminal.

docker-compose up --no-start creates the

container but does not run it.

docker-compose down brings the environment

down.

docker-compose ps shows all containers relating to

the orchestration environment.

Chapter 2 Containerizing Your environment

37© Nico Loubser 2021
N. Loubser, Software Engineering for Absolute Beginners,
https://doi.org/10.1007/978-1-4842-6622-9_3

CHAPTER 3

Repositories and Git
You cannot build great code using Docker alone. You still need a

convenient way to distribute your code, to revision control it, and to

source control it. Years ago, in less technologically inclined working

environments, you would FTP your code to your server. When you needed

to make changes to the code, you made backup copies of it yourself. Two

software developers could not work on the same script independently,

because of the very real danger that they would overwrite each other’s

work when they copied the same script to the same server. The same

went for working independently on complex systems, where the thread

of files you edited eventually crossed paths with the thread of files your

colleague edited. In my very first software development job, the question

“Are you working on file so-and-so?” was a very real, and very often asked,

question. It’s not that source control didn’t exist back then, it was just not

widely adopted. Nowadays it is almost unthinkable that a company won’t

have source control. Online source control services provide the ability to

automatically deploy code, a very valuable feature which we will also look

at later in this book.

 A Word About Windows Git Usage
and Hidden Files
In this chapter, you will come across something called hidden files. Hidden

files are files prepended with a full stop (for instance, .myfile.txt), which

means they cannot seen by standard file browsers. You need an editor

https://doi.org/10.1007/978-1-4842-6622-9_3#DOI

38

that can see hidden files, or you can use your command line editor to view

them. If you are using your Docker emulators command line (for instance,

the quickstart terminal), which emulates Linux, then this command will

help you see hidden files:

ls -ltra

 What Is Source Control?
Source control is the practice of managing as well as tracking changes

to your codebase. We will use Git as source control. These are two very

important concepts to understand. Managing changes to your codebase

with source control allows for multiple software developers to work on

the same files simultaneously. The basic gist of it is as follows. You have

a remote location where all your source code is stored. The code is saved

and shared from this location. Then you have a local location where you

develop code. This will be your own computer. Technically, in Git terms,

there is no difference between the remote location and the local location

on your computer. These locations exist in your code repository (repo).

Within a repo exists at least one branch (but usually multiple ones).

Only one branch is active on one repo at a time, but you can push any

branch to the remote repo regardless of which branch is active. A branch

is a representation of your code in a specific state of work. In simple terms,

a branch is your working code environment. Let’s say your main branch,

which will get deployed to your server, is called master. Using the master

branch, you can create other branches from which you will develop your

code, and eventually you will update the master branch with your other

branches. These branches isolate your development phase from the

master deployment branch. See Figure 3-1. Effectively you can create

a branch called feature 1, which will add credit card payments to your

system, and your master branch remains untouched until you decide to

merge your add_cc_payments branch into the master branch. Leaving the

Chapter 3 repositories and Git

39

master branch untouched allows someone else to create another branch,

called feature 2 of master, without any problems. By separating your

branches in this fashion, you get at least three great benefits.

• The master is untouched, so your colleagues can use it

to create their development branches, in order to create

new features.

• With master untouched, it means it is always

deployable. You can do bugfixes in master without

worrying that someone is still developing a feature that

is only halfway finished.

Figure 3-1. Illustration of branching

Chapter 3 repositories and Git

40

• Because you are in your development branch (also called

a feature branch), you can push it to the remote repo

where everything is stored and ask a colleague to pull it

in order to review without breaking any of his work.

Your source control system will handle the merging process, where

developer X’s files and developer Y’s files get merged together into one file.

The system is intelligent enough to know how it should merge the different

work into one file, because it timestamps each change in each line of code.

This process is not always without problems. When two people touch the

same line of code, you will get a merge conflict, or even worse, a possible

silent rewrite of your colleague’s code. This must be resolved manually. We

will look at resolving merge conflicts later in this chapter.

The ability to track changes means it keeps a complete history of all

the changes made to the source code. This allows you to revert back to past

work, as well as see who made changes to the source code. This allows

you to compare, side by side, what changes were made in the code. It also

allows you to revert back to previous work or to selectively pick pieces of

work out of other branches.

Source control in its functional capacity is used in order to manage

the code changes made by software teams. It automates the merging

of different people’s work and diminishes the potential for overwriting

other people’s code, while retaining memory of who did what and when.

Unfortunately, the feature to see who changed lines of code in Git is

called blame. This feature should be used to find out who the person was

so that you can ask them why it was done that way. It’s very important to

remember that egoless programming is great and publicly name shaming

creates a really bad office culture.

Chapter 3 repositories and Git

41

 Additional Functionality
You get some great functionally with source control software. You get the

ability to run your unit tests and style tests once you have pushed your

code to the remote repository. You can automate your deployment to your

staging environments as well as to your production environment. This is

called continuous integration and deployment, and we will cover them in

Chapter 11. Another great feature is a pull request. Decent software teams

work with a process called peer reviews. A peer review is when developer A

asks developer B to review the work done for accuracy.

Note You never test or review to see if code is bug-free. You test to
see how well it does what it is intended to do, and hopefully you find
bugs along the way.

A pull request assigns a feature to be reviewed to a reviewer, and this

can be viewed from the online application that hosts your Git repositories.

The reviewer can add comments in the source control system, inline with

the code where the potential issue has been spotted. You can also merge

on the remote repository’s side instead of on your local machine. We will

go through these steps, apart from continuous deployment, in this chapter.

 Installing Git and Creating a GitLab Account
There are a few companies with Git-based online tools to host your

repositories that you can use. We are going to use GitLab. At the time of

writing, registering with GitLab can be done at this link: https://gitlab.

com/users/sign_up. This is a very straightforward process and it has a free

option, which you will choose for this exercise.

Chapter 3 repositories and Git

https://gitlab.com/users/sign_up
https://gitlab.com/users/sign_up

42

Next, you need to install Git locally on your development computer.

At the time of writing, the install instructions can be found here: https://

git- scm.com/book/en/v2/Getting- Started- Installing- Git.

If you are using Docker quickstart for Windows, you should have Git

already. The best way to test is to just type git or git --version in the

command line editor.

 Using GitLab
To start out, you will log into GitLab and click New Project. Fill in the

project name. Make it TestProject. On the following screen, GitLab will

show the instructions you need to follow to initialize the repository on your

local machine. Here is what you are going to do.

Using the command line, go to the directory where you saved your

Docker instances. You will create your repo using the work you did there. If

you type the following in your command line, you will see your Dockerfile

and the docker-compose file:

ls

If you are in Windows and not in the Docker quickstart, you type

dir

Once in the desired directory, run the git global config commands,

as provided by GitLab:

git config --global user.name "name surname"

git config --global user.email "your_email_address"

GitLab will give you some instructions to use, as shown in Figure 3- 2.

Select the option called Push an existing folder. You are going to take

your Dockerized environment and add it to your repository and push it to

GitLab.

Chapter 3 repositories and Git

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

43

Here are the commands you should follow, and their explanations.

This command initializes your local repository:

git init

This command lets your local repository point towards the remote

repository. You should use the command that GitLab provides.

git remote add origin git@GitLab.com:nicoloubser/testproject.git

This command will add everything in the local repository to your local

git index:

git add .

Figure 3-2. Gitlab command line instructions

Chapter 3 repositories and Git

44

This command takes everything that was added in the above

command and adds it to your local repository:

git commit -m "Initial commit"

This command pushes your work to your remote repository. This

command will ask you for the username and password that you use to

authenticate with GitLab:

git push -u origin master

After you have run these commands, go back to GitLab and go to

your project overview. You should now be able to see the work you have

pushed. All safe and sound from accidental deletion, and ready to be

pulled from anywhere.

A WORD ON WHAT WAS PUSHED

it is important to note that you have only pushed the dockerfile and

docker- compose file (a.k.a. the recipes to create your images). You did

not push a created image to GitLab. that you push to docker hub. in the

future, you can pull this code to a new computer and run the docker build

commands on it to create the images. What you have here is a very basic

dockerized application that is stored on GitLab, ready to be distributed.

 Commits
Whenever you commit work, you create a commit hash. You will have a

long history of commit hashes, each pointing to when you committed some

work. Your HEAD, which is where you actively are in your code, will point to

the latest commit hash. With commit hashes, you can check out older work,

compare current work with older work, and roll back to previous versions or

even selectively choose files from older work linked to commit hashes.

Chapter 3 repositories and Git

45

 Branches
One of the main aspects of Git is branches. If you run the following

command, you will the branch you’re currently in. This will only list local

branches.

git branch

You should be in the master branch. You will change to a feature

branch, edit some code, add it, and then push it. The act of changing into

another branch is called checkout. In this tutorial, you will also compare

your master branch with your feature branch.

Open your terminal and make sure you are in your working directory.

Type the following command:

git checkout -b count-to-ten

This command creates a new branch called count-to-ten and checks

out that branch. The -b flag creates the branch before the checkout
command runs. Run the following command:

git branch

You will see you are in the count-to-ten branch. To move back to

master, you just need to type

git checkout master

and back to count-to-ten

git checkout count-to-ten

Chapter 3 repositories and Git

46

You do not need the -b flag because the branches exist already. Now,

once you are in the count-to-ten branch, you will make a little change to

your code. Open the test script in the test directory. Below the current

text, add the following:

for counter in range(1, 11):

 print(counter)

This is a structure you will encounter often in programming. Although

not part of this lesson, here is what it is basically doing. range(1,11)

generates numbers between 1 and 11. You will see that it prints numbers

from 1 to 10. This we will discuss in the next chapter.

The first thing you will do is inspect the changes you made. One way to

get a high-level overview is the following command:

git status

This will show you all the files that have been changed. It’s a very

handy command indeed. But you can go one better. Type

git diff

This will show you the actual lines that have changed. You should

see something like this in red (assuming you did not need to change the

Dockerfile and docker-compose, which will give you even more feedback):

+for counter in range(1, 11):

+ print(counter)

This shows the lines you have added. The plus signs at the beginning

of the lines indicate that they have been added (likewise, minus signs

indicate lines that have been removed). This data is generated by

comparing the current state of your software (your uncommitted changes)

with the latest commit. A commit can be seen in layman’s terms as the last

point of saving and preparing your work before sending it to the repository,

but can also be the latest point of work saved by someone else before you

Chapter 3 repositories and Git

47

pulled the repository to your computer. Let’s demonstrate how commit

affects a diff or status command.

Just a reminder, in the previous chapter, you added tty: true to
the docker-compose file. You must remove it if you haven’t yet.
You also added a hash in front of the dockerfile’s CMD command. You
must remove this hash.

Type the following two commands. You may recognize them from earlier.

git add .

git commit -m 'Added the count to ten code'

You should see something resembling the following output, and this

means you have added another commit point:

[count-to-ten d6acbc2] Added the count to ten code

 3 files changed, 5 insertions(+), 2 deletions(-)

Now, if you run git status, you should get

On branch count-to-ten

nothing to commit, working tree clean

And if you run git diff, you should get no output.

But wait, there’s more! You can (and you will, very often) compare your

branch with another branch. This is very important if you are a bit nervous

before merging your branch back into master. Let’s do it quickly:

git diff master

This will compare your count-to-ten branch with the master. The

HEAD of count-to-ten points to a different commit than HEAD in master.

This comparison highlights not only what you added now in your branch,

but also what was added in the master branch and so not present in your

Chapter 3 repositories and Git

48

branch. In this case, sentences in red are in the master branch but not in

your branch, and green are in your branch, but not the master branch.

Now you will push the local branch called count-to-ten to the remote

repository. This is a very simple command:

git push origin count-to-ten

You should see some output that ends with this:

To GitLab.com:nicoloubser/testproject.git

 * [new branch] count-to-ten -> count-to-ten

If you open GitLab in your browser and go to your project, you will

see a dropdown with the word “master” in it. Clicking that dropdown box,

as shown in Figure 3-3, should show you that your branch has now been

added to the list.

Figure 3-3. Gitlab branch interface

That was quite easy. But your deployment branch is master, and you

still do not have the code you added to the count-to-ten branch in master.

Next, I will explain how to get the code from one branch to another. The

first thing you do is check out master:

git checkout master

Chapter 3 repositories and Git

49

Now you merge count-to-ten into master, in your local repository:

git merge count-to-ten

You should see affirmation on the screen that the merge succeeded. If

you now run the following command, you will not see any changes:

git diff count-to-ten

All you need to do now is push master to the remote, where it will one

day be released to the server on production!

git push origin master

That was all quite simple! As with Docker, Git can do very complex

things. What I am aiming with this book is to get you up to a functional level.

 A More Advanced Use Case
You will now explore a more advanced use case. You will create a new

directory and clone the branch into it. You will then have the same

codebase in two locations on your computer. The reason you are doing this

is to emulate two people working on the same code base, and to reinforce

some of the commands. You will then edit the master branch in the latest

directory you created and push that work up to your remote repository in

GitLab. After that, you will change into your original directory and ensure

that master is checked out in that branch.

To start with, from the command line, make sure you are in the

directory where your test code is. Once again, if you are using Windows,

use the Docker quickstart as it gives you access to Linux.

If you type ls (short for list), you should see the test directory listed,

where your current code is located. In my instance, it is just test_project.

Now log into GitLab, and open your testProject project. You will see a blue

button with the word Clone on it. Click it and copy the HTTP link. After

Chapter 3 repositories and Git

50

that, go back to your command line interface and create the directory you

want the code to be cloned into, like so:

mkdir testProject2

Type git clone and then copy the HTTP link you got from GitLab after

it, plus the name of the new directory you want it to go in, like so:

git clone https://gitlab.com/nicoloubser/testproject.git

testProject2

After the cloning is done, type the following command to enter the

directory:

cd testProject2

Make sure you are in the master branch. The output of this command

should be

* master

git branch

Now, while you are in the testProject2 directory, you will make some

changes to the test.py script. Add the following words to the end of the script:

print ("This is another change")

At the beginning of the file, where you wrote print("Hello world,

from Python"), remove the from Python portion:

print ("Hello world")

Now run the following commands to push this code to your repository:

git add .

git commit -m 'Editing code for our example'

git push origin master

Chapter 3 repositories and Git

51

Your next command is to go into your previous test directory:

cd ../testProject

At this point, you are in a local branch of master and you have a remote

branch that has code changes in master. Next you will fetch the code. In

general, you will just do a pull, but in order to demonstrate something, you

will fetch first.

git fetch origin master

This fetches the remote master code and saves it to your local

repository but does not integrate it with your working files. If you inspect

your files, you will see they remained untouched. Next, you will compare

your local files with the code from master you just fetched:

git diff origin/master

This will show you all the recent changes that you are bringing in from

master. These are the changes that you created and pushed from the other

directory.

 Merging Conflicts
Before you merge the work, let’s explore the bane of many software

developers: the dreaded merge conflict. To create a conflict, you will edit

your local test.py file, on line one. Remember you edited it in the other

directory where you removed the from Python text? Go to that line and

replace

print ("Hello world")

with

print ("Hello world, from my computer")

Chapter 3 repositories and Git

52

This should be enough to let Git decide it is not up for a merge, and

will give you the option as to what to keep and what to let go. Just a normal

diff won’t show the conflicts. First, you merge the remote work with the

local branch:

git merge origin/master

You should see this message:

CONFLICT (content): Merge conflict in test/test.py

Automatic merge failed; fix conflicts and then commit the

result.

This conflict is in your test/test.py file, exactly where you expect it

to be. Open that file, or refresh it in your editor if your editor does not auto

refresh. You will see some code that you did not add in the file. Leave these

added lines for now.

At this stage, it is up to you to decide which line should go and which

line should stay. This is a judgement call, and you need to understand why

both lines of code would have been edited by two people at the same time.

There is no immediate right or wrong answer here. The conflict markers

are surrounded by <<<<< and >>>>> and separated by ======. This is a

simple example, but it is not unheard of for this situation to become very

complex.

How do the markers indicate conflict?
The section marked as HEAD is what has changed on your branch.

HEAD always points to the last commit on your machine for the specific

branch you are in. The portion below it is what has been merged in from

the other branch.

Chapter 3 repositories and Git

53

A simple example may look as follows:

<<<<<<< HEAD

This text is from the current branch,

=======

This text was merged in from the other branch and clashed with

the text from the current branch

>>>>>>> 468754A654B654CDE65468768

I would like to elaborate on these two commands, git fetch and git

pull. Normally, especially if you work with a large group of developers,

you need to pull the remote branch before you can push your work to it.

The git fetch command fetches the code from the remote but does not

merge it into your working environment. This is a very safe way to fetch

data from the remote (also called upstream) and do a compare to see what

has changed, before you merge the fetched work (origin/master) into your

local working tree. The git pull command, on the other hand, does the

fetch and merge steps automatically as one command.

Let’s test this. If you have followed all of the steps, you should now have

a test.py file with conflict markers in it. One easy way to get rid of them is

to undo the merge.

git merge --abort

If you inspect your file now, you will see the code has reverted to what

it was before the merge. The code in master, however, will still have the

same changes you made to it earlier, and merging upstream into your local

repository will once again cause the merge conflict to be introduced. You

can test this by using the pull command:

git pull origin master

With git pull, you have now fetched and merged all in one.

Chapter 3 repositories and Git

54

You should never push conflict markers back upstream to the
remote. Your code cannot execute with these markers in it. You must
remove them.

Let’s remove the conflict markers. Let’s assume the code you pulled is

less important than the code you wrote. So you have this code:

<<<<<<< HEAD

print ("Hello world, from my computer")

=======

print ("Hello world")

>>>>>>> ebba576e4226077c5a059bccc17b4b126b2d9f5c

Remove the bottom section and all the markers so that only the

following is left:

print ("Hello world, from my computer")

 Removing the Need to Type Your Password
Every Time: SSH
Typing your password every time can be annoying, especially if you have

chosen a very long password. There is a very secure way around it. In this

section, you will generate SSH keys and add them to your GitLab repository,

change your local repository to use SSH, and from then onwards you won’t

need to use your username and password anymore. SSH is a cryptographic

protocol to secure route data between unsecured networks. There are

multiple algorithms you can use. RSA and ED25519 are popular ones.

Either of them will create two certificates on your local computer. A public

key (which you can distribute) and a private key (which you should keep

secret and on your computer, or the computers you want to use it from). A

guideline to set up SSH can be found here, but we will still discuss it, as it is

good knowledge to have: https://docs.GitLab.com/ee/ssh/.

Chapter 3 repositories and Git

https://docs.gitlab.com/ee/ssh/

55

Type in the create key command:

ssh-keygen -t rsa -b 2048 -C "your-email@email.com"

You may be prompted to overwrite the current key. You do not want to

do this. Type a new location, preferably in the same location as your other

keys. When you are prompted for a password, leave it blank. It is, however,

a good idea to have a password, so if someone steals your private key they

cannot use it without the password.

With the key generated, you will now copy the contents of the public

key and paste it into your GitLab’s SSH directory. You can use any method

to copy and paste the code. You can go to the directory where you created

the key, open the key, and just copy the content, or you can use one of

these methods, depending on your operating system. I called my public

key GitLab_rsa.

• Mac:

pbcopy < ~/.ssh/GitLab_rsa.pub

• Linux:

xclip -sel clip < ~/.ssh/GitLab_rsa.pub

• Windows:

cat ~/.ssh/GitLab_rsa.pub | clip

Once you have the public key in your clipboard, click the right-hand

corner icon. A dropdown will appear,; choose Settings. Once you have

clicked it, a new page will appear with a menu on the left-hand side. Select

SSH Keys from that menu. In the text box that appears, add your key.

There is one step left to do. When you cloned the branch from the

remote to your local, you selected the HTTP method. You need to change

Chapter 3 repositories and Git

56

that to SSH. This is easy. Using your command line terminal, go into the

first directory you created and type

ls -ltra

In the output you will see a .git directory. Inside the .git directory

is a config file where you can change your Git settings. .git is an invisible

directory and not all software will see it. Your command line can see

it with the aid of the -a flag. Sublime can also see it. You will, however,

reconfigure this using a command line call and not by opening the .git/

config directory. In GitLab’s projects, click your project and then click the

blue Clone button. Copy the clone with the SSH address. Then, back in

your command line, type the following and make sure your SSH address is

where my address is:

git remote set-url origin git@GitLab.com:nicoloubser/

testproject.git

That should be it. If you type any command, for instance the following,

you should not be prompted for a password:

git remote show origin

 Gitignore
When you add files to your Git repository, you use the git add command.

You can also add individual files. For instance, adding two PHP files can be

done like this:

git add file1.php file2.php

But what if there are files that you do not want to commit and push

up to the repository? For that purpose, you can use the .gitignore file.

.gitignore files specify the files and directories that should not be added

and committed to the repository. For instance, you may want to ignore the

Chapter 3 repositories and Git

57

logs in your log file directory and your complete vendor directory. Then

your .gitignore file would look like this:

/storage/logs/*.log

/vendor

If you don’t have a .gitignore file, you can just create one. It may

happen that you have already added a file to the repository, meaning it is

already being tracked. Adding it to the .gitignore file now won’t make a

difference. Once it is being tracked, you need to remove it from tracking

first, and then your .gitignore command will take effect.

git rm --cached file-or-directory-name

Explanation of the command:

• rm removes a file.

• --cached removes it only from the index, not your

working space. Your files will still be there after you

have run this command.

 git stash
git stash is another neat utility in Git’s toolbox. Let’s say you are working

on a branch called dev. You are halfway into your work and not ready

to add and commit the changes you have made. Now you get a request

from your manager that you need to fix something in the master branch

ASAP. Obviously, you cannot check out the master branch without carrying

over all of your current file changes. You can always just add and commit

the work you have done in your dev branch and then check out the master

branch. You will have a bit of a dirty commit, and another commit point in

your branch. Or worse yet, you may have a pre-commit hook (not included

in this book). A pre-commit hook may run style checks and unit tests

Chapter 3 repositories and Git

58

upon commit, and without them passing, you cannot commit your code.

This means you cannot check out the master branch, because you cannot

commit your code. git stash is a great way around this problem. It stashes

all of your changes away from your working index, allowing you to check

out other branches without having to commit. In general, you use it as

follows:

 1. git stash

 2. Check out another branch, do work in it, and

commit it. If you do not commit your work, you will

carry the changes made in this branch over to the

previous branch once you check it out.

 3. Check out the previous branch.

 4. git stash pop

Here is a short list of stash commands that will be helpful.

Stashing your work: git stash

Stashing your work with a descriptive message: git stash save

'descriptor'

Viewing your stash: git stash list

Removing pulling the first element of your stash into your working

environment: git stash pop

Selecting an element from your stash based on the stash index: git

stash apply stash@{1}

 git reset and revert
Every so often you need to undo changes you made or changes someone

else has made. Git uses commit points which can serve to indicate restore

points.

Chapter 3 repositories and Git

59

git reset is a bit more destructive than git revert. git reset will

reset to a previous commit point, removing all the commits between your

current state and the desired commit you want. For instance, if you have

commits marked as commit hashes A to E, like

A -> B -> C -> D -> E -> current uncommitted work.

if you run

git reset --hard C

your commits will look as follows afterwards, and the rest will be gone,

although still present in the remote repository:

A -> B -> C

To push these changes to the remote, you need to force it using the -f

flag. Use the -f flag very cautiously, and only if you really must, as you can

overwrite other developers work if you do so.

git push origin branch-name -f

git revert will do the same, but with a big difference in what is

going on in the background. git revert will not remove the commits

you don’t want. Instead, it will do the reversing of them as commit points

themselves. You can also specify one commit at a time to revert or a range

of commits.

git revert E or git revert E..D

The commit history will look something like this, where HEAD is

pointing to a reverted commit:

A -> B -> C -> D -> E -> reverted E -> reverted D

There is a lot more to Git than this chapter can cover, but a lot of the

aspects you will encounter in your day-to-day work were covered here.

Chapter 3 repositories and Git

60

 Cheat Sheet
git clone repo_location. clones the repos into

the current directory.

git clone repo_location location-name clones

the repo into the location-name.

git checkout branchname lets you check out an

existing branch.

git checkout -b branchname creates and then

checks out a branch.

git branch lists branches on your local machine.

git add . adds all files to your index.

git add filename adds a file called filename to

your index.

git add filename1 filename2 adds multiple files

to your index.

git commit -m 'message goes here' commits

your work and makes it ready to be pushed.

git pull origins branchname pulls the latest

changes from a remote branchname.

git push origin branchname pushes branchname

to the remote.

git stash stashes your work away from your

working environment.

git stash pop takes the added stash and adds it to

your working environment.

Chapter 3 repositories and Git

61

git stash pop stashId takes a specific stash and

adds it to your working environment.

git stash list shows all of your stashes.

git remote set-url origin https://github.com/

USERNAME/REPOSITORY.git changes the remote URL

of your Git system.

Chapter 3 repositories and Git

https://github.com/USERNAME/REPOSITORY.git
https://github.com/USERNAME/REPOSITORY.git

63© Nico Loubser 2021
N. Loubser, Software Engineering for Absolute Beginners,
https://doi.org/10.1007/978-1-4842-6622-9_4

CHAPTER 4

Programming
in Python
Solving problems is the main job of the software engineer. Programming

is important because a lot of tasks can easily be automated. You can

create systems that schedule parcel delivery, that avoid accidents, that

recognize your friends, that drive cars. You can create a system that waters

your plants and one that fetches your desired news feeds and shows

them to you. The list is endless. I remember when I first saw the power of

automating mundane tasks by giving them to a computer to do.

I was about 22 years old, working at a bus transport company. My

job on weekends at that stage was to take all the passenger lists, every 45

minutes, write down how many people were on each route, and type that

into an Excel spreadsheet. Then I would print the sheet and go to this big

board with all the routes and busses on those routes and write down the

number of passengers per route. The operations team would then make

decisions based on that data as to how many busses they needed, how

many seats per bus, and so on. This would take me about 35 minutes

at a time and I did not like doing it at all. Soon the company hired a

developer, installed some computer screens in the operations room, and

automated this process. I was incredibly impressed when I saw the board

updating every 5 minutes and taking what can only be called “no time at

all” to do so.

https://doi.org/10.1007/978-1-4842-6622-9_4#DOI

64

I saw these changes spread through the company. If I had to work

night shifts, we had a large number of manual tasks to do before the next

morning. Soon, those tasks disappeared as well. The magic in the system

handled it for us. I was very impressed with those automated changes, but

at the same time I became aware of the fact that we needed less manpower,

and that was the way the world was moving. Fortunately, automation has

opened markets and created a lot of new opportunities.

In this chapter, you will look at writing code. Writing code is only

part, albeit a big part, of solving a problem. You have already looked at

Docker and Git, which form the basis of running code and controlling the

codebase. This chapter is just your first step at writing code, and it’s not a

very complex introduction. It will take a long time to fully learn your first

programming language, but this chapter is a starting point.

 What Is Programming?
Writing code on a basic level is nothing more than telling a program what

it has to do. The catch is, programs cannot think for themselves, and

you have to be very precise in what you tell them to do. Your goal as a

programmer is to change the state of a program, or a small portion of a big

program, from one state to the other. You must envision the possible states

the system can be in, as well as unknown problems that can occur. You will

have a start state in your program, and an end state. As an example, say you

need to send an email. In order for you to achieve your goal of sending that

email, you need to give the software some commands that can manipulate

the state of the program from “unsent email” to “sent email.”

Programming can be rather difficult, but it is not the act of writing code

that is difficult. It depends on how difficult the problem is you are trying to

solve.

Chapter 4 programming in python

65

 Python
We will use Python, an easy-to-learn and very powerful programming

language. Your Python source code, which this chapter is all about, is

executed by the Python interpreter, which you installed in Chapter 2. So,

at this point, you should have a Docker environment capable of running

Python applications. You do not need the Docker environment, though. You

can just install Python on your local machine, but I strongly recommend

that you use Docker to get used to it. You may even learn things about

Docker not discussed in this book while playing around with it.

 Setup for This Chapter and How to Use It
You will use the Docker environment you created in Chapter 2 to create the

example files. You may remember that you set up your docker-compose file

to use a shared directory called test. Whatever you put in that directory

can be interpreted by Python. Let’s test this quickly.

In your Dockerfile, change the CMD command from

CMD ["python", "/home/test.py"]

to

CMD ["python", "/home/main.py"]

In the /test directory, where test.py is living, add a new file called

main.py. Add this line:

print('This is the first line')

Because you made a change to the Dockerfile, you need to rebuild it:

docker-compose build

Now run it:

docker-compose up

Chapter 4 programming in python

66

Whenever you make a change to main.py, just run docker-compose up

to execute it. All of the examples below can be added to main.py for you to

test. At your own discretion, you can delete old lines of code in the main.py

file, but it is sometimes handy to have if you want to retest an old line of

code.

 Basics
Before we get into coding, there are some basics you need to be aware of.

In Python, all statements end in a colon. I will cover all the statements

throughout this chapter. The colon indicates the start of a code block. A

code block is the block of code belonging to the preceding statement, and

code blocks can contain more code blocks. A code block, which follows a

colon, is indented with four spaces or a tab. The industry standard prefers

four spaces and not tabs, purely because not all systems display tabs the

same way. In Python 3, you cannot mix tabs and spaces to indent code

blocks. Your editor should be set up to provide four spaces when you press

tab, and Visual Studio Code does this automatically.

The following piece of code displays the concepts I explained above.

It is important to bear in mind that not all editors display spaces with the

same width. In general, a Python editor should because it makes it easier

to spot indentation errors.

def my_function(): # Start of a code block 1

 if 1 == 2 : # Part of code block 1 and start of code block 2

 print('Part of code block 2') # Part of code block 2

 print('Part of code block 2') # Part of code block 2

 print('Part of code block 1') # Part of code block 1

This was a quick overview, but you will definitely see this whenever

there are code blocks and statements, and it will become intuitive to you in

no time.

Chapter 4 programming in python

67

 Commenting Your Code
To make your code more understandable, you can add human-readable

comments to it. The Python interpreter will ignore these comments and

they will have no effect on the execution of the program. Chapter 5 offers

a detailed description on how to do this, but for now, you just need to

know there are two ways to do add comments. The first way is to add a

hash symbol (#) in front of a line, and the Python interpreter will ignore

that line. The second way is to encase the description between two sets

of triple quotes. This is very handy when you want to explain why you

did something in your code. I do so throughout the book to give inline

explanations on code, so you will benefit from reading them. Now look at

Listing 4-1.

Listing 4-1. Commenting code

print('The interpreter will interpret me')

The interpreter will ignore me

"""

The interpreter will ignore this line as well

as this line.

"""

 Variables
Now let’s move on to variables, which is something you will use constantly.

Most people get an intuitive understanding of variables pretty quickly once

they start reading about them. Imagine you have one tennis ball. Now

imagine you have small box, and you put your tennis ball into it. The box in

this instance is the memory location that Python has reserved for your tennis

ball. This box is called a variable, and the tennis ball is the value assigned to

that variable. You will need to give your box a name. Let’s call it my_ball.

Chapter 4 programming in python

68

Whenever you want to access your tennis ball, you use the name

my_ball, which tells everyone that they must use the box with that name.

Whenever you need to pass a tennis ball to someone else, you give them

the name of the box, and they will instantly know which box to use. Instead

of putting a tennis ball into the box, you can also put a basketball or a

rugby ball into the box. You can have many boxes, each with its own name,

containing different or similar balls. You can also swap balls and change

the ball inside the box. This is true for variables. You have a memory

location, which is represented by the box; a value, which is represented by

the ball; and then the name, which points to the memory location which

stores the value, which is the name which points to the box.

Variables are used by a program to store data. It is temporary storage

and the values will not persist past the execution of your program. This

data is used by the program to base decisions on, to output it in one way

or the other to the user, or the program can save the variables in long- term

or short-term storage. An example of a variable in your system can be a

password, username, mobile number, or something more complex, even

something you created yourself. There are a few types of basic variables

that you will use regularly to build your system. It is safe to say that all

software, no matter how complex, uses these basic types.

Five of the most basic built-in types are integer, float, string, arrays, and

boolean. You can also build your own much more complex data types that

will be used as variables, and we will discuss this later in the book. Unlike

some programming languages, Python is dynamically typed, meaning

you do not need to tell Python that the variable you are creating should

be a string or an integer. Python infers the type from the data you give it,

meaning Python selects whether it is a string, integer, float, or boolean.

So whatever type of data you have assigned to a variable, that will be the

variable’s type.

A variable consists of a variable name and a value. You declare a

variable by using the variable name, the assignment operator, and the

variable type. In the next example, number is the variable name, and the

Chapter 4 programming in python

69

integer value 200 is assigned to it using the assignment operator. This gives

us a variable of type integer, containing the value 200. The variable number

points to the value 200. You can let more than one variable point to the

same value.

number = 200

In Python, and most programming languages, a single = means the

value on the right is assigned to the value on the left. ==, a double =, tests

whether the values on the left and right are equal to each other. We will

also get to this a bit later.

 Integers

Integers are numbers without a fraction component. In Python 3, integers

can be of unlimited size. Let’s go through the following example step by

step.

In main.py, type the following and press Enter:

age = 20

You now have a space in memory in Python holding the value 20. You

can reference this value by using the word age. The following line should

print 20:

print(age)

Now add the following line just below that:

max_age = 30

You now have two variables, one holding the integer 20 and another

the integer 30. The latter can be accessed with the name max_age. Let’s

subtract the two values and print the result to the screen. You can either

assign the result to another variable and then put that result in the print

Chapter 4 programming in python

70

function or you can place the equation directly into the print function.

Enter the following line, and after that, execute the code from the

command line. The response on the screen should be 10.

Use the minus sign to subtract max_age from age

age_difference = max_age - age

print(age_difference)

As a refresher, to execute the code, run this command from the

command line :

docker-compose up

You can inspect your variable’s type by using Python’s built-in

function called type(). In the example below, variable_type may look

like a string when you print it, but it actually is a more complex type and,

coincidentally, a type called type. This new complex type holds as a value

the type that my_integer is, which is int.

my_integer = 4

variable_type = type(my_integer)

print(variable_type)

The result should be <type 'int'>.

 Float

Floating point values are values with fractions, for instance:

distance_in_meters = 8.5

print(distance_in_meters)

They can be used with integers and the result will be a float.

Chapter 4 programming in python

71

 Boolean

Boolean values can either be True or False. In Python, True and False are

always capitalized. They can be used in a variety of scenarios. For instance,

a program may need to know if you are an admin, so there may be a

boolean variable called is_admin that is set to True to signal to the rest of

the program you are indeed an admin.

is_admin = True

 Strings

Strings are words and sentences, denoted by putting double or single

quotes around them.

name = 'John'

print(name)

You can join strings using concatenation with a + concatenation

operator. This is something you will encounter a lot.

greeting = 'Hello '

print(greeting + 'John')

Strings that are enclosed in single quotes, which have more single

quotes inside them, need to be escaped, and the same goes for double

quotes with double quotes within them. To escape the middle ', you need

to add a backslash before it. This tells Python that it is an actual ' that

should be printed, and not one of the enclosing quotes. For instance, this

string assignment will break the system:

This will cause an error.

message = 'let's go'

print(message)

Chapter 4 programming in python

72

Escaping fixes it:

This will print.

message = 'let\'s go'

print(message)

A non-escaping method to fix it is to put double quotes on the outside,

like so:

This will print

message = "let's go"

print(message)

 Last Word on Variables

A variable’s value can change. It is not a fixed value. In other words, you

can reassign data to a variable as need be. You can also change a variable’s

type. You cannot, however, let two variables of different types work

together without casting one of the values to be the same as the other. This

is called type casting and it is discussed in the next section.

 Constants

A lot of programming languages have a concept called a constant. A

constant is a type of variable that can only be assigned once and never be

changed, hence it is a constant value. This is a very useful feature to have.

There are many use-cases for a variable that cannot have its value changed

once assigned, like a file location. Python does not have this functionality.

In Python, a constant is identified by declaring a normal variable but

writing the variable name in uppercase. This merely signals to other

developers that this value should not change.

A normal variable:

file_location = '/bin/bash/'

Chapter 4 programming in python

73

A constant:

FILE_LOCATION = '/bin/bash/'

 Type Casting

Now that you have been introduced to different basic types of variables, it

is important to tell you that you will sometimes need to change basic data

types. Why? Because data types cannot be intermixed. If you have a string

with the value of 10 and an integer with the value of 20, you cannot add

the two numbers without changing the string to an integer. In software

development, this is called type casting or type juggling.

The type casting functions are in Table 4-1.

Here is an example where you tell Python to treat an integer as a

string when concatenating the integer and the string. Type the following

commands:

first = 'There was '

string_part = '1' # 1 is surrounded by quotes, making it a

string

int_part = 1 # 1 is standing alone, making it an integer

Python should have no problem with the following command:

print(first + string_part)

Table 4-1. Type Casting Functions

str(x) if x is not a string, this converts x to a string.

float(x) if x is not a float, this converts x to a float.

int(x) if x is not an int, this converts x to an int.

bool(x) if x is not a boolean, this converts x to a Boolean.

Chapter 4 programming in python

74

The following command should produce a warning, something to the

extent of “TypeError: can only concatenate str (not “int”) to str”, so try it

out:

print(first + int_part)

You will encounter these instances many times. In this instance, the

solution is to cast the variable called int_part to a string, using Python’s

built-in function str(). You put the value you need to cast to string

between the brackets, like so:

print(first + str(int_part))

To illustrate casting from a float to an integer, run the following code

and see if the output is as you expected:

print(int(4.567))

print(float(5))

print(bool(1))

print(bool('false'))

 Shorthand Assignment Operators

As you know, = assigns data on the right to the variable on the left.

The following are some shorthand operators. For these shorthand

operators to work, variable a must be associated with a value already.

 a = 10

a += 5 this equates to a = a + 5. this will concatenate strings.

a -= 5 this equates to a = a – 5.

a *= 5 this equates to a = a * 5.

a /= 5 this equates to a = a / 5.

Chapter 4 programming in python

75

 Sequences and Maps
Remember the tennis ball analogy I used earlier? I need to change it

slightly to explain how sequences and maps work. In this instance, imagine

you have a bigger box than previously. Now, instead of only being able to

add one ball into the box, you can add more. So, you end up with one box

containing multiple balls, plus they don’t have to be the same kind of ball.

Not all boxes are the same in this case. Some boxes can take an unlimited

amount of balls, and you can remove balls, add balls, or change balls as

you please. Some boxes, however, are sealed once you have placed the

balls inside, and the balls cannot be removed or edited.

Sequences and maps (the boxes, in the above analogy) are variables,

called data structures in this case, containing sets of values. They

are referred to in general as arrays, even though there are behavioral

differences between real arrays and map, lists, etc. They are normally used

to represent data that are related, such as customer details or a shopping

list, but your use case will determine what data is inside it. In this section, I

will show how these data structures are used and how the data is accessed

using slicing and using indexes. A bit further along in the chapter, you will

encounter arrays again and see how to access the elements sequentially

using loops.

Before we jump in, just a final high-level overview of arrays. Arrays

in Python come in the following forms: sequences and maps. They are

slightly higher-level terms. On an implementation level, that is on the

level you write your code, sequences come as lists, strings, and tuples, and

maps are dictionaries. You will work with lists, tuples, and dictionaries,

but can refer to them via their higher-level names as well. You can iterate

through sequences and maps and do computations and logical checks on

the values. Similar to how Python comes with built-in functions, so do lists,

strings, sequences, and maps. You will look at how to use built-in functions

a bit later in this section.

Chapter 4 programming in python

76

 Lists and Strings
Lists and strings are both sequences. You have already encountered

strings, so I only mention it here as it is technically a type of sequence. You

can also access a string’s data using indexes and slicing, exactly the same

as a list. Both slicing and indexes will be covered in this section. A list is a

collection of changeable data. You can add values, remove values, and edit

values. Lists are initialized as comma-separated values between square

brackets. Or you can use the list’s built-in functions to add and remove

values. This is how you declare a list:

my_list = ['apple', 'pear', 'orange', 50, 4]

print(my_list)

Remember that I said lists, tuples, and maps are complex variables?

This means they are self-contained objects (you will encounter objects a

bit later in this chapter). But it is good to know that they are objects and

have their own built-in functionality. To access the functionality of any

object, you use the dot operator (.) followed by the function name. In this

example, I demonstrate how to do it, using lists as the example object.

Here are more ways to get data into a list:

Declare lists with a few default values, although it can be

left empty.

new_list = ['value1', 'value2', 'value3']

new_list is now an object

Use the dot operator, and the built in 'insert' function to

add elements to the list.

The insert function's parameters are as follows insert

(position, value)

position indicates the position at which you want to insert

your value

new_list.insert(1, 'value4')

print(new_list)

Chapter 4 programming in python

77

You can also just add data to the end of the list using the

append method().

my_list.append('another value')

print(my_list)

To add data to the start of a list, you use insert it with a position of 0.

 Accessing Data Inside Lists

You need to be able to read and write data in the lists. In general, there are

two ways to do this, indexes and slicing. Slicing is based on indexing so we

will take a quick look at indexing first.

Indexes

Data inside lists can be accessed for reading and writing using their

indexes. An index denotes the location of an item in an array and always

starts at 0. You do not need to specify the indexes yourself; it is done

automatically when you assign the data to the list.

my_list = ['apple', 'pear', 'orange', 50, 14]

print(my_list[0]) # Lists and tuples are both referenced using

square brackets.

print(my_list[2])

The first print function should output the word apple, and the second,

the word orange. The index structure will look like this, where the index is

to the left of the arrow and the value to the right:

[0 -> 'apple', 1 -> 'pear', 2 -> 'orange', 3 -> 50, 4 -> 14]

Chapter 4 programming in python

78

Slicing

You can also perform operations called slicing on your lists. It’s a bit more

confusing at first, but very powerful once you get the hang of it. Take our

previous example of my_list. The anatomy of a slice looks like this:

my_list[start-point : stop-point]

The start point and the stop point are both from the start of the list.

Listing 4-2 has some examples.

Listing 4-2. Slicing

my_list = ['apple', 'pear', 'orange', 50, 14]

print(my_list[0:1]) # Prints apple

print(my_list[0:2]) # Prints apple, pear

print(my_list[-1:]) # The last item in the array

print(my_list[:-1]) # Everything except the last item

There is also another parameter that can be added to the slicing

operator called step, which indicates at what interval numbers should be

returned in the slice:

my_list[start-point : stop-point : step]

Keeping to the my_list list, I’ll illustrate how to skip every second item

in the array.

This example states that slicing should start at position 0, go until

position 5, and skip every second entry:

print(my_list[0:5:2])

But what if your list will constantly be changing in size? The drawback

of the above method is that if you want to operate on a whole list that

changes in size, you would manually have to alter the middle argument of

the slice, which is now 5. Using the built-in Python function called len(),

Chapter 4 programming in python

79

which returns the length of a list, you can automate the stop-point to

always be the length of your list. The lines below show how len() operates

on lists:

print('my_list has ' + str(len(my_list)) + ' entries')

print(my_list[0:len(my_list):2])

 Tuples
Tuples are of a fixed size and are created using round brackets or without

any brackets, like so:

my_tuple = ('eat', 'sleep', 'repeat')

my_tuple = 'eat', 'sleep', 'repeat'

Tuples are sliced exactly the same way as lists. Refer to the code in

Listing 4-2. Fixed size (immutable) means that once it has been created,

you cannot add or remove elements from it, nor can you edit values. This

means that you use a tuple when you know exactly how many elements

you will have. This makes tuples a bit faster than lists, and also safer, since

you cannot accidentally delete data. Although there are many similarities

between lists and tuples, you must remember you cannot add or remove

elements from tuples. Tuples can be sliced in the same way as lists.

 When to Use a List and When to Use a Tuple
You should use a list when you have a variable amount of data to populate

it with. For instance, if your code searches your newsfeeds daily for

keywords like invest and adds that news article into your data structure

before displaying it, then a list is appropriate because you will get a

different amount of news articles every day. If you are looking to store the

daily hourly temperature in your structure, then a tuple is the way to go

because every day only has 24 hours.

Chapter 4 programming in python

80

 Dictionaries
A dictionary, also called a map or key/value pair, is a data structure where

each indexed value has a corresponding key. Data can be accessed using

this key. The index should be a meaningful word, describing what the

value relates to.

Anatomy of a dictionary:

details = {

 key_unique_name : value,

 key_unique_name : value

}

This would translate into an actual example looking like this

user_details = {

 "name": "Nico",

 "surname": "Loubser",

 "age": 68,

 "house_number": 68,

 "street_name": "Mitchell street"

}

Below is what the list equivalent looks like. Compared to lists and

tuples, the keys in both lists and tuples are not really absent, they’re

just implicitly assigned and start at 0. Compared to the dictionary

implementation, you can see how the dictionary is a lot more readable. In

the list example, which follows, without a readable key, we have no idea

what 68 is, whereas in the dictionary version it is easy to understand.

details_list = ["Nico", "Loubser", 68, 68, "Mitchell street"]

Getting data from a dictionary is very easy. As with lists and tuples, you

access data using the indexes. You cannot slice a dictionary because it is

not a sequence and slicing won’t make sense.

Chapter 4 programming in python

81

print(user_details['name'])

print(user_details.get('name'))

We will go through list, tuples, and maps in the “Loops” section of this

chapter.

 Decision-Making Operators and Structures
All decisions made in programming are based on a true or false outcome.

This can become very complex as there may be a multitude of factors to

base a single decision on. But even the most complex algorithm will boil

down to a true or false.

Comparison operators, combined with logical operators, form the

basis of decision-making algorithms. But don’t be fooled. You can use

these humble components to build systems that are complex. Yes, you can

even build AI systems using these components.

 Operators
When combining operators (or, in fact, when only using a single one)

we form what is called an expression. You will need a lot of expressions

to achieve your program’s goal. Python provides you with a set of

comparison operators as well as logical operators to help you build your

expressions, and you will deal with them in this section. While building

your expression, you will use the comparison operators to evaluate

different values and logical operators to include (and exclude) certain

outcomes.

Chapter 4 programming in python

82

 Comparison Operators

This section is important to understand before you get to decision making

structures.

When we want to make decisions based on data, we need some regular

mathematical operations to do so. The operators in Table 4-2 are of interest

at a beginner level. The results of these operators will always be True or

False. A comparison operator takes a value to its left and compares it to

a value on its right. The outcome of that evaluation will be positive or

negative, in other words, True or False.

Examine the following code and run it in your environment. You will

see how the outcomes are boolean values.

Initialise 2 variables

age = 100

limit_age = 120

Do logical comparisons.

print(age == limit_age)

print(age > limit_age)

print(age < limit_age)

Table 4-2. Comparison Operators

== equals

!= not equal to

< > not equal to

> Left is bigger than the right-hand side

< right is bigger than the left-hand side

<= right is bigger than or equal to the left-hand side

>= Left is bigger than or equal to the right-hand side

Chapter 4 programming in python

83

 Logical Operators

This section is important to understand before you get to the decision-

making structures. When we combine comparisons operators, we need to

specify how those comparisons are related to each other. For instance, you

can have a variable called car and variable called year_model.

Here’s a demonstration of the and, or, and not logical operators:

Assume car = 'Ford' and year_model=1996.

and

Let’s start with and:

if car == 'Ford' and year_model != 1998:

This will result to True if both comparisons are True. Should the very

first comparison, car == 'Ford' in this case, result in False, then Python

will not evaluate the rest of the logical operation.

Boolean and logic works as follows:

True and True == True

False and True == False

True and False == False

False and False == False

or

Here is the or version:

if car == 'Ford' or year_model != 1996:

This will result to True if one of the comparisons is True. The whole

logical operation will be evaluated.

Chapter 4 programming in python

84

Boolean or logic works as follows:

True or True == True

False or True == True

True or False == True

False or False == False

not

Finally, not:

if not(car == 'Ford'):

This will negate the comparison, so if name == 'Ford', this will result

in False.

not True == False

not False == True

Truth Tables

These expressions can get very complex and need a lot of practice, but they

form the basis of the logical evaluations in your code. One of the issues is

that you may have a simple expression, as in Listing 4-3, but there are three

variables, each of which’s comparison may be True or False, so how do you

accurately determine what values will pass the expression successfully?

There is something called truth tables, which can help you deduce what

the outcome of your expression will be, especially in the beginning as

you are just starting out. Truth tables hold all the possible values of your

expression and calculate their outcomes. I will give a quick overview here.

Suppose your expression looks like Listing 4-3.

Listing 4-3. Logical expression

(amount == 10 and tax == 14) or discount != 100

Chapter 4 programming in python

85

This means, if your amount is 10 and your tax is 14 or the discount is

not 100%, then this whole expression will evaluate to True. If the amount

is indeed 10, the tax is 14, and the discount is not 100%, then this can be

rewritten as (True and True) or True.

However, if the discount is 100%, this can be rewritten as

(True and True) or False

You can construct a truth table to further see which values will make

the expression pass or fail. See Table 4-3.

Table 4-3 has seven columns. The first and the third columns are all

possible results for the first set of comparisons. Column two holds the

logical operator for reference and column four holds the results. So the first

four columns hold all the possible potential outcomes for (amount == 10

and tax == 14).

Table 4-3. Truth Table

amount ==

10

anD tax ==

14

1st result of
the ‘and’

or discount!=

100

Result of 1st result
or discount

true and true True or true True

true and true True or False True

true and False False or False False

False and False False or False False

False and False False or true True

False and true False or true True

False and true False or False False

true and False False or true True

Chapter 4 programming in python

86

Column five just holds the or operator for reference. The or operator

will now work on the data of column four and column six. Column six

forms part of all possible results that the individual logical expressions,

which make the whole expression, can have. The result of that last or is in

column seven. Now, reading the table row by row from left to right, you

can see what the evaluations should be for your expression to succeed. The

successes are marked in blue in the last column.

 Identity Operators

Remember in the beginning I said that more than one variable can point to

the same value? With the identity operators, we can check whether that is

the case. This is not the same as checking whether two variables have the

same value using ==. Two variables can have the same value, where the

values are separate and occupy two different memory locations in Python.

Identity operators do not care about the equality of two values. They care

about whether both variables are pointing toward one single value in

Python’s memory. You can manually inspect variables to see if they are

pointing toward the same memory location using the built-in Python

function id (variable). This will print/return the id of the memory location

where the variable is pointing.

is

The identity operator is compares data on its left-hand side with data on its

right-hand side to see if they point to the same object, as demonstrated in

Listing 4-4.

Listing 4-4. Using is

set_one = [1, 2, 3, 4, 5]

set_two = set_one

if set_one is set_two:

 print('Both variables are pointing to the same list object')

Chapter 4 programming in python

87

is not

The identity operator is not compares data on its left-hand side with data

on its right-hand side to see if they do not point to the same object, as

demonstrated in Listing 4-5.

Listing 4-5. Using is not

set_one = [1, 2, 3, 4, 5]

set_two = set_one

if set_one is not set_two:

 print('Both variables are pointing to the same list object')

else:

 print('Both variables are not pointing to the same list

object')

 Membership Operators

Membership operators check whether the value on the left is in the array

on the right.

in

The membership operator in checks whether the data on its left-hand side

is in the array on its right-hand side. See Listing 4-6.

Listing 4-6. Using in

fruit = ['apple', 'pear', 'orange', 'kiwi']

if 'apple' in fruit:

 print('Apple is in the list')

You can also use the in keyword in loops, which I will demonstrate

later.

Chapter 4 programming in python

88

not in

The membership operator not in checks whether the data on its left-hand

side is not in the array on its right-hand side. See Listing 4-7.

Listing 4-7. Using not in

fruit = ['apple', 'pear', 'orange', 'kiwi']

if 'watermelon' not in fruit:

 print('watermelon is not in the list')

 Precedence of Operators in Expressions

Operator precedence is a very important aspect of writing accurate

algorithms. Precedence of operators, from a high level, is shown in

Table 4- 4. Note that binary operations are left out of this list. Going

through this list, it becomes quite evident that ignoring precedence in

your expressions can have dire consequences.

Table 4-4. Operator Precedence

() Code enclosed in brackets are evaluated first.

** exponents are evaluated next.

*, /, //, % multiplication and division are evaluated next.

*, - addition and subtraction are evaluated next.

==, !=, >, >=, <, <=, is, is not,

in, not in

Comparison, identity, and membership are

evaluated next.

not Logical operator not is evaluated next.

and Logical operator and is evaluated next.

or Logical operator or is evaluated next.

Chapter 4 programming in python

89

The following example demonstrates operator precedence:

1 + 2 * 10 == 30

What is the result? Would this equation as a whole return True or

False? Most people familiar with mathematics will correctly point out

that 1 + 2 * 10 == 30 will never yield True. Because multiplication takes

precedence over addition, the value is 21, not 30. You can solve this by

adding brackets around the 1 + 2. In the following example, the equation in

the brackets takes precedence over the multiplication, and now (1+2)*10 is

actually equal to 30:

(1 + 2) * 10 == 30

Proving that the logical operator and takes precedence over or is a bit

more tricky and not as obvious. The following equation should do fine.

When you execute it, you will see the result is True.

Type the following command:

print(True or False and False)

Because and is evaluated before or, you have the following evaluation

pattern, where the bold portion is executed first:

True or False and False

The bold portion (False and False) is equal to False, so you can rewrite

this as True or False.

True or False == True

Hence the end result is True.

If or was executed first, the following would happen:

True or False and False

Chapter 4 programming in python

90

You know that the bold portion, True or False, will yield True, so you

just rewrite it in your algorithm as True for clarity. True and False will yield

False.

True and False == False

With or taking precedence, you get the result as False. But since

running the equation returns True, you can safely conclude that and takes

precedence over or. If you really need to let the or portion execute first, just

wrap it in brackets:

print((True or False) and False)

 Bitwise Operators

I won’t go into bitwise operators. Even though it is a very important

concept, it is beyond the scope of this book to teach you binary

calculations. I advise you to look into it once you understand the basics of

programming.

 Scope and Structure of Python Code
Scope is a rather simple but very important aspect in programming.

Scope refers to the visibility of a variable under certain conditions. These

conditions can be local, enclosed, global, and built-in. I will discuss scope

here, but you really start handling it once you see more code.

 Local Scope

Local scope refers to any variable that has been declared within a function

or a class. We will deal with classes in the next section. These variables

cannot be accessed directly, without referencing the class or function, by

any code running that class or function.

Chapter 4 programming in python

91

 Enclosing Scope

This scope specifically refers to nested functions, which are functions

within functions. If you have a function within a function, then the inner

function’s scope includes that of the outer function’s scope.

 Global Scope

Global scope occurs when a variable is declared at the top level of a file.

This means the variable is available to all scripts that import that file.

Global scope variables are best avoided when possible. Due to its nature

where it can be edited from anywhere, it is not good to rely on the accuracy

of that variable.

 Built-in Scope

These are built-in values provided by Python, which are loaded into the

system whenever the system executes. This includes functions, among

other things.

 Control Statements
There are dedicated control structures that use comparison and logical

operators to influence the state of your program. You will learn about them

in this section.

 If Statements

You use if statements when you need to execute a specific codeblock

based on certain conditions. An if statement takes a logical expression and

evaluates it, using equality operators, to obtain a value of True or False.

It can also take a single Boolean value which will equate to True or False.

Using the if statement, we link blocks of code to certain conditions, and we

execute that code if those conditions are met.

Chapter 4 programming in python

92

An if statement starts with the word if, followed by an expression

consisting of comparison operators and logical operators, and ends with a

colon.

if temperature < 15 and rain == True :

 return 'The weather will not be great today'

Some important things to remember:

• All code nested with four spaces belongs to this if

statement.

• Remove the spaces and you are out of the if statement’s

code block.

So, an if statement is followed by an indented code block of at least one

line of code. All the code belonging to this if statement should be at that

level of indentation. The if statement can also contain two other parts. One

is elif, and the other is else. Elif is a contraction of “else if” and you use it

if you need more control over what block of code should be executed. In

your program, you may want to execute a different block of code for every

day of the week. Using elif in this case is more optimized than running

seven different if statements, plus it tells us that the whole code block is

related, which increases readability.

if day == 'monday':

 some code

elif day == 'tuesday':

 come code

elif day == 'wednesday'

 some code

 # and so on.....

Chapter 4 programming in python

93

There will also be instances where your if statement does not evaluate

to True, and if it has elif’s, that they did not evaluate to True either. Even

if none of your code blocks linked to your conditional statements have

executed, you may still need it to execute something. For that you use the

else statement.

if 1 == 2:

 print('1 is equal to 2')

else:

 print('1 will never be equal to 2')

Let’s look at another example. In Listing 4-8, you can see how the if

statement first evaluates whether money_in_wallet is less than the price,

then it evaluates whether the amounts are equal to each other, and then

if money_in_wallet is more than the price. It bases its decision of what to

print on the outcome of these evaluations.

Listing 4-8. if/elif example

price = 30

money_in_wallet = 25

change_left = 0

if money_in_wallet < price:

 print('You do not have enough money')

elif price == money_in_wallet:

 print('You have the exact amount')

elif money_in_wallet > price:

 change_left = money_in_wallet - price

 print('You have ' + str(change_left) + ' left')

Play around with the code in Listing 4-8, changing the money_in_

wallet value to 30, and then to an amount higher than 30.

Chapter 4 programming in python

94

If statements can also be a singular Boolean value:

if True :

 print('Hello')

In short, if and elif evaluate different expressions (or mathematical

equations), and else executes if all of the preceding if and elif statements

linked to that else statement failed.

 Loops

Loops are structures that allow us to do a task repeatedly. This repetition

of tasks is based on certain conditions. Loops are often used to iterate over

lists, tuples, and dictionaries. There are two loops in Python, the while loop

and the for loop. Some languages have even more loops.

While Loops

While loops are executed as long as the expression in them is true. This

makes while loops best suited for when you are not sure how many times

the loop must execute, and you have a logical algorithm that determines

the amount of times it can execute.

while expression : # statement declaration and expression ended

with a colon

 run this code # All subsequent code linked to the while

statement is indented.

 run this code

The while loop will execute as long as the expression is equal to True.

There is a second way to exit a loop called a break, which we will look at

later in this chapter.

Let’s look at two actual examples. The first example prints numbers

from 0 to 9. If you do not add a mechanism to exit the loop, the loop

will keep on running. On the first line in Listing 4-9a, you set a variable

Chapter 4 programming in python

95

called number to 0. On the second line you start your loop. You can

consider the variable number as a control variable, as it controls

how many iterations the loop will execute. On the second line is the

condition, where the loop will execute while number is smaller than 10,

and then on the fourth line you update the variable to ensure that your

loop stops execution.

Listing 4-9a. Simple while loop example

number = 0

while number < 10:

 print(number)

 number += 1

It is very important to have a control variable that will stop the

execution of your while loop. If you do not have this, your loop will keep

on executing and become what is called an infinite loop. The biggest

drawback of an infinite loop is that the rest of your code does not get

executed, rendering your software useless.

Listing 4-9b shows a more complex example. Here number is still your

control variable, but the condition governing the amount of times the loop

will execute is more complex. You are not just evaluating whether number

is smaller than 10; you also consider whether number multiplied by 10 is

smaller than 50.

Listing 4-9b. Complex while loop example

number = 0

while number < 10 or number * 10 < 50:

 print(number)

 number += 1

Chapter 4 programming in python

96

For Loops

For loops are used to iterate over lists, tuples, dictionaries, and also strings,

making a for loop best suited for when you have a fixed set of data to iterate

through. The syntaxes to iterate over a list, tuple, dictionary, and string are

mostly the same in a lot of respects, but there are different variations in

syntax or ways to apply them, which we will cover here.

A for loop’s anatomy is very similar to that of a while loop:

for expression:

 code

The use case for a for loop is different than a while loop so its

expression will look different. In general, a for loop operates on a structure

that is iterable. Iterable means you can iterate, or step through its data, like

a sequence or a map. You will recognize the in keyword in the example

below. It is the keyword you use to test for value membership in arrays and

was mentioned in the section about operators.

students = ('Justin', 'Ron', 'Andy', 'Jonathan')

for name in students:

 print(name)

Here is a slightly more complex example:

for name in students:

 if name == 'Ron':

 print('Found Ron')

Dictionaries are iterated over differently from lists, tuples, and strings,

due to the fact that they possess a key. Since a map is also an object, it has

a function called items(). You use this function to extract the items from

the map. You can also specify a key in your for loop if you want to see the

key.

Chapter 4 programming in python

97

map_of_values = {'name': 'Andy', 'surname': 'Bieber', 'marital_

status': 'married', 'country': 'Great Britain'}

for key, value in map_of_values.items():

 print(key + ' ' + value)

List Comprehension (Shorthand Loops)

Python also has something called list comprehension. This is a list that

creates itself based on an internal loop. This loop returns a list. Consider

the code in Listing 4-10.

Listing 4-10. List comprehension

The list we will be iterating over.

numbers = [1, 2, 3, 4, 5]

Function that will be called in the loop

def multiply(amount):

 return amount * 10

The loop is wrapped in square brackets, and that list is

returned to the variable

called 'results'.

results = [multiply(value) for value in numbers]

This will contain a new list, where each value in the old

list will be multiplied by 10.

print(results)

 Continue and Break

Loops do have some more tricks up their sleeves. Three important things

to look at is how you can nest loops and how to use continue and break

clauses inside your loops. Nesting loop are not always ideal, but sometimes

they are needed to achieve your goal. Let’s create a complex list. This list

Chapter 4 programming in python

98

will have complex values as items, as opposed to just having integers or

strings. This example has dictionaries as items. Note that continue tells the

system to stop executing subsequent code and go back to the start of the

loop and break tells the system to stop executing subsequent code and to

leave the loop. This is demonstrated in Listing 4-11.

Listing 4-11. Continue and Break

people = [{'name': 'ron', 'position':'middle'},

{'name':'nico', 'position':'bottom'}, {'name':'andy',

'position':'top'}]

One example using continue.

for person in people:

 for details_key, details_value in person.items():

 if person['position'] == 'bottom':

 continue

 print details_value

One example using break.

for person in people:

 for details_key, details_value in person.items():

 if person['position'] == 'bottom':

 break

 print details_value

The sets of loops are very similar. Each set has two loops. The first

loop (the outer loop) iterates over the list called people and sends back

the values in the list one by one. The values it sends back are dictionaries.

Then, in order for you to iterate the dictionary, you iterate over the values

that the list sends back in your second loop. This line person['position']

== 'bottom' just means that the variable person is a dictionary (since

you received person from the list, and the list contains dictionaries). If the

value at the key called position is equal to ‘bottom’, then run the continue

Chapter 4 programming in python

99

clause. This ignores whatever is next in the loop and goes back to the initial

loop and carries on iterating. The second example uses break. This is

exactly the opposite, and it breaks out of the control structure, effectively

stopping the loop from iterating, and continuing outside the scope of the

loop.

 Functions
Functions are small reusable blocks of code, which once defined can be

accessed by using their name. They consist of a name, a parameter block,

which is always between round brackets (), and a function body. All the

concepts you have encountered in this chapter can be applied inside a

function. You can, and will, write your own functions, but Python comes

with built-in functions as well. You encountered a built-in Python function

in Chapter 3 called print. Here is an example of the print function again:

print('Hello world')

I will not dig into all of the functions that Python provides, but I will

introduce more functions as we proceed through the chapters of this book.

As a rule of thumb, if you want Python to achieve something small, see

whether Python has a function for it first.

 Custom Functions
Custom functions are something you will write constantly. We write

functions for a few reasons.

• It helps us reuse code. We can call the function

numerous times.

• It encapsulates tasks, making our code easier to

understand.

Chapter 4 programming in python

100

Functions should be designed to do one of three things:

• Print something to the screen (not always

recommended).

• Return data so that the code calling the function can

use it.

• In the case of classes, an object can update the internal

state of the class. These functions can still return data

as well.

 Principles of Function Design

When designing a function, it is very important that the function achieves

one goal, and one goal only. For instance, if you write a function that

calculates VAT, then that function should only calculate VAT. If you first

need to sum a bunch of values and then calculate VAT, you should have

two functions: one to sum the values and one to calculate VAT on that

summed value. One function to sum the values and then calculate the VAT

amount sounds innocent enough, but detracts from the understandability

of the code and opens you up to bad coding practices.

 The Anatomy of a Function

A function’s identifier is the word def, followed by the function name,

parameter list (which is between the round brackets), the function return

type (which is optional), and the function body. When you need to get data

into your function to do operations on, you pass it in via the parameter list.

• The keyword def is the statement declaring a function

that follows it.

• The function name is used to access the function.

Chapter 4 programming in python

101

• The parameter list, between (), takes external data and

hands it to the function.

• The optional return type tells the function that it may

only return data of that type.

The parameters are also called arguments, and the order in which

they are entered into the parameter list, matters. The order in which

they are specified when the function is designed, is the order in which

you should provide them to the function when the function is used. The

function name, and arguments, should be meaningful names reflecting

their purpose. The parameters, or arguments, are values that you receive

from the program, and many times this is data provided by user input. This

data will be passed into your function to do calculations on. The result of

the calculations will be passed back to the system, helping you achieve the

goal of manipulating the program’s state.

Def function-name(argument1, argument2) -> function_type_to_

return :

 Code you have written.

 Code you have written.

 Code you have written.

 Return or print

 Should Functions Return or Print?

This question is a design issue. It depends on what the function needs to

do. In general, I prefer letting my functions return data instead of printing

it, as displaying data should not necessarily be the job of that function, plus

the function calling your function may need to do some more calculations

on the returned data, something it cannot do if you print data to screen.

There is another option, though, which you will come across when you

look at classes.

Chapter 4 programming in python

102

 Example Functions

Listing 4-12 shows a simple function that just prints a name and surname.

This is just to illustrate how parameters are passed into a function.

Listing 4-12. A simple function

def name_and_surname(name, surname):

 return 'Your name is ' + name + ' and surname is ' +

surname

print(name_and_surname('Nico', 'Loubser'))

Listing 4-13 shows a slightly more complex example that does some

calculations.

Listing 4-13. A more complex function

Import the datetime library

import datetime

"""

Here the function name, calculate_age, reflects what it will be

used for.

The one argument it accepts, year_born, is named after the

value you want.

It should always return an integer due to the return type being

specified

"""

def calculate_age(year_born) -> int:

 current_year = datetime.datetime.now().year

 # This function returns a value. Y

 return (current_year - year_born)

Chapter 4 programming in python

103

Here we are calling the function. It returns the age and

stores it in the variable

called 'age'

age = calculate_age(2000)

Print age to screen

print(age)

Let’s have a little test. You can either try to create it yourself, taking into

consideration that you may not have encountered all of the aspects inside

the solution, or you can read the question and see how the answer relates

to the question. You have a person (and you will provide their name as a

function argument) who has x amount of money (which you will provide in

the function’s second argument) in their wallet. They want to buy a cup of

coffee that costs $4. Write a function that accepts their name and available

money as arguments. The system should determine whether they have

enough money or to buy coffee or not. The function should return the

string “Janet (or whatever name you gave her) has enough money” if she

has more than $4, or “Janet does not have enough money” if she has less

than $4.

Here is a possible solution:

def enough_funds(name, funds):

 if (funds >= 4):

 return name + ' has enough money'

 else:

 return name + ' does not have enough money'

To run this function

print(enough_funds('Jane', 3))

print(enough_funds('Jane', 10))

Chapter 4 programming in python

104

Here the custom function called enough_funds returns the result to

a built-in Python function called print(), which you have encountered

already. enough_funds does the calculations, and print() returns the

answer to your screen.

 Parameter Type-Hinting

When defining parameters in your function, you can specify the type of

parameter you want. This is called parameter type-hinting. For instance, if

you want age to come through as an integer, and not ever as a string, you

define your function as follows:

def set_age(age: int)

 Default Parameter Values

If you do not provide values for your parameters, your program will not

execute and it will complain that some arguments are missing. You can

provide default values in situations where you are unsure whether you

may receive all parameter arguments or not. Although this is not a good

method to ensure your code does not break when data is missing, it is a

great way to ensure you have one or two default values that do not need to

be provided if they are not available.

The function in Listing 4-14 will either print directly to screen or return

the value to the code calling this function. You use a parameter with a

default value called return error, which is set to True, in the parameter

list to indicate that it should always return its data, unless you provide a

different value for the return error parameter in the argument list.

Listing 4-14. A function with a default parameter value

def log_error(error, return_data=True):

 if return_data:

 return error

Chapter 4 programming in python

105

 else:

 print(error)

Equivalent calls, prints directly to screen

log_error('error message 1')

log_error('error message 2', True)

"""

Returns its variable to the code calling the function, where

you can do more operations on it or in this case, just print it

"""

error = log_error('error message 3', False)

print(error)

 Variable Parameters

If you do not know how many parameters you will send to your function,

you can use variable parameters. This is handy if your function is expecting

x amount of similar data, but you do not know how many values there will

be. To illustrate, look at the following function in Listing 4-15. The variables

are added as individual variables, but inside the function they are treated

as a list. The variable parameter is prepended with an asterisk, *.

Listing 4-15. Variable parameter example

def sum (*numbers):

 total = 0 # initialise total to 0

 for number in numbers:

 total += number

 return (total)

print(sum(10,56))

print(sum(1,2,3,4,5,6,7,8,9))

Chapter 4 programming in python

106

 Named Keyword Arguments

At the start, I mentioned that the order of the arguments matter when they

are passed through to the function. This can be circumvented by using the

name of the argument in the function call. In this case, Python does not

care about the position of the argument, but at the name. See Listing 4-16.

Listing 4-16. Named keyword arguments

def details(name, surname, mobile_number):

 print(name + ' ' + surname + ' mobile :' + mobile_number)

Run these two functions and see how the first one basically

breaks the output because

the order is wrong

details('Johnson', '0123456789', 'Don')

details(surname='Johnson', mobile_number='0123456789',

name='Don')

 Classes and Objects
Python is an object-oriented programming language. You have read the

terms “object” and “class” a few times in this chapter and have encounter

them briefly with sequences and maps. A class is the code you wrote,

and an object is that class that has been loaded into memory as a useable

object. A class encloses, or encapsulates, behavior and data. Let’s take a

real-world example of a dog. As a class, a dog encapsulates the following

behavior and data (attributes):

Behavior

Barking

Running

Chapter 4 programming in python

107

Attributes

Name

Breed

Color

Your dog class can be written as shown in Listing 4-17. We will go

through more examples after this example.

Listing 4-17. The Dog class

class Dog:

 def __init__(self, name, breed, color):

 self.name = name

 self.breed = breed

 self.color = color

 def bark(self):

 print('woof')

 def run(self):

 print('Running')

End of the class

Creating a new object is called instantiation and looks like this:

variable = Class()

So, in your case, your dog object is instantiated like this:

dog = Dog('Fluffy', 'Poodle', 'white')

You can now run the encapsulated functions on the dog object using

the dot operator:

dog.bark()

Chapter 4 programming in python

108

When we instantiate a class, we create an instance of that class via

the constructor. It is optional to include your own constructor, and it is

dependent on the class you created. The constructor is defined inside the

class using the __init__ function. All classes that have a constructor use

this method.

def __init__():

This function can be used to declare and initialize all of the supporting

classes and variables that it needs to create this class. You can see a

constructor as taking materials and constructing your class into an object

using those materials. Say you have a class called Rectangle. You create its

constructor as follows:

def __init(self, width, height):

 self.width = width

 self.height = height

Just to rehash, classes are used to create objects. An object is in

instance of a class, and the variables passed into the instance are called

instance variables. A class can be seen as the code that was written down

when you created the class. An object is a class after it has been created

and loaded into memory; this is also called instantiation. An object is

referred to as an instance of a class. An object, just like an integer, string,

and so on, is assigned to a variable. So, in short, you write a class and then

instantiate the class into an object.

 The Anatomy of a Class
Let’s go through a class definition.

"""

class is the identifier for a class declaration. We use the

'self' keyword in order to

Chapter 4 programming in python

109

have access to the methods and properties inside a class. You

do not need to pass the keyword 'self' in when you call the

class or its functions.

Constructor. A very important aspect, a constructor is created

using __init__().

The __init__ function runs on every instantiation of the

class into an object, and is a great place to get data and

dependencies into your object.

"""

class MyClassName:

 # Optional constructor. Gets called automatically, and always

takes 'self' as a

 # parameter. The 'self' keyword allows us to access the

properties and

 # functions inside the class

 def __init__(self, value):

 # property is an instance variable of MyClassName

 self.property = value

 # Any amount of functions can follow

 def function1(self):

 actions

 actions

 def functionN(self, param):

 actions

 Instantiating the Class
The round brackets in an instantiation refer to the constructor. If the

constructor has parameters, then you pass it in here. You do not pass self

because it is already implied.

Chapter 4 programming in python

110

a_class = MyClassName(value)

a_class is now a variable of type MyClassName and has access to

the functionality inside it. To access that functionality, you use the dot

notation:

Accessing a function

a_class.function1()

Accessing a property

a_class.property

Let’s look at an actual example of a class in Listing 4-18. In it, you

create a class that calculates the amount of money left in a bank account.

Listing 4-18. The Funds class

class Funds:

 # These two variables are in the class scope. Initialised

to 0

 total_expenses = 0

 total = 0

 # Constructor. We populate it with the total amount

available when we

 # construct the object

 def __init__(self, total):

 self.total = total

 # Stores the money we have spend

 def set_expense(self, expense):

 self.total_expenses += expense

 # Calculates the amount of money we have left

 def get_funds_left(self):

 return self.total - self.total_expenses

Chapter 4 programming in python

111

Code implementation part. Note that you do not have to put

'self' when calling the

functions

funds = Funds(200)

funds.set_expense(10)

funds.set_expense(15)

Prints the amount left to screen

print(funds.get_funds_left())

You can make this class a bit better, though, so see Listing 4-19. It is not

very reliable that you can just deduct money and take your total expenses

into the negative. You will also add code to handle the errors a bit better.

Keep an eye on the indentation as well; I have exaggerated the indentation

to make this a bit easier to follow.

Listing 4-19. The improved Funds class

class Funds:

 total_expenses = 0

 total = 0

 # Added a variable to hold any error messages we may

encounter

 error = '';

 # Constructor. We populate it with the total amount

available

 def __init__(self, total):

 self.total = total

 # Sets the money we have spend

 def set_expense(self, expense):

 # Checks whether we have enough money left to give out

 if self.get_funds_left() > expense:

 self.total_expenses += expense

 return True # Exit the function

Chapter 4 programming in python

112

 # If we don't, set the error message and return false.

Returning false here

 # allows us to detect a failed expense deduction

 self.error = 'Out of funds'

 return False

 # Calculates the amount of money left

 def get_funds_left(self):

 return self.total - self.total_expenses

 # Returns the error

 def get_error(self):

 return self.error

Code implementation part

funds = Funds(20)

Check whether the set_expense function returns True or False.

Using the 'not'

keyword indicates false. Then we print the error.

if not funds.set_expense(10):

 print(funds.get_error())

if not funds.set_expense(2):

 print(funds.get_error())

if not funds.set_expense(15):

 print(funds.get_error())

Prints the amount left to screen

print('You have £' + str(funds.get_funds_left()) + ' left.')

Chapter 4 programming in python

113

 Inheritance
We will look at inheritance in this chapter. Classes can be structured

hierarchically, in an is-a relationship. This is often called a parent-child

relationship. The child will inherit behavior from the parent. Let’s say your

parent class has a function called email(). The child can use that email()

function as it is, or override the parent’s function with its own function.

This is super easy; just redeclare the exact same function in the child class

and give it another body.

Let’s say you have a bicycle shop and need to create software to

order bike parts. One way to model the classes for bicycles is shown in

Listing 4-20. You have a top-level class called Cycle. Below is what the

Cycle class may look like. This is almost a template with the functionality

of what the children, the classes that inherits from it, should look like.

Listing 4-20. Inheritance

class Cycles:

 def set_as_assembled(self, is_assembled):

 self.assembled = is_assembled

 def get_wheel_count(self):

 return self.wheel_count

 def who_am_i(self):

 return 'I am the original function'

Note the change in how we define our class. We added round

brackets and placed

the parent it inherits from name in between it.

Monocycle IS-A Cycles and inherits from Cycles

class Monocycle(Cycles):

 # Override the parent function with a similar function that

behaves differently

Chapter 4 programming in python

114

 def who_am_i(self):

 return 'I am overriding the parent function'

 wheel_count = 1

A second child class. Bicycle IS-A Cycles

class Bicycle(Cycles):

 wheel_count = 2

A third child class. Tricycle IS-A Cycles

class Tricycle(Cycles):

 wheel_count = 3

monocycles = Monocycle()

print(monocycles.get_wheel_count())

cycles = Bicycle()

print(cycles.get_wheel_count())

In this section we show how the function overriding works

print(monocycles.who_am_i())

print(cycles.who_am_i())

In this block of code, you have three classes of type cycle, and

all three have an is-a relationship with the parent class called Cycle.

Notice how neither Monocycle, Bicycle, nor Tricycle objects

implement a get_wheel_count() function, yet they can all use that

function. They all inherit it from their parent class called Cycle. Also

of interest is that the function called who_am_i is overridden in the

Monocycle class, but not in the Bicycle class. In the last two lines of

Listing 4-20, you can see how Monocycle uses the overridden code and

Bicycle the original code.

Chapter 4 programming in python

115

 Polymorphism
Polymorphism is the ability of an object to take on many different forms.

It can be a complicated subject but is often explained in the sense of

animals. Listing 4-21 shows a quick example. You have a parent class

called Pet, and Pet has two children, Cat and Dog. The function getSound

takes a parameter of type Pet, of which you have two, a cat and a dog.

Polymorphism resolves the type for you.

Listing 4-21. Polymorphism

Parent object

class Pet:

 def sound(self):

 # Pass is called a null statement in Python, and

nothing happens when Python encounters it

 pass

IS-A pet

class Cat(Pet):

 def sound(self):

 return 'Meow'

IS-A pet

class Dog(Pet):

 def sound(self):

 return 'Woof'

Function getSound receives a Pet as a parameter,

but we are not specifying what kind of pet. Polymorphism is

used to resolve this

def getSound(pet: Pet):

 return pet.sound()

print(getSound(Dog()))

print(getSound(Cat()))

Chapter 4 programming in python

116

In Listing 4-21, polymorphism is achieved by the is-a relationship as

well, where the parent can take many forms via its children. This allows

us to use the same functions on the children but let those functions yield

different outputs.

 Composition
Composition is an easy-to-understand design concept, and it’s not related

to Python functionality per se. It is a design aspect. This will be covered in

a later chapter.

 Magic Methods
Magic methods are methods that you declare inside a class, and write

code for, but you never call explicitly yourself. You can find them in

other programming languages like PHP as well. They act like a sort of a

catch-net for certain scenarios, so when Python encounters the scenarios

linked to the class they were declared in, it knows what magic method to

execute. There are quite a few of them. You can see three interesting ones

in Listing 4-22. An explanation of what the different magic methods are

doing is provided above the function.

Listing 4-22. Magic methods

"""

Class Member consists of a constructor that sets a name.

We will use this to demonstrate the magic method for operator

overloading

"""

class Member:

 def __init__(self, name):

 self.name = name

Chapter 4 programming in python

117

"""

Class Group contains three magic method. You have already

encountered __init__. This is the constructor, and is called

whenever you instantiate an object.

"""

class Group:

 def __init__(self):

 self.members = []

 """

__add__ is a magic method that does operator overloading.

Overloading means we add new behaviour to an already existing

operator or function, and call that new behaviour under

specific conditions. In this case it overloads +, and inside

the body of the __add__ function we add the logic of what the

overloaded + must do. We need to specify in the parameter list,

as the second parameter, what is to be expected on the right

hand side of the + sign. In this case it is something of type

Member. All we want to do when we add something of type Member

to type Group is to take Member's name parameter and add it to

Group's list of names. Whenever Python sees a Group object

followed by a plus, it will run the __add__ function.

 """

 def __add__(self, x: Member):

 self.members.append(x.name)

 """

__str__ is a magic method that returns a string whenever you

treat your object as a string. Whenever I say for instance

do this. print(MyObject), then MyObject will run the __str__

function.

 """

Chapter 4 programming in python

118

 def __str__(self):

 return ','.join(self.members)

group = Group()

member1 = Member('nico')

member2 = Member('john')

group + member1

group + member2

print(group)

The output of this function code is: nico,john

Whenever a Group object encounters a + sign, for instance :

'group + member1', it will run the __add__ function which we

added outselves. This takes the member object to the right of

the + sign and add it to an array maintained inside the Group

object.

 Exceptions
Exceptions occur when your system encounters an error or goes into a

state from which it cannot recover. You will often encounter exceptions.

Exceptions can be system generated, but you can also generate them

yourself, as well as write them yourself. Exceptions are cases where your

software encountered a problem that was not anticipated and should not

be handled in a normal way. Attempting to divide a number by 0 is a very

common case that throws an exception.

Let’s take the example of a system that orders wheels for bicycles. If

you order wheels, and there are wheels in stock, your software should

place the order and return with a value of True. If there aren’t any wheels

in stock, the software should not place the order and should return with

Chapter 4 programming in python

119

a value of False. Sometimes, a software developer will let the system react

with an exception, but this is wrong in my opinion. Wheels being out of

stock is a predictable situation and can be handled normally. But let’s say,

for instance, your system cannot communicate with the system that places

the order for the wheels. This would be a great place to put an exception.

Not being able to place an order because a sub-system was not found is an

“exceptional” case.

Think carefully about the following when using exceptions:

• Is it a unique enough case that I should create my own

exception? Can it be dealt with better in another way?

• When an exception occurs, must the system be allowed

to go on, or should it completely abandon execution?

Some errors may leave the system in a unusable state,

such as not being to find the wheel ordering system,

and the system cannot continue, it can only retry or

stop.

• Log your exceptions to a logfile, or create a way to notify

someone. Exceptions mean something went wrong and

people may want to know about it.

 The Anatomy of an Exception
Exceptions are handled by try/except blocks. The try/except structures are

wrapped around code blocks that may potentially throw an exception. As

with all Python code, the code blocks are indented one level deeper than

the try/except code around it. At a basic level it says try this code, but if it

throws an exception, then do something else. A very basic construct will

look like this:

Chapter 4 programming in python

120

try:

 Some code that throws an exception

except:

 Do a recovery action here. All exceptions will be handled here.

finally: #optional

 This action will always be executed.

A more complex example will look as follows. This example specifies

which specific exceptions are to be caught:

try:

 Some code that may throw an exception

except specific_exception as e:

 Handles specific_exception

except BicyclePartSystemNotFoundException as e:

 Handles BicyclePartSytemNotFound exception

except:

 Handles all other exceptions

finally: # Optional

 This action will always be executed.

 Raising an Exception
You can raise Python’s built-in exceptions in your code. There are quite a

number of exceptions, which I will not list here. Raising an exception is as

simple as locating the area of code where the exception should be raised

and using the raise keyword, as follows:

raise Exception('custom optional error message')

It is preferable to always have a meaningful error message,

as it will help you

debug your problem better.

Chapter 4 programming in python

121

 Catching an Exception
You can catch an exception anywhere in your code. It does not need to

be where the exception gets raised. At the point of catching it, you should

define clearly what should happen to the execution flow of the program.

Let’s take the division-by-zero error. Should your system be able to

continue if it tries to do division, but encounters a 0 and cannot do the

division? This is one of those questions you have to ask yourself when

you create your software. You will encounter questions like this a lot. But

you have options. You can, for instance, log the error to a file or email it to

yourself. You may even take the option of a default value denominator, as

shown in Listing 4-23. In Listing 4-23, you take an amount of money and

calculate how much each friend gets. If friends are 0, then the owner keeps

all the money.

Listing 4-23. Catching an exception

wallet = 100

friends = 0

try:

 per_friend = wallet / friends

except ZeroDivisionError as e:

 # if friends are 0

 per_friend = wallet / 1

print(per_friend)

 Writing an Exception
Sometimes you may want to write your own exceptions. It is very handy to

have custom exceptions because it helps separate different error states and

helps you handle errors on a much more specific level. Let’s have a look at

writing, raising, and catching your own exceptions in Listing 4-24a.

Chapter 4 programming in python

122

Listing 4-24a. Writing an exception

"""

Here is a very simple exception. Note the class declaration.

Its parent class is the

built in class called Exception. Extending on the parent class

'Exception' helps us create a class with an IS-A relationship

with exception. Pass is a null statement, and nothing happens

when Python encoutners it.

In this instance, we also pass the MyError exception a null

statement. We do however still get the benefit of a custom

exception, however we are not overriding any built in Exception

functionality.

"""

class MyError(Exception):

 pass

Test the exception

name = 'pierre'

try:

 if name != 'john':

 raise MyError('Name is not equal to John')

except MyError as e:

 print(repr(e))

 Imports
In a larger system, your classes will all be in their own separate files and

directories, where they can be imported from. They are called packages.

A package is a collection of related scripts that is grouped together in a

directory. For a package to be importable, it needs a file called __init__.py

in that directory.

Chapter 4 programming in python

123

Why do we need importing? A Python script can only see itself,

and because of this we need to import files to allow it to access other

functionality. This also keeps your codebase clean and allows you to

separate your files into directories where it makes sense for them to live.

After we have moved our files around, we need to make them available to

our main.py script. Most systems will have one central point of execution,

where all the execution calls are handled and the correct objects are built.

In our case, it is main.py.

You will explore imports by using a custom exception file. In the directory

where main.py is, create a new directory called errors. Create an error.

py file inside this directory containing the code found in Listing 4-23. Inside

the errors subdirectory, which should now contain a file called errors.py,

create a new file called __init__.py and leave it empty. There should be two

underscores on each side of the word init. The __init__.py file tells Python

that the errors directory is a package and can be imported from. Finally, you

need to add an import statement to your main.py script, which will take this

form: from package.filename import class. See Listing 4-24b.

Listing 4-24b. Imports

"""

This is the same code as in Listing 4–24.a, Wit the exception

that following line now lives in /errors/errors.py.

class MyError(Exception):

 pass

"""

from errors.errors import MyError

Test the exception

name = 'pierre'

try:

Chapter 4 programming in python

124

 if name != 'john':

 raise MyError('Name is not equal to John')

except MyError as e:

 print(repr(e))

Your code should be able to find the correct package to import

from and execute the code without a problem. That was quite easy.

In big systems and especially old systems, there can be hundreds or

even thousands of files in different folders. Keeping them separated in

logical divisions is very important. I won’t be going in depth with all the

intricacies of importing a file in Python, but I wanted to show a more

interesting way where you created a package.

If you run the code now, it will import the Exception class from a

different directory.

 Static Access to Classes
You can access functions and elements on a class level. That means

on a level where the class has not yet been instantiated into an object.

This is valuable for a lot of reasons. For instance, you may need some

functionality that does not require you to construct a whole object. Take

the following example. When you use a class statically, there is no object

to which the keyword self can refer. For these reasons, when you want to

create a static function, you need to design for it. See Listing 4-25.

Listing 4-25. Static access

class VAT:

 vat_rate = 15

 # This function can be used statically. No 'self' is being

passed through.

 def static_get_vat_price(price):

 return price * (1.0 + VAT.vat_rate/100)

Chapter 4 programming in python

125

 # This function cannot be used statically, as it is reliant

on self, and

 # self only

 # exist when the object gets created

 def get_vat_price(self, price):

 return price * (1.0 + VAT.vat_rate/100)

These two examples will work. No object instantiation has

happened

print(VAT.vat_rate) # Prints the vat rate

print(VAT.static_get_vat_price(50)) # Calculates the amount

after after VAT

This wont work without object instantiation and will throw an

error, the parameter self does not exist

print(VAT.get_vat_price(50))

So basically, whenever you need to use the self keyword, or are

completely reliant on a constructor, you cannot access functions statically.

But variables are a different story, as long as they do not need to get

assigned via the self keyword.

 Cheat Sheet
 Scope
Always nested with four spaces, or one tab, but not both. The deeper the

scope, the deeper the nesting.

if True:

 if True:

 if True:

 print('all true')

print('In the same scope as the first if')

Chapter 4 programming in python

126

 Variables
Variables are to the left of the assignment operator.

• String = ‘string’ or “string”

• Integer = Numbers like 18

• Float = Numbers with decimal points like 24.50

• Boolean = True or False, which are always capitalized.

• Object = Your own custom object

 Arrays
 Lists

• Can be resized

• Number-based indexing starting at 0

my_list = [1,4, 'my value']

 Tuples

• Cannot be resized

• Number-based indexing starting at 0

my_tuple = (2,4, 'my tuple')

 Dictionaries

• Can be resized.

• Indexed by an explicit key. Key and value separated by

a colon.

my_dictionary = { 'index1':12, 'index2': 'value 2}

Chapter 4 programming in python

127

 Control statements
 if

if expression:

 Something

elif another expression:

 Do something else

else:

 Do something else

 while

Runs while a condition is equal to True:

While mathematical expression is true:

 Do something

 Do something to exit the loop

 (Either alter the expression, or use break)

 for

In general, used to iterate over sets of data, like lists, tuples, and

dictionaries.

for value in set_of_data:

 print(value)

 Functions
def function_name(parameter1, parameter2):

 function body

 function body

 return out of function

Chapter 4 programming in python

128

Calling the function:

• function_name(variable1, variable2)

• function_name(parameter2=variable2,

parameter1=variable1)

Type hinting:

• function_name(variable: int, variable2: str):

• function_name(variable: int, variable2: str)->str:

 Classes
class MyClass:

 properties

 # Optional constructor

 dev __init__(self):

 constructor body

 # Class functions Self gives us access to the class

 def class_function(self):

 function body

 # Can be called statically

 def static_function():

 function body

Instantiating a class:

• object = ClassName()

Calling a function on an object:

• object.function()

Calling a function on a class:

• Class.static_function()

Chapter 4 programming in python

129

 Exceptions
 Catching an Exception

try:

 Code

except:

 Handle exception

finally: #Optional

 This code will run regardless

 Raising an Exception

Use the raise keyword plus the name of the exception:

raise exceptionName

raise exceptionName('optional error message')

 Creating an Exception

Declare a function using the class Exception as parent

class myException(Exception)

 Import
from package.to.filename import class

 Reference
A good place to read about Python development: https://docs.python.

org/3/tutorial/index.html.

Chapter 4 programming in python

https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/tutorial/index.html

131© Nico Loubser 2021
N. Loubser, Software Engineering for Absolute Beginners,
https://doi.org/10.1007/978-1-4842-6622-9_5

CHAPTER 5

Object Calisthenics,
Coding Styles,
and Refactoring
This chapter discusses how code is written and consists of three parts:

object calisthenics, coding styles, and refactoring. This chapter will not

concern itself with the design aspects of problem solving. It will purely look

at your code’s readability and how easy it is for other software developers

to understand your code. Harold Abelson, author of Structure and

Interpretation of Computer Programs, famously said, “Programs must be

written for people to read, and only incidentally for machines to execute.”

And I must agree. Readability is a very important aspect of writing code.

Writing code should always be an exercise in elegance, but this is easier

said than done. Fortunately, there are some solid guidelines set out to help

you achieve that goal.

From a code-writing perspective, there are numerous ways to solve

a problem using code. Let’s assume two different coders have come up

with exactly the same algorithm to solve a problem. (An algorithm is the

set of steps required to solve a problem.) Do you think their code will

look exactly the same? The answer is no. In some cases, the code will look

so different that a cursory glance won’t be able to tell you that the code

is solving the same problem. After a quick inspection, most seasoned

https://doi.org/10.1007/978-1-4842-6622-9_5#DOI

132

developers will quickly be able to point out whose code they favor. This

bias is not something you can escape as a software developer. Your code

will be critiqued, sometimes harshly, sometimes lightly, and a lot of times

positively.

Writing easy-to-read and concise code is not a maze you need to

traverse all on your own. There are styling tips that will greatly enhance

your code’s look and readability if you stick to them. After you have written

your code, it is also a great idea to take some time to refactor your code.

Refactoring your code is in essence equal to rewriting portions of it,

using the code already written as a template. We will also look at object

calisthenics, which is a set of guidelines designed to make your code more

readable. I am personally very fond of object calisthenics and quite excited

to add it to this chapter.

When you start to work as a software engineer, you should always take

advice from your fellow developers, regardless of their level of experience.

Try not having an ego about the software you write, and rather listen to any

critique and advice, and evaluate if it is valid. If it is valid, take it on board.

This is one way you will grow as a software developer.

 Object Calisthenics
Object calisthenics is a set of nine guidelines to make your code more

readable and maintainable. It is important to remember that these are

guidelines, and not hard-and-fast rules, but it is well worth trying to follow

them as closely as possible. Jeff Bay proposed object calisthenics in the

book The ThoughtWorks Anthology. As with quite a few things in life, do

not use them in instances where they just do not make sense. Having said

that, when object calisthenics do not make sense to apply, you may want

to take a step back from your work and rethink your code. Is your code

so entangled and complex that you cannot apply calisthenics? In most

instances, these guidelines will make sense and are pretty easy to follow.

Chapter 5 ObjeCt CalistheniCs, COding styles, and refaCtOring

133

However, I need to reiterate: if it truly doesn’t make sense in a specific

instance, then do not use an object callisthenic rule just for the sake of

using it.

In this section, I will explain eight of the nine rules of object

calisthenics with some examples. I am omitting the ninth rule as I believe

it may cause some confusion.

 1. Do not exceed one level of indentation per
method. (Or rather, limit the levels of indentation
as much as you can.)
Limiting levels of indentation means you are limiting the complex paths

that your code can take, or at least, making the execution path through

your code more readable. More nested levels mean that you inevitably

have more control structures within other control structures, all increasing

the number of potential paths your code can take through the method.

Consider Listing 5-1. It has two functions doing the same thing. The first

function is called more_indentation and the second function is called

less_indentation. more_indentation relies on indentation to reach the

goal of the function, whereas the function less_indentation is refactored

to have only one level of indentation. Comparing the two functions side by

side, it becomes clear that the less_indentation function is easier to read.

Listing 5-1. Comparing indentation levels

def more_indentation(number, name):

 if number > 10:

 if name == "John":

 print("Number is bigger than 10 and Name is John")

 if name != "John":

 print("Number is bigger than 10 and Name is not John")

Chapter 5 ObjeCt CalistheniCs, COding styles, and refaCtOring

134

 if name == "Peter":

 print("Number is bigger than 10 and Name is

Peter")

def less_indentation(number, name):

 # Exit early. Inspecting the above code we can see that if

the number

 # is 10 or lower, then nothing happens. We invert the logic

in the previous if

 # statement to detect if number <= 10

 if number <= 10:

 return

 # Initialise is_john to a default message. Now is_john has

a value

 is_john = "Number is bigger than 10 and Name is not John"

 if name == "John":

 is_john = "Number is bigger than 10 and Name is John"

 print(is_john)

 if name == "Peter":

 print("Number is bigger than 10 and Name is Peter")

The two functions will yield exactly the same results

more_indentation(11, "John")

less_indentation(11, "John")

 2. Do not use the else keyword
So you just learned about the else keyword in the previous chapter, and

now I say you should not use it? Well, it is not that the else keyword is bad,

but it does not aid the readability of your code. There are two methods I

Chapter 5 ObjeCt CalistheniCs, COding styles, and refaCtOring

135

use to prevent myself from using the else statement. One is returning early

from the function, but not everyone likes this approach. The main reason

normally given is that it makes very long functions harder to understand,

as multiple returns makes it harder to follow the logic in the function. I

believe, however, that if you have a long function, that not returning early

will add more complexity to the code, as you need to wrap if statements

around the code that would have been skipped by an early return, in order

to prevent those lines of code from being executed. The other approach is

to set a variable to a default value and see whether the single if condition

changes it. Listing 5-2 demonstrates this.

Listing 5-2. Omitting the else keyword

number = 10

if number == 10:

 print(10)

else:

 print('not 10')

'''

First refactoring initialises a default value before we check

for 10

'''

message = 'not 10'

if number == 10:

 message = '10'

print(message)

'''

Second refactoring returns early when 10 is found. This works

great in a function.

'''

Chapter 5 ObjeCt CalistheniCs, COding styles, and refaCtOring

136

def check_ten():

 if number == 10:

 return '10'

 return 'not 10'

print(check_ten())

 3. Wrap all primitives and strings
When you use primitives (which are built-in data types like boolean,

integers, floats, and strings), if they have behavior or represent a business

idea, they should be encapsulated within their own object. Let’s take a

password, for instance. A password is just a string, so how does a password

have behavior? Your password can exhibit behavior such as validating

password complexity and checking that you are not reusing a password. If

you just use password as a string attribute in a User class, your password

validation leaks into the User class, which is undesirable. See Listing 5-3.

Listing 5-3. Wrapping primitives and strings

'''

This class technically consists of one attribute, a string, and

two behavioural aspects, which is checking the validity of the

password, and whether the password has been used previously.

Actual algorithms are not included for brevity.

'''

class Password:

 password = ""

 def __init__(self, password):

 self.password = password

Chapter 5 ObjeCt CalistheniCs, COding styles, and refaCtOring

137

 def is_valid(self) -> bool:

 # Password goes here

 return True

 def is_reused(self) -> bool:

 # Reuse algorithm goes here

 return False

Your subsequent classes, which need password validation, do not need

to handle passwords as a string, or have their own validation rules, but can

now just use this class, which has its own internal behavior.

 4. Use only one dot per line
This rule is not about the dot operator. It is about what your class may

access. Your class may access its own functions. It may access its own

properties, and it may access functions in class properties that it owns. For

instance, if you have class A, which uses class B, and class B uses class C,

then class A should never talk to class C directly through class B. It is only

allowed to access class C’s data indirectly through functionality provided

in class B. Class A is only allowed to know what goes on inside itself

and what its direct members allow. Consider Listing 5-4. Although the

guideline states “only one dot per line,” you will mostly have two dots as

you also need a self. to access your object’s scope.

Listing 5-4. One dot per line

class TotalCalculator:

 def get_value(self) -> int:

 return 100

Chapter 5 ObjeCt CalistheniCs, COding styles, and refaCtOring

138

MemberFees has a TotalCalculator.

class MemberFees:

 def __init__(self):

 self.calculator_object = TotalCalculator()

Club has a MemberFees.

class Club:

 def __init__(self):

 self.member_object = MemberFees()

 # Club accesses data from TotalCalculator, even though

TotalCalculator

 # does not belong to Club.

 def get_total(self) -> str:

 return self.member_object.calculator_object.get_value()

c = Club()

print(c.get_total())

"""

Refactored MemberFees and Club with TotalCalculator code

omitted for brevity. This demonstrates that class A should

access class B only. How class B's function gets its data is of

no concern to class A.

"""

class MemberFees:

 def __init__(self):

 self.calculator_object = TotalCalculator()

 def total_fees(self) -> str:

 return self.calculator_object.get_value()

class Club:

 def __init__(self):

 self.member_object = MemberFees()

Chapter 5 ObjeCt CalistheniCs, COding styles, and refaCtOring

139

 """

 The following two code snippets does the same thing. The

first example slightly deviates from object calisthenics,

whereas the second example is done by the book. However, the

first example is better than the first , since we use our

constructor to create the member object.

 We use two dots in this example, but fine as the first dot

indicates that it is an object variable.

 """

 def get_total(self) -> str:

 return self.member_object.total_fees()

 """

 This is a good example of using the object callisthenics

as a guiedline and only where it makes sense. Here we are

using one dot, but this is not ideal. Not having MemberFees

in the constructor in this case makes it more difficult

to keep track of which objects belong to class Club. This

would negatively affect how we understand the class.

 """

 def get_total_one_dot(self) -> str:

 member_object = MemberFees()

 return member_object.total_fees()

c = Club()

print(c.get_total())

print(c.get_total_one_dot())

Chapter 5 ObjeCt CalistheniCs, COding styles, and refaCtOring

140

 5. Do not abbreviate
Do not abbreviate object or function names. The names should be one

or two words. Anything longer than that and you should consider why

the name is too long. You should also not duplicate the class name in the

method names. If your class is named Email, and it has a method that

sends emails, you do not have to name the method sendEmail(). Just call it

send. This makes perfect sense when you look at it like this:

email = new Email()

email.send()

 6. Keep entities small
One of the tenets of creating software is that the objects and their methods

should remain small. An object should do only one thing (and of course,

closely related actions). If your objects and methods are becoming too big,

you should consider whether your object is doing too much or should be

refactored. An object is typically considered as “doing too much” when it

does more than one thing. For instance, if one object waters the plants as

well as paints the house, then it is doing too much and should be broken

up into two objects. Object calisthenics suggests that no class should be

over 50 lines. This is not always possible, but stick to the gist of it: keep it

small.

 7. Limit classes to use no more than two
instance variables
Before I explain this rule, just a summary about instance variables.

Instance variables are the variables that we pass into our class at

instantiation time. The following line of code demonstrates them:

Chapter 5 ObjeCt CalistheniCs, COding styles, and refaCtOring

141

def __init__(self, town, country):

 self.town = town

 self.country = country

The above snippet of code has two instance variables, given to it at

instantiation time. It belongs to the class and is accessible after the class

has been instantiated. This rule can be a tricky one and is down to how

you designed your classes in the first place. This is also one of the harder

guidelines to follow, and in some instances, you will not be able to follow

it at all, as even with good design, you may need more than two instance

variables. This is a concept you will encounter in another chapter, so I

won’t go into much detail here, but it all comes down to a principle called

low coupling. The idea behind low coupling is to decouple your objects

from other objects as much as possible. You need to prevent the reliance

of one object directly on a multitude of other objects. You should also

ask yourself, if your object is dependent on, say, six other objects, is your

object doing too much?

 8. Use first-class collections
This point states that if you have a collection inside your class, especially

if that collection has behavior (for instance, a search function), then

that collection should be encapsulated in its own class, and that class

should not have any other variables. Listing 5-5 contains an object called

WinningSequence, and Lotto. WinningSequence consists of a tuple and

one behavioral aspect, called validate, which takes one parameter

called number. This design alleviates the Lotto class from the burden of

validating the WinningSequence, and instead the validation now rests on

the shoulders of WinningSequence. The latter is now a completely reusable

object, with its own behavior and can be used in various places in your

code.

Chapter 5 ObjeCt CalistheniCs, COding styles, and refaCtOring

142

Listing 5-5. First class collections

class WinningSequence:

 winning_sequence = (1, 3, 12, 14, 15)

 def validate(self, number) -> bool:

 for in_sequence in self.winning_sequence:

 if in_sequence == number:

 return True

 return False

'''

The Lotto class does not concern itself with how Lotto numbers

are checked. It uses the WinningSequence class to do so

'''

class Lotto:

 def __init__(self):

 self.sequence = WinningSequence()

 def is_winner(self, number: int) -> bool:

 return self.sequence.validate(number)

lotto = Lotto()

Initialise the message variable

lotto_message = 'You do not have a winning number'

if lotto.is_winner(3):

 lotto_message = 'You have a winning number'

print(lotto_message)

The Lotto class now does not need to worry how the sequence is

stored or validated, making the class easier to understand and change.

Chapter 5 ObjeCt CalistheniCs, COding styles, and refaCtOring

143

 Refactoring Code
Let’s look at refactoring since it goes hand in hand with writing good code

and goes well with object calisthenics. Code refactoring actually goes very

well with most aspects of software design, and you will get a better feel

for it after you have done the chapters on design. Also, refactoring needs

lots of practice. Refactoring is the act of actively changing the code you

wrote to make improvements to it. Refactoring code is not the same as

fixing a bug. Code that needs to be refactored is working code that yields

the correct results but may suffer from efficiency problems, readability

issues, or scalability issues. Scalability of code refers to how easy it is to add

more features to your codebase. You will, in general, not know the code

needs refactoring until you look at what was written and how efficient and

readable it is. Code with bugs in it, on the other hand, is very obvious and

needs to be fixed as soon as possible, as it yields incorrect results or acts

erroneously under specific circumstances.

Refactoring is a fact of life. In fact, I see it as part and parcel of my daily

coding tasks. There are various reasons to refactor your code. You may,

for instance, write code just to prove that your algorithm works or for it

to pass basic testing. You may even have written code that you realize is

not optimal. At this stage, it is a good opportunity to stop development

on further features and assess what you have written. It is highly

recommended to refactor code that was written very recently before you

start coding on new features. You want to prevent a situation where you

need to refactor two months’ worth of work or even a small code block that

was written four months ago. Do it while it is still fresh in your memory, and

above all, refactor as soon as possible to get the code done and signed off.

It is inevitable that you will stumble upon code that needs refactoring.

It may be your own code, a colleague’s code, or even code that is ten years

old. In those cases, schedule time for refactoring. It is also very important

to make sure you know exactly what old code was supposed to do before

you refactor it. Refactoring should aid in readability, extendibility, and

Chapter 5 ObjeCt CalistheniCs, COding styles, and refaCtOring

144

reusability of code. Extendibility also refers to how easily new features can

be added to your current code, and reusability to whether your code can

be reused in different portions of the system. Of these three aspects, never

underestimate the power of readability.

So, in short,

 1. Plan your code.

 2. Write your code.

 3. Refactor your code.

As a last word on refactoring, you want to look at the readability of your

code, the design of your classes, the efficiency of your algorithms, as well

as any PEP violations, which I will discuss in the next section. Refactoring

should change the written code itself, and not the behavior or the results

that it delivers.

 Coding Styles
Coding styles are rules on how certain aspects of your code should be

styled and are all about the visual aspect of it. Unlike object calisthenics,

they are rules to adhere to, and not guidelines. You will look at these

rules in the rest of the chapter, but as a taster, they include aspects such

as whether you capitalize certain parameters, function names, etc. The

first time a coding style was enforced upon me, I thought it was lame.

Who cares whether my variables are spelled all in lowercase or my class

names start with capitals? I soon realized the value of it, and after only

two or three weeks, I started noticing if my colleagues forgot to use the

predetermined style, and they noticed when I omitted it. Quite a few

programming languages have predetermined coding styles. Coding styles

add nothing to the execution of your code but add a lot to the readability

and understandability of it.

Chapter 5 ObjeCt CalistheniCs, COding styles, and refaCtOring

145

The official style guide to Python is PEP 8, 1and some extensions and

deviations of it exist. I will cover standard PEP 8 here, and I encourage you

to download a PEP 8 cheat sheet from the Internet to help you out when

you start programming, for quick reference. When it comes to a coding

style for your code, it is most important that you remain consistent with

whatever style you have chosen. You can create your own style as well, but

adopting the general publicly accepted styles is a good idea, as it will aid

you in reading code from projects that may very well have been written in

PEP 8, or if you switch careers, you may end up with a company that uses

PEP 8. You also get tools that can point out errors in your style, and in some

cases, even fix them.

 Linting
Linters are software tools that help us detect coding style violations. In

Visual Studio Code, by default, a linter called Pylint should be enabled.

In Visual Studio Code, you can access the linter by pressing Ctrl + Shift

+ p. This will open the command palette. Type lint in the text area of the

command palette. You will see options such as Select linting, Enable

linting, and Run linting. You will not work with linters now, as you need to

learn how to code according to the standards first before you dabble in the

world of linters. However, it is great to know they exist and that they can

detect coding standard violations.

 Commenting Your Code
Commenting tells us more about the code we wrote. It explains what classes

can do, what methods can do, and what variables are for. It makes your code

more understandable and helps other developers understand how to use

the code. You can add block comments, inline comments, and docstrings.

1 www.python.org/dev/peps/pep-0008/

Chapter 5 ObjeCt CalistheniCs, COding styles, and refaCtOring

http://www.python.org/dev/peps/pep-0008/

146

Comments should be complete sentences and use normal
capitalization.

 Block Comments

Block comments precede the code they apply to, can span many lines, and

should be on the same level of indentation as the code they apply to. The

following are two examples of block comments:

if is_member:

 # This sends an email to the member

 # The configuration for this function can be found in the

config directory

 send_email()

if is_member:

 """This sends an email to the member

 The configuration for this function can be found in the

config directory

 """

 send_email()

 Inline Comments

An inline comment is on the same line as the code it refers to and is only

applicable to that one line. They should be used sparingly, because PEP

also suggests that you do not type more than 79 characters per line, making

inline comments less useful due to this short length, as well as being prone

to breaking the line length rule.

if is_member:

 send_email() # This sends an email to the member

Chapter 5 ObjeCt CalistheniCs, COding styles, and refaCtOring

147

 Docstrings: Commenting Your Classes

Docstrings are used within classes and class methods to explain the

functionality of that class and its functions and variables. There is more

than one standard of formatting your docstrings. When selecting a

docstring format, bear in mind that readability is key, and above all keep

your docstring format consistent. Another great feature is that most editors

can read docstrings and give you the docstring description when you

implement your classes. With that in mind, select a docstring that your

editor can read. The following docstring formats exist:

• EpyText

• reST

• Google’s style of docstrings

• Numpydoc

I selected Google’s style of docstrings2 because I feel it is the most

readable docstring format. I cannot go over all the styles in this book, and

you should do some research into which one you like. Figure 5-1 shows an

example of a Google style docstring.

2 https://google.github.io/styleguide/pyguide.html

Chapter 5 ObjeCt CalistheniCs, COding styles, and refaCtOring

https://google.github.io/styleguide/pyguide.html

148

The docstrings should explain the classes, functions, return data,

parameters, and member variables.

Figure 5-1. Google docstrings

Chapter 5 ObjeCt CalistheniCs, COding styles, and refaCtOring

149

 Maximum Line Length
This is normally the first rule to be relaxed by companies. Line lengths

should be limited to 79 characters. Having this limit means you can open

multiple files side by side, as you often need to work in more than one file

at once, or when you need to access your code on a server and you only

have a command-line shell with a limited character length. It also has a

limiting effect on nested statements, since they are a sure way to break the

79 characters rule.

 Indentation
Use spaces for indentation, four spaces per indent to be exact. Visual

Studio Code will automatically insert four spaces when you push Tab. In

some other editors, you need to configure this first. You can use normal

tabs, but when you use tabs, you cannot mix them with spaces for

indentation. Python 3 won’t allow this. So it is either spaces or tabs, but not

both.

 Indenting Line Wraps

Line wrapping happens when a line of code is longer than a prescribed

amount of characters and has to continue on the next line. You perform

a line wrap for readability purposes, and you wrap a line when it exceeds

79 characters as per PEP standards (or whatever length you prefer). You

should wrap strings, comments, function declarations; in fact, nothing

should exceed the line limit.

The following is an example of a hanging parameter, where the first

parameter “hangs” under the function declaration. Wrapped parameters

are indented with two spaces. This separates the parameters from the

function body as they are nested deeper and do not line up with the code.

Chapter 5 ObjeCt CalistheniCs, COding styles, and refaCtOring

150

def this_is_a_function(

 variable1, variable2,

 variable3):

 function_body_code

 function_body_code

If you decide to start your parameter list on the same line as your

function declaration, then align the variables with the top line of variables

when you wrap to a new line, like so:

func = this_is_a_function(variable1, variable2,

 variable3, variable4)

When you are writing an if statement that is so long it has to wrap to a

new line, you should add additional indentation to separate the rest of the

if statement from the if statement’s body.

#This is correct

if a == True and b == True

 and c == True # This line should not be aligned with

the code block beneath it

 do_this

The following is not correct. The and c == True statement lines up

with the body of the function, which makes it harder to read:

if a == True and b == True

 and c == True:

 do_this()

 do_that()

Arrays can be line-wrapped as well. Both of the following examples are

correct. One level of indentation, and the closing bracket can be either the

first character on a new line, or it can be indented one level.

Chapter 5 ObjeCt CalistheniCs, COding styles, and refaCtOring

151

fruit_list = [

 'apples',

 'pears',

 'strawberries'

]

fruit_list = [

 'apples',

 'pears',

 'strawberries'

]

Lines with multiple logical operators can be wrapped as per the

following example, between parentheses, with logical operators starting on

a new line, and lining them up with the first parameter:

total = (one

 + two

 + three

)

Line wrapping with the correct indentation can definitely aid in

readability and is something that should be practiced while you code.

 Blank Lines
Add one blank line before and after a function. You can separate logical

divisions in your code with blank lines as well.

 Encoding
Your source code file should be encoded in UTF-8. In Visual Studio Code,

go to File ➤ Preferences ➤ Settings. In Settings (you can search for it in

the provided toolbar) you will find Files:encoding. Note that Visual Studio

Code is set to UTF-8 by default.

Chapter 5 ObjeCt CalistheniCs, COding styles, and refaCtOring

152

 Imports
Imports are placed on top of the file, preceded by docstrings and

comments about the script itself. They should be grouped by the origin of

the code.

• Standard library imports: These are imports of native

Python libraries.

• Related third-party imports: These are imports you

have installed from third parties.

• Local application/library-specific imports: In

general, these are imports you created yourself.

 Whitespace
You may feel that extra whitespace makes your code more readable, but

it is best avoided. Whitespace directly after square, round, or curly braces

should be avoided. Whitespace after a comma is allowed.

The following two examples are correct:

my_data = [1, 2, 3, 4]

my_function(param1, param2)

Whitespace should surround assignment, binary, and logical

operators, as follows:

amount = 10 - 4 * 4

Some tricky exceptions exist. For instance, when the assignment

operator, which should be surrounded by whitespace, is used as a named

parameter in a function or to assign a default value to a parameter, it

should not be surrounded by spaces.

This function declaration is correct:

def email(email_address, from_address='server@server.com'):

Chapter 5 ObjeCt CalistheniCs, COding styles, and refaCtOring

153

The following code snippet is correct (calling the function with named

parameters):

email(from_address='do-not-reply@server.com',

email_address='client@mail.com')

 Naming Conventions
There are numerous case styles for software developers to use when

naming things.

• PascalCase

• camelCase

• kebab-case

• snake_case

Python uses PascalCase and snake_case. In PascalCase, the different

words in the name are capitalized. In snake_case, the different words in

the name are separated by an underscore. snake_case words are always in

lowercase, apart from one exception: constants. This will be addressed a

bit later in this chapter.

When naming your class, module, function, or variable, remember

that readability matters. banking_details is a better variable name than

details. I have literally seen a variable called the_data in code, which

means nothing to the developer who comes afterwards to make changes.

It is also recommended to not use single-character variables using l, i,

or o. Certain character sets can make i look like l and an o like a 0. In

my opinion, using a single character for a variable name is bad practice

anyway. Giving proper names to variables, functions, and classes makes

code more self-commenting, which means that it can be understood to a

certain extent even without docstrings.

Chapter 5 ObjeCt CalistheniCs, COding styles, and refaCtOring

154

 Package and Module Names in snake-case

Package and module names should preferably be single-word names,

but when they consist of two words, they should be snake_cased and all

lowercase.

 Class Names in PascalCase

When you encounter an abbreviation, you should capitalize all the letters

in that abbreviation. For instance, SSHKey is correct. SshKey is not.

 Method Names in snake-case

Method names use snake_case with all the letters in the name as

lowercase. You should not surround method names with two leading

and two trailing underscores because this is reserved for Python’s magic

methods.

Internal Methods

Methods intended to be used internally only get a single leading

underscore. The single underscore signals to other developers to not

depend on that method. An internal method is meant to be used internally

to the class it was declared in, and can be changed or removed at any time,

making it very unreliable to be used externally.

Preventing Inheritance

If you have a method that you do not want to be overridden by a subclass,

then prepend it with two underscores. This causes Python to mangle

the name3 of the variable and prepend the class name to it. Listing 5-6

demonstrates name mangling.

3 https://en.wikipedia.org/wiki/Name_mangling#Python

Chapter 5 ObjeCt CalistheniCs, COding styles, and refaCtOring

https://en.wikipedia.org/wiki/Name_mangling#Python

155

Listing 5-6. Name Mangling

class Security:

 pin_number = 12345

 def __print_pin(self):

 return self.pin_number

secure = Security()

print(secure._Security__print_pin())

 Variable Names in snake-case

Variable names use snake_case with all letters in lowercase. You

should not surround variable names with two leading and two trailing

underscores because this is reserved for Python’s magic methods. Magic

methods are special methods in a programming language that do not get

invoked by the programmer, but rather by the programming language

when it reaches a specific condition. A good example of this in Python is

the constructor __init__(). We never call it directly, but Python calls it

whenever we create a new object.

Internal Variables

Variables intended to be used internally only get a single leading

underscore. The single underscore signals to other developers to not

depend on that variable. A variable with an underscore is meant to be used

internally to the class it was declared in, and can be changed or removed at

any time, making it very unreliable to be used externally.

Chapter 5 ObjeCt CalistheniCs, COding styles, and refaCtOring

156

Preventing Variable Overwriting in Inheritance

If you have a variable that you do not want to be overwritten by a subclass,

then prepend it with two trailing slashes. This causes Python to mangle

the name of the variable and prepend the class name to it. Listing 5-7

demonstrates name mangling.

Listing 5-7. Name Mangling

class Security:

 __pin_number = 12345

secure = Security()

print(secure._Security__pin_number)

 Constants in snake-case

Constants are capitalized using snake_case to join different words. This is

an example of a constant:

TAX_RATE = 17

 Chapter Summary
Readability is king. Whenever you write code, assume another developer

will eventually have to expand on whatever you are building now. In order

to do that, your code needs to be well designed and readable. To achieve

readability, you need to apply good practices consistently throughout your

code. Start with object calisthenics, refactoring, and coding standards

straight away in your work and tests.

When developers need to look at code they wrote a year ago, they

won’t always immediately pick up where they left. They may have written

100,000 new lines of code in that year and built aspects of the system far

removed from the work they did one year ago. When they look at that code

Chapter 5 ObjeCt CalistheniCs, COding styles, and refaCtOring

157

they wrote one year ago, they sometimes have to start from scratch in order

to understand it again. Sure they will pick it up very quickly, but if you

write it as neat and concisely as possible, it will alleviate the cognitive load

and relearning. So go ahead and write neat and readable code that is well

commented. Do not just do it for your fellow software developers, do it for

yourself as well. As Damain Conway said, “Documentation is a love letter

that you write to your future self.”

 References
The ThoughtWorks Anthology, Pragmatic Press (March 2008), ISBN:

9781934356142.

Documentation on Google style docstrings: https://google.github.

io/styleguide/pyguide.html.

Chapter 5 ObjeCt CalistheniCs, COding styles, and refaCtOring

https://google.github.io/styleguide/pyguide.html
https://google.github.io/styleguide/pyguide.html

159© Nico Loubser 2021
N. Loubser, Software Engineering for Absolute Beginners,
https://doi.org/10.1007/978-1-4842-6622-9_6

CHAPTER 6

Databases and
Database Design
This chapter does not just deal with creating databases, tables, and

querying them. It also deals with setting your database up in your Docker

environment, which is a technical aspect of database knowledge that you

should have.

Data is the blood of your application. It flows through your software

and gives it purpose and meaning. Data shapes the state your software is in,

helps you log in and log out of systems, and delivers data needed by humans

to base business decisions on. When you do a credit card transaction, or just

“like” someone’s photo on a social media website, it all entails reading and

writing to databases. There is a lot of talk about big data and new competing

technologies that promises faster reading and writing times to and from

databases. It is also very popular to talk about big data and visualizations

of your data, and in general just really cool technologies that can help you

leverage your data to help a business grow. But, before you even think of the

latest technologies like big data, data analytics, and extrapolating behavior

from data, you first have to look at data in the form you encounter every

day and learn how to use that. Database knowledge and exposure to have

designed databases are essential. Database design can be tricky. One wrong

move and you are refactoring a database six months down the line. That can

be a messy business. Refactoring a database means moving data around in

the database and refactoring the backend code that was written to use it. Or

even worse (but sometimes the easiest), keep it like it is and work around

https://doi.org/10.1007/978-1-4842-6622-9_6#DOI

160

it. In this chapter, I aim to help you get a grip on some of the aspects of

database design and SQL queries. It is a huge field, but this chapter will leave

you competent to set up a database and tables in a normalized form and run

queries on them. Later in this book, you will build on this knowledge to let

Python read and write from a database by building an application.

 Three Things You Can Do with Data
There are three things you can do with data in a storage sense:

• You can discard it immediately after use.

• This is data that does not need storage. For

instance, when you type in your password, that

password enters your system as plain text. It should

never be saved anywhere as plain text, and is a

good example of data that should be discarded as

soon as it has been used.

• You can store it short term.

• Ecommerce shopping baskets in some systems do

not live more than a few weeks. However, it seems

this trend is changing as I am noticing more and

more e-commerce systems remembering shopping

baskets.

• This can be data that has been cached. Cached data

is data that is stored short term and is faster to look

up than long-term data.

• You can store it long term. This is our main concern

in this chapter. This is data like usernames, addresses,

purchase histories, and basically anything that would

be of value in the future.

Chapter 6 Databases anD Database Design

161

It is always a good idea to only store data you will need. Even though

storage space is getting incredibly cheap, it is still data you need to look

after. If you are not going to use it, lose it.

 Overview of Database System Components
Your database management system, or DBMS, is the application that

houses and manages your database users, their permissions, logs, and of

course, databases. It also houses metadata about databases and handles

aspects like replication and sharding, two topics we won’t be covering in

this book. Your database is maintained by a DBMS, and in fact, you will

have multiple databases. Choosing a DBMS is a relatively simple task.

With so many free, high quality DBMSs on the market, you literally have to

have special needs in your system in order to not be able to select a DBMS

quickly.

We will use a relational database. They are very popular and very

powerful. With relational databases you get your data in a tabular, row-

by- row format with a powerful query language called SQL to manipulate

the data. One DBMS can house multiple databases. A single database can

house many tables. Tables are the structures where your data is stored, and

they consist of tabular lists of data, which can be linked to other tabular

lists of data via primary and foreign keys, which I will explain later. A table

consists of columns, where each column has a data type, such as integer,

text, or boolean. The data in each row in a table spans these columns and

that is what makes a record. Tables also have indexes. These are tables,

basically hidden from the user, that store data in an ordered fashion in

order to speed up data lookups. You will also look at them in a bit.

Figure 6-1 illustrate the concept of the database management system.

It has two databases it manages in this instance, and each database

has one table. Database 1 contains a table called users, and database 2

contains a table called shopping_carts. Both have three columns.

Chapter 6 Databases anD Database Design

162

The users table has name, surname, and age as columns. The shopping_

carts table has price, item, and quantity as columns. On the right you

can see a representation of each table filled with two rows of data. In the

representation, the first rows contain the column names.

 Setting Up Your DBMS
First, you need to select and set up your DBMS. The DBMS I selected is

called MySQL and it is a great one to use. It is always worth comparing

databases and seeing what features the different databases have, but for

our needs, MySQL will do just fine. To add the database to your setup,

you will edit your docker-compose.yml file. Under the services section,

and under the entry where you defined your Python interpreter, add the

configuration code in Listing 6-1.

Figure 6-1. Illustration of an DBMS and it’s databases

Chapter 6 Databases anD Database Design

163

Listing 6-1. MySQL setup for the Docker-compose file

 mysql-dev:

 image: mysql:8.0

 container_name: mysql-dev-container

 ports:

 - 6603:3306

 environment:

 MYSQL_ROOT_PASSWORD: "root"

 volumes:

 - /storage/docker/mysql-datadirectory:/var/lib/mysql

Most of this will look familiar to you because you dealt with it in

Chapter 2. I will just go over the ports, environment, and volumes entries

quickly.

 Ports
These are the ports that will be opened on the container for access. They

are separated with a colon, so A:B. Port A points towards accessing the

database from outside your Docker images. For instance, you will use that

port number to access the database. Port B is the port that will be used

between Docker containers.

 Environment
This is the database’s main password, called the root password.

Chapter 6 Databases anD Database Design

164

 Volumes
You can mount local storage with storage inside your Docker container,

This is needed especially if you develop locally. This entry is also separated

with a colon. To the left is the local storage, which is your computer, and to

the right of the colon are the storage files (in this case, your database files

on the Docker instance).

 The Final Docker File
So what you have now is a MySQL instance, password protected with a

rather feeble password called root, accessible from within the docker-

compose environment with port 3306 and from outside the dockerized

environment with port 6603. I choose this last port at random to

clearly demonstrate the different ports. The data is saved in the Docker

environment in /var/lib/mysql and is saved locally as /storage/

docker/mysql-datadir. What is the reason for this volume mapping?

This allows you to persist your database’s data even after you switch your

Docker container off. Your complete Docker file should now look like the

configuration in Listing 6-2.

Listing 6-2. The Complete Docker-compose File

version: "3"

services:

 python-dev:

 container_name: python-dev-container

 build:

 context: .

 dockerfile: ./Dockerfile

 volumes:

 - ./test:/home

Chapter 6 Databases anD Database Design

165

 mysql-dev:

 image: mysql:8.0

 container_name: mysql-dev-container

 ports:

 - 6603:3306

 environment:

 MYSQL_ROOT_PASSWORD: "root"

 volumes:

 - /storage/docker/mysql-datadirectory:/var/lib/mysql

Now all you need to do is run the following command:

docker-compose build --no-cache

After this has built, you should run the following command. The -d

flag separates your running Docker instances from the terminal you are in,

allowing you to type more commands.

docker-compose up -d

When you run docker-compose ps, you will see your DBMS instance

running. Whenever you want to run your code, you can run it like this:

docker-compose run python-dev

Now that you have a database Docker instance, let’s add the Docker

instance that will allow you to view and edit your database.

 Viewing Your Database Using Adminer
There are numerous ways to access your database. One of the most

versatile ways is by using the command-line, but the method we will use is

a web-based application called Adminer. I believe it will be beneficial for

you to see the data tables in a visual format. You will add a Docker instance

hosting Adminer to your docker-compose file.

Chapter 6 Databases anD Database Design

166

Add the configuration shown in Listing 6-3 to your docker-composer

file at the bottom, nested under services.

Listing 6-3. Adding Adminer to the Docker-compose file

 adminer:

 image: adminer

 container_name: adminer-tool

 restart: always

 ports:

 - 8080:8080

 links:

 - mysql-dev

After you have added this code, your docker-compose file should look

like this:

version: "3"

services:

 python-dev:

 container_name: python-dev-container

 build:

 context: .

 dockerfile: ./Dockerfile

 volumes:

 - ./test:/home

 mysql-dev:

 image: mysql:8.0

 container_name: mysql-dev-container

 ports:

 - 6603:3306

 environment:

Chapter 6 Databases anD Database Design

167

 MYSQL_ROOT_PASSWORD: "root"

 volumes:

 - /storage/docker/mysql-datadirectory:/var/lib/mysql

 adminer:

 image: adminer

 container_name: adminer-tool

 restart: always

 ports:

 - 8080:8080

 links:

 - mysql-dev

Rebuild your environment.

docker-compose build --no-cache

And then, start the containers.

docker-compose up -d

If you run the following command in the command line, you should

see Adminer running:

docker-compose ps

Once Adminer is running, as it should be now, open a browser and

type the following in the address bar. This is the location and the external

port, as defined by the port number on the left of the colon in the docker-

compose file (8080:8080) where you can access the Adminer application

from.

127.0.0.1:8080

On the web page that appears, you will see a few input fields: System,

Server, Username, and Password.

Chapter 6 Databases anD Database Design

168

 1. Leave System as is. By default it should be on

MySQL.

 2. In the Server field, type the name of your MySQL

Docker container. It should be mysql-dev-container.

This can be quite confusing and it is important that

you understand the following. No application on

your computer, apart from Docker, will be able to

connect to a Docker container based on the name. So

it is important to remember that Adminer is running

in a Docker container, and due to this has access to

the location of mysql- dev- container. You won’t be

able to connect to mysql-dev-container, or any other

container, if you are not doing it from within a Docker

container or the Docker-based command line.

 3. In the Username field, type root.

 4. In the Password field, type root.

Click the Login button. You should now be logged in and be able to see

the Adminer dashboard. You should now, for instance, be able to see a link

called Create database.

 Cleaning Up and Pushing to the Remote
Before you go ahead, let’s make sure you do not lose your development

environment due to an unexpected hard drive crash, for instance.

From the command line, rebuild your environment, remembering

to change the version number to 3.0.0. If you have played around with

Docker in the meantime and have a different version number, just make it

a version higher than your last version number.

docker build -t your-docker-user-name/python-docker-

tutorial:v3.0.0 .

Chapter 6 Databases anD Database Design

169

Now, log into Docker from the command line.

docker login

After successful login, push the image to the Docker repository.

docker push your-docker-user-name/python-docker-tutorial:v3.0.0

 Preparing Your Database
Before you start using your database, you should always do a few things

to prepare the database. You will, for now, have one root user for your

database. This is the user with all the possible permissions who can

perform all actions in your DBMS. Do not use your root user for database

authentication once you start coding. When you get to the Python code

that deals with database access, you will create an additional user. The

reason you create secondary users for your codebases to connect to

the database is that the username and password will be saved in your

codebase, somewhere. Should that username and password get leaked,

you can easily change it or block it, and since the user will be created with

limited permissions, there is a very limited amount of damage it can do.

Having said that, a user will almost always have read permissions, and

stealing sensitive data can be incredibly damaging. No matter how limited

the secondary username’s access, the password should remain secret. The

username should have the following attributes:

• A username should preferably be linked to a single

database. The last thing you want is someone stealing

one username and being able to access all your

databases.

Chapter 6 Databases anD Database Design

170

• It should have limited permissions. For instance,

it should only be able to read data, write data, and

create tables. In general, the permissions should be

pinned down to exactly what your system can do. If

you never delete data, then do not give that user delete

permissions. If you never delete a table from your

database, do not give the user the permission to delete

tables. Never ever give a secondary username the

permissions to change permissions!

• The username should be linked to an IP address. An

IP address identifies the location of a computer on the

Internet. You will, for instance, allow the username

to connect to the database server from one very

specific location, or from a region, or a country. This is,

however, not fool-proof.

 Primary Keys
Every table should have a primary key. A primary key is a unique identifier

that appears only once in a row. DBMSs normally supply us with an auto-

increment key to generate an integer-based primary key automatically. This

is very handy, but if used incorrectly can have security concerns. For instance,

guessable primary keys may be misused if you do not have proper security in

place, and someone can directly target rows in your database to read. Primary

keys are indexed and are faster to search on than non-indexed fields.

 Indexes
You can create an index on any field you want. An index field does not have

to be unique, although you can create an index to be unique. Indexing a

field creates a secondary table in your system, with the column ordered

Chapter 6 Databases anD Database Design

171

numerically or alphabetically, and a link to the original row in the table

containing the data. Having the data ordered means the system can find it

a lot quicker.

 Index Caveats
Indexes will grow as your table grows, and you should not index each and

every field you have. Focus on the ones you will search on. You should also

consider updates. When a field that has been indexed gets updated, the

DBMS needs to update the index as well. Imagine you have a table with

vehicle data. The vehicles have tracking information, and every 10 seconds

the vehicle’s last_location gets updated. If you have 1,000 cars each

updating their last location every 10 seconds, your reindexing process will

be very busy. Now imagine your fleet grows to 10,000 cars. This will cause

definite issues with your system.

 Data Types
Fields inside your tables need dedicated types. The types are quite

extensive and I will quickly go over some of the main ones here.

text accepts text data. Comes in a few variants, like tinytext, mediumtext, etc.

varchar string data, where you specify the maximum length of the string yourself.

Uses only as much space as it needs when storing a string.

int integer data. also comes in a few variants, like tinyint, medium int, etc.

decimal Decimal point-based data. Comes in a few variants.

datetime saves date and time data. Comes in datetime, date, and time.

boolean Comes as tinyint.

Chapter 6 Databases anD Database Design

172

You need to make sure you select the exact data type you need. This

requires in-depth knowledge of data types, which takes some research

and time to learn. Different DBMSs may also have different data types.

Always use the best possible value for your field. If you know that you will

only be storing integers lower than 100, then tinyint is sufficient. If you will

only store first names in a field, then varchar(60), where 60 indicates the

maximum number of characters, should suffice. Just creating name and

surname fields as text is bad practice. When you design your database, and

once you know what values you expect, make sure that you look into that

DBMS’s data types in order to select the best value possible. Making wrong

decisions about datatypes won’t really break your system but can have

adverse effects in the long run.

 Creating a Database
You will create a database first. This will help you assign the user you will

create later to it. Creating a database is very easy. Log into your Adminer

instance on 127.0.0.1:8080. Once logged in, you will see a link called

Create database. When you click this link, it will go to a webpage with two

input fields. One field is for the database name, and the second is for the

collation. Collation refers to character sets that the database will use. We

are not going to dabble in character sets here, as it is a rather large topic,

so you can accept the default character set. In the first input field, type

the database’s name. Make the name LanguagesClass, and click the Save

button. This should now have created your database for you. It still has no

tables, but you will get to that in the next section.

Inside the LanguagesClass database, you will add one table for now.

Table 6-1 is purposely designed rather badly. Here is an example of the

data you can find in it. To the novice, this table may not look too bad. Apart

from columns left out for brevity, this is already telling you a lot of what

you want to know.

Chapter 6 Databases anD Database Design

173

Let’s call this table classes because it contains the classes that

people belong to. As you will see later in this chapter, this table is not well

designed. This table has been kept small so that it is easier to understand,

but a design like this can cause your table to become massive. I have seen

tables with well over 100+ columns in them.

You can see the columns on the top row, five of them. An entry spans

over the columns, and that is what constitutes a data entry. Even though

the design I am showing here is not optimal, you are going to create this

table and query it anyway. This will help you understand how to refactor a

database in a process called normalization.

To create this table, log into your Adminer instance, and click the

database you created earlier called LanguagesClass. Look for the link

called Create table and click it. You will see some input fields. By default

Adminer gives you around three, but you can add more.

• To add another field, click the + sign to the right of the

input fields.

• To reorder your fields, click the up and down arrow.

Ordering can aid readability. Always have your primary

key field first.

• Column name: This is the name of the column, such as

id or pet_name.

Table 6-1. First datatable

Salutation firstname Mobile City languages

Mr Lewis 0798456325 London german, english

Mrs Jane 0796547896 bristol english

Miss Cindy 0741598745 hove german, Dutch, english

Mr roger 0749856547 London german

Chapter 6 Databases anD Database Design

174

• Type: This is the type the data is stored in, such as

integer or text.

• Length: Certain types, like varchar, can take a length

field. Enter that here.

• Options: This is outside the scope of this book.

• NULL: Whether the field can be NULL or empty if now

data is received.

• AI: Auto increment. Normally you have one auto_

increment field, the primary key. This field should be

first, for readability.

 Creating the Table
You do not have a primary key in this example. Primary keys are needed,

and you will add it. You are creating a sub-optimal database table first, and

as you fix it up, you will add the primary key.

 salutation

Select varchar, and make length 5.

 firstname

Select varchar, and make length 30.

 mobile

Select varchar, and make length 12.

 city

Select varchar, and make length 30.

Chapter 6 Databases anD Database Design

175

 languages

Select varchar, and make length 100.

Now click the Save button.

 Filling the Database with Data
Filling your table using the Adminer interface is quite easy. Make sure

you are viewing your table. It should say “Table: classes” on top in bold

letters. Below that you should see a link called New item. Click that link.

You should now see all your columns as input fields, and you can enter

data into these input fields. You do not need to add a value to the auto_

increment id field, as the DBMS will provide it. You can go ahead and fill

in some data, using your own or using the table above. Enter about three

rows of data. You will see the data displayed in the table view.

 Your First SQL Queries
SQL stands for Structured Query Language. It is a language with very strict

rules that allows you to fetch data from your database. But, not only can

you fetch data using SQL, you can do almost anything you can think of to

the database. I will not go through all of the functionality in this chapter, or

even this whole book, but just enough to make you functional in SQL. In

this chapter, you will be looking at the following functionality, identified

by these keywords. This is not an exhaustive list of SQL keywords. By

convention, SQL keywords are written in uppercase.

• SHOW: To show available tables. Handy when you are on

the command line and not in Adminer.

• DESCRIBE: To describe a table’s columns. Handy when

you are on the command line and not in Adminer.

• SELECT: To select data.

Chapter 6 Databases anD Database Design

176

• INSERT: To insert data.

• UPDATE: To change data.

• DELETE: To delete data.

• JOIN: To join multiple tables.

• CREATE: To create tables.

Additional keywords

• FROM: Introduces the start section where you specify

where the data the query needs comes from.

• WHERE: Sets search conditions on the SQL query

To start writing a query in Adminer, look to the left of the Adminer

dashboard, where you will see the words SQL Command. Click on it. In the

screen on the right-hand side a text field will appear. Type the following

command in it and click the Execute button below the text input field.

When you write SQL, there is a convention that you type all the keywords

in uppercase letters. Whether you do it is up to you. It has no effect on

the SQL itself apart from letting the keywords stand out. I will use this

convention in this chapter.

SHOW TABLES

The result should show you the available tables that you can query.

You should have one result.

Now type the DESCRIBE command. It takes the form of DESCRIBE

TABLENAME:

DESCRIBE CLIENTS

This should show you the columns in the table and their types. It’s very

handy if you do not have a visual interface like Adminer.

Chapter 6 Databases anD Database Design

177

 SELECT

Let’s select data. You should have at least three records in your table. Let’s

select them all at first. Type the following commands separately into the

text box and run them separately as well:

SELECT * FROM classes

SELECT firstname, mobile FROM classes

SELECT * FROM classes WHERE firstname = 'Rogers' AND city =

'London'

In SQL, you can also do logical operations on sets of data using >, <, !=

and the IN, NOT IN, IS, and IS NOT keywords. For example, the following

query will return results where city is equal to any of the values in the list:

SELECT * FROM classes WHERE city IN ('London', 'Cape Town',

'Beijing')

This can be reversed using NOT IN:

SELECT * FROM classes WHERE city NOT IN ('London', 'Cape Town',

'Beijing')

SQL fields can be declared nullable, meaning that it is okay to omit a

value from that field. You can run a SQL operation on your data using null

fields in your logical checks as well. The following query will return all

records where name is not null. Note that null is the absence of data, and
not merely an empty string.

SELECT * FROM classes WHERE name IS NOT null

You have encountered the other operators already, and they do bigger

than, smaller than, and not equal to logical comparisons on data.

The important aspect to notice here is the * in the first command, and

the id, owner, location in the second. The * means every column you

have, whereas in the second command, SELECT is the action, meaning to

Chapter 6 Databases anD Database Design

178

fetch data, and directly after the FROM is where you specify the tables the

data should be retrieved from. The WHERE clause specifies data influencing

which data will be selected. In the third query, you specify that you only

want records with a name equal to Rogers and a city equal to London. The

WHERE clause can use any column on your table to do a comparison on to

return data, and the comparisons can be combined using AND and OR. I

advise you to play around a bit and run queries on the different columns in

your table. The logical operators you can use are =, < , >, !=, IN, NOT IN, IS,

and IS NOT.

 INSERT

SQL offers a way to input data into your database. The syntax for this has less

variance because an insert cannot be down with conditionals and does not

have a WHERE clause. You can do single inserts with it or multiple inserts.

INSERT INTO classes (salutation, firstname, mobile, city,

languages) VALUES ('Mrs', 'Richards', '0754896325', 'London',

'German, Dutch')

Multiple inserts are structured the same way as a single insert, where

the inserts are separated by commas. There is a maximum of a thousand

inserts you can add to a multiple insert statement. Multiple inserts like this

are a lot faster than multiple single inserts:

INSERT INTO clients (salutation, firstname, mobile, city,

languages) VALUES ('Mr', 'Eagle', '07546458745', 'Bristol',

'Dutch'), ('Miss', 'Schofield', '0766984752', 'London', 'English')

Anatomy of the insert statement:

INSERT INTO tablename (list of columns to be updates) VALUES

(corresponding list of values), (if you want to insert multiple

entries, but them between braces and separate the datasets with

commas)

Chapter 6 Databases anD Database Design

179

 UPDATE

Once you have data in the database, you may need to change entries now

and then. SQL provides the UPDATE clause. You need to be careful, however.

An update statement in its most simple form will update each and every

value in each and every column you specified in your table. The following

is a simple update query but be very careful before you run it.

UPDATE classes SET salutation = 'Mr'

The query above will update all the salutations entries in the clients

table to Mr. This is extremely undesirable and can be catastrophic. In

almost all cases, it is very important to specify which records you want to

change, and you do that using the WHERE clause and logical operators. Note

that even though the following query is an example, it will still change

ALL salutations where name is equal to Richards. You must use the logical

operators to narrow your update down.

UPDATE classes SET salutation = 'Mr' WHERE firstname =

'Richards'

 DELETE

Every now and then you need to delete data from your database. You

should consider carefully what is deletable and what is not. A great

alternative to removing columns from your table is called a soft delete.

With a soft delete, you have an additional column in your tables, called

for instance, deleted_at. When you delete using a soft delete, you don’t

remove that row of data. You merely set the deleted_at field to the current

date and time, and then handle that row as deleted in your code, as

follows:

SELECT * FROM classes WHERE deleted_at IS NOT null

Chapter 6 Databases anD Database Design

180

There are times where you want to remove data completely from your

system. For instance, clients have the right to ask that you remove all of

their data from your system, in which case you have to be able to remove

those lines from your database completely. Customers are protected by

law and can legally force you to remove all of their data.

A typical delete query will look like this:

DELETE FROM classes WHERE firstname = 'Rogers'

As with UPDATE, running DELETE without a WHERE clause will remove all

data from your table.

 Normalizing the Current Classes Table1

There are some serious problems with the design above, and I will show

you how to get rid of them by normalizing your table. There is a lot of

repeated data in this table, which will cause the following issues:

• It takes up a lot more space on your system.

• It makes updates very difficult. Let’s assume that in

your example table, you misspelled London. Because

of the repeated data, you now need to update multiple

rows. This may not look like a big problem, but

consider a system with many millions of rows, and a

misspelled word like London in multiple tables, and

you need to change multiple incorrect entries. This can

become a nightmare.

1 www.guru99.com/database-normalization.html

Chapter 6 Databases anD Database Design

http://www.guru99.com/database-normalization.html

181

• The languages column consists of a string of multiple

treatment elements, separated by commas. This makes

it a lot trickier to update a single language element

belonging to the multiple language string you have at

the moment. If you have as an entry ‘German, English’

and now need to remove English from the language,

you cannot just do it in a straightforward manner. You

need to reconstruct the whole language string before

you can do an update. This can become trickier if your

language consists of 20 elements, and you need to

retrieve the language data, remove one element from it,

and add another before you can update the row.

I will show you how to normalize this table using the steps designed to

decompose a single table into multiple small tables. The steps to normalize

your database is called normalization, and the first three steps you will

look at are called normal forms. After this, I will show you how to query the

data using SQL join clauses. You will look at the first normal form, second

normal form, and third normal form.

 First Normal Form
• Each data entry should be unique, and contain a single

value per cell.

Take Table 6-2 as the current populated table. This is a bad design and

not in any normal form.

Chapter 6 Databases anD Database Design

182

Table 6-3 is Table 6-2 in the first normal form. Every cell contains one

value. This is better but even in this small example there is a lot of data

repetition.

 Second Normal Form
To qualify for the second normal form, a table should be in first normal

form and every non-key fully dependent on a primary key. Hence it also

needs a single primary key. Salutation, name, and mobile are functionally

dependent on each other and can move to their own table, called clients,

Table 6-2. Unnormalised datatable

salutation name Mobile city languages

Mr Lewis 0798456325 London german, english

Mrs Jane 0796547896 bristol english

Miss Cindy 0741598745 hove german, Dutch, english

Mr roger 0749856547 London german

Table 6-3. First normal form

salutation name Mobile city languages

Mr Lewis 0798456325 London german

Mr Lewis 0798456325 London english

Mrs Jane 0796547896 bristol english

Miss Cindy 0741598745 hove german

Miss Cindy 0741598745 hove Dutch

Miss Cindy 0741598745 hove english

Mr roger 0749856547 London german

Chapter 6 Databases anD Database Design

183

as seen in Table 6-4. Functional dependency can be a tough one to crack. It

states that all non-key columns should be dependent on the primary key,

which uniquely identifies each row. Looking at clients, you can say that

salutation, name and mobile are dependent on the id, because they all

have the same purpose, to identify a client. The id identifies the client and

so those fields are dependent on the key. But you cannot identify a client

by looking at the language courses taken or in which city they are, so those

two fields have nothing to do with identifying a client.

Languages and cities are not functionally dependent on each other,

or on clients, and can be in their own tables. Create the two tables shown

in Table 6-5 and Table 6-6.

Table 6–4. The clients Table

Id salutation name mobile

1 Mr Lewis 0798456325

2 Mrs Jane 0796547896

3 Miss Cindy 0741598745

4 Mr roger 0749856547

Table 6–5. The languages Table

Id language

1 german

2 english

3 Dutch

Chapter 6 Databases anD Database Design

184

You are not done yet. An interesting and very important part still lays

ahead. You have your data almost in second normal form, but it has lost its

meaning. You do not know what cities your clients are in, nor do you know

what language lessons they are signed up for. In the next step, I will show you

how to link the data with each other using relationships and foreign keys.

 One-to-Many Relationships, Joins, and Foreign Keys

A client can live in only one city, and one city can have many clients, so

there is a one-to-many relationship between clients and cities. This is easy

to portray in a database. For this relationship, you add another column to

the clients table. Let’s call it city_id. The clients table will now look like

Table 6-7. You removed the duplicate primary value, which is the name

of the city, and replaced it with the primary key of that table. The city_id

field is what is now called a foreign key. That means it is a key that uniquely

identifies a column, or columns, in another table.

Table 6–6. The cities Table

Id city

1 bristol

2 London

3 hove

Table 6-7. Refactored clients table

Id Salutation Name mobile city_id

1 Mr Lewis 0798456325 2

2 Mrs Jane 0796547896 1

3 Miss Cindy 0741598745 3

4 Mr roger 0749856547 2

Chapter 6 Databases anD Database Design

185

So, how do you query this? You use a SQL join. The important first step

is to create these three tables in the database yourself. Playing around,

failing, and succeeding will always be part of the learning process, so I will

not take you through the steps again, but here are some pointers:

• Each table must have an Id column, and it must be

auto-increment (AI).

• For the tables you need for this example, you can use

varchars except for city_id, which must be integers.

Make well-educated guesses as to the lengths of the

varchars.

• Build the tables using Adminer.

• Make sure that you have realistic data in the foreign key

columns. In this instance, you only have one foreign

key column. It lives in clients and is called city_id.

Make sure that a cities primary key is in fact present

in this column.

You should now have four tables. One is called classes, which is the

old table you created initially. The three new tables are called clients,

cities, and languages. Make sure they are populated with data, and bear

in mind you have not yet created the relationship between cities and

languages.

 Querying on a Join

Now to create the SQL that will return the results. For this you will use the

JOIN clause. You use the JOIN clause between two tables in your query,

specifying the columns it should join in. Here is an example query:

SELECT * FROM clients cl JOIN cities cit ON cl.city_id = cit.id

Chapter 6 Databases anD Database Design

186

Here I introduce two new concepts. First, you will notice that right after

clients you have cl, and right after cities you have cit. These are called

aliases. The purpose of an alias is very simple:

• If you have a very long table name, this shortens it and

makes it more convenient to type.

• If you need to join a table on itself, you can refer to the

table by its two aliases.

You can also see the JOIN keyword. This tells MySQL that rows in tables

clients and cities should be joined on columns city_id and id. Joining

in this way tells MySQL that data in the relevant columns are related to

each other.

If you want all clients from London, you can query as follows:

SELECT * FROM clients cl JOIN cities cit ON cl.city_id = cit.id

WHERE cit.city = 'London'

 Many-to-Many

The many-to-many relationship is a more interesting relationship to

model. For this, you need to understand the following:

• You need an intermediate table, also called a pivot

table.

• This table is the relationship table between client

and languages. Remember that one client can practice

many languages and one language can be practiced by

many clients.

Chapter 6 Databases anD Database Design

187

• Because you cannot model many languages per client

in the customer table without breaking normal form

1, and for the same reason you cannot model many

clients per language in the languages table, you now

need to insert them into a table with a structure like the

one in Table 6-8. Let’s call this table client_languages.

Note that client_id in column one is the primary key

of a client in the clients table and language_id is the

primary key of a language entry belonging to the client.

With this setup, one client can have many languages

and one language can have many clients.

In human-readable terms, you are saying the following. The clients

whose ids are in the client_id column of the client_languages table

are linked to the language whose id is in the language_id column of the

languages tables. With this setup, you can easily link many languages

to many clients and many clients to many languages. To further this

demonstration, create the table client_languages in your database with

Table 6-8. A many to many relationship

client_id language_id

1 1

1 2

2 2

4 1

3 1

3 2

3 3

Chapter 6 Databases anD Database Design

188

two columns of type integer and name them client_id and language_id.

Populate them with the appropriate client language data, making sure that

some clients have more than one language.

Look at Figure 6-2 for a graphical representation of how languages and

clients are connected.

Then, run the following query:

SELECT * FROM clients c JOIN client_languages cl ON c.id=cl.

client_id

JOIN languages l ON l.id = cl.language_id

Here you are joining on all the keys from clients through client_

languages to languages.

To find out which clients have, for instance, German as a language, you

can add a WHERE filter clause.

SELECT *

FROM clients c JOIN client_languages cl ON c.id=cl.client_id

JOIN languages l ON l.id = cl.language_id

WHERE l.language = 'German'

 Third Normal Form
There’s still have another normal form left to look at. Technically, there

are even more normalization techniques, but we are ending at the third

normal form, as the third normal form is not just sufficient, it is also

Figure 6-2. Many to many relationship between languages and clients

Chapter 6 Databases anD Database Design

189

practical. According to the third normal form, you should have no non-

primary field dependent on another non-primary field. Now this may

take some thinking and designing to get this right. But you have one very

good candidate field, salutation. Note that salutation is dependent

on name. This is a technicality, but not a bad example. Mr, Miss, and Mrs

are gender-dependent salutations, which in this limited example can be

derived from name. What I mean is that should a name entry change,

for whatever reason, from Jane to John, then the functionally dependent

field, salutation, also needs to change. A table should not have a field

dependent on another field inside the same table. How you get around it

is to pull the salutations out of the clients table into its own table, and

create a one-to-many relationship between the new table, which you’ll call

salutations, and clients. The salutations table will have a primary key

called id and a field called salutation. You will remove the salutation

column from the clients table and replace it with salutation_id.

The new salutation_id table is shown in Table 6-9.

The new clients table is shown in Table 6-10.

Table 6-9. Salutation table

Id salutation

1 Mr

2 Mrs

3 Miss

Chapter 6 Databases anD Database Design

190

Your query will now be changed to look like this:

SELECT * FROM

clients c JOIN client_languages cl ON c.id=cl.client_id

JOIN languages l ON l.id = cl.language_id

JOIN salutations s on s.id=c.salutation_id

 Last Word on Joins
First and foremost, you only join on SELECTS.

Secondly, you get different kinds of joins. I will quickly mention LEFT

JOINs and RIGHT JOINs here. Consider the following query:

SELECT * FROM

clients cl JOIN cities cit ON cl.city_id = cit.id

WHERE cit.city = 'London'

In the case of the system coming across a clients entry that has no

cities entry (in other words, no corresponding cities key in the city_id

table), then the complete entry will be omitted. If you want to ensure that

you display data for all clients, even if they have no city_id key, you should

use a LEFT JOIN. A LEFT JOIN ensures that all data to the left of the JOIN gets

returned, even if the data it joins on is empty. A RIGHT JOIN does the same,

but just considering the right-hand side instead of the left-hand side.

Table 6-10. Clients table

id name mobile city_id salutation_id

1 Lewis 0798456325 2 1

2 Jane 0796547896 1 2

3 Cindy 0741598745 3 3

4 roger 0749856547 2 1

Chapter 6 Databases anD Database Design

191

 Conclusion
In this chapter, you learned how to set up your database, set up Adminer,

and create databases, tables, and queries. You saw how to normalize them,

which is a very important aspect in database creation. You will get to a

stage where you do not think in terms of normalization anymore; it is just

naturally how you design your database. Later in this book, this knowledge

will be used when you build a small application in Python, which will use

database calls to store and retrieve data.

 Cheatsheet and Checklist
Logical operators:

>,

<,

=,

!=

IN

NOT IN

IS

IS NOT

To select data from a database:

SELECT [columns to retrieve] FROM table-name alias WHERE field-

value [logical operator] value

Multiple joins:

SELECT [columns to retrieve] FROM table-name alias a

JOIN table-name alias b ON a.id=b.foreign_key

To insert data into a database:

INSERT INTO table-name (column-names) VALUES (values)

Chapter 6 Databases anD Database Design

192

To update data in a database:

UPDATE table-name SET field-value = value WHERE field-value

[logical operator] value

To delete data from a database:

DELETE FROM table-name WHERE field-value [logical operator]

value

First normal form:

• Every entry should be unique.

• Every field should have one value only.

Second normal form:

• Every non primary value should be dependent on a

primary key.

Third normal form:

• No non-primary values should be dependent on

another non-primary value.

A primary key uniquely identifies a row in a database.

A foreign key identifies a relationship with another table. In general, a

foreign key in table A is a primary key in table B.

Indexing stores all your data in a separate table, in an ordered fashion,

in order to speed up searching for data.

 References
Additional information about normalization:

• www.edureka.co/blog/normalization- in- sql/

• www.guru99.com/database- normalization.html

Chapter 6 Databases anD Database Design

http://www.edureka.co/blog/normalization-in-sql/
http://www.guru99.com/database-normalization.html

193© Nico Loubser 2021
N. Loubser, Software Engineering for Absolute Beginners,
https://doi.org/10.1007/978-1-4842-6622-9_7

CHAPTER 7

Creating a RESTful
API: Flask
In this chapter, I will show you how to build a small project in Python. You

will use all the knowledge about the software development process you

have learned so far from the previous chapters. Part of every project is the

decisions you need to make as to what technologies you are going to use.

Lots of things can affect these decisions, such as your own skillset, your

team’s skillset, general best practices, and your project itself. You will stick

to a conservative but realistic approach to solve your problem. You will

build a small system that communicates with a database. This will be a

complete project setup, including the GitLab repositories, changes to the

Docker file, and installing the software you need for your project. One new

aspect I will introduce is the software framework. When we create systems,

we don’t necessarily write all the code from scratch. We may opt to use

a framework. A framework houses all the basic tools we need in order to

bring our software up quickly. The tools may include routing of requests,

where your external request is served up via specific “routes” into the

system, or the basic code for database access models.

This is all framework code that you should not need to write. You

should concern yourself with solving business problems, so writing

your own code to log errors, for instance, should not be part of your

concerns. Frameworks provide the ability to bring a basic system up

quickly, and the tools and libraries to develop faster. Basic actions are

https://doi.org/10.1007/978-1-4842-6622-9_7#DOI

194

handled by a framework, and you can concentrate on creating software

for your business. If the framework is widely accepted and used by a

large community of software developers, then it should be free of serious

errors, since the more people use it, the more people test it. You will use a

framework called Flask in this tutorial. It is a microframework, so it’s very

light and very appropriate for what you intend to create.

It is important to know that understanding concepts like migrations

and setting up your environments are very important aspects of software

development, and that is why this chapter spends quite a lot of time on

these aspects before you start programming.

 The Project
Modern systems are often separated into at least two separate entities, the

front end and the back end. The front end is the graphical user interface

you use to make requests for data retrieval and manipulation, while the

back end serves the data to the front end for display and manipulates data

on request of the front end. These two will commonly use an architectural

design called REST to communicate. This communication is one-way. The

front end initializes a request to the back end, and the back end responds.

The back end does not issue requests to the front end. You can let the back

end push data to the front end, but that is not REST-based technology and

we will not handle it in this book.

In an architectural design where the front end (making the requests)

and back end (receiving and responding to requests) are separated, the

two systems can live on completely different servers. They are completely

decoupled from each other, which is a great thing. Having them decoupled

gives us two smaller codebases to work with, and also allow neat and clean

access for other systems to access our backend system. You will focus on

building a back end in this book, not the front end, but you will still be able

to initialize calls to the back end as if from the front end.

Chapter 7 Creating a reStful api: flaSk

195

The project you are going to build is very simple, and there are a lot of

concepts for you to learn, even in such a small example. The project you

are going to build will update a single database table and will update a very

limited set of user data. Data in this table can be created, read, updated,

and deleted. In software engineering, this is called CRUD (Create, Read,

Update, Delete). The architectural pattern you will use is called REST, and

you will create a REST API that will allow you to perform CRUD operations

on your data table. The aim is for you to learn the following concepts

during this project:

• Setting up dependencies in Docker using a

requirements.txt file

• Setting up a REST API in Docker

• Database migrations

• CRUD operations using raw SQL

• CRUD operations using the SQLAlchemy ORM

• Using a config file in Flask

 What Is REST?
REST, or RESTful, is a popular architectural pattern that allows a system

to serve data to an external source, like a front end, in a reliable and

predictable way. It allows different systems, written in completely different

technologies, to communicate with your system. It is programming

language-agnostic, but you have to adhere to certain standards to make

the interoperability between different systems dependable. REST stands

for Representational State Transfer. Completely dumbed down, REST is

an HTTP, or preferably an HTTPS, request very similar to requesting a

normal website, but with very specific rules that allow for dependable

Chapter 7 Creating a reStful api: flaSk

196

and understandable data transfer. So, a REST server consists of different

endpoints, each of which is identified by a URL, and the action on that URL

is dictated by an HTTP verb, which is explained below.

Figure 7-1 demonstrates the request/response relationship between a

user (who will be using a browser) and the server.

Here are some the basic concepts to understand when creating a

REST API.

 JSON
JSON as an acronym that stands for JavaScript Object Notation. It is a

plain text data format that allows us to send data requests and receive data

requests in an easy-to-interpret format. JSON is one of a few ways to send

data between systems and it is the format we will use. A JSON string is

encased in {} and consists of a key:value pair. The key should be between “”

and the value should be between “” since it is a string. The value can also

be a JSON string, so you can nest JSON within JSON. JSON can also take

an array. This is a nested structure that is not a key-value pair and they are

indicated by []. Some typical examples are as follows.

Figure 7-1. Request/response relationship

Chapter 7 Creating a reStful api: flaSk

197

• Simple JSON string:

{"name":"Roy", "age" 60}

• JSON with an array:

{"name":"Roy", "age" 60, "hobbies": ["cooking",

"reading"]}

• JSON with nested JSON:

{"name":"Roy", "age" 60, "address": {"street_name":

"old street", "phone_number":"0556325541"}}

 HTTP Verbs
An HTTP verb is something you use implicitly with every page load and

every form submission on the Internet. It is a mandatory part of every

HTTP call. In REST, you use the verb explicitly to tell the back-end system

what the action is going to be. There are a few verbs, but five are of

importance in a REST system:

• GET retrieves data from the system.

• POST add new data to the system.

• PUT replaces an entry completely in the system.

• PATCH updates an entry in the system.

• DELETE deletes an entry from the system.

These five verbs govern the actions on your REST system. They are

merely indicators, though, and you still have to write the code to act

accordingly when your system encounters a request from any of these

verbs. I have seen some places implement only a single PUT or PATCH to

do updates, instead of a PUT and a PATCH. It all depends on how strictly

you want to stick to REST.

Chapter 7 Creating a reStful api: flaSk

198

Based on the calls below, we can describe the anatomy of a REST call

as follows:

VERB url-location/resource-we-want/<optional-identifier>

{Request body in JSON. Needed if VERB is not GET or DELETE}

These examples all exclude an element called HATEOAS, which you

will encounter a little bit later in the book.

As an example, if you have a route called https://api-vehicles.com/

vehicles/100, then the HTTP verbs above will signal the following to the

system:

• Retrieve all vehicles from the system where vehicle id is

equal to 100:

GET https://api-vehicles.com/vehicles/100

• Similar to this, this query will retrieve all vehicles

because no id is present:

GET https://api-vehicles.com/vehicles

• This query will delete the vehicle with id of 100:

DELETE https://api-vehicles.com/vehicles/100

The following three queries need a body containing the data you want

to change or add. This body is in general in JSON, which is a convenient

format to transport data around. JSON is a format that follows strict rules.

As explained above, the JSON-formatted text is between the curly braces

under the URL.

• This endpoint will replace the complete record found

at id 100:

PUT https://api-vehicles.com/vehicles/100

{"car":"ford", "color":"red", "production_year":2015}

Chapter 7 Creating a reStful api: flaSk

https://api-vehicles.com/vehicles/100
https://api-vehicles.com/vehicles/100

199

• This endpoint will update the record found at id 100:

PATCH https://api-vehicles.com/vehicles/100

{"car":"ford", "color":"red"}

• This endpoint will create a new record:

POST https://api-vehicles.com/vehicles

{"car":"ford", "color":"red", "production_year":2015}

 REST Query Routes
When you access a website, you enter a URL. When code accesses a REST

system, it does it via a URL as well, but it doesn’t use a browser for it. The

Flask Python library will handle your query routes for you. I will go through

it in more depth, but for now it is good to know that you specify an entry

point using what is called an annotation. This annotation is placed just

before the function you want to run when that endpoint is accessed. The

following snippet tells us that when the system received a request with a

hello in the URL, to run the hello function:

@app.route('/hello')

def hello():

 return 'Hello'

 HTTP Status Code
Each and every HTTP/HTTPS request returns an HTTP status code.

This code means something to the browser doing the request, and tells

the browser, or the requesting system, whether that request ran into any

problems or whether it succeeded. In REST, we use this status code to

convey a message directly relating to the status of the result of the request,

NOT the status of the request itself. Your request can succeed in the sense

that it has found your system, and your system has accepted the request.

Chapter 7 Creating a reStful api: flaSk

200

It should respond with a 200. A 200 status code means that the location of

the URL was found and executed correctly. However, if your request was to

fetch data, and the request successfully reached your system, but no data

was retrieved because there was no data associated with your request, then

you will get a code that is normally reserved for when a web page cannot

be found, a 404. So bear that in mind. The status code does not relate

to whether your REST resource was found; it relates to the result of the

computation behind the resource.

 HATEOAS
HATEOAS is a fundamental aspect of REST. It is a bit of a mouthful

but it will become clearer as you encounter it more often. It stands for

“Hypermedia As The Engine Of Application State.” HATEOAS dictates that

you should not only send back data, but also the actions you can perform

on that data. This decouples the client that is making the requests from the

server endpoint it is requesting data from. One of the things you can send

back as part of your HATEOAS response is pagination data. Pagination

refers to when you request, for instance, the first 10 values of 100 values,

and the response will have embedded links to the next page and the

previous page. Assume you have just called this endpoint: https://api-

vehicles.com/vehicles/100. In the following response example, you link

to the previous and next pages, taking the created URLs that the server has

built for you. You also not only send back the vehicle data, but also what

you can do with that vehicle. The server decides what the URL will be (in

here as an href) and decouples the system calling the REST API from each

other.

{

 "id": 100,

 "car":"ford",

 "color":"red",

Chapter 7 Creating a reStful api: flaSk

https://api-vehicles.com/vehicles/100
https://api-vehicles.com/vehicles/100

201

 "production_year":2015

 "links": [

 {

 "rel": "remove",

 "href": "https://mysite/vehicles/100"

 "method": "DELETE"

 },

 {

 "rel": "self",

 "href": "https://mysite/vehicles/100"

 "method": "GET"

 },

]

 "pagination": {

 "urrent_page": 2

 "next_page": "https://mysite/vehicles?page=3"

 "previous_page": "https://mysite/vehicles?page=1"

 }

}

 The Technology You Will Use
As an architectural pattern, you will use REST. REST was explained in the

section above. Your environment will run in multiple Docker containers.

Your REST endpoints will need something to handle the incoming

requests, and for that, you will use Gunicorn as a webserver gateway.

Gunicorn handles requests between the outside world and your webserver,

but it can serve responses based on requests on its own. Ideally, you

should have a webserver as well, but that is beyond the scope of what I

want to show. For now, Gunicorn is a good solution for your needs. Your

database will remain MySQL and your programming language will be

Chapter 7 Creating a reStful api: flaSk

202

Python. As a framework, a concept I will discuss later, you will use Flask.

I will also introduce a concept called migrations. Migrations handle

the creation and modification of your database’s structure and are the

database equivalent of sliced bread. You will use a library called flask-

migrate to handle your migrations.

 Setting Up the Environment
First, you start by creating a GitLab project. This allows you to safely store

and share your code.

 Creating the GitLab Project
Log into your GitLab account, and create a project called Users. After it

has been created, GitLab will show you different instructions on how to

initialize the project locally. Follow the steps you will find under Create
a new repository. They allows you to create a new repository on your

computer, and set it up to point to your remote GitLab project. Just

as a hint, the following command creates a directory called blog and

initializes it:

git clone git@gitlab.com:xyz/users.git

The following command will not create a directory, but will initialize

the directory you are in. Notice the full stop after the command. For this

command, you must create the directory yourself and cd into it before you

can run it. It is a good idea in the beginning to just stick to the tips GitLab

gives you.

git clone git@gitlab.com:xyz/users.git .

Chapter 7 Creating a reStful api: flaSk

203

 Project Layout
You should now have a directory called users. Follow these steps carefully:

• In the root directory of your new project (that is, inside

the users directory you just created), create a file called

docker-compose.yml.

• Also, create a directory called app in your root directory.

• Create the following five files and two directories inside

the newly created app directory:

• app.py

• config.py

• initialise.py

• requirements.txt

• Dockerfile

• A directory called database

• A directory called validation. You will use this

directory in a later chapter.

• Inside the app/database directory, create the following

file: migration.py

• Inside the app/validation directory, create the

following file: validation.py

Chapter 7 Creating a reStful api: flaSk

204

Your directory structure should look like this now:

users (This is your root directory)

This is the rough outline of your project. You will now start fleshing

these files out to create your project.

 Creating the docker-compose and Docker Files
You will be able to reuse most of your docker-compose file so copy that

over and just make the changes in the new file.

Chapter 7 Creating a reStful api: flaSk

205

 File Changes to docker-compose.yml

Change the python-dev section’s container_name attribute to flask-

server, as per Listing 7-1.

In the build section, do the following:

• Change context to ./app, as this is where your app’s

Dockerfile and code will live.

• Mount the ./app directory to the working directory, /

var/app/flask_app, inside your container.

• Expose port 8000 to the outside world using the ports:

directive. You will use this port to communicate with

the system.

Listing 7-1. The Docker-compose file

 python-dev:

 container_name: flask-server

 build:

 context: ./app

 dockerfile: Dockerfile

 volumes:

 - ./app:/var/app/flask_app

 ports:

 - "8000:8000"

 Docker File

You need to jump to the Dockerfile next. The Dockerfile is linked to the

flask-server container and needs the most changes. You are going to

introduce a new file to the Dockerfile, the requirements.txt file. This file

is just a list of dependencies that the Dockerfile must install using the pip

command. Add these entries to the requirements.txt you created earlier.

Chapter 7 Creating a reStful api: flaSk

206

The requirements file’s content is in Listing 7-2.

Listing 7-2. The requirements file

Flask==1.1.2

Flask-Migrate==2.5.3

Flask-Script==2.0.6

mysql-connector-python==8.0.5

Flask-SQLAlchemy==2.4.4

gunicorn==20.0.4

psycopg2-binary==2.8.6

marshmallow==3.7.1

After you have added them, run this command:

pip -r install requirements.txt

or

pip3 -r install requirements.txt

Here you are basically saying you want to install Flask as your framework,

flask migrate to handle your database’s table creator, mysql-connector-

python as your database connection driver, and very importantly, Gunicorn

to serve up your requests. Marshmallow will be used when you validate

incoming requests. You also pin the libraries you want down to specific

versions to prevent incompatible updates from breaking your system.

The following changes are to be made to the Dockerfile itself. Its

contents should look like Listing 7-3.

Listing 7-3. The Dockerfile

FROM python:3.7.5-slim

RUN mkdir -p /var/app/flask_app

WORKDIR /var/app/flask_app

COPY requirements.txt /var/app/flask_app

Chapter 7 Creating a reStful api: flaSk

207

RUN pip install --no-cache-dir -r requirements.txt

COPY . /var/app/flask_app

ENV FLASK_APP ../app.py

CMD exec gunicorn -w 1 -b :8000 app:app --reload

In here you are creating the /var/app/flask_app directory path that

you use in the docker-compose file, and you switch your working directory

to it. Then you copy the requirements.txt file to it, and run pip install

on every entry. After that, you copy the files in your local environment to

that same directory, and tell the environment, that is the ENV variable, that

FLASK_APP, when used in the system, points to ../app.py. This variable

is only needed in the migrations, which live in the database directory.

It has to traverse one level back and that is why there is a ../ before

the application name. On the very last line, you tell your system to run

Gunicorn on port 8000 running the app.py script. The --reload option

enables you to change code and lets Gunicorn reload on detecting a code

change, without you having to manually restart the server. You should
note that this is for development only and not production. You should

reload Gunicorn explicitly yourself on production.

 docker-compose.yml: DB Server and Adminer Sections

There are no changes to this portion of the docker-compose.yml file, apart

from changing the container names to flask-db and flask-adminer, and

adding the volume segment at the bottom. See Listing 7-4.

Listing 7-4. The Docker-compose file’s database section

 mysql-dev:

 image: mysql:5.7.22

 container_name: flask-db

 ports:

 - 6603:3306

Chapter 7 Creating a reStful api: flaSk

208

 environment:

 MYSQL_ROOT_PASSWORD: "root"

 volumes:

 - database-folder:/var/lib/mysql

 adminer:

 image: adminer

 container_name: flask-adminer

 restart: always

 ports:

 - 8080:8080

 links:

 - mysql-dev

volumes:

 database-folder:

Your docker-compose.yml file should now look like Listing 7-5.

Listing 7-5. The Docker-compose file

version: "3"

services:

 python-dev:

 container_name: flask-server

 build:

 context: ./app

 dockerfile: Dockerfile

 volumes:

 - ./app:/var/app/flask_app

 ports:

 - "8000:8000"

Chapter 7 Creating a reStful api: flaSk

209

 mysql-dev:

 image: mysql:5.7.22

 container_name: flask-db

 ports:

 - 6603:3306

 environment:

 MYSQL_ROOT_PASSWORD: "root"

 volumes:

 - database-folder:/var/lib/mysql

 adminer:

 image: adminer

 container_name: flask-adminer

 restart: always

 ports:

 - 8080:8080

 links:

 - mysql-dev

volumes:

 database-folder:

 Bringing Up the New System

You must ensure that your other Docker instances from your previous

lessons are not running, mainly because they are all using the same ports.

You can change the ports, but it is also not good to have loads of containers

running on your local machine. To ensure they are not running, just go

into that project directory and run these commands.

This command will show if anything is running:

docker-compose ps

Chapter 7 Creating a reStful api: flaSk

210

This command will take the system brought up by docker-compose in

that directory down:

docker-compose down

Because you edited the Dockerfile, you need to rebuild your container

environment. Make sure you are in the root folder of your Users project,

and run this command:

docker-compose build --no-cache

This should take a minute or two to run but will install all your

dependencies from the requirements.txt file. Before you bring your

server up, make sure your app.py file is in a useable state so that it can

actually serve requests to you.

 Testing the Application

The initial application will be incredibly simple and will just demonstrate

how the REST components, and database interactions work. If

you are on Linux or Mac, the URL you use to access your system is

http://127.0.0.1:8000.

If you are on Windows and running it through a virtual machine, as

you set it up in the beginning, you need to do the following.

Run the following command:

docker-machine ls

The output will have a URL section in it. The URL will be an IP

address preceded by a tcp:// and may have a port number after a

colon. It may look like this: tcp://192.168.99.100:2343. Copy the IP

address, without the tcp:// section and without the port, and use it in

the URL to access your system. For instance, you will only use the text

in blue, tcp://192.168.99.100:2343. Your URL will then look like this:

http://192.168.99.100:8000.

Chapter 7 Creating a reStful api: flaSk

211

Inside the app directory, you created an app.py file earlier. Add the

code in Listing 7-6 to it.

Listing 7-6. Routes

from flask import Flask

app = Flask(__name__)

@app.route('/')

def home():

 return 'This is the home page'

@app.route('/hello')

def hello():

 return 'Hello'

In this code snippet, you import Flask and initialize the Flask app.

Then you declare two entry points into your system using two functions.

The first one is called home() and the second one is called hello(). These

two access points can be accessed via a browser. Let’s test it quickly.

First, you need to bring the Docker container up.

docker-compose up

If there are no errors, open a browser, and type the following into the

address bar:

http://127.0.0.1:8000/

and separately

http://127.0.0.1:8000/hello

You should see the different outputs as you specified in your code. In

your browser, the text “This is the home page” and “Hello” should appear.

Chapter 7 Creating a reStful api: flaSk

212

 Testing the Application with Postman

You will not be testing your system with a browser. You cannot easily

simulate POST, PUT, PATCH and DELETE on the fly with a browser since the

default HTTP verb used in a browser is GET, and you are not going to write

HTML now to create the other verbs. You will also not go with the command

line in this instance. Instead, you will use an application called Postman.

Postman is a great tool for remote calls like REST calls. Download and install

Postman for your computer from this location: www.postman.com.

Once installed, you can start creating requests.

• You will see a layout screen where you can create tabs.

Each tab can do a request.

• There is an address bar with the words “Enter request

URL.” This is where your request URL will go.

• To the left of this bar is a dropdown menu and you will

find the HTTP verbs in there. By default, it is set to GET.

Do the following steps to test a GET request with Postman:

• Keep the verb as GET.

• Type the same URLs you typed in the browser into

Postman’s address bar.

• Click the Send button.

The response should appear in the response section in the bottom. You

will use Postman to test all the endpoints of your system.

 Migrations

You have one more step to figure out before you have a fully usable project:

migrations. Migrations are the name you give to the automated creation

and editing of your database tables and structures. You will not create your

Chapter 7 Creating a reStful api: flaSk

http://www.postman.com

213

tables inside Adminer, as in the previous chapter about databases. Instead,

you will create it in your migrations. (You will, however, create your

database in Adminer.) This allows you to port the exact same database

structure to any new installation of this system. You can track changes to

the system, and easily deploy your code and databases. You will also use

the objects used by the migrations for your ORM models.

You will complete the following steps to get migration up. Log into

Adminer and create a database called users. To log into Adminer, using

Linux or Mac, use this URL from the browser:

http://127.0.0.1:8080

If you are on Windows and running it through a virtual machine, which

is one of the two setup methods you had in the beginning, you need to do

the following.

Run the following command:

docker-machine ls

The output will have a URL section in it. The URL will be an IP

address preceded by a tcp:// and may have a port number after a

colon. It may look like this: tcp://192.168.99.100:2343. Copy the IP

address, without the tcp:// section and without the port, and use that

in the URL to access your system. For instance, you will only use the

text in blue: tcp://192.168.99.100:2343. Your URL will then look like

http://192.168.99.100:8080.

In the database directory’s migration.py file you created earlier, add

the code from Listing 7-7.

Listing 7-7. Migration file

from flask import Flask

from flask_sqlalchemy import SQLAlchemy

from flask_migrate import Migrate, MigrateCommand

from flask_script import Manager

Chapter 7 Creating a reStful api: flaSk

http://127.0.0.1:8080

214

app = Flask(__name__)

app.config['SQLALCHEMY_DATABASE_URI'] =

'mysql+mysqlconnector://root:root@flask-db/users'

db = SQLAlchemy(app)

migrate = Migrate(app, db)

handler = Manager(app)

handler.add_command('db', MigrateCommand)

class Users(db.Model):

 id = db.Column(db.Integer, primary_key=True)

 name = db.Column(db.String(128))

 surname = db.Column(db.String(128))

 identity_number = db.Column(db.Integer())

if __name__ == '__main__':

 handler.run()

The first four lines are imports of libraries you need for this code to work.

On line seven, you create the database connector string. This string gives

your system the username, password, location, and database name of the

database you need to connect to. If you have followed the tutorials word for

word, then this string should work, but here is an explanation of it.

Table 7-1 deconstructs the connection URI mysql+mysqlconnector://

root:root@flask-db/users.

Table 7-1. Deconstructed URI

mysql+mysqlconnector Connection protocol

root:root username:password

flask-db the container name of the database

Users the name of the database

Chapter 7 Creating a reStful api: flaSk

215

SQLAlchemy is the library you will used as an ORM. This is an object-

relational mapper that allows you to access the database without writing

any SQL code. To achieve this, you create a Python class (see Listing 7-7

below), which via SQLAlchemy is mapped directly onto a data table. It is

mostly a good idea to use an ORM. In systems with big complex databases,

however, it may not always be a good thing. You will look at an example

of an ORM as well as SQL. In these examples, SQLAlchemy will also be

responsible for the raw SQL queries.

The following lines in Listing 7-7 are very important, and basically tell

the migration system exactly how to create or edit the new table. Here you

can see it addresses a table called Users and adds a primary key called id,

two string columns called name and surname, and an integer column called

identity number. This will be your model, and you will use it later as well.

class Users(db.Model):

 id = db.Column(db.Integer, primary_key=True)

 name = db.Column(db.String(128))

 surname = db.Column(db.String(128))

 identity_number = db.Column(db.Integer())

This is the basic layout for a migration, but also very importantly, this

is the SQLAlchemy model you will use later in order to access the database

as well. All tables in your database will be added in this file.

Running a migration is initially a three-step process. Afterwards, it

takes two steps.

 Migration Preparation Step

You need to mount the flask-server Docker image. This is because you

communicate between Docker instances using the container names, and

those names are only recognizable within Docker.

docker exec -it flask-server bash

Chapter 7 Creating a reStful api: flaSk

216

Navigate to the database directory.

cd database

You will now be in the directory where the migration script lives.

Initial step (run only the first time):

python migration.py db init

These two steps are run whenever the database schema changes:

python migration.py db migrate

python migration.py db upgrade

python migration.py db migrate is run to prepare the migrations

and detect changes, and python migration.py db upgrade is run to

perform an actual migration.

Run these three steps, and inspect your database in Adminer. You

should see a newly created table called users with four columns. You will

use this database and table in the next section.

At this point, commit your work and push it to the GitLab repository.

git add .

git commit -m 'Initial system setup'

git push origin master

 The Final Steps: Coding
I would like to point out again that the project does not start when the

coding starts (or what could be seen as the coding portion). The project,

from a software engineering perspective, starts when you make your

choices as to what software you will use. Setting up Docker (or just

selecting a precreated docker-compose file) and remote repositories are all

part of the project.

Chapter 7 Creating a reStful api: flaSk

217

As a last step, you will create eight endpoints into the system. You only

need four, but you will duplicate them so that one half uses the ORM and

one half uses raw SQL. (When we write our SQL ourselves, we sometimes

refer to it as raw SQL.)

The first version will use raw SQL, and the second version will use the

ORM. This way you can see how both will work.

 Step 1

You can make an improvement to the migration.py file. It connects to

the database, but that database connection setup code can be reused. To

achieve this, start with the initialise.py file. Open it and add the code in

Listing 7-8 to it.

Listing 7-8. Initialise.py file

class Initialise():

 def db(self, app):

 app.config.from_object("config.Config")

 app.config['SQLALCHEMY_DATABASE_URI'] =

'mysql+mysqlconnector://{}:{}@{}/{}'.format(

 app.config["DB_USERNAME"],

 app.config["DB_PASSWORD"],

 app.config["DB_LOCATION"],

 app.config["DB_DATABASE"]

)

 app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = True

 return app

In this class, you are creating the Flask app. This constructor is called

twice in your system, but that is not the main reason for creating a reusable

object. The main reason is the database connection URI, which is used

Chapter 7 Creating a reStful api: flaSk

218

in two places. The first place is in the migrations.py file, and the second

place is in the app.py file, which you have yet to implement. Upon creating

the Flask app, you can assign the mysql URI to it. You create the URI from

a config file. This allows you to have one single point where the database

connection details live. Notice the structure of the parameter of app.

config.from_object("config.Config") in Listing 7-8. In the parameter

"config.Config", the first lowercase config refers to the filename and the

capitalized Config refers to the class name inside the config directory,

which you want to access. In Listing 7-9, the Config class in the config

directory can be seen.

 Step 2

Before you can go on, you need to populate the config.py file with values

that the Initialise class can use. Add the code in Listing 7-9 to the config

file and change the values to the values of your database.

Listing 7-9. Config.py file

class Config(object):

 DB_USERNAME = 'root'

 DB_PASSWORD = 'root'

 DB_LOCATION = 'flask-db'

 DB_DATABASE = 'users'

 Step 3, A Bit of Refactoring

With the Initialise class complete, you can add it to the migrations.py

file. Open migrations.py and change the following.

Add an additional import:

import sys

sys.path.append("..")

from initialise import Initialise

Chapter 7 Creating a reStful api: flaSk

219

Remove these lines from the migration.py file:

app.config['SQLALCHEMY_DATABASE_URI'] =

'mysql+mysqlconnector://root:root@flask-db/users'

And add this in their place:

init = Initialise()

app = init.db(app)

Your migrations file should now have the following lines:

app = Flask(__name__)

init = Initialise()

app = init.db(app)

You now have an app object which is a Flask instance with the correct

database connection URI.

 Step 4

You can now clear the contents of app.py and replace it with the initial

portion of your system, as seen in Listing 7-10.

Listing 7-10. New app.py contents

import json

from flask import request

from sqlalchemy import text

from flask_sqlalchemy import SQLAlchemy

from http import HTTPStatus

from initialise import Initialise

from flask import Flask

Creates the Flask app

app = Flask(__name__)

Chapter 7 Creating a reStful api: flaSk

220

init = Initialise()

app = init.db(app)

Creates the db connection

db = SQLAlchemy(app)

This application is going to be a bit bigger and you will be using a few

more libraries. Listing 7-10 contains the following:

json : Used to format json requests.

request : Used to read incoming request bodies with

text : Used to enable raw SQL in our classes

http : Used to access HTTP status codes as constants.

Initialise : Our own Initialise class, used to instantiate the

Flask object.

 Step 5

The first endpoint you will construct is the POST endpoint with raw

SQL. Before you do that, let’s just take a quick look at the anatomy of an

endpoint. This is pretty much generic whether you use raw SQL or an

ORM.

Anatomy of an Endpoint

You start with a route annotation. This indicates the entry point and

method, defined as a verb, with which to access the system. By default, the

method selected is GET. You can enter it as an array, since one endpoint

may be accessed by many verbs if you so choose. The <identifier_variable>

is only used to identify a resource, and POST will never have a value here.

@app.route('route/to/endpoint/<identifier_variable>',

methods=['GET]')

Chapter 7 Creating a reStful api: flaSk

221

The next line contains the function declaration. If you need to pass a

variable from the route, you can pass it through here:

def function(<identifier>):

Typically, you return JSON. I will show clear-cut examples in the

section that follows.

Anatomy of the Code Inside the Function

Let’s handle the raw SQL examples first. Because you will be using raw

SQL, you need to escape the SQL yourself. Escaping SQL means you

protect it against SQL injection attacks. I will cover this in the chapter

about security, but for now, it is very important to know to escape your

queries. It is paramount that your protect your queries against SQL

injection attacks. You escape your queries using parameter binding. The

following steps inside your functions are important:

• You can get a parameter that is in the URL into your

code by putting that parameter in the function’s

parameter list. See Listing 7-12 for an example.

• You can get your POSTed data body, handled in the

very next section, by using request.get_json(). See

Listing 7-11 for an example.

• You add your SQL to a function called text(). This

improves back-end support for parameter binding. You

put a :parameter_name wherever a parameter should

be, like this:

sql = text('SELECT * FROM banking WHERE id = :id

AND code = :some_code') The :values are basically

placeholders for the real values.

Chapter 7 Creating a reStful api: flaSk

222

• Then you bind it when you run execute on it:

 result = db.engine.execute(sql, id=10, some_code=111).

first()

• json.dumps formats a string or array to a JSON-

formatted string.

• HTTPStatus is responsible for the status code.

Add Listing 7-11 to your app.py file.

Listing 7-11. Post endpoint and HATEOAS

def hateoas(id):

 return [

 {

 "rel": "self",

 "resource": "http://127.0.0.1:8000/v1/

users/" + str(id),

 "method": "GET"

 },

 {

 "rel": "update",

 "resource": "http://127.0.0.1:8000/v1/

users/" + str(id),

 "method": "PATCH"

 },

 {

 "rel": "update",

 "resource": "http://127.0.0.1:8000/v1/

users/" + str(id),

 "method": "DELETE"

 }

]

Chapter 7 Creating a reStful api: flaSk

223

@app.route('/v1/users', methods=['POST'])

def post_user_details():

 try:

 data = request.get_json()

 sql = text('INSERT INTO users (name, surname, identity_

number) values (:name, :surname, :id_num)')

 result = db.engine.execute(

 sql,

 name=data['name'],

 surname=data['surname'],

 id_num = data['identity_number']

)

 return json.dumps({"id": result.lastrowid,"links":

hateoas(result.lastrowid)})

 except Exception as e:

 return json.dumps('Failed. ' + str(e)), HTTPStatus.

NOT_FOUND

This endpoint is very important to understand, as all of this

information trickles down to the other endpoints.

Look at the first function in Listing 7-11, def hateoas(id). I add this

function to demonstrate the concept of HATEOAS. You will add it to all of

your returns in your functions. By inspecting the function you can see what

value it brings to the API.

The very first line after the hateoas function, @app.route, declares the

entry point’s structure and verb. This line says that the entry point can be

accessed using http://127.0.0.1:8000/v1/users, using the POST verb.

Note that you are omitting the http://127.0.0.1 part. You add a v1 into

your URL to make it easier for you to switch to v2, which you will use when

you create the same calls using ORM models.

Chapter 7 Creating a reStful api: flaSk

224

data = request.get_json() fetches the POST body from the request.

The next two lines perform the SQL query. json.dumps formulates the

JSON to be sent back and includes the HTTP status id. The status id

relates to a code. For instance, HTTPStatus.OK results in a value of 200,

and HTTPStatus.NOT_FOUND results in a value of 404. The name of the

endpoint is users. This is a good name for this endpoint.

To call this endpoint, you need to do the following in Postman:

 1. Open a new request. This is as simple as opening a

new tab in Postman.

 2. Set the HTTP verb in the dropdown to POST.

 3. You need to pass a request body within the request.

To do this, follow these steps.

• Once you have selected POST as a verb, you should

be able to click a Body link just below it. You cannot

click this link if your verb is set to GET.

• Once you have clicked Body, a menu will appear

under that. Select Raw from that menu.

• Once you have selected Raw, a dropdown will

appear to the right. The first option should be Text.

Open it and select Json(application/json) from it.

• The request should be properly formed json. Here

is an example. After you have added it, click Send.

• {"name":"John","surname":"Connor","ident

ity_number":"902308"}

You should see a result returned to you. The word “Added” should

appear in the response screen at the bottom, and the resulting HTTP status

code should be 200.

Chapter 7 Creating a reStful api: flaSk

225

 Step 6

First of all, log into Adminer and inspect your database. Can you see the

entry in the database? If not, there may be something wrong with your

POST method and you may need to revisit your implementation. If you can

see the entry, then all is great! Put the GET endpoint into app.py and test

it. See Listing 7-12. Add this code to your app.py script. Note that you pass

a user_id through the router and pass that user_id into the function. The

rest of the code is similar in explanation as the POST endpoint.

Listing 7-12. Get endpoint

@app.route('/v1/users/<user_id>', methods=['GET'])

def get_user_details(user_id):

 try:

 sql = text('SELECT * FROM users WHERE id=:id_num')

 result = db.engine.execute(sql, id_num=user_id).

fetchone()

 return json.dumps({"name": result.name, "surname":

result.surname, "identity_number": result.identity_

number, "links": hateoas(user_id)}), HTTPStatus.OK

 except Exception as e:

 return json.dumps('Failed. ' + str(e)), HTTPStatus.

NOT_FOUND

To test, open a new tab in Postman. Type the route to your endpoint

in the address bar and set the verb to GET. You should now add the id you

are looking for at the end of the URL. The id will identify the exact user you

want to retrieve. The more users you create with POST, the more ids you

have to test.

http://127.0.0.1:8000/v1/users/1

Chapter 7 Creating a reStful api: flaSk

226

 Step 7

The next endpoint you will look at is the patch endpoint. Patching does

have a slight layer of complexity where you need to build the update query,

especially relating to parameter binding. The rest is basically the same as

the POST and GET endpoints. See Listing 7-13.

Listing 7-13. Patch endpoint

@app.route('/v1/users/<user_id>', methods=['PATCH'])

def patch_user_details(user_id):

 data = request.get_json()

 """

 An update query has a portion where you specify which

values to update. Because we are sending through a

variable amount of columns to change, we need to build

the clause in the SQL that states what must change,

programmatically

 """

 for key in data:

 update_string = key + '=:' + key + ','

 # Remove the last comma in the update portion

 update_string = update_string[:-1]

 try:

 data['id'] = user_id

 sql = text('UPDATE users SET ' + update_string + '

WHERE id = :id')

 result = db.engine.execute(sql, data)

 return json.dumps(

 {

 "id": user_id,

 "links": hateoas(user_id)

 }

Chapter 7 Creating a reStful api: flaSk

227

 except Exception as e:

 return json.dumps('Failed. ' + str(e)), HTTPStatus.

NOT_FOUND

In Listing 7-13, in the for loop, you concatenate the values to be

updated to the update string. PATCH has an id in the URL as well as a

POST body. The id in the URL identifies the user you want to update, and

the POST body contains the fields to be updated. You can test PATCHing

in Postman by doing the following. Open a new tab, and select PATCH as

the HTTP verb. The rest of the settings should be similar to a POST setting.

There is one exception, though. The URL should contain the id of the field

you wish to update. If you have a value in your database where id is equal

to 1, then add 1 to the end of the URL, as is evident in the route annotation.

@app.route('/v1/user/<user_id>', methods=['PATCH'])

The body only needs to contain the value or values you wish to update.

Add the following as an example to the request in your call to the update

endpoint:

{"name":"newname"}

Add that above to your PATCH’s request body in Postman and click

Send. To check if the data has been changed, you can run the GET

endpoint on it again. Alternatively, you can look it up in the database, but I

strongly recommend using the GET parameter.

 Step 8

The next endpoint you will create will be for deletions. Like GET, DELETE

only takes an id to identify the resource to delete. In this case, it is also

called user_id. You do not add the HATEOS function here. You do not

have other default HATEOAS behavior, and after you have deleted a user,

you cannot read, update, or delete it. See Listing 7-14.

Chapter 7 Creating a reStful api: flaSk

228

Listing 7-14. Delete endpoint

@app.route('/v1/users/<user_id>', methods=['DELETE'])

def delete_user_details(user_id):

 try:

 sql = text('DELETE FROM users WHERE id=:id_num')

 result = db.engine.execute(sql, id_num=user_id)

 return json.dumps('Deleted'), HTTPStatus.OK

 except Exception as e:

 return json.dumps('Failed. ' + str(e)), HTTPStatus.

NOT_FOUND

Select an id you want to delete, go to Postman, based on your previous

experiences with Postman, and set up a delete call. Once again you can use

GET to see whether the record has been deleted or not. You should now

have a working RESTfull system, which can create, read, update, and delete

 The ORM Version
Take a few minutes to look at the ORM versions of the above code. There

are three changes:

• The route used to have a v1 in it. Now it is v2. With this,

you can keep the route endpoints the same, as users,

but you will invoke a different function on the back end

when you call v1/users or v2/users.

• The PATCH endpoint does not need to build its own

input query. Instead, you just give the whole dataset to

the ORM to update your entry with.

• All the raw SQL disappears and is replaced by the ORM

syntax.

Chapter 7 Creating a reStful api: flaSk

229

The rest of the code stays exactly the same. Patch takes the biggest

change in code due to the automatic handling of the update section. With

your ORM handling the updates, you can literally just pass it your dataset.

Listing 7-15 contains the complete changed set of functions, which you

can just add to the bottom of the app.py file.

Listing 7-15. ORM version of the endpoints

@app.route('/v2/users/<user_id>', methods=['GET'])

def get_user_details_orm(user_id):

 try:

 result = db.session.query(Users).filter_by(id=user_id).

first()

 return json.dumps(

 {

 "name":result.name,

 "surname":result.surname,

 "identity_number":result.identity_number,

 "links": hateoas(user_id)

 }

), HTTPStatus.OK

 except Exception as e:

 return json.dumps('Failed to retrieve record. ' +

str(e)), HTTPStatus.NOT_FOUND

@app.route('/v2/users', methods=['POST'])

def post_user_details_orm():

 try:

 data = request.get_json()

 user = Users(name=data['name'], surname=data

['surname'], identity_number=data['identity_number'])

 db.session.add(user)

 db.session.commit()

Chapter 7 Creating a reStful api: flaSk

230

 return json.dumps(

 {

 "id": user.id,

 "links": hateoas(user.id)

 }

), HTTPStatus.OK

 except Exception as e:

 return json.dumps('Failed to add record. ' + str(e)),

HTTPStatus.NOT_FOUND

@app.route('/v2/users/<user_id>', methods=['PATCH'])

def patch_user_details_orm(user_id):

 try:

 data = request.get_json()

 user = db.session.query(Users).filter_by(id=user_id).

update(data)

 db.session.commit()

 return json.dumps(

 {

 "id": user_id,

 "links": hateoas(user_id)

 }

)

 except Exception as e:

 return json.dumps('Failed to update record. ' +

str(e)), HTTPStatus.NOT_FOUND

@app.route('/v2/users /<user_id>', methods=['DELETE'])

def delete_user_details_orm(user_id):

 try:

 user = db.session.query(Users).filter_by(id=user_id).

first()

Chapter 7 Creating a reStful api: flaSk

231

 db.session.delete(user)

 db.session.commit()

 return json.dumps('Deleted'), HTTPStatus.OK

 except Exception as e:

 return json.dumps('Failed. ' + str(e)), HTTPStatus.

NOT_FOUND

NB: Remember to add this to your git repository using the following

commands:

git add .

git commit -m 'Added CRUD v2'

git push origin master

Let’s run through the changes in Listing 7-15 quickly.

 GET Endpoint
The data selection portion changes from SQL to this:

result = db.session.query(Users).filter_by(id=user_id).first()

Users in db.session.query ids your ORM, or object relational model.

Filter_by filters the result based on user_id, and first() indicates you

only want the first record. The result variable is now an object, and its

members can be accessed with the dot operator. For instance, result.

name will return the name value of the record.

 POST Endpoint
The post endpoints changes to the code below:

user = Users(

 name=data['name'],

 surname=data['surname'],

Chapter 7 Creating a reStful api: flaSk

232

 identity_number=data['identity_number']

)

db.session.add(user)

db.session.commit()

You create the ORM model using the input data as parameters. You

then add it to the session and commit it to the database. Db.session.

commit means that the data is actually committed to the database.

 PATCH Endpoint
Update the resource’s code as follows. It’s only two lines of code.

user = db.session.query(Users).filter_by(id=user_id).

update(data)

db.session.commit()

You specify the ORM model in the query function. The filter_by

specifies which user_ids you want to update and the update function

accepts the input data.

 DELETE Endpoint
Deleting an entry is about three lines.

user = db.session.query(Users).filter_by(id=user_id).first()

db.session.delete(user)

db.session.commit()

Once again, you select the record you want to delete, feed that record

into the delete function, and commit it.

It is quite evident that using an ORM can be a lot simpler and more

straightforward than SQL, but it is not always the case. You may sit with

really complex joins, in which case, SQL may be a better option. Decisions

like whether to use an ORM or SQL all come down to planning.

Chapter 7 Creating a reStful api: flaSk

233

 Takeaway of This Chapter
This was a rather hectic chapter, filled with new ideas, and some old ones,

albeit modified ones. There are even more aspects not covered in this

book, and learning software development is a journey that takes a long

time to complete. You looked at a more complex Dockerfile and a slightly

more complex docker-compose. You explored new concepts like the

requirements file, Gunicorn, and the concept of REST. A very important

aspect you learned was migrations. It is a superb way to keep your

databases up to date with the latest changes to the database.

I want the chief takeaways in this chapter to slot in with the previous

chapters. Engineering software is not just writing code. It takes a multi-

disciplinary approach to create software, and to top it all off, there are still

important chapters ahead. There is still the design portion left, where code

gets planned and designed. That happens before you start coding, and we

always try to follow the overly optimistic saying of “plan twice, code once.”

It is always good practice to investigate the best way to set up your

directory structures, technology to use, etc. What looks like a good idea

today may prove to be a bad idea tomorrow. Do not just jump into a

project by copying your previous project’s structure blindly. Make sure

that that project was sound, and that the decisions made there were good

decisions.

 References
Some interesting websites where you can learn more about Python:

• https://realpython.com/flask-by-example-part-1-

project-setup/

• https://docs.python-guide.org/intro/learning/

Chapter 7 Creating a reStful api: flaSk

https://realpython.com/flask-by-example-part-1-project-setup/
https://realpython.com/flask-by-example-part-1-project-setup/
https://docs.python-guide.org/intro/learning/

235© Nico Loubser 2021
N. Loubser, Software Engineering for Absolute Beginners,
https://doi.org/10.1007/978-1-4842-6622-9_8

CHAPTER 8

Testing and Code
Quality
Whether the system you are working on is big or small, as mentioned in

the beginning of this book, the codebase’s integrity is very important.

Following some basic rules, like proper naming conventions, neat code

structure, and just careful coding, will have an effect on the codebase’s

integrity. Easy-to-read code is slightly harder to break than code that is

badly structured. The easier it is to read and follow the code, the easier

it becomes to make changes to it. Proper naming conventions can also

lead to code that will be less prone to introducing bugs than badly named

variables, functions, and classes.

Not too long ago I started at a new company, and I was asked to

introduce a new feature into the system. The system had a few steps. Two

of these steps were importing and ingesting. Everything was fine, apart

from the fact that a function that was called something like file_import

actually did file ingesting. Not only was the name was wrong. The function

was actually called in the ingesting section of the code, even though its

name said it did importing. Obviously, I picked up on this quickly, but

imagine someone needs to implement something in the import section,

decides to reuse this incorrectly named function (because hey, it says

file_import on the tin), and above all edits that function because it does

https://doi.org/10.1007/978-1-4842-6622-9_8#DOI

236

not quite work. The knock-on effect will be that all implementations of the

file_import function will break. So how do we prevent disasters like this

from happening?

In this chapter, you will have a look at ways to mitigate these problems.

 Overview of Code Quality Steps
There are a few steps you can use to mitigate introducing new errors in

your code, especially if you have added features or were requested to

amend an existing feature in the system. I will not delve too deep into the

formalities of all of them. But you should know about them, and at least

know some basics.

The very first one has no real official procedure to it. But it is simple. Be
careful. Do not change aspects in the system if you do not know why they

are there. Get to know the codebase if you don’t know it already. If you do

not know the codebase and get assigned work to do on it, ask for extra time

to get to know it.

Run automated tests. If created correctly, and this covers your

complete codebase, automated tests are great at picking up problems in

your codebase. The idea behind automated tests is that they cover almost

all aspects of your code. So should anyone implement a change that breaks

something, the tests should pick up on it. The drawback is that a lot of old

codebases do not have tests, or are only covered by a limited amount of

tests. One of the first things that goes out of the window when pressure

mounts for software developers is usually testing. But writing tests in

retrospect, after the project is done, is even an slower and very painful

process.

Peer reviews are a good way to determine whether the code was

designed well, runs without obvious errors (because code is never

considered bug-free), and above all, does what the business process

requires. There are many ways of peer reviewing, but the one I will discuss

Chapter 8 testing and Code Quality

237

is simple and consists of another developer reviewing your code. Once

again, this is a time-consuming process, and it will take the time of another

developer. It is, however, a good tool to raise the confidence in the feature

that was built.

The final step is a user acceptance test, also called a UAT. A UAT

normally happens on a staging server that mimics the production server

100%. This test is very simple and aims to verify whether the user thinks

you have created what they need.

Most of these steps you can only follow if you have a team of at least

two people or have access to someone who can independently test your

work in a user acceptance test (apart, of course, from automated tests). But

it is great to know these things exist and to have an idea of what they entail.

So, without further ado, let’s get cracking!

 Automated Testing
Automated tests come in a big variety, and there is no shortage of tools to

test the back end and the front end of your system. You will look at unit

tests and integration tests in this chapter. With automated testing, you

set up a large group of scenarios to run against your codebase and the

results expected from these scenarios. You then run the tests, where the

resulting output of the scenarios are compared to the expected results for

validation. If you cover enough ground with your tests, you should be able

to comfortably make changes to your codebase, run the tests, and deploy.

One great side-effect of automated tests is that if you cannot write a test

for your code, then you may have designed it incorrectly. As mentioned

in previous chapters, you should have classes and functions with a single

responsibility. Once a function starts doing too much, it becomes very

difficult to test. Testing forces you to write small, testable units of code,

with a limited number of paths through them that can be tested.

First up to discuss is unit tests.

Chapter 8 testing and Code Quality

238

 Unit Tests
Unit tests test specific units of code in your system. A unit test does

not bother with a full execution of your software, or necessarily how

these units interact. For instance, you may have a function called

valid_age(date_of_birth), which accepts someone’s date of birth and

calculates if they are old enough for a credit card. It will respond with a

True or False value upon success or failure. Let’s say the minimum age is

twenty years old. To ensure the integrity of this function, you will set up

testing scenarios, and in this case, you will have two testing scenarios. In

the first scenario, you provide the function with a date of birth where the

age is younger than twenty, and in the second scenario you give it a date

of birth where the person’s age is older than twenty. The automated test

will run both the scenarios for this function only, giving the function a

different date on each execution, and upon each execution, it will test the

result passed back from the function against the expected result. It will not

execute the code to complete a whole credit card application. This test will

only test one specific function of the system.

Scenario 1
You give the function called valid_age a date of birth of December 12,

1978, and you expect in return a boolean value of True.

Scenario 2
You give the function valid_age a date of birth of December 12, 2010

(considering it is 2020 now), and you expect in return a boolean value of

False.

If your tests are designed to do the above, and you get in response a

True and False, respectively, then your tests have succeeded.

This is typically called a unit test, where a small unit of your code

is tested for validity. Some people love them and write them for every

function, whereas some people say that a large portion of unit tests are a

waste of time. I can see why some unit tests can be described as a waste of

Chapter 8 testing and Code Quality

239

time. In the example above, where all you need to do is deduct two dates

from each other, is that really worth the effort to be unit tested? What are

the chances that such a simple algorithm will break? The chances are

indeed super-slim that it will break, but the chance exists that a developer

uses this function and passes through an incorrect date format, and that

your function does not do date validation. Something like that can have

unintended consequences. But in my opinion, the best consideration

for whether a function, like in this example, should be unit tested, is how

crucial its job is to the execution of business rules. Not issuing a credit

card to someone younger than twenty does sound to me like a very crucial

business rule, and I personally will want to test this function.

 Writing a Unit Test

First of all, let’s look at the technology you will use. For unit testing, you

will use a library called unittest. It is built into Python, and to use it you just

need to import it into your test script. You will then create an object which

will extend unittest, TestCase. Having unittest.TestCase as your parent

class gives you access to quite a few functions called assertions. With

assertions, you can assert whether the response from a data source is equal

to the data you are expecting. See Listing 8-1.

Listing 8-1. Demonstrated a Single Function and Two Unit Tests

import unittest

"""

This is the function we want to test

"""

def is_even(number):

 if number % 2 == 0:

 return True

 return False

Chapter 8 testing and Code Quality

240

"""

This is our unit test

"""

class TestEven(unittest.TestCase):

 def test_is_even(self):

 self.assertEqual(is_even(2), True)

 def test_is_uneven(self):

 self.assertEqual(is_even(3), False)

if __name__ == '__main__':

 unittest.main()

You will not normally have your actual code and unit tests in the same

file, but for this example, it works well. Let me explain what happens in the

code above.

 Anatomy of the Unit Test

On the first line, you import the unittest library. Underneath that, you

declare a function called is_even. This function purely checks if a value

is an even number. As a side note, it uses Python’s modulus operator, %.

This operator does division, but only returns the value to the right of the

decimal point. The class declaration after the function is of importance.

This class will be instantiated by Python and the unit tests live inside this

object. This class extends the unittest parent class called unittest.

TestCase. So your class, TestEven, is-an instance of unittest.TestCase.

Each unit test is inside a separate function, and as a rule of thumb, each

function should only run one test. The first function in your test class is

called test_is_even. It is important to note that a test function should

start with the word “test.” This is how the unittest library detects that

it is a function that should be run as a test and allows us to add helper

Chapter 8 testing and Code Quality

241

functions to our class, which will be ignored by the Python interpreter.

Inside the function called test_is_even is a simple one-liner that starts

with a function called assertEqual on self. You should remember that

passing self into your function means you have access to all of the class’s

functions. Because your class is a child of unittest.TestCase, you inherit

all of the functions inside unittest.TestCase, and that is where you

get the assert function from. There are quite a few assertion functions

available for different use cases. In fact, there are two assertion functions

with better names you can use to test your boolean values. The reason you

pass a hardcoded value of 2 is because you know exactly what the result

should be if you pass it a 2. This way you can test exactly what you expect

the function to return.

self.assertTrue(is_even(2))

and

self.assertFalse(is_even(3))

This is a technicality but is more descriptive. Some other assertion

functions that exists are as follows (to name only a few):

assertGreater

assertLess

assertGreaterEqual

assertIn

assertNotIn

But you do not have to learn them by heart. If you type self.assert

and then press Ctrl + spacebar, you will get a list of all the assertions

available.

Chapter 8 testing and Code Quality

242

 How to Run the Unit Test
This goes for the integration tests below as well. In the end, you want your

unit tests to be automated. There are also multiple ways to achieve this. For

your example, mounting the flask-server and running the unit tests from

the command line will suffice:

docker exec -it flask-server bash

python test.py

 Integration Tests
Integration tests are the testing of various components of your system

to see how they work together as a more complex unit. So, where a unit

test tests one function, a integration test tests how various functions

perform together to achieve a goal. Integration tests are better at picking

up regression errors than unit tests. A regression error is when something

else breaks because components linked to it have changed. Testing your

system’s connected modules is good at picking up these things. It does not

need to be the complete system, but it will test how different components

work together (are integrated with each other) to achieve the desired

functionality. This can be, for instance, testing how the database-layer

components interact with the business logic, or if an email can be sent. I

am personally quite a fan of this kind of testing.

You will write two integration tests in Python. This will test your first

get and post endpoint, without calling the endpoint directly from outside.

After reading this chapter, you should write unit tests for the remaining

functions as an exercise.

You will start by completing a few steps to set up your system to be

more testable. At this stage, your system is not 100% testable, because

you are bound to one single database. When your tests dig into your

database layer, it is very important that they do not use the production

Chapter 8 testing and Code Quality

243

database. In fact, in a system that has been set up properly, it should be

impossible to run unit tests where the production database is in reach.

Your production system should not know about tests. All of the testing

and reviewing should happen before your code has reached a production-

ready state. It is good practice to remove unit tests when your code gets

deployed to production. That is, remove it from the production system, not

the development system. Not only do you need to protect the production

system, you also want to avoid destroying your own, another developer’s,

or even your staging system’s database by accidentally letting your unit

and integration tests drop the database.

Just a quick word on terminology. Staging is a separate environment

where users can test your system and unit tests can run.

Okay, so you know that you should make sure you do not destroy your

databases. You should create a new one. Creating a new database and

selecting it for use can be fickle, and the better your system has been set

up, the easier it will be. Or rather, it will be easier if you have planned for

it. For your unit testing database, you will use a fast in-memory database

system called SQLite. This means that the database will be created from

scratch in memory, not on disk. Tables will be created and populated with

data for your unit tests. After the test has run, this database will technically

be gone.

There are many ways to write unit tests and many tools. I selected a

rather hands-on method to show you how to write a test, but it gets the

point across. Create a file called test.py. All your testing code will be in

this file.

First, import the unittest library, and let your test object inherit from it.

The if statement at the end of Listing 8-4, if __name__ == '__main__':, is

a strategy to prevent code from executing if the file gets imported. You will

also notice that you are importing app. This is the app.py file your code is

running in, and you need it to access the database criteria. This could have

been in another script, but I kept it in there for simplicity.

Chapter 8 testing and Code Quality

244

 How to Run the Integration Test
In the end, you want your integration tests to be automated. There are

multiple ways to achieve this. For this example, mounting the flask-server

and running the unit tests from the command line will suffice. Then see

Listing 8-2.

docker exec -it flask-server bash

python test.py

Listing 8-2. First part of the unit test

import os,sys

sys.path.append(os.path.abspath(os.path.join(os.path.dirname

(__file__), '..')))

basedir = os.path.abspath(os.path.dirname(__file__))

import unittest

import app

import json

from http import HTTPStatus

class TestAPIMethods(unittest.TestCase):

 # Empty for now

One the same indentation as the class, as this code does not

belong to the class

if __name__ == '__main__':

 unittest.main()

The next step is to set up the database. You do this by adding a function

called setup to the TestAPIMethods class, as in Listing 8-3. This must go

between the class declaration and the if __name__... declaration.

Chapter 8 testing and Code Quality

245

Listing 8-3. Unit test database setup

def setUp(self):

 self.db_uri = 'sqlite:///' + os.path.join(basedir, 'test.db')

 app.app.config['TESTING'] = True

 app.app.config['WTF_CSRF_ENABLED'] = False

 app.app.config['SQLALCHEMY_DATABASE_URI'] = self.db_uri

 self.app = app.app.test_client()

 app.db.create_all()

 cmd = "DROP TABLE IF EXISTS users"

 result = app.db.engine.execute(cmd)

 cmd = """

 CREATE TABLE users

 (id INTEGER PRIMARY KEY AUTOINCREMENT, name TEXT,

surname TEXT, identity_number

 INTEGER)"""

 result = app.db.engine.execute(cmd)

 cmd = "insert into users (name, surname, identity_number)

VALUES ('John', 'Connor', 200509)"

 app.db.engine.execute(cmd)

Just under the function declaration, you declare your database

connection to the SQLite database. Underneath that you will see app.

It refers to the app.py script. App.app refers to the Flask instance you

assigned it to.

 Why Do We Need the Flask App Instance?

You want to reconfigure the database connection to connect to a different

database. To this purpose, you intercept the current database connection

and rewrite its database configuration. When you run init.db(app.app,

"test"), you effectively take the app instance and give it the TestConfig

file.

Chapter 8 testing and Code Quality

246

Then, you confirm whether the users table already exists, and drop

it if it does. After that, you recreate it and populate it with one entry. This

allows you to query the test database in your first integration test. This test

will look like Listing 8-4.

Listing 8-4. First actual test

def test_get(self):

 result = app.get_user_details(1)

 expected = json.dumps({"name": "John", "surname": "Connor",

"identity_number": 200509,

 "links":

 [{"rel": "self", "resource":

"http://127.0.0.1:8000/v1/users/1",

"method": "GET"},

 {"rel": "update", "resource":

"http://127.0.0.1:8000/v1/users/1",

"method": "PATCH"},

 {"rel": "update", "resource":

"http://127.0.0.1:8000/v1/users/1",

"method": "DELETE"}

]}), HTTPStatus.OK

 self.assertEqual(result, expected)

After the function declaration, you call the get_user_details(1)

function on the app instance you imported, and on the subsequent line

you compare it to the line you entered into the database in the setup

function. You know to look for id 1. Since you recreate your database for

each test, you know that the insert you did in Listing 8-5 can only have a

primary key of 1. This is a good example of testing integrated components

without actually executing the complete flow of the program.

Chapter 8 testing and Code Quality

247

 A Last Issue and Some Refactoring
You are not quite done yet. You have managed to test a really simple aspect

of the system, which is to fetch data from the system. What if you want to

POST or PATCH data to the system? When you look at the patch and post_

user_details functions, as well as their ORM counterparts, you will notice

those functions exhibit what is called tight coupling. You will encounter

this phrase again later, but in general it refers to separate aspects of the

system that are completely dependent on each other but do not need to be.

One of the drawbacks is that not only does it make changes to your system

more difficult, but it also makes testing more cumbersome. Consider the

following function:

@app.route('/v1/users', methods=['POST'])

def post_user_details():

 try:

 data = request.get_json()

 sql = text(

 'INSERT INTO users (name, surname, identity_number)

values (:name, :surname, :identity_number)'

)

 result = db.engine.execute(sql, data)

 return json.dumps('Added'), HTTPStatus.OK

 except Exception as e:

 return json.dumps('Failed. ' + str(e)), HTTPStatus.

NOT_FOUND

Granted it is not the worst case of tight coupling I have seen. But it is

coupled tightly, and it binds the post_user_details function to the flask

request object, as well as to SQLAlchemy and the json object that does the

formatting on the return data. And it is not just that. In order to test this

function, you need to fake the request.get_json() function’s return type.

Faking, in this sense, is called test doubles, and basically means you replace

Chapter 8 testing and Code Quality

248

the value or object that would run in production with another value that

will only exist while testing. This function completely relies on an HTTP

REST request to get data into the database. To make a long story short, this

code is not easily testable, and bad design made it that way. To make it

more testable, you will refactor this function somewhat. As an exercise, you

can refactor the rest of the code on your own time, taking the steps in this

chapter as a guide.

Refactoring this code will not just make the code testable, but will also

make it reusable to an extent, as well as easily changeable.

You will create three functions.

The SQL portion, excluding the db.engine.execute part of your code,

will be replaced by a function called create. This technically decouples the

SQL insert part from the function called post_user_details and makes it

testable. In the function called create, you pass the posted data through as

a parameter. This allows you to do two things:

• Reuse the create function where needed.

• Test it without needing to fake the Flask request.

This create function does not rely on request.get_json() to get its

data. It relies on its own post_data parameter for data, and it does not care

where that data comes from. See Listing 8-5.

You will also create a function called execute, which will contain the

actual execution of your SQL, db.engine.execute part. This function

further decouples your code. With this function, you decoupled your

create function from the actual SQL engine you use. For all of your raw

SQL query functions, you should use this execute function. With the

function called execute, you only have to change one function should

you choose to change the database, instead of each db.engine.execute

implementation. This is a very cool feature of your decoupled code. In

the previous iteration, db.engine.execute was tightly coupled to the

REST endpoints, meaning that among other problems, should you have

Chapter 8 testing and Code Quality

249

to change the SQL engine from SQLAlchemy to something else, you only

need to change this one function. In other words, the create() function

does not really care how the execute function does its execution, as long as

it returns the data requested.

The same goes for the third function you create. The return_message

function is responsible for sending your response back in a certain

format. In a REST call, it is not compulsory to return JSON. You can send

back any format. It is just that JSON is a great standard for these tasks.

In this case, should you need to change the return format scheme from

JSON to let’s say, XML, you only need to touch one function. And once

again, the post_user_details function do not care what format the data

gets returned in.

You should now have three more functions, looking like Listing 8-5.

Listing 8-5. Populating the database

def create(post_data):

 sql = text(

 'INSERT INTO users (name, surname, identity_number)

values (:name, :surname, :identity_number)'

)

 return execute(sql, post_data)

"""

The return data here is handy to retrieve meta data from the

sql operation, for instance, the id of the last inserted row.

"""

def execute(sql, data):

 return db.engine.execute(

 sql,

 data

)

Chapter 8 testing and Code Quality

250

"""

Returns data in a json format

"""

def return_message(message):

 return json.dumps(message), HTTPStatus.OK

Your new post_user_details, combined with the newly introduced

functions in Listing 8-5, now looks like Listing 8-6.

Listing 8-6. New post_user_details function

def post_user_details():

 try:

 # Get the details from the request object as usual

 data = request.get_json()

 # Call the create function, passing it the data from the

request object

 # This object return an object, but we don't need to use

it here

 create(data)

 # Return the message 'Added'

 return return_message('Added')

 except Exception as e:

 return json.dumps('Failed. ' + str(e)), HTTPStatus.NOT_

FOUND

 Testing the New Code
To test the new code, you test the function you created called create, and

passed in as a parameter is a dictionary object. Remember that create()

returns an object. When you fetch the lastrowid property from it, you get

the primary key of the last inserted object done in the specific database

Chapter 8 testing and Code Quality

251

session. You use that id to query the database. The output of this query

should be similar to what the input was when you did the test insertion.

See Listing 8-7.

Listing 8-7. Testing post user details

def test_post(self):

 result = app.create({"name": "Peter", "surname": "Watson",

"identity_number": 511247})

 result = app.get_user_details(result.lastrowid);

 expected = json.dumps({"name": "Peter", "surname":

"Watson", "identity_number": 511247,

 "links": [{"rel": "self",

"resource": "http://127.0.0.1:8000/

v1/users/2", "method":

 "GET"},

 {"rel": "update", "resource":

"http://127.0.0.1:8000/v1/users/2",

"method":

 "PATCH"},

 {"rel": "update", "resource":

"http://127.0.0.1:8000/v1/users/2",

"method":

 "DELETE"}]}), HTTPStatus.OK

 self.assertEqual(result, expected)

That’s it. You have decoupled one of your functions by introducing

some more decoupled functions. Function execute can be reused

wherever you have raw SQL, and return_message can be used in all your

functions and it now testable.

Chapter 8 testing and Code Quality

252

 The Downside of Automated Testing
 The Validity of the Tests
You know that you can never say your system is bug-free, and automated

tests certainly do not claim your code is bug-free. But with a good testing

strategy, you can at least assume that current functionality is as predicted.

Testing like this does have potential pitfalls. One of the biggest pitfalls,

in my opinion, is the false sense of security it gives you. Here is a prime

example showing how unit tests can create a false sense of security,

which I encountered a few years ago. Somewhere around 2015, we had a

simple piece of code that generated a GUID. A GUID can have different

formats, but in general, it is a string consisting of the letters a - f and digits

0 - 9. This is arranged in combinations of 8 characters-4 characters-4

characters-4 characters-12 characters, like this: 8711a51c-f18c-42c3-8d4b-

85d485d5d33d. In any case, because the GUIDs were important to us,

we unit tested them. Soon I noticed that the GUIDs were wrong. Instead

of groups of characters of 8-4-4-4-12, we got 8-4-4-12. One of the center

groups of four was missing. Upon inspecting the code, I saw that the unit

test was indeed testing for the incorrect GUID format. I decided to dig a

little deeper and looked at the history of the expression that validated the

GUID and the code that generated the GUID. It turns out it was created

correctly in the first place, but when a bug snuck into the GUID creation,

instead of fixing the GUID, the unit test was “fixed.” The developer

actually thought that the original GUID was wrong and so they changed

it and the unit test. The test was now broken because it tested for a wrong

GUID, but it passed unit testing. Even though that did not really have bad

consequences, it could have been much worse.

When writing tests, you should focus on edge cases. It does not

matter if you write 100 tests with perfect data that cause your unit tests

to succeed. In this case, one test is as good as 100, and this tells us very

little about the system’s integrity. If you do not test edge cases, such as

Chapter 8 testing and Code Quality

253

how your system’s payment module handles payments on leap years,

or what happens when a name exceeding the max character length in

your database gets sent, then the sense of security in your system will

remain false.

 Time Pressure
Unit tests take time to write. That is a fact. As a software developer, you will

feel the pressure as a deadline looms, and you know you can shave some

time off if you neglect your automated tests. If reaching a deadline seems

to be in jeopardy, and not writing unit tests can for some reason help you

reach the deadline, then I go with a route that, as I mentioned earlier,

can cause a false sense of security. I write one test that must succeed per

aspect I want to test and one that must fail. This way, if something changes,

there is at least some sort of catch net. Having tests are better than having

no tests. Then, after the deadline, make sure to schedule a few days to

complete the tests.

Unit tests also take time to run. The reason we use in-memory

databases is to speed things up, but I have worked in a system where each

test took about 2 seconds to run. This was mainly due to the large dataset

in the test DB, and due to how things were structured in the DB, it was not

possible to change that. We ran about 100 tests. It can feel like ages if you

need to run tests for 200 seconds, but in the end, it was worth it.

 Peer Reviews
An invaluable tool for code quality is the peer-review process. This is not

something you can do if you are working on your own, but if you have

a small team, then this is a great tool to get a second set of eyes on your

work. Peer reviewing is a process that can go from very informal to very

formal. You can peer review your design as well as the software that was

Chapter 8 testing and Code Quality

254

created. I will not go in-depth into the various methods. I will just show

what I believe to be the two most wide-spread and common methods. One

is called a peer review, and the other is called a walk-through. We will start

with the former first.

A very effective method is purely to assign small units of work to a

colleague, who will then review the work for coding standards, errors

in your code, the effectiveness of your algorithms, whether the code

actually works, and above all, did you understand the problem and was

the problem solved. This is of paramount importance. The reviewer

may not have been present when the work was assigned and may have

no real clue of what the software should achieve. The project scope may

have been written in an ambiguous fashion, causing the developer and

the reviewer to have different opinions as to what the work should have

achieved. If the reviewer at any stage doubts whether the code, as perfect

as it may be, actually solves the problem it was intended to solve, they

should speak up.

I have seen a few times (and indeed I have been in this situation)

where work was done and sent for review, and upon receiving the code to

review, it became quite clear that the developer and the reviewer had two

different opinions of what the feature being developed had to achieve. In

one case, the reviewer was right, and the developer had a misconception

of what needed to be done. To be fair, their understanding of the system

was very similar, but just a small difference in understanding a business

rule would have caused the code to not perform what was desired. If

the reviewer had not understood the business rule correctly, the review

would have passed without an issue, and the problem may only have

been detected in production. This could, of course, have had rather bad

consequences. So to summarize, the following should be checked during a

review, in no particular order.

Chapter 8 testing and Code Quality

255

The developer should be concerned with the following:

• Is there a good description of what the software is to

achieve?

• Is it a small review? If you assign a review of 1000 lines

to a colleague, you can expect to get a review that was

not 100% thorough.

• Have you made any install or system update changes

that the reviewer should know of? Are there database

changes the reviewer should know of?

• Depending on how new the system is, it may also

require some usage instructions. How do you actually

use the new feature?

The reviewer should be concerned with the following:

• Coding styles

• Have automated tests been written?

• Are the algorithms optimal and void of any obvious and

serious errors?

• Are there any weak points where an intruder can enter

the system?

• Is the code being reviewed solving the problem that the

business has?

 Walk-Through
A walk-through is a bit more formal. In general, you schedule a meeting

with specific stakeholders in a meeting room. The stakeholders should be

given relevant data with relation to the work you are going to show them.

Chapter 8 testing and Code Quality

256

You go through the software product or feature on a step-by-step basis,

allowing the stakeholders to critique it and make recommendations, while

you take notes.

 Staging Environment and UAT
This is the final stage before you can release your code to production. The

code has been written, and unit tests have been run to detect regression

errors and errors in general. After that, the code has been reviewed.

Now you are ready to move the code to the staging server. The staging

server is an environment that accurately mimics the production server.

It is accessible by the people interested in the feature that has just been

developed. It will also run against a staging database, where data can get

edited and deleted without worry, so that the stakeholders can get the full

experience of the software. On the staging server, you can demonstrate

your code to stakeholders, and above all, ask the stakeholders to test the

system. Once it has been confirmed that the code meets the stakeholders’

standards, it can be released to production. The stakeholders can

be employees in the company you work for or the product owner. A

stakeholder is anyone with an interest in the feature being developed.

But the best people to test are the actual users of that specific feature.

One informal rule is that the software developer should not do the user

acceptance test (UAT). I mentioned that UATs are tests conducted by the

actual users of the system, to see if it does what is required of it. Software

developers are infamously bad at testing their own code and features they

created. User acceptance tests are great and should be mandatory, but in

most cases will not pick up on regression errors, unless the user testing the

system stumbles upon them.

That’s it. You now know some simple steps to increase confidence

in your codebase, especially pre-release. Each of these steps can fill a

few chapters, and your knowledge about these topics will grow as you

encounter them in your career.

Chapter 8 testing and Code Quality

257© Nico Loubser 2021
N. Loubser, Software Engineering for Absolute Beginners,
https://doi.org/10.1007/978-1-4842-6622-9_9

CHAPTER 9

Planning and
Designing Your Code
Knowing the tools of the trade is half the battle won. We have spent a

few chapters looking at the technological tools you can use to create

software. But tools do not make the software great. They do, however,

make the software development process great. You can still, if you want

to, do everything you have read in this book so far using Notepad and

FTP. Instead of Docker, you can run MySQL locally on your machine and

Python as well. Instead of Git, you can just make clumsy backups called

main.py.2020-01-15. Instead of running unit tests automatically, you can

even choose to run some tests manually. But there is one thing you cannot

compromise on, and that is the design of your code. In this chapter, you are

going to look at a basic system development life cycle, and after that, some

design tips and tricks. The processes feed well into each other, from the

flow of project execution, to high-level design, to lower level design.

The aim of this chapter is to introduce the concepts of designing your

code and having set steps to develop your code. I will not delve too deep into

the system development lifecycle but will show basic steps in separating the

actions you need to take to get your software from planning to production.

After the software development lifecycle, you will look at designing

aspects and how to create abstract models. The first will be on a high level,

where you will plan a portion of your executable code, and the second will

take a more granular look at the creation patterns of your objects.

https://doi.org/10.1007/978-1-4842-6622-9_9#DOI

258

 Software Development Lifecycle
In this section, you will look at the software development lifecycle

(SDLC). I will use a basic approach to the development lifecycle. The idea

of this section is to provide you with a generalized idea of the software

development lifecycle that you can use when you create your own projects.

 Why Use a Software Development Lifecycle?
The software development lifecycle enables us to focus and isolate the

different phases of the software creation process. These phases will guide the

software development process and allow us to complete our software in a

sequence of steps. Some of these phases can be revisited during the process,

as errors in understanding and errors in judgement are encountered. This is

fine. But it is important to notice that only certain phases should be revisited.

It is important to know that the phases feed into each other. The work in

phase one will be the basis for the work in phase two. The work in phase two

will form the basis for the work in phase three, and so on. Within each phase,

there is a clear distinction of what tasks need to be done. For instance, if you

are not in a development phase, you will not do any development. You will

only focus on the work to be done in each phase.

The aim of the software development lifecycle is to reduce risks and

costs by streamlining and formalizing the development process. It gives

us an indication of where we are in the creation of our software and may

help us calculate a time when we can potentially finish the software. By

following a specific sequence of steps, all based on the initial specifications

provided by the user, we can also control the features being added to the

system for that specific development task and prevent features being

requested that were not in the original design. This is a problem called

“scope creep” and it is a very real, and very human, problem in software

engineering. Scope creep adds to the total design time, and in the end, the

total cost of a product.

Chapter 9 planning and designing Your Code

259

 The Reality of Scope Creep and Not Pinning Down
Requirements

Many years ago, I decided to try my hand at some contract work. I found

a contract that sounded incredibly simple. It was just a template-based

emailing system that emailed the client’s contacts with deals and specials.

This was hardly a lot of work, so I quoted based on what was told to me

over the telephone and started working on it. It soon transpired that my

client himself did not know what he wanted, as more and more features

were added. A week’s worth of part-time work after hours turned into a

month and then two months. In my naivety, I kept on building the software

on the original quote and never adjusted the timeline either. I realized he

intended spamming people when he gave me a list of many thousands

of people and asked me to write an importer where he could just import

his list and send emails from that list. Upon questioning the size of the list

with his apparent client base, he said he found the list on the Internet. I

didn’t want to be part of spamming people, so we parted ways on a not-so-

amicable footing. His argument was that he was doing the spamming, not

me, whereas I felt I was the enabler. I lost two months’ worth of time, plus

getting no payment, and I have to say, it was my own fault. I did not pin the

requirements down and after accepting the changes I did not adjust the

quote.

What happened to me, in my first attempt to do contract work, can

happen in the biggest corporation or the smallest one-man show. You run

this risk whenever you are busy with a project.

 Steps in the SDLC
As mentioned, we will show a generalized approach to the SDLC. The first

thing to mention is that the word “lifecycle” in “software development

lifecycle” is exactly that, a cycle. The process is never really complete.

Even after you think you are done, you are not, because the last phase

Chapter 9 planning and designing Your Code

260

of the process is to support the system you created. And that can last as

long as the software is in use or you are available to support it. During

the support phase, new features will be requested, and each feature will

basically start its own SDLC and branch back into the original SDLC

during the support phase. Your software will never be completed. If you

stop supporting it, it will just grow old and eventually be unsupported by

modern technology. Vendors like PHP and Python do not intend to keep

backwards compatibility with software you wrote 10 years ago. It is just not

feasible. Eventually enhancements in your own tech stack will fail your

software. Your software will become redundant. This is indeed a sad end

for the software you were so proud of at one stage.

On a lighter note, here are the phases of a common software

development lifecycle.

 Phase One: Planning

This phase, planning, includes aspects such as scheduling the project,

organizing the teams that will work on it, doing a cost analysis and a

feasibility analysis, and so on. It is not unheard of that this phase excludes

the software engineering teams.

 Phase Two: Requirements

This phase, requirements, solves the problem of gathering requirements

from the stakeholders. The desired output of this phase is units of work,

which will be assigned to what is called “the backlog.” This phase will

generate a large amount of units of work, where each unit is a small task

that needs to be completed in order to eventually complete the project.

A unit of work may, for instance, be an endpoint that creates a user in the

system. It must be a small quantifiable unit of work that can be measured

and completed in a short time, normally within two days.

Chapter 9 planning and designing Your Code

261

 Phase Three: Design

The output of the design phase is what we will discuss in the rest of this

chapter. The design phase is where system specifications are created. In

this phase, you take the requirements and transform them into designs.

These designs will be graphical, such as UML diagrams, or even in a

human-readable format, like a Word document. Sometimes they may

even be something more abstract explaining the concept from a high level.

There is no real rule as to how the specifications should be created, or what

technology they should be created in, as long as they are understandable

and not ambiguous.

 Phase Four: Development

The development phase starts the software creation process, based on the

specifications from phase three and the work units from phase two. The

work units from phase two will be assigned to you, and the designs from

phase three will guide you in completing the work. This phase will in all

possibility also deliver graphical designs, as the developers may create more

granular designs of the components, and more granular process flows, in

order to compete the process. This phase will last quite a while and run as

a series of iterations, where each iteration has a duration as well as a fixed

amount of work units per developer to complete. For instance, one iteration

may last two weeks. Each developer in that iteration will be assigned the

amount of work that they should be able to finish in two weeks. Once that

iteration is done, another is started, and more work is assigned to each

developer to complete. These iterations are referred to as sprints.

 Phase Five: Testing (But Not the Sole Testing Phase)

This phase focuses on testing. Even though it follows the development

phase, it is not to be left for that one day when all development is done.

In reality, your code will be tested quite thoroughly inside a sprint, using

Chapter 9 planning and designing Your Code

262

methods such as unit tests and peer reviews. There will be a separate

testing phase before a big release, but no sprint, as discussed in phase

four, should have untested code. After a sprint, and after you have tested

the code yourself, written unit tests, and sent your code for a peer review,

you can get the relevant stakeholders together for user acceptance testing.

User acceptance testing will in general happen only after the developer has

completed the work.

 Phase Six: Deployment

A single large deployment mainly happens for a brand-new software

project. Once the software has reached a level of functional maturity,

which is normally quite quickly, the release process becomes a lot more

regular, often every two weeks, or if your company believes in fast releases,

whenever a work unit is done and tested.

 Phase Seven: Support and Maintenance

This phase will kick of numerous mini SDLCs whenever a bug is

encountered or a new feature is needed or even when the vendor software

needs upgrading. This phase includes improvements, bug fixes, new

features, and in general anything that keeps the software ticking. From this

phase, numerous mini SDLCs will be created.

When you look at these phases, it is easy for a beginner to get confused.

The SDLC has seven phases. However, often you will only need phase

two (unless the work was grabbed from the backlog, which means the

requirements have already been done, so you don’t need this phase), three,

four, five, and six. And within that, phase four can happen many times, with

software developers deploying many batches of production- ready code.

After that, they all kind of merge into phase seven, where phase seven is

almost the de facto state your software is in. Above all, you may not even be

aware that phase one even happened, as in some cases the developers are

only involved from phase two. This is a lot less chaotic than it sounds.

Chapter 9 planning and designing Your Code

263

In reality, when you have finished, tested, and deployed a unit, or a group of

units of work, you have implicitly created a mini SDLC. You should still stick

to the phase sequence. Do not code if there is no design. Do not deploy if

you have not tested thoroughly. Do not see your mini-SDLC as ended if you

have not deployed. In other words, do not take on more work. Actually, the

latter may be unavoidable, and good judgement is needed for that decision.

Not releasing code is something to avoid, as you cannot merge your

undeployed branch into the main branch that everyone else is branching

new work from. Not releasing code will cause your branches to become out

of date if you do not keep them up to date regularly. But even if you keep

your undeployed branch up to date, all subsequent work done by all the

other developers will exclude the work you have done that is not getting

deployed, and this can become a problem after a while.

There are quite a few competing SDLCs, but the steps are more than

sufficient to keep your software projects from going astray, if you keep to

them. The truth is that some companies follow an amended variation of

the software development lifecycle. There are no silver bullets out there

that will solve your problems out of the box. When we looked at code

calisthenics and coding standards, I mentioned that they should only be

applied where it makes sense. The same goes for an SDLC. If it does not

make sense to have two phases where you can just have one phase, then

you should not have two phases just to conform to the rules. The lifecycle

should be optimized to suit your needs. The best approach is to think

critically about it and not include aspects that you do not need.

 Modelling
 Where Does Modelling Fit In the SDLC?
Modelling is, in general, done in two phases in the SDLC: the main design

phase, which is phase three, and the development phase, which is phase four.

I have worked in companies where the design phase and the development

Chapter 9 planning and designing Your Code

264

phase are the same phase. As mentioned, no process fits any company

perfectly. In most cases, there will be some variation to the lifecycle but

based on an industry accepted standard, and this is fine. It may be necessary

to create complete models and diagrams before any work has started. This

is a great idea, especially in a brand-new project. However, in subsequent

iterations a few months down the line, those models and diagrams may

become insufficient as a sole source of system knowledge to complete a new

feature. New models or amendments to the old models may be required.

Then there are two ways of looking at the problem. In a lot of cases, if the

feature being developed is a two- or three- day task, modelling will happen

inside a sprint, and as you may remember, sprints happen in phase four, the

development phase. However, the task may be so big or so complex that you

have to go back to phase two, where you first gather requirements and create

the units of work, and then on to phase three where you start your design and

create you models, diagrams, and documentation, and then on to phase four

where development happens. And once again, more granular diagrams may

be created in the development phase, phase four.

 Why Create Diagrams and Models?
Mostly you won’t create a diagram for the complete system. You will create

multiple small diagrams which combined will form the complete system.

To keep things readable, this is the best approach. A lot of times, software

developers will listen to the requirements of the software they need to write

and then just start coding. It is very easy to paint yourself into a corner doing

this. Why do some developers proceed to solve a problem in this shoot-

from-the-hip fashion? They may feel that they understand the requirements

well enough to proceed without creating a visual model. They may have

already formed a solution in their heads and trust in their abilities enough to

execute that specific plan. To be honest, sometimes this works. The problem

is not just that it does not always work well; it is that it also does not always

fit into the current system properly or does not allow for potential future

Chapter 9 planning and designing Your Code

265

expansion of the system without a refactor. Modelling gives you a change to

verify your solution and your design. It gives you some time to really think

about what you are about to create, how the program will be executed, and

how your components will interact with each other.

Modelling also serves another purpose. It provides documentation.

When you leave your current position, or even when you look at code you

wrote 12 months ago, you need a reminder of what you did and what your

thought processes was when the software was written.

So you create models and diagrams to enable you to think critically

about the problem you want to solve. They guide you through the

development process, and down the line, provide you with documentation

relating to how you solved the problem.

 Tools
You will use draw.io to draw your diagrams. You can find it at https://

draw.io. It may prompt you to download a desktop application, which is

advisable.

 High-Level Models and Diagrams
High-level models and diagrams are used to explain the system at a

non-granular level; that is, no actual classes get designed. This gives you

an overview of the system or a portion of the system, how data will flow

through it, and the execution paths. A range of diagrams exist for this, and

they all have their different pros and cons. The high-level diagrams you

will be looking at are the following:

• Activity diagram

• Use cases

• Swimlanes

• Database diagrams

Chapter 9 planning and designing Your Code

https://draw.io
https://draw.io

266

You will use UML to create your diagrams. UML stands for Unified

Modelling Language.

 Activity Diagram

Activity diagrams are not very complex to create and are probably the

most used diagram due to their ease of use. They have a limited set of

shapes that are used to model the diagram, but those shapes make them

quite powerful. They can show splits in the path of execution logic, basic

decision-making structures where the system should make a decision

and choose one of multiple paths to execute, iterative structures where

something should happen multiple times, as well concurrent execution.

I am wary of describing decision-making structures as if statements and

iterative structures as loops, since this is still a high-level overview, and

programming terms should not really come into play. But in general, those

structures can be seen as if statements and for loops.

The following symbols are used in this diagram:

• The start of the flow is a black dot.

• Ellipses are actions being taken.

• Diamonds are decisions.

• Horizontal black bars represent the splitting or the

joining of activities that run concurrently.

• Arrows link the actions.

• An arrow pointing back to a previous execution step

represents iterations.

• A black dot within a circle represents the end of the flow.

Let’s model a card payment system. In order to pay, you need to have

the correct PIN, and you can retry upon entering the incorrect PIN. (We will

not dwell on maximum amount of retries for this diagram.) You also need

enough money in your account, and you can’t exceed your spend limit for the

Chapter 9 planning and designing Your Code

267

day. If you do not pass any of the last checks, you can select a new payment

card. This description can be modelled as shown in Figure 9- 1. The square

speech bubbles are not part of the diagram; they are merely my comments.

Here you can see the starting point for this diagram is a black circle. A

user will be able to select a card to pay with. After the card selection, the user

will provide a PIN number. If the PIN is wrong, the user will be taken back

to enter a PIN. If the PIN is correct, you verify that the user has the correct

Figure 9-1. Activity diagram

Chapter 9 planning and designing Your Code

268

amount of funds in their account. These checks are done concurrently,

hence the two black bars below and beneath the balance and total spend

check. If no funds are available, the user can select another card; otherwise,

you process the funds, after which the process is seen as done.

Granted, these steps are inadequate for a real-life transaction

processing process, but they serve pretty well to get the idea across. You

will not have one diagram detailing a complete system. Instead, you will

have multiple complete and detailed diagrams that each cover a specific

portion of the system.

 Use Case Diagram

A use case models the relationships and actions a user (called an actor)

can perform on a system. It categorizes the events that can happen and

does not delve into how those events are actually solved at runtime. They

are quite handy for pinning down system requirements as well but offer

a great overview of the feature you are looking at. They can become quite

complex, drilling down deeply into what the system should achieve.

Personally, I like to keep them simple, giving me and non-technical people

the ability to easily understand the system from a high-level overview. I

have seen how non-technical people quickly perceive how I understand

their tasks with a simple use case diagram I drew of their tasks. Back to the

diagram. An actor does not need to be a human. It can, for instance, be an

external automated system that communicates with your system. A rule of

thumb is to stick to the explicit problem you are trying to solve. If you want

to show how a user can send an email on the system, do not show how the

user can log in as well. Logging in can be a use case on its own. Show one

main set or flow of actions and the users and contributors to those actions.

You will once again have multiple sets of use cases, instead of one set

explaining the complete system. Say you have finance clerk, and you need

to model their current job in order to build it into the a new system. This is

only a small portion of their tasks, but that is the way you want to model it.

Each task that can be separated from the others will get its own use case.

Chapter 9 planning and designing Your Code

269

You can provide a verbal description as well, such as “as a financial

manager, I need to take the CSV file of payments and upload it into the

system. I then confirm all the entries are in and run a fraud check, and if

all looks well, I flag the entries as payable. After that, it can be authorized

for payment, and the accountant will release the funds. This is modelled in

Figure 9-2.

Figure 9-2. Use case diagram

Chapter 9 planning and designing Your Code

270

As you can see in Figure 9-2, a glance at the diagram is easier to digest

than even that short description, although having both is always a win.

Figure 9-3 is another example of a use case, and in this instance, what

your use case should not look like. Notice that there are two issues in one

use case.

In the above use case, logging in and resetting password should not

be present because they are not part of this specific flow of actions to

complete a task.

 Swimlanes

Swimlanes are handy tools that show clear task separation between the

entities that do them, as well as how they interact with each other and

what the end result of such an interaction should be. Swimlanes can show

Figure 9-3. Incorrect use case diagram

Chapter 9 planning and designing Your Code

271

inefficiencies in existing systems, which is very handy when you need to

rebuild a system to be more efficient. They also give a really good overview

of how system aspects work together. In swimlanes, each lane has a clear

division and task, and each lane belongs to an entity, where that entity can

be a human, a complete system, or a subsystem. There is a bit more to the

symbols of swimlanes, but the most commonly used ones are shown in

Figure 9-4.

Figure 9-5 shows the execution flow of the finance manager’s CSV

upload in order.

Figure 9-4. Swimlane symbols

Chapter 9 planning and designing Your Code

272

In Figure 9-5, you can see how the execution starts with the finance

manager uploading the CSV file to the FTP server. A cron checks for new

files at specific intervals. If no files are found, then the system state does

not change at all. If a file is found, it gets imported into the system, after

which the manager is notified. The manager does some fraud checks, upon

which the accountant is notified to release the funds. The releasing of the

funds signals the end of the process.

It is quite easy to follow the flow of execution, and above all, the

swimlanes provide a bit of an overview of business processes governing

the system. There is still more to swimlanes than meets the eye, but this

should set you up to be able to create your own swimlanes.

Figure 9-5. Swimlanes

Chapter 9 planning and designing Your Code

273

 Database Diagrams

Database diagrams are quite straightforward. They model the relationships

between datasets. Database diagrams are also called ERDs, or entity

relationship diagrams. There are few sets of notations in ERDs, such as

Chen notation, crow’s feet notation, and UML notation. We will look at

UML notation. I have encountered crow’s feet notation a few times in

my life, but in the end, all other database diagrams I have encountered

use UML notation. To be honest, I prefer it as well. You can immediately

read the relationships between the data tables without having to pause

for a second to try to remember what the symbols mean. UML relational

notation is very readable. In an ERD diagram, there are boxes connected

with lines. These boxes represent tables, which basically represent an entity

in your software. Each box has a table name, columns names, primary keys,

and potential foreign keys. Between the data that your boxes represent are

associated relationships. For instance, a user can have one address but

many telephone numbers. The format of the box is arbitrary and depends

on what modelling tool you use, but it can look like Figure 9- 6. There is a

field for tablename, primary key, and different field names and their types.

Figure 9-6. Table diagram

Chapter 9 planning and designing Your Code

274

 Modelling Relationships

A single line, with nothing else on it, in general means a one-to-one

relationship. But you can also put a 1 on the actual line to indicate a

mandatory one-to-one relationship. Figure 9-7 shows a one-to-one

relationship. Figure 9-8 shows a one-to-zero-or-many relationship,

meaning a user may have zero or many addresses. You can also use 0..1

to indicate a zero-or-one relationship and 1..* to indicate a one-or-many

relationship between users and addresses.

That is already very understandable. Figure 9-8 shows what a many-to-

many relationship looks like.

Figure 9-7. ERD

Chapter 9 planning and designing Your Code

275

From the left, you have one user, which can be linked to zero or more

countries, and countries can be linked to zero or more users.

You should be quite confident in modelling a database. Normalizing a

database is the difficult part. Modelling the db is the easy part.

 Low-Level Models
In this section, you will have a look at the more granular creation of

components that make up your system. You will look at some tools you

can use to create classes that will perform well under scaling and aid in

understandability. The topics you will look at are the following:

• Types of objects (value and entity, etc.)

• Cohesion and coupling

• SOLID principles for object design

• DRY principles for code reuse

• Composition

 Types of Objects

I will discuss two types of objects that you will create, a value object and

an entity object. The first difference between the two is that a value object

cannot operate on its own but is part of an entity object. A value object

represents something that does not have an identity in the system but is

part of something that does have an identity, like a User. It does, however,

Figure 9-8. Many to many ERD

Chapter 9 planning and designing Your Code

276

encompass its own rules, methods, and attributes. An example of a

value object is a password field. The password field can be its own class

with its own password validation methods. This class is part of a bigger

entity class called User. A User has an identity and is represented in the

database. Value objects cannot (should not, because technically you can)

be changed once they have been created, as this can lead to potential bugs.

Entities can have their attributes changed without a problem. To come

back to the password example, normally you would be tempted to declare

the field password as a string within User, and all the validation methods,

whether creating a password or validating a password, live in the User

entity. By making password a value object, you relieve the User of the task

of password validation, but you still have password as an attribute of User.

User is still responsible for writing a password to the data table upon user

creation but not responsible for password validation when the password

gets created. This improves the cohesion of your code, a concept you will

explore a bit later.

So, in short, try to distinguish between different classes: those with

an identity inside the system, like a Vehicle, and those that do not have

identity, like Vehicle’s mileage. Instead of having mileage as a float

attribute inside Vehicle, and leaving Vehicle with the responsibility of

calculating distance between mileage entries or whether the mileage

is appropriate, let a mileage value object do it. You can also create, for

instance, a Service class as a value object, which tells you when it is time

to go for a service. This object can take a mileage object as parameter

when it needs to see if it is time for a service. See Listing 9-1.

Listing 9-1. Mileage and vehicle class

class Mileage:

 def __init__(self, previous_miles: int, current_miles: int):

 if current_miles < 0 or current_miles < previous_miles

or previous_miles < 0:

Chapter 9 planning and designing Your Code

277

 raise Exception('Incorrect miles entered.')

 self.current_miles = current_miles

 self.previous_miles = previous_miles

 def miles_current(self):

 return self.current_miles

 def miles_previous(self):

 return self.previous_miles

class Service:

 SERVICE_MILES = 1000

 def __init__(self, mileage: Mileage):

 self.mileage = mileage

 def must_service(self):

 return self.mileage.miles_current() - self.mileage.

miles_previous() > self.SERVICE_MILES

class Vehicle:

 def __init__(self, vehicle_type: str, numberplate: str,

mileage: Mileage):

 self.vehicle_type = vehicle_type

 self.numberplate = numberplate

 self.mileage = mileage

 def time_for_service(self):

 service = Service(self.mileage)

 return service.must_service()

mileage = Mileage(1000, 2900)

vehicle = Vehicle('Ford', 'CAM123456', mileage)

print(vehicle.time_for_service())

Chapter 9 planning and designing Your Code

278

In Listing 9-1, you can see your Value object, called Vehicle. Vehicle

needs to see whether it is due for a service, but uses two value objects to do

so, Mileage and Service. With this design, you take the logic to calculate

mileage and service notifications out of Vehicle, so that Vehicle can

concern itself only with what it really needs to do. This keeps the objects

small and reusable.

 Cohesion and Coupling

Coupling and cohesion are two aspects that address how interlinked

classes are and to what degree a class does one thing. Let’s look at coupling

first.

Coupling

Coupling refers to how much your classes explicitly depend on each other.

What do we mean when we say classes are dependent on each other? Surely

that is why we create classes, so that they can collaborate and share data,

and call methods to perform tasks? Well, the coupling concept refers to how

much classes are dependent on the physical presence of very specific object

instances. It can also refer to how many other objects your class needs in

order to function. If your class needs 15 other classes, it is possible that your

class is doing too much, or that you went overboard on creating classes,

and that you have spread the task of one class over two, three, or potentially

even more other classes. There are two types of coupling, loose coupling

and tight coupling. Loose coupling refers to a low dependency on each

other, and tight coupling refers to a high level of dependency. In short, loose

coupling is good; tight coupling is, well, less good.

Fortunately, I have two examples at hand to demonstrate this. Look

at Listing 9-1. Within the time_for_service function, you are tightly

coupling the Service class to the Vehicle class. The Vehicle class is also

now responsible for creating a Service object, something that is certainly

not its job.

Chapter 9 planning and designing Your Code

279

The second issue is that you have a Mileage class and a Service

class. Although it is good to have these value classes, looking at this

implementation, the class called Service does nothing but use Mileage’s

function to achieve its goals. It knows too much about Mileage. In fact, as

mentioned, without Mileage, the Service class would be useless. So now

you have three classes, tightly coupled.

One of the solutions you can consider is shown in Listing 9-2.

Listing 9-2. Refactored mileage and vehicle class

class AbstractService:

 SERVICE_MILES = 0

 TYPE = ''

 def __init__(self, previous_miles, current_miles):

 if current_miles < 0 or current_miles < previous_miles

or previous_miles < 0:

 raise Exception('Incorrect miles entered.')

 self.previous_miles = previous_miles

 self.current_miles = current_miles

 def must_service(self):

 print('Calculating ' + self.TYPE + ' service mileage')

 return self.current_miles - self.previous_miles > self.

SERVICE_MILES

class Service(AbstractService):

 SERVICE_MILES = 1000

 TYPE = 'normal'

Chapter 9 planning and designing Your Code

280

class MajorService(AbstractService):

 SERVICE_MILES = 10000

 TYPE = 'major'

class Vehicle:

 def __init__(self, vehicle_type: str, numberplate: str):

 self.vehicle_type = vehicle_type

 self.numberplate = numberplate

 def time_for_service(self, serviceObject: AbstractService):

 return serviceObject.must_service()

vehicle = Vehicle('Ford', 'CAM123456')

print(vehicle.time_for_service(MajorService(1000, 20000)))

print(vehicle.time_for_service(Service(400, 453)))

So, what’s changed? First of all, you removed Mileage and all

references to it. You will only use the Service class. Mileage is not needed

because you are not interested in mileage at all. The Service class can

handle all of the calculations and input rules to calculate the service

period. In order to display how you decoupled the Service class from

Vehicle, you made quite a few changes. Secondly, you added another

Service class called MajorService. MajorService is exactly the same as

Service and only differs in how it calculates its service period. Granted,

it is not very impressive in its differences, but it should be sufficient

to demonstrate how it works. After that you added an abstract class

called AbstractService and added a constructor to it. Service and

MajorService should extend this AbstractService class. They are both

now of type AbstractService and they both overwrite the attributes

TYPE and SERVICE_MILES. The function def time_for_service(self,

serviceObject: AbstractService) now takes an object of type

Chapter 9 planning and designing Your Code

281

AbstractService as a parameter. With this change, you can pass a Service

or MemberService object to the time_for_service function. Should you

think of other Service types, it’s easy to add them. The objects are also

created outside the Vehicle object, which further decouples it. Because

you got rid of the Mileage class, you needed a new way to get miles

into the Service object. You added this ability into the Abstract class’s

constructor.

A last word about coupling. Coupling will always exist. The goal is not

to get rid of coupling, just to keep it as low as possible.

Cohesion

Cohesion is a rather important topic. It refers to the degree to which

a module’s internal components are related, or in simpler terms, they

do things that are not really related to each other. It keeps a class’s

responsibilities focused on one thing. For instance, if you have a class that

represents a user’s shopping basket, then that object should not represent

the user’s login function as well. You should have a User object and a

ShoppingBasket object. You can also inspect your classes and see whether

all the functions make use of the attributes inside the class. You should

not really need any functions that do not touch any of the attributes inside

your class. Maybe that function should move? Another pattern that we are

fortunately seeing less and less nowadays is the “helper” class. This was

somewhat popular a while back. It consists of an object with a bunch of

functions that “helped” you achieve a variety of goals. It was a mismatch of

functions that could, for instance, strip spaces, do searches, flatten arrays,

you name it. This should also be avoided because it points towards a lack

of planning of the architecture.

Chapter 9 planning and designing Your Code

282

 SOLID

SOLID is an acronym for five principles that when applied to your software

make for better design. They are listed below. Some of them should be

familiar to you.

Single responsibility principle

Open/close principle

Liskov substitution principle

Interface segregation principle

Dependency inversion principle

Single Responsibility

We already discussed single responsibility, and it’s the same as cohesion.

It further states that a function or class should have only one reason to

change. This is easy enough if your object or function does only one thing.

Open/Close Principle

The open/close principle states that an object should be open to be

extended it and closed for modification. Listing 9-2 shows code that

displays the open/close principle. Initially, you had one Service class.

When you decided that Service may have two behaviors, you could have

just shoved the new behavior into the Service object and made it look

roughly like Listing 9-3.

Listing 9-3. Open/Close principle

class Service:

 SERVICE_MILES = 1000

 MAJOR_SERVICE_MILES = 10000

Chapter 9 planning and designing Your Code

283

 def must_service(self, serviceType):

 print('Calculating normal service mileage')

 if serviceType == 'normal':

 return self.current_miles - self.previous_miles >

self.SERVICE_MILES

 return return self.current_miles - self.previous_miles >

self.MAJOR_SERVICE_MILES

This may look innocent enough, and you may even think but it looks

better! It certainly looks like less code. But remember, less code is not

always better. Here you have a function that not only does two things by

calculating normal services and major services, but if you want to add

another type of service, for instance some vehicles need a minor first

service, then you need to add it here as well, meaning the function is open

for modification, which is bad, plus it increases this function’s complexity

and this function now does three things. In Listing 9-4, you can see how

adding more aspects to it just creates more complexity.

Listing 9-4. Refactored open/close principle

class Service:

 MINOR_SERVICE_MILES = 1000

 NORMAL_SERVICE_MILES = 1000

 MAJOR_SERVICE_MILES = 10000

 def must_service(self, serviceType):

 print('Calculating normal service mileage')

 if serviceType == 'normal':

 return self.current_miles - self.previous_miles >

self.NORMAL_SERVICE_MILES

 elseif serviceType == 'minor':

Chapter 9 planning and designing Your Code

284

 return return self.current_miles -

self.previous_miles > self.MINOR_SERVICE_MILES

 else

 return return self.current_miles -

self.previous_miles > self.MAJOR_SERVICE_MILES

To adhere to the open/close principle, going back to Listing 9-2, you

created a parent class, AbstractService. The goal of AbstractService is

to provide an extendable parent class that is open for extending but closed

for modification. To add another Service type, let’s call it MinorService,

you just need to overwrite the TYPE and SERVICE_MILES attributes, and

extend AbstractService, like so:

class MinorService(AbstractService):

 SERVICE_MILES = 500

 TYPE = 'minor'

This layout also makes it the calling code’s responsibility which

Service gets called, and not the service class itself.

Liskov Substitution Principle

The Liskov substitution principle states that if you have a parent-child

class relationship, then you should be able to swap the two with each

other without breaking the system. What do we mean by breaking the

system? Obviously, when you switch the objects out, your output will

be affected because the two objects have differences in their internal

algorithms. We do not see this as breaking the code. Breaking in this

instance means the software ceased to execute properly, either by

breaking or by incorrectly taking a completely wrong path in the system.

Look at the code in Listing 9-5. This code can be added to the code in

Listing 9-2 for execution purposes.

Chapter 9 planning and designing Your Code

285

Listing 9-5. Liskov substitution principle

class MinorService(AbstractService):

 SERVICE_MILES = 100

 TYPE = 'major'

 def must_service(self):

 print('Calculating ' + self.TYPE + ' service mileage')

 return str(self.current_miles - self.previous_miles >

self.SERVICE_MILES)

if vehicle.time_for_service(MinorService(1000, 20000)) == True:

 print('You are due for a minor service")

In this snippet, you extend AbstractService, but you decide to

override the must_service method. This is fine. But look at the line

where you return from the must_service function. Instead of sending

back a boolean True, you send back a string and cast the result to a

string right before returning. Since all of your child classes need to be

replaceable by the parent class without causing the system to break, this

will actually violate the Liskov substitution principle. Look at the last two

line of Listing 9-5. They are doing a boolean comparison. Because you

are now sending back a string instead of a boolean, your “are you due for

a minor service?” check fails. If you stuck to the principle, this would not

have happened.

How can you avoid it? Well, you can set up stricter contracts between

the extending types. In your case, the class named AbstractType is the

contract, telling you what your functions should look like, because that is

all a contract is basically: an agreement that if you extend me, you should

do things my way. You can make this contract more understandable by

changing the parent’s function as follows. The must_service method

inside AbstractService can be given a return parameter typehint, as

follows:

Chapter 9 planning and designing Your Code

286

 def must_service(self) -> bool:

 print('Calculating ' + self.TYPE + ' service mileage')

 return self.current_miles - self.previous_miles > self.

SERVICE_MILES

The method now states exactly what type of value should be in its

response, and it will be a lot easier for the developer to follow and extend

on it.

Interface Segregation Principle

The interface segregation principle states that no object should be forced

to implement methods it does not need. How do you force an object

to use methods it does not need? Similar to parent classes, you have

interfaces. Interfaces are like parent classes, but their functions do not

have any executable logic. An interface is a way for a developer to force

a contract upon a class. In other words, it is a way to force a developer

to use very specific functions. Saying “contract” is a fancy way of saying

“exactly the same function declarations and return types.” This way you

can create similar objects that can be used in similar places. Looking

back at Listing 9-2, your Service classes which extend the abstract

class all adhere to a contract, well, to a lesser extent, because the parent

provided to function must_service, but the principle stays the same. You

can use all of the services because they are subtypes of one supertype

and they adhere to its contract. To illustrate this idea even more clearly,

let’s create an interface. To clarify, you use an interface to force a class

using that interface to write implementations for the functions inside the

interface. This is great because it means you can create many types that

implement the same functions and use them interchangeably, like you

did with the services. See Listing 9-6.

Chapter 9 planning and designing Your Code

287

Listing 9-6. Interface segregation, incorrect example

import abc

"""

This is our interface

"""

class ActionsInterface(abc.ABC):

 @abc.abstractmethod

 def eat() -> str:

 pass

 @abc.abstractmethod

 def tree() -> str:

 pass

"""

This is the class implementing the interface

"""

class Human(ActionsInterface):

 def eat(self) -> str:

 return 'I am eating'

human = Human()

print(human.eat())

You use the abc library, an initialism for Abstract Base Class, to help

create the interface. Looking at the methods inside the ActionsInterface,

you can see that they only have the statement pass in their bodies. pass

just means “go ahead and do nothing.”

To come back to the interface segregation principle, the interface you

created is in violation of it. Whereas a human can eat, it certainly cannot tree

and you have no reason to implement the tree function. If you want your

human objects to conform to the ActionsInterface, you will be forced to let

them implement the tree method as well. The code in Listing 9-6 won’t run

unless you move tree out into its own interface, as in Listing 9-7.

Chapter 9 planning and designing Your Code

288

Listing 9-7. Interface segregation, correct example

import abc

"""

This is our actions interface

"""

class ActionsInterface(abc.ABC):

 @abc.abstractmethod

 def eat() -> str:

 pass

"""

This is our botany interface

"""

class BotanyInterface(abc.ABC):

 @abc.abstractmethod

 def eat() -> str:

 pass

"""

This is the class implementing the interface

"""

class Human(ActionsInterface):

 def eat(self) -> str:

 return 'I am eating'

human = Human()

print(human.eat())

To get around this problem, the solution is easy. It’s better to have

many small interfaces that are focused on specific things than a big

interface containing many contract items that will not be used by your

class.

Chapter 9 planning and designing Your Code

289

Dependency Inversion Principle

The dependency inversion principle may be a bit trickier to understand

but fortunately you already have an example! This principle states that

your higher level classes, the ones that get executed first, should not rely

on concrete lower level classes, but instead rely on abstractions of those

classes. Your higher level class does not need to know the exact details

of the lower level class it is receiving. Instead it can rely on what is called

duck typing, which basically means that if it has the right functions, then

you’re good to go. Where did you implement this? Once again, go back to

Listing 9-2. Look at the Vehicle class.

class Vehicle:

 def __init__(self, vehicle_type: str, numberplate: str):

 self.vehicle_type = vehicle_type

 self.numberplate = numberplate

 def time_for_service(self, serviceObject: AbstractService):

 return serviceObject.must_service()

Looking at the time_for_service function, you implemented

dependency inversion. This function, a higher level function, does not

know or care about what service it is getting. It is dependent on the

abstract class, and any subclass can be given to it.

Dependency inversion decouples you from the implementation details

of the lower level functions and allows you to reuse the code more easily.

 DRY

Dry is another acronym, standing for Don’t Repeat Yourself. This rule

is very easy to grasp. It means that for every aspect in the system, there

should be one and only one authoritative instance or representation in the

system. Once you start having duplicate sources of knowledge, you run

Chapter 9 planning and designing Your Code

290

the risk of one getting out of date and being used by a new developer to

yield incorrect results. It means that changes only need to be done in one

place. This can be something small like a VAT rate or a class that retrieves a

person’s password. It should live in only one place.

A few years ago, South Africa’s VAT rate changed. I was working on a

financial system that relied heavily on VAT calculations. Turns out that VAT

was only declared once in the system’s calculations and used throughout

as a constant, so to change the VAT rate on the system was as easy as

changing a single constant, and the hundreds of other places it was used

did not need to be touched.

 Composition

Composition is a class creation technique considered to be the exact

opposite of inheritance. The one technique is not better than the other.

Both are great if applied correctly. Composition merely refers to creating

an object built up from other objects as opposed to inheriting those

objects’ details. Look at Listing 9-8 as an example.

Listing 9-8. Composition example

class DB:

 def connect(self):

 print('DB connect class')

class LogFiles:

 def write(self):

 print('LogFiles connect class')

class InheritanceAccess(LogFiles, DB): #needs database access

and log access

 def __init__(self):

 print('Inheritance')

Chapter 9 planning and designing Your Code

291

class CompositionAccess(): #needs database access and log access

 def __init__(self, DB, LogFiles):

 print('Composition')

inheritance = InheritanceAccess()

composition = CompositionAccess(DB, LogFiles)

Look at the class named Inheritance. It works but is a really bad use

of inheritance. You now have a User with supertypes of DB and LogFiles,

meaning User is-a DB and LogFiles. This is completely wrong. You should

never inherit from a class purely because it has cool things in it, like a DB

connection for instance. You will also be very prone to breaking the Liskov

substitution principle this way.

A better solution in this case is composition where you create a has-a

relationship. Look at the class called Composition. Its constructor takes

two classes, DB and LogFiles, and you cannot instantiate your class

without them. Your CompositionAccess class is still a CompositionAccess

class, with a has-a relationship to DB and LogFiles.

 Summary
If you can stick to most aspects in the chapter for the design and code

writing phase, you will be good to go. It does take a lot of practice and

many errors to start recognizing where a SOLID principle gets violated or

how to get all of the details in a diagram. The best approach is to (almost)

never slack off. Approach all the code you write with seriousness, as each

day of designing properly and thinking about your solutions and problems

will bring you closer to intuitively noticing when you are about to make

a mistake in your code or sensing an error in someone’s code you are

reviewing.

Chapter 9 planning and designing Your Code

293© Nico Loubser 2021
N. Loubser, Software Engineering for Absolute Beginners,
https://doi.org/10.1007/978-1-4842-6622-9_10

CHAPTER 10

Security
A very important aspect of writing code is securing it, and in this chapter,

we will look at some ways to do so. The aim of this chapter is not to teach

you how to break into systems, but to make you aware of the different

attack angles and how to protect against them. There are a lot of people

out there who will try and break into your system, for various reasons. In

contrast to popular belief, people who break into systems are not called

hackers. They are actually called crackers. As a software developer, a

large portion of the task of securing the system will fall on your shoulders.

Chances are that some weakness in your code will expose a path into the

system, to steal data or gain unlawful access.

This chapter contains some common attack vectors that you should

know about and that you can easily prevent. As with all the other chapters,

there is a lot more to breaking into systems than this, but this is a great

start. A great online resource to read is owasp.org. They publish yearly lists

of the top ten threats, which are great insights as to how to protect your

system.

There are various reasons people break into systems. It may be for

financial gain, to deface a site of an entity they don’t like, to steal data, or

simply for bragging rights. Whatever the motive may be, no target is too

small. You should never think that no one will attempt to break into your

system. Crackers are aided by the anonymity of the Internet and can snoop

around your system for months without you having a single clue that it

is happening. They also employ automated tools, which makes it even

easier for them. On a small system I built about three years ago, I decided

https://doi.org/10.1007/978-1-4842-6622-9_10#DOI

294

to install a web application firewall called modsec. This was after about a

year of the site running. Within the first day of modsec running, I started

seeing malicious access attempts. And it was happening daily. Looking at

the timestamps of my modsec log entries, I could see it was an automated

system doing the requests. One request exactly every 5 minutes. What

could I do about this? Well, I had already done something about it.

Installing Modsec prevented those requests from even reaching my

system, and that was a great start. But I am still pretty sure some requests

made it through to my system. For those requests, I employed the tricks I

will mention below.

Before we start, I want you to remember that you will potentially

become a software engineer one day. The emphasis of your job will be

to build software. The emphasis for a cracker is to know systems and

exploit them. Never think you know more than an attacker does, because

the chances are, you don’t. If you have 1000 input fields, of which one is

unprotected, chances are that after four months of trying, an attacker will

find it, so make sure everything is plugged up.

 Securing Your Code
You are going to look at the following aspects of securing your system. The

first section is on a code level and consists of the following. This is not an

exhaustive list, and it is always good to look at owasp.org for a full threat list.

• SQL injection

• Cleaning variables

• Keeping errors a secret

• XSS

• CSRF

• Session management

Chapter 10 SeCurity

295

The second section is more on a system level:

• Keep your system up to date

• Database users

• Ports

• Docker images

• HTTPS

• Password policy

The third section is an attack vector that is becoming more and more

prevalent and is called social engineering.

 Code-Level Security
 SQL Injection
SQL injection is a very easy way to compromise databases. By using this

technique you can steal, edit, and destroy data. But it is even easier to

protect against SQL injections, and in fact, you already did so when you

wrote your Flask application. First, let’s look at the basics of a SQL injection

attack. I will show a basic attack, but they can get very complex.

A SQL injection attack is performed when an attacker sends a partial

or full SQL string as data instead of, for instance, a username or password,

formatted in such a way that it will edit your SQL and change it. Let’s say

you have a table called users, and within this table, you have username

and password fields. To retrieve login data, you run the following query.

Bear in mind that the username and password fields are provided by the

user using your system.

SELECT * FROM users WHERE username = 'peter' AND password =

'h2*K64e';

Chapter 10 SeCurity

296

In this case, the username is equal to ‘peter’, but peter would come

through as a variable (as would the password, but we can ignore the

password for now).

user_name = 'peter'

password = 'h2*K64e'

SELECT * FROM users WHERE username = user_name AND password =

password;

In SQL, you can comment out legitimate SQL by using two dashes,

--. Everything after the -- gets ignored by the SQL engine. Let’s can exploit

the usage of these dashes to help us craft a SQL injection attack.

What would happen if we change the user_name variable to look as

follows?

user_name = " ' AND password != 'dfasdf' ;-- "

Our SQL will be executed to look as follows:

SELECT * FROM users WHERE username = 'aa' AND password !=

'dfasdf' ;--' AND password = password;

In the above statement, due to the injection, all that will execute is the

following:

SELECT * FROM users WHERE username = 'aa' AND password !=

'dfasdf'

We start our attack with a ’ to close the username variable field, and

then we add our own SQL and a -- to ignore the more restrictive part of

the SQL. We actually overwrite the more restrictive part with our own

password condition.

password != 'dfasdf'

Chapter 10 SeCurity

297

The chances are millions of times higher that you will guess the wrong

password than that you will choose the right password.

If you are a beginner, getting even a simple example like this to run can

be tricky, but once you have practiced a bit, it becomes very easy to craft.

So how do you protect against this? You use a technique called SQL

escaping. In software packages, like SQLAlchemy, escaping is done with

a technique called parameter binding. Remember that in Chapter 7, you

used Flask to build your REST API. You also used SQLAlchemy to manage

your database queries, and one of the examples is shown in Listing 10- 1.

In this example, you see parameter binding. Parameter binding is the

strongest way of preventing SQL injection.

In the SQL string, you use a colon to denote where a parameter should

be instead of just shoving the raw variable into the SQL. In this case, you

have :id_num. When you execute the SQL, you provide the value to id_num

as a parameter, on the second line of Listing 10-1. And that is how simple

protecting against a SQL injection attack is.

Listing 10-1. Protecting against SQL injection

sql = text('SELECT * FROM users WHERE id=:id_num')

result = db.engine.execute(sql, id_num=user_id).fetchone()

On the other hand, when you use an ORM, as you do in the second

part of your REST API, SQL binding and escaping of SQL happen

automatically.

You must always escape all your SQL queries, or use parameter

binding, no matter what field it is!

 Cleaning Variables
Cleaning variables is an easy technique that not only can help prevent

attacks upon system input but also help your system against crashes when

it inserts data that is not in the correct format to be inserted into a table

Chapter 10 SeCurity

298

column. Let’s assume you have a column that takes three characters for an

office telephone extension column. Then you should not even let a request

with four non-integer characters reach your database. Assume you want to

query all personnel with the office extension of 123. Even if the database is

set up to not allow any integers of more than four characters to be inserted

into the system, you can still send a request like this pseudocode:

ext = " 123'; drop table_name -- "

If this passes (if you have now SQL injection protection), it will drop

your table called table_name. You can also drop a complete database like

this. But, if you on a programmatic level say that an extension value may

only be three characters long, and must be all digits, then this would not

have even reached the code that executes the SQL queries.

This technique can protect against certain attacks, or at least make

them a lot harder to execute. I also advise that your database tables size

restrictions and your validation rules are exactly the same. If your database

only accepts strings that are 10 characters long, then your validation rules

must specify that exactly.

So how do you implement this? In your Flask app, you used a

library called Marshmallow. Marshmallow contains all the code for

verification you will need. One way to implement this is as follows.

Create a directory called validation in your root directory, and inside

that directory, create a Python script called validation.py, and also

add an __init__.py file to make it a package. Inside the Python script,

add the code in Listing 10-2.

Listing 10-2. Cleaning variables class

from marshmallow import Schema, fields

import built-in validators

from marshmallow.validate import Length, Range

Chapter 10 SeCurity

299

class UserSchema(Schema):

 # Required value shorter than 50 characters

 name = fields.Str(required=True, validate=Length(max=50))

 # Required value shorter than 50 characters

 surname = fields.Str(required=True, validate=Length(max=50))

 # Required value shorter than 12 characters

 identity_number = fields.Int(required=True,

validate=Range(min=1))

class IDSchema(Schema):

 identity_number = fields.Int(required=True,

validate=Range(min=1))

In the top two lines you import Marshmallow, and specifically Length

and Range. There are loads more for you to choose from, but for your

needs, you will only use these two. The classes you create under the import

statement are called UserSchema and IDSchema. They are named like

so because one will validate User data, name, surname, and identity_

number, and IDSchema will only validate identity_number. To call this

code, you just have to feed the validate method a dictionary object with

the correct entries, as in Listing 10-3.

Listing 10-3. Using the cleaning variables class

errors = id_schema.validate({'identity_number': user_id})

 if errors:

 return json.dumps(str(errors)), HTTPStatus.BAD_REQUEST

errors = user_schema.validate(data)

 if errors:

 return json.dumps(str(errors)), HTTPStatus.BAD_REQUEST

In Listing 10-3, in user_schema.validate(data), data is a dictionary

object, and the validate function is inherited from Schema. In Listing 10-2

you can see the classes extend Schema.

Chapter 10 SeCurity

300

Listing 10-4 demonstrates how this fits into the REST API. You populate

data with a dictionary that you get from request.get_json and feed it into

your user_schema class’s validate method. You then return a json string

with the appropriate HTTP code upon failure or continue execution upon

success.

Listing 10-4. Cleaning variables inside the REST api

@app.route('/v1/user', methods=['POST'])

def post_user_details():

 try:

 data = request.get_json()

 errors = user_schema.validate(data)

 if errors:

 return json.dumps(str(errors)), HTTPStatus.BAD_REQUEST

 sql = text('INSERT INTO users (name, surname, identity_

number) values (:name, :surname, :id_num)')

 result = db.engine.execute(sql, name=data['name'],

surname=data['surname'], id_num = data['identity_number'])

 return json.dumps('Added'), HTTPStatus.OK

 except Exception as e:

 return json.dumps('Failed to add record. ' + str(e)),

HTTPStatus.NOT_FOUND

All fields should be validated, without exception!

 Keeping Errors a Secret
You should exercise caution when you handle errors generated by your

system. Any attacker will do a lot of inspection of your system to try and

coax it to break and spill the beans. Attackers can learn a lot by looking

at certain outputs and error messages. They can learn what webserver

Chapter 10 SeCurity

301

you are using, what language interpreter, what framework, or what

CMS. Always make sure you send back normal, human-readable error

messages that do not give any clues about your system. All of these bits of

knowledge are baby steps towards attacking your system.

An interesting event that happened a few years ago, which is an

extreme example of not keeping an error a secret, was when a colleague

of mine tried to enter a legitimate string as a password into a system.

Turns out the system did not accept all the characters in the string, and

it returned an error to the screen. This was fine, apart from the fact that

the error message was the exact SQL string that the MySQL server tried

to run. At this point, he called me and showed me how he could craft a

SQL injection attack with this feedback. Normally, a SQL injection attack

happens blindly, where you feed it malformed SQL hoping that you get

it right, but having an error like that printed on the screen, which also

showed the SQL was not escaped, was like taking candy from a baby.

Well, it would have been, if we took it further. We decided to send the

owners a message, informing them about the flaw. Sometimes, if you have

developed software for long enough, you get to dislike cracking software

as much as you dislike the idea of getting your software cracked. And

remember, be ethical. Just because someone’s front door is open does not

mean you can go in and browse around or steal.

 XSS
XXS is one of the more prevalent attack vectors currently. XSS stands for

cross-site scripting and happens when you inject malicious code into a

system and let that system execute that code unintentionally. What can

you do with this attack? You can steal someone’s login credentials, you

can redirect them to different websites, and actually do a fair amount of

damage. In general, you inject JavaScript into a system. Even though we

did not go into JavaScript, you will encounter it at some stage. Let’s say you

Chapter 10 SeCurity

302

submit a form on a webpage, and one of the fields is your name. Then it is

possible to provide a string for the name field that will actually be executed

by your browser when your name field is displayed.

To put it differently, when you log into a system from a browser, the

browser executes certain actions. It will, for instance, render the HTML

and the CSS and load the JavaScript. There may be JavaScript that can run

on page render. If your username is valid JavaScript, then it will execute the

JavaScript instead of displaying a username.

So, if instead of providing my username as abcde, I provide

<script>alert('hi there')</script>, and there are no security

measures in place, then when I log in and the page renders, I will see a

popup that says ‘hi there.’ Funny as that example may seem, an attacker

can steal your login credentials this way. A CSS string can be created

that takes your authentication cookie from your browser and POST’s it

to a remote system. I worked for a company many years ago that used a

popular CMS, which loaded its visual components from a database. An

attacker managed to overwrite one of these components by injecting

JavaScript code that redirected you to a different site whenever that

component loaded. That component was now valid JavaScript and was

executed by the browser. So, whenever you opened the site, you were

redirected to another site. It puzzled me that the attacker did not do

anything worse; surely all our login cookies could have been stolen, but

maybe they just wanted to warn the company that the CMS had a weak

spot.

How do you protect against an XSS attack? There are two schools of

thought: one says to sanitize all incoming data and the other says to escape

outgoing data. Because XSS is executed upon displaying data, I agree with

always sanitizing upon display. All data displayed should be escaped.

Escaping data means that no matter how clever the JavaScript string is,

it will be treated as a string. Instead of executing the JavaScript, it will be

printed as a string to the screen.

Chapter 10 SeCurity

303

When it comes to sanitizing input, this can get tricky. You need to

consider what the data will be used for and how it will be used. Sanitizing

blindly can lead to data inconsistencies and errors. Just a quick word on

sanitizing vs. validation. Sanitizing will actually strip the JavaScript out of

the incoming text, or you can just stop execution when you detect it and

return an error to the user. So, sanitizing entails taking the incoming data

and inspecting it for malicious text that can be executed as JavaScript and

removing it, whereas validation makes sure the string parameters are valid.

There are so many variants of XSS attacks that it can be hard to say your

code is detecting all of them. Your code may also catch false positives,

meaning it may reject actual valid input. I lean more towards escaping

all output, and not sanitizing all input. Quite a few frameworks nowadays

escape output by default, which is great. The problem with sanitizing

input is that it is based on the perception that you have indeed covered all

potential XSS attack vectors, and you have to trust your code is safe. But

attackers have time on their hands, and after months of trying, they may

find an XSS string that works. An attacker will get past your sanitizing code

and you will not know about it.

Whenever you display text in a browser, make sure each and every

field is escaped! Make sure you know how the framework you use handles

sanitization.

 CSRF
CSRF stands for cross-site request forgery. I have never seen this attack

personally, but I have removed code that was vulnerable to a CSRF attack

from a codebase.

Let’s say you are logged into a social network website. Let’s call it

MyFriends, and let’s assume this site is vulnerable to CSRF attacks. You

receive a random but cleverly crafted email that you open, and inside that

email is a link to a website with something that may entice you to click it

and open the website, such as 10 photos of adorable kittens. When you

Chapter 10 SeCurity

304

open that link in your browser, it will not contain any photos of kittens. No,

on the contrary. It will do a normal form post to MyFriends, with a stock

standard form post that may request something like a password change,

name change, or to make a payment. The action will depend on what

MyFriends has to offer. If you are logged into MyFriends at that stage, or

if your session is active but you think you are logged out, your browser

will include your session cookie into the request automatically, causing

whatever action is being posted to execute. All this is done from the

attacker’s “kitten” website to the MyFriends website.

How do you protect against this? It is easy to prevent a CSRF attack

and nowadays a lot of systems come with built-in CSRF prevention

techniques. The best method is a CSRF token. The token is shared between

the MyFriends backend server and the front end, and it must change on

every request. Whenever you do a request from the front end to the back

end, you send the CSRF token with it, and the backend code will confirm

that it is the correct token. It will then discard that token and send a new

one to the front end. This is at this stage foolproof because the attacker’s

page does not have access to those tokens at all, because their page was

precrafted, whereas your page now, due to the CSRF token, has an element

of being dynamic to it.

In short, a CSRF attack is attempted when you are logged into the

target system, and you open a browser tab from a completely different

system that has code that sends an HTTP request to the target system. The

browser will handle the session for the attack.

Make sure all forms being submitted have CSRF tokens!

 Session Management
Most systems nowadays come with session management built-in. This

does not mean it is perfect. You still need to make sure the session cannot

be stolen. I urge you to look this up on OWASP’s website, but here are some

of the easier fixes:

Chapter 10 SeCurity

305

• Make sure your session has a timeout value. You do not

want a session to live for days.

• Make sure your session is only generated server-side.

• Do not allow multiple simultaneous logins with the

same user id.

• Session data should not be in the GET string, as this is

human readable, won’t be encrypted by HTTPS and

also dumped in log files. Remember, you never know

who gets access to your log files.

• Provide the user with functionality to log out of your

system. Logging out of a system in general destroys

your session or access token.

The list goes on and can become quite technical. The gist of session

control over the Internet is that we use cookies on the browser side to identify

users or access tokens. When someone steals a cookie, they have access to that

person’s login profile. It is important to have proper session controls in place.

 System-Level Security
Apart from on a coding level, there are various system strategies you

should be aware of that can lower the risk significantly of your system

getting compromised.

 Keep Your Systems Up to Date
Keeping your systems up to date is very important. It plugs known

vulnerabilities, which is a very tempting attacking vector for an attacker.

You should have a list of the technologies that you use (for instance,

Python, PHP, Nginx, Linux, and WordPress) and whenever a security

update is available, you should update them.

Chapter 10 SeCurity

306

 Database Users
Database security is not just to prevent attackers from creating havoc

in your system, but also to prevent your developers from accidentally

breaking it. You will always have a master, known as root, database user.

That user must remain secret. Only a privileged, trusted few may have

those credentials. Other users of the database will include the following:

• Your software developers

• Your applications

The permissions you grant to your software developers are up to

you, but it is a great idea, if you have the infrastructure, to let them work

on a copy of the production database, and not on the actual production

database. This is just in case they run a query that accidentally deletes data

or drops a table. They must also each have their own username, and not

shared credentials. Furthermore, they must have restrictive permissions,

without the ability to create more users.

Your system is also a weak spot in database access and must have

permissions that are very limited. It must not be able to

• Create, delete, or update users

• Drop a database

• Drop a table (although this is up to you as some

frameworks need to drop tables during the migration

process)

• One system username/password combo must be tied

to the IP range of your application calling the database

• One system username/password combo must be used

per database. If one set of credentials leak, you do not

want to give an attacker access to all your databases.

Chapter 10 SeCurity

307

 Ports
On your system’s side, when you have set up your server, you need to

close down all ports that you do not need. Apart from needing an IP to

access any system, you also need a port. And there are lots of them. Ports

in general indicate a specific application. For instance, by default, HTTP

uses port 80, HTTPS uses port 443, and SSH uses port 22. Databases have

their own ports, FTP has its own port, and so on. You must only expose the

ports of the systems you are using. How you open and close ports depends

on what you use as a server. Different service providers may have different

tools to do this, so once you choose a system, like AWS, you should do

some research on how to open and close ports.

 Docker Images
If you do not build your images yourself, then you have to make sure you

find images that are trustworthy. It is not unknown that Docker images

with backdoors and other severe security issues exist, and care should be

taken to make sure exactly what is on the image before it gets used. Make

sure you use a trusted vendor and not just someone’s Docker image they

uploaded to Docker Hub.

 HTTPS
If you are dealing with web applications, for instance using REST, you

have to use HTTPS and not HTTP. HTTPS encrypts all communications

between the frontend system and the backend system in case the message

gets intercepted by someone eavesdropping on the communications.

Chapter 10 SeCurity

308

 Password Policy
You will need a lot of passwords to secure the multiple entry points into

your system. Do not skimp on this. Select a different password per system

you need to log into and make sure it has lowercase and uppercase letters,

digits, and some non-alphabetical characters. Enforce this password policy

for everyone and make it against company policy to share passwords.

A new trend is to use passphrases.1 Passphrases are easy-to-remember

sentences consisting of non-related words.

About 11 years ago, I was asking someone in another department to

show me how their work was done for a feature I was building for them.

As they moved through the steps to complete a task on the system, I

noticed that they could see very sensitive information. I stopped them

and told them that this was a bug and they were not supposed to see that

information. They replied, “I am logged in with the financial manager’s

account.” I asked them how they got the password and they said, “He gave

it to us.” So numerous people were using his login details to perform their

tasks. This was such an immense risk to sensitive data and it blew my mind

that he could have done this. It was promptly stopped that same day, and

permissions were added to let the finance team see the additional aspects

they needed to perform their tasks.

Here is another password story to point out the severity of bad

passwords. We had an interview, and the interviewee gave us a website he

built as an example of his work. I reviewed the site a little, but you cannot

tell a lot from a site alone, since you cannot see any code, so out of slight

boredom, I decided to see how security conscious he was. I went to his

site’s login page and typed admin as the username, and something like

1234 as the password, and just like that I was logged in as admin. I really

did not expect it to work, but suddenly I gained accidental illegal access to

1 www.avg.com/en/signal/how-to-create-a-strong-password-that-you-
wont-forget

Chapter 10 SeCurity

http://www.avg.com/en/signal/how-to-create-a-strong-password-that-you-wont-forget
http://www.avg.com/en/signal/how-to-create-a-strong-password-that-you-wont-forget

309

a system from my work computer and office IP address, which was against

our company policies, so I had to tell my manager what I did. We decided

not to hold this flaw against him in the interview. His software was not

developed against our company standards, and it would have been unfair

to penalize him on that. But let this event serve as a reminder that you

should never ever skimp on your passwords.

Passwords matter.

 Social Engineering
The last aspect to talk about is social engineering. Social engineering

can take many forms, but in general, it exploits a human weakness in a

company to divulge sensitive information. It can, for instance, be someone

acting via telephone or email as if they are the head of technology asking

you for your password because of some strange but very legitimate

sounding reason. It may be a fake email, spoofed to look like it is from the

CEO of the company asking you to divulge your PIN code to get into the

office. In many instances, someone crafting this kind of attack has done

their homework carefully. They may even sift through the company’s trash

to look for clues. This may sound ridiculous but imagine this scenario.

Someone in your IT team writes down the name of your server in a

meeting, and its IP address and open ports. Eventually, this paper ends up

in the trash where the attacker finds it (this is not an unheard of method

to harvest data for an attack). He can now craft his attack as follows. He

can state he is from your hosting company and is doing an audit so he

needs to log into your server. He knows the server name, he knows the

server IP address, and he knows the open ports. This will make him sound

trustworthy. With this information, he is slightly closer to his goal, which

is to break into your system. All he needs is a human who will fall for his

plan. Each piece of data he gathers is another baby step towards his goal.

Chapter 10 SeCurity

310

At a previous company where I worked, the system administrator and

IT manager did a test. They purposefully created a bogus email account

for the system admin. By looking at it, you could see it was not his email

address. They then set up a website that looked like ours, and once again if

you inspected the URL, you could see it was not our company’s URL. After

that, they sent out an email to everyone in the company to “test” their

logins. The email stated that they created a new fall-over system and

people must please try to log in to see if it works. No login data was

captured, but a count of how many people fell for it was recorded. It was

quite staggering: a large number of people would have divulged sensitive

information to what, once you looked a little closer, was clearly a social

engineering attack.

How can this kind of attack be stopped? This can be difficult because

sometimes these attacks are planned for a long time, and they are truly

well designed. But educating people around you as to how these attacks

happen is an angle. So is not divulging any sensitive information, which

means shredding even your own notes and not chucking them into a bin.

 Summary
We have gone through quite a few topics in a short time. Securing a system

can be easy if you follow these steps, but you will never really know if your

system is secure. I have seen attacks that are completely outside what even

I would have dreamed of doing. You need only one vulnerable spot to give

an attacker a chance.

Here is a little roundup of what you learned in this chapter:

• SQL injection

• Use parameter binding, or if you use SQL, escape

all your SQL queries.

Chapter 10 SeCurity

311

• Cleaning variables

• Make sure all your variables conform to specific

data types and sizes. Otherwise, reject them.

• Keeping errors a secret

• Send back meaningful error messages, but never

send the exact error thrown by a system so that a

user can read it.

• XSS

• Always escape any output that is displayed in your

browser

• CSRF

• Always use a CSRF token to identify a request as

coming from your own system.

• Session management

• Make sure your sessions expire.

• Never send the session-id via the GET string.

• Read the OWASP recommendations for session

management.

• Keep your system up to date.

• Always patch your system with the latest security

updates.

• DB users

• Create users with limited privileges. Pin privileges

down to exactly what is needed by that database

user or system using the database. Do not give any

privileges they will not use. Each user and system

should have a unique login per database.

Chapter 10 SeCurity

312

• Ports

• Close all ports that are not being used. Only open

the ones actively being used. That way you can

secure the two or three ports you use instead of the

thousands available.

• Docker images

• Make sure you are using secure images. Do not

go by the number of downloads when making

this decision. You must look at the content, or the

vendor, or build your own images.

• HTTPS

• Always use HTTPS as your protocol to send data

between servers and clients. Do not use HTTP.

• Password policy

• Make sure your passwords are strong and do not

share them. Do not use a system with shared

details. Also, do not use the same password for

different systems.

Chapter 10 SeCurity

313© Nico Loubser 2021
N. Loubser, Software Engineering for Absolute Beginners,
https://doi.org/10.1007/978-1-4842-6622-9_11

CHAPTER 11

Hosting and CI/CD
No one really builds software with the intent of hiding it somewhere and

never using it. Sure, you may end up with a few half-finished projects that

were aborted because something more interesting came along or you just

ran out of enthusiasm for them. But more often than not, especially if it is

a project that can generate money, a business venture of some sorts, you

want it released.

Once your product is ready, you need to release it. Releasing your

code can mean a few things. It all depends on the software you have built

and what platform you want to serve it on. You may need to deploy an

executable that can run on a Windows computer, or it may be a web-based

application that is served up from a server and accessed via a browser. In

this chapter, we will discuss some ways to get your software out in the wild

if you are deploying web-based applications.

We will also look at some hosting solutions, as well as some steps to

get the application on your hosting machine. We will discuss different

types of hosting solutions, and we will do continuous integration on a

practical level, and continuous deployment, which is based on the same

file as continuous integration, on a theoretical level. The reason for this

is because to get code on a hosting server (continuous deployment) you

may incur costs, and I cannot choose a service that may incur costs for

you. However, the rules to deploy remain roughly the same. Each hosting

service provider will have its own way to get code onto it.

https://doi.org/10.1007/978-1-4842-6622-9_11#DOI

314

 Types of Hosting
Hosting refers to a remote service, or set of services, that your project will

use to be executed on and where it can be accessed by the public. There

are different types of hosting available, and depending on your needs and

budget, you can select something that closely suits your needs. In general,

you can assume that the less you pay, the less functionality you will get

with your hosting provider, but this is not always the case.

 Cloud and Serverless Technologies
There is some technical jargon you need to understand before you can

look at hosting services. Your application can be hosted on a single

machine that also hosts other peoples’ applications. Or you can have

a more configurable virtual server to yourself. But you need to know

about two new technologies before you can explore the hosting of your

application. They are cloud-based and serverless.

These technologies are very popular but sometimes misunderstood.

There is a joke that “There is no cloud. It is just someone else’s

computer.” There is some truth to this joke, but it is a lot more complex

than that. The cloud is not just someone else’s standalone computer

that you access via the Internet. It is a network of distributed and pooled

resources that seemingly work as one. It offers redundancy, so should

one of the cloud resources fail, you won’t lose functionality in your

application. It also offers scalability, so should you need more resources

to handle increased traffic to your application, you can get them. It can

even scale its resources automatically. With cloud-based technology, you

still have a lot of configuration power over your system. Serverless is also

cloud-based, but with serverless technology, you as the developer do not

have to concern yourself with the server provided by the service at all. It

is all completely managed by the provider. In general, serverless may be

Chapter 11 hosting and Ci/Cd

315

associated with a pay-per-use scheme, where you for instance only pay

per milliseconds of execution. With this setup, you only incur costs when

you actually use the system. With the speed of setting up, automatic

scalability, and absolute ease of use, serverless is a winner, and cloud-

based architecture brings power and control to people who are not

dedicated system administrators.

 Shared Hosting
Shared hosting is the cheapest and easiest way to get up and running. It

gives you a workable system, normally with a nice intuitive user interface

to manage your services. It comes complete with various tools that make

your life easy as a non-technical person. It is not for high-traffic scenarios,

though. A fixed limit is placed on your resources, such as memory, both

long-term storage and random access memory, as well as computing

power in general. This is a great solution for a project that does not

expect a lot of traffic or to do a lot of intensive operations. You may also

be restricted with the amount of web traffic you can send and receive, as

bandwidth is often also limited in these setups.

So, some of the drawbacks are, you are severely limited as to what you

can do with this system. It normally comes with an interpreter, like PHP or

Python, Git, and MySQL and that is it. In general, you cannot run Docker

on it or install any other software on it (apart from the software you wrote

yourself). As mentioned, it also comes with performance restrictions.

But do not be fooled by these limitations. For small projects, this may

just be the perfect fit.

Getting your data on a shared server is normally quite easy. You can

easily pull the code from you git repo into the root directory of your hosting

site where your code will be executed.

Chapter 11 hosting and Ci/Cd

316

 Virtual Private Hosting
Virtual private hosting is a cost-effective way to get a more powerful,

scalable, and configurable server. This can be a great choice if you are

more technically minded and have a more demanding project. If you are

releasing your code as a Dockerized application, then this is where you

should start looking for hosting solutions.

A virtual private server, or VPS, will allow you to configure and install

software on your server. On the backend, this is not a dedicated server for

yourself. It is still a shared server in the sense that the resources are pooled

and allocated to you. Due to the nature of a VPS in the original sense, you

can still be affected by outages.

The benefits of this kind of service are really great. A lot of vendors

who provide virtual private hosting still use pooled resources in the

background. Although you do not need to worry about anything that

happens in the background, you do need to worry (a little) about setting

up your server, and technical aspects such as DNS, SSL certificates, and so

on. This is not nearly as daunting as it seems, though. Services that provide

VPSs for hosting normally try to make these aspects as easy as possible,

with different tools that help automate parts of setting up your server.

 Cloud Hosting
Cloud hosting provides a great low-cost way to host your system.

Depending on what systems you are looking at, there is not always a

difference between cloud hosting and a VPS from the angle that some VPSs

claim to host cloud-based VPSs. But that is beside the point. Cloud-based

services are becoming increasingly popular and increasingly cheaper.

The word “cloud” in cloud hosting typical refers to a spread-out system

(instead of single servers like shared hosting and virtual private hosting),

where your application runs on pooled resources, and multiple copies

of your code exist in different locations for redundancy. Your selected

Chapter 11 hosting and Ci/Cd

317

resources (CPU, memory, bandwidth) are all duplicated across these

locations as well. This helps with redundancy and helps your system

switch over to a failover system without you even knowing your cloud-

based “server” is down in the first place. You also get platforms on cloud

services that handle automatic scaling and releases for you, giving your

cloud service the feel of serverless technology, in the sense that you do not

need to worry about scaling and load balancing. The technology is pretty

vast and there is a huge amount to learn about cloud technologies.

 Serverless
With serverless technology, you as a developer are completely decoupled

from your server. A great example to look at is AWS Lambda. Serverless

differs from a cloud implementation where it delivers exactly the

computational power that you need when you need it. It does not

preallocate resources and let those resources lie idle when you are not

using them. Technically, your system does not even really exist when it is

not being used. When you create software, and you want to run it using

serverless, you must design specifically for this setup. It is not always

the case, but for the most part you cannot just put your code inside the

serverless architecture and expect it to run because there may be certain

limitations that you should cater for. There may also be different ways to

deploy your code on a serverless architecture.

 Which Hosting Technology to Choose?
The above list is not an exhaustive list of technologies available for you to

use, but it is a list of the most cost-effective and popular ones. Choosing

one certainly won’t be easy. Some factors to consider are whether you

have the knowledge or time needed to maintain a VPS, or whether shared

hosting will meet all your requirements. Going cloud-based or serverless is

a great idea but also comes with a learning curve. The problem is when the

Chapter 11 hosting and Ci/Cd

318

learning curve comes with an unanticipated invoice attached to it.

My advice to you is to experiment with these technologies. But, make 100%

sure of the pricing structures of the cloud and serverless tech that charge

you per usage. When a cloud provider mentions something like a free tier,

make sure that the free tier is not linked to certain conditions that you may

inadvertently break.

 Continuous Integration and Continuous
Deployment (CI/CD)
You can simplify, manage, and maintain the integration of your newly

developed features into the main branch, as well as deploy to your staging

environment and production environment using CI/CD pipelines. CI and

CD are two separate concepts, but they are defined in the same script

and run in the same section of your deployment software, which I will

describe in a minute. Continuous integration refers to the merging of

feature branches into your main branch and running different tests on the

codebase. This can be, for instance, building the application to see if all

the components that need to be imported exist. You can also run tests with

linters, which check your coding style and standards, and also run all of

your unit tests. Whenever someone pushes in the main branch, it will start

whatever tests you gave it to run.

The continuous deployment action refers to deploying your code to a

hosting location. When the CI phase has succeeded, the system will push

the code to your staging and production environments in what I called the

continuous deployment stage. Depending on your needs, you may want

the code pushed to staging but not released. You can discern between just

pushing your code or releasing it, as well as which of your branches should

be responsible for pushing the changes.

Chapter 11 hosting and Ci/Cd

319

 Creating the Pipeline
Let’s discuss how to create the pipeline with a practical example

of continuous integration and a theoretical example of continuous

deployment.

 Continuous Integration

Creating a CI/CD pipeline on GitLab (or any other provider, like BitBucket)

is remarkably easy. The provider, GitLab in our instance, creates it for you.

All you need to do is to provide it with a specific file with the details on

what instructions the pipeline should execute. It will parse the file and run

the instructions in the file in the pipeline.

So, your first step is to create a .gitlab-ci.yml file in your project’s

root directory. You add this file to your git repo and commit it. Upon

pushing it, GitLab will automatically detect it and start executing the

pipeline based on commands within this file, even if this file is empty.

The file can be divided into three sections, and each section is referred

to as a stage. You will have the following stages:

 1. Testing

 2. Staging

 3. Production

Testing is responsible for running tests. They can be unit tests,

standards test, building the software, and so on. In the last line of

Listing 11-1, notice python3 test.py. This command runs your unit tests.

This is also where the magic of using SQLite for testing comes in. Not only

does it run in memory, which makes it fast, but it also runs in memory on

GitLab, meaning you don’t have to worry about testing database details.

The staging and production stages are responsible for deploying the

code to your staging and production environment.

Chapter 11 hosting and Ci/Cd

320

That is technically all there is to it. Let’s look at a few examples, starting

with Listing 11-1. In this file, you declare the stages you will run. At this

point, there is only one stage, and it is called test.

Listing 11-1. CI/CD pipeline

stages:

 - test

test:

 stage: test

 script:

 - apt-get update -y

 - apt-get install -y python-dev python3-pip

 - cd ./app

 - pip3 install --no-cache-dir -r requirements.txt

 - python3 test.py

Under the test stage, you name the stage and then you declare the

actions you will run in the pipeline.

First, you update your system with the commands update. Because

this update happens behind the scenes and you have no control over

the output, you add the -y flag to signal to the command to select yes

whenever the command line would have prompted a question requiring

a yes or no answer. Second, you install your Python tools and Pip. Pip is

used in the subsequent line to install your requirements. You then change

the directory to app and run your Python unit test. Python3 test.py then

simply runs your unit tests. If you have followed the tutorials, then you

should be able to add a continuous integration test by just adding the file

and these lines of code. If you have not followed it, but you have a project

on GitLab, then I advise you to create this file and upload it to GitLab, even

if it will fail. Log into GitLab, look for the pipelines link on the left, and click

it. This way you will see that your continuous integration is at least getting

started.

Chapter 11 hosting and Ci/Cd

321

 Continuous Deployment

You do not intend to deploy your code and use Docker as your database

system. This is only for development. In production, as well as staging

scenarios, you will use a database service like AWS RDS, or any other

database system that your system can access. With this in mind, you need

a way to swap between database configuration settings. You can achieve

this by using a second config.py file, called staging.config.py and

production.config.api, for instance. You also have a local.config.py.

In general, config.py should not be committed to your Git repository;

it should only exist in your local development system and be based on

local.config.py. Your committed codebase should only have staging.

config.py, local.config.py, and production.config.py.

Upon execution of the pipeline, you need to let the pipeline select

the correct database configuration. This is easy enough to do. Note

the changes in Listing 11-2 which will enable this change. The line cp

staging.config.py config.py under the staging and production stages

will copy the correct config file to be the correct config file in the relevant

phases. The code in Listing 11-2 won’t run out of the box, as the correct

particulars are still needed to deploy the code.

Listing 11-2. More complete CI/CD example

stages:

 - test

 - staging

 - production

test:

 stage: test

 script:

 - apt-get update -y

 - apt-get install -y python-dev python3-pip

Chapter 11 hosting and Ci/Cd

322

 - cd ./app

 - pip3 install --no-cache-dir -r requirements.txt

 - python3 test.py

staging:

 stage: staging

 script:

 - echo "Deploying to the staging server"

 - cp staging.config.py config.py

 environment:

 name: staging

 url: https://examplelocation.com

 only:

 - master

production:

 stage: production

 script:

 - echo "Deploying to the production server"

 - cp production.config.py config.py

 environment:

 name: production

 url: https://examplelocation.com

 when:

 - manual

only:

 - master

In this listing, the cd ./app command takes you into the directory

where the testing.config.py file lives. Then it gets copied from staging.

config.py to config.py. Granted the details of the actual copying from

GitLab to your host are omitted, but once you have selected your hosting

provider, you should have no problem finding the details to fill in the

environment section.

Chapter 11 hosting and Ci/Cd

323

You also need to specify when the deployments happen, and this

is GitLab-related. You selected two ways to achieve deployments. For

staging, you selected to deploy whenever code gets released to your master

branch using the only: master command. This will tell GitLab to run

the deployment code. For production, you selected a more conservative

approach. Using the command when: -manual, you indicate that

deploying the code will be a manual process, and not automated. GitLab

will provide you with a button on the pipeline which you can press to

manually release the code.

 Summary
You should always do proper research when selecting a hosting company.

You need to consider your needs and budget and let them guide your

decision. If you select a service like Amazon AWS, always make sure you

know how the pricing structure works. AWS has great tools that can help

you calculate monthly costs.

CI/CD pipelines can be a massive benefit in your deployment strategy.

Once set up, you can deploy easily from anywhere. Once again, CI/CD

pipeline are something you will encounter in the workplace, but there is no

reason you should not have them in your own homegrown projects.

Here is a summary of what you learned in this chapter:

Shared hosting

• Incredibly easy to get up and running

• Limited operational resources

• Limited or even no capacity to add more software

features

• Good customer support

Chapter 11 hosting and Ci/Cd

324

Virtual private server

• Need some know-how to set up

• Depends on your provider and setup. More powerful,

plus you can configure more services to run on it.

• Getting cheaper

Cloud hosting

• Great redundancy

• Depending on the service, a smaller learning curve

• Depending on your selection, can be very powerful,

and this will influence the price

• Configurable

• Comes with platforms that allow automatic scaling

Serverless

• Great redundancy

• Software engineering is decoupled from the server,

allowing development without worrying about the

underlying architecture.

• Learning curve is not hard, with some potential pitfalls

such as the documentation is not always easy to follow

and calculating how much the service will cost you can

be difficult.

• Pay-per-use plans may be cost effective but need to be

monitored.

Chapter 11 hosting and Ci/Cd

325© Nico Loubser 2021
N. Loubser, Software Engineering for Absolute Beginners,
https://doi.org/10.1007/978-1-4842-6622-9

Index
A, B
Automated tests, 237

C
Cleaning variables, 297–300
Cloud-based hosting, 316
Cloud-based technology, 314, 315
Code-level security

cleaning variables, 297–300
CSRF, 303, 304
handle errors, 300, 301
session management, 304, 305
SQL injection, 295–297
validation.py, 298
XSS, 301–303

Code Quality steps
automated tests, 236
codebase, 236
features, 236
peer review, 236
user acceptance test, 237

Coding styles
aspects, 144
blank line, 151
block comments, 146
docstrings, 147, 148

encoding, 151
imports, 152
inline comment, 146
line lengths

arrays, 150
indentation, 149
line wrapping, 149–151
meaning, 149

linters, 145
naming conventions

class names, 154
constants, 156
inheritance, 154
internal method, 154
internal variables, 155
method names

(snake_case), 154
overwriting inheritance, 156
package/module

names, 154
PascalCase/snake_case, 153
readability, 153
types, 153
variable names

(snake_case), 155
official style guide, 145
whitespace, 152

https://doi.org/10.1007/978-1-4842-6622-9#DOI

326

Command-line environment, 16
Containerization, 11

disadvantages, 13
dockerizing (see Dockerization)
serves, 12
virtualized environments, 12
webserver, 11

Continuous Integration and
Continuous Deployment
(CI/CD)

components, 318
config.py, 322
database system, 321–323
GitLab, 319
meaning, 318
pipeline, 319
stages, 319
staging and production

stages, 319
testing, 319
test.py, 320

Coupling concept, 278–281
Crackers, 293
Cross-site request

forgery (CSRF), 303, 304
Cross-site scripting (XSS), 301–303

D
Database management

system (DBMS)
Adminer, 165–168
cleaning up/pushing, 168
configuration code, 162

database creation
filling data, 175
table creation, 174

databases
collation, 172
creation, 172
LanguagesClass

database, 172, 173
data types, 171, 172
Docker file, 164, 165
indexes, 161
logical operators, 191
metadata, 161
MySQL, 162
normalization

cities table, 184
clients Table, 183
data repetition, 180, 181
first normal form, 192
foreign key, 192
JOIN clause, 185, 186
languages table, 183
LEFT JOINs and RIGHT

JOINs, 190
many-to-many

relationship, 186–188
normal form, 181, 182
one-to-many

relationship, 184, 185
second normal

form, 182–184, 192
third normal

form, 188–190, 192
ports, 163

INDEX

327

primary key, 192
caveats, 171
indexes, 170
meaning, 170

reading/writing, 159
refactoring, 159
relational database, 161
representation, 162
root password, 163
SQL (see Structured Query

Language (SQL))
storage files, 164
storage sense, 160
tables, 161
username/password

attributes, 169, 170
Database security, 306
Dockerization

benefits, 12, 13
checklist/cheat sheet

commands, 34
compose commands, 35
steps, 34

command line tools, 17, 18
components, 14
compose/orchestration tool

container/execute code, 32
docker-compose.yml file,

28–31
experimental steps, 31
installation, 28
test.py file, 30
use of, 27

container, 16
Dockerfile, 14
image process

Dockerfile method, 15
step-by-step process, 15

infrastructure, 19
installation, 17, 18
Python application

server, 20, 21
repository

commands, 22, 23
COPY command, 25
COPY/CMD command, 25, 26
hello.py, 25
Hub username and

password, 26, 27
output option, 22
run command, 24
test command, 25

VirtualBox, 18
Windows users, 18

E, F
Editing software (editor)

benefits, 5
meaning, 1
programming information, 2–4
Python, 2
text editors, 3, 4
text file extension, 1
Visual Studio code, 6–9

Escaping data, 302

INDEX

328

G
GitLab project

CI/CD pipeline, 319
DB server and Adminer

sections, 207–209
docker-compose.yml

file, 205, 206, 208
Dockerfile, 205–207
flask-server, 215, 216
initial application, 210, 211
migrations, 212–215
postman, 212
preparation step, 215
project layout, 203, 204
repositories, 202
running system, 209
source code

anatomy/endpoint, 220
app.py files, 219
config.py file, 218
DELETE, 227
functions, 221–224
GET endpoints, 226
initialise.py file, 217
migration.py file, 217, 218
PATCH, 227
POST method, 225
software programs, 216

steps, 203
Git version control system

cheat sheet, 60, 61
commit hashes, 44

branches, 45–49

checkout, 45
commands, 47
diff/status command, 47
dropdown box

option, 48
master branch, 45
push master, 49
test directory, 46

directory, 49–51
gitignore file, 56, 57
GitLab account

Dockerfile, 42–44
installation, 41
push option, 42

git stash, 57, 58
hidden files, 37
merge conflict, 51–54
reset/revert, 59, 60
source control

blame, 40
codebase, 38
code changes, 40
continuous integration, 41
features, 39, 40
master deployment

branch, 38, 39
peer reviews, 41
pull request, 41
repo information, 38
source code, 38
track changes, 40

SSH keys, 54–56
test directory, 51

INDEX

329

H
Hosting solutions

cloud-based/serverless,
314, 315, 317

Cloud server, 316
meaning, 313
remote service, 314
serverless, 317
shared hosting, 315, 323
virtual private, 316

I
Importing/ingesting, 235
Integrated development

environment (IDEs)
benefits, 5
features, 4
meaning, 4

Integration tests, 242–246
flask-server and

running, 244, 245
get/post endpoint, 242
production database, 243
regression error, 242
staging, 243
TestConfig file, 245
test.py file, 243

J, K, L
JavaScript Object Notation

(JSON), 196, 197

M
Modelling

activity diagrams, 266–268
actor, 268
database diagrams, 273, 274
description, 267
design/development

phase, 264, 265
diagram/models, 264, 265
high-level diagrams, 265
low-level models

cohesion, 281
components, 275
composition, 290, 291
coupling concepts, 278–281
DRY, 289
object types, 275–278
SOLID, 282–289

relationships, 274, 275
swimlanes, 270–272
tools, 265
use case models, 268–270

Modsec installation, 294

N
Naming conventions, 235

O
Object calisthenics

class collections, 141, 142
class properties, 137–139

INDEX

330

control structures, 133
else keyword, 134–136
guidelines, 132
indentation, 133, 134
instance variables, 140, 141
low coupling, 141
object/function names, 140
objects/methods, 140
primitives/strings, 136, 137

P, Q
Preparations, 20
Python, 2
Python application server, 20, 21
Python programming, 63

access functions, 124, 125
arrays

dictionaries, 126
lists, 126
tuples, 126

basics, 66
classes, 128
classes/objects

behavior/data
(attributes), 106

class definition, 108
composition, 116
constructor, 108
dog class, 107
rectangle class, 108
email() function, 113
encapsulation, 106

inheritance, 113, 114
instantiation, 107, 109–113
magic methods, 116–118
polymorphism, 115, 116

control statements
for, 127
if statements, 91–94, 127
loops, 94–97
while, 127

decision-making operator/
structures

algorithms, 81
bitwise operators, 90
combining operators, 81
comparison operator, 82, 83
expressions, 81, 88–90
logical operators, 83–86
membership

operators, 87, 88
operator precedence, 88–90

Docker environment, 65
exceptions

built-in, 120
catching, 129
catching exception, 121
creation, 129
error message, 118, 119
raise keyword, 120, 129
try/except blocks, 119, 120
writing code, 121

functions, 128
anatomy, 100, 101
arguments, 101
custom functions, 99, 100

Object calisthenics (cont.)

INDEX

331

named keyword
arguments, 106

parameter type-hinting, 104
principles, 100
return error parameter, 104
return/print data, 101
reusable code, 99
source code, 103–105
values, 104, 105
variable parameter, 105

human-readable
comments, 67

imports, 129
main.py script, 123, 124
packages, 122

logical operators
and, 83
not, 84
or, 83
truth tables, 84–86

loops
continue/break

clauses, 97–99
list comprehension, 97
for loops, 96, 97
while loops, 94, 95

membership operator
in, 87
not in, 88

scope, 125
scope/structure

built-in scope, 91
code, 90
enclosing scope, 91

global scope, 91
local scope, 90

sequences/maps
arrays, 75
data structures, 75
dictionaries, 80, 81
fixed size (immutable), 79
indexes, 77
keywords, 79
len() operates, 79
lists/strings, 76, 77
slicing, 78
tuples, 79

set up information, 65
spot indentation errors, 66
variables, 126

Boolean values, 71
built-in types, 67–69
casting, 72
constants, 72
floating point, 70
integers, 69, 70
shorthand assignment

operators, 74
strings, 71
type casting functions, 73, 74

writing code, 64

R
Readability, 131, 156
Refactoring code

coding tasks, 143
database design, 159

INDEX

332

extendibility/reusability, 144
meaning, 132
scalability, 143

Repositories
commands, 22, 23
COPY command, 25
COPY/CMD command, 25, 26
GitLab, 43
hello.py, 25
Hub username and

password, 26, 27
output option, 22
revision/source control, 37
run command, 24
test command, 25

Representational state
transfer (RESTful)

architectural design, 194
concepts, 194, 195
CRUD operation, 195
framework code, 193
front end/back_end, 194
GitLab (see GitLab project)
Gunicorn, 201
HATEOAS, 200, 201
HTTP

status code, 199
verb, 197–199

JSON, 196, 197
migrations, 202
modern systems, 194
ORM versions

app.py file, 229

code changes, 228–231
delete function, 232
GET, 231
PATCH, 232
POST, 231

query routes, 199
request/response

relationship, 196, 197
software development

process, 193

S
Secure shell (SSH) keys, 54–56
Security

cleaning variables, 311
code-level (see Code-level

security)
DB users, 311
Docker images, 312
HTTPS, 312
keeping errors, 311
modsec, 294
owasp.org file, 293, 294
passwords, 312
ports, 312
sessions management, 311
social engineering, 309, 310
system level, 295
systems (see System-level

security)
system strategies, 305
system updates, 311

Serverless technology, 314, 315, 317

Readability (cont.)

INDEX

333

Session management, 304, 305
Shell-based editors, 2
Social engineering, 309, 310
Software development

lifecycle (SDLC)
approach, 258, 259
calisthenics/coding

standards, 263
clumsy backups, 257
deployment, 262
design, 261
development, 261
maintenances, 262, 263
modelling (see Modelling)
phases, 258
planning, 260
requirements, 259, 260, 262
software development

process, 258
specifications, 258
testing, 261

SOLID modeling
dependency inversion, 289
interface segregation, 286–288
Liskov substitution, 284–286
open/close principle, 282–284
principles, 282
single responsibility, 282

Staging/production
environment, 11

Structured query language (SQL)
Adminer, 176
delete, 180
DESCRIBE command, 176

injection
binding and

escaping, 297
escaping, 297
execution, 296
parameter binding, 297
queries, 310
username/password, 295,

296
INSERT, 178
keywords, 175, 176
SELECT, 177, 178
UPDATE clause, 179

System-level security
database security, 306
Docker images, 307
HTTPS, 307
keep systems updates, 305
password policy, 308, 309
ports, 307

T
Testing

automated tests, 237
time pressure, 253
validation, 252, 253

integration, 242–246
new code, 250, 251
peer-review process

developer points, 255
effective method, 254
invaluable tool, 253
reviewer points, 255

INDEX

334

refactoring process
functions, 248
parameters, 248
POST/PATCH data, 247
post_user_details

function, 250
request.get_json()

function, 247, 248
return_message function, 249

staging server, 256
unit, see Unit testing

U
Unit testing

data source, 239, 240
even number code, 240, 241

flask-server/running, 242
meaning, 238
valid_age code, 238

V, W, X, Y, Z
Virtualization, see

Containerization
Virtual private hosting, 316
Visual Studio code

built-in features, 7–9
extensions, 9
features, 9, 10
installation, 6
keywords, 8
testFunction()

function, 8
workspace, 6, 7

Testing (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Editors
	The Different Families of Programming Editors
	Shell-Based Editors
	Text Editors
	IDEs

	The Benefits of an IDE or an Editor like VS Code
	Installing Visual Studio Code
	Workspaces
	Built-In Features
	Features to Install

	Summary

	Chapter 2: Containerizing Your Environment
	What Are Containers?
	The Main Components of Docker Explained
	The Dockerfile
	The Docker Image
	The Step-by-Step Way to Create a Docker Image
	The Dockerfile Method

	Docker Containers

	Setup and Usage
	Preparation
	How to Install Docker
	Important for Windows Users

	Creating the Dockerized Environments for Your Software’s Infrastructure
	Preparations Before You Start Cooking
	First Docker Image and Container
	Building the Image and Pushing It to the Repository
	Explanation

	Pushing the Image to a Docker Repository
	Docker Orchestration with Docker Compose
	Installing Docker Compose
	Docker Compose Explanation

	Final Docker Experiment

	Docker Checklist and Cheat Sheet
	Docker Commands
	Docker-compose Commands

	Chapter 3: Repositories and Git
	A Word About Windows Git Usage and Hidden Files
	What Is Source Control?
	Additional Functionality

	Installing Git and Creating a GitLab Account
	Using GitLab
	Commits
	Branches
	A More Advanced Use Case
	Merging Conflicts
	Removing the Need to Type Your Password Every Time: SSH
	Gitignore
	git stash
	git reset and revert
	Cheat Sheet

	Chapter 4: Programming in Python
	What Is Programming?
	Python
	Setup for This Chapter and How to Use It
	Basics
	Commenting Your Code
	Variables
	Integers
	Float
	Boolean
	Strings
	Last Word on Variables
	Constants
	Type Casting
	Shorthand Assignment Operators

	Sequences and Maps
	Lists and Strings
	Accessing Data Inside Lists
	Indexes
	Slicing

	Tuples
	When to Use a List and When to Use a Tuple
	Dictionaries

	Decision-Making Operators and Structures
	Operators
	Comparison Operators
	Logical Operators
	and
	or
	not
	Truth Tables

	Identity Operators
	is
	is not

	Membership Operators
	in
	not in

	Precedence of Operators in Expressions
	Bitwise Operators

	Scope and Structure of Python Code
	Local Scope
	Enclosing Scope
	Global Scope
	Built-in Scope

	Control Statements
	If Statements
	Loops
	While Loops
	For Loops
	List Comprehension (Shorthand Loops)

	Continue and Break

	Functions
	Custom Functions
	Principles of Function Design
	The Anatomy of a Function
	Should Functions Return or Print?
	Example Functions
	Parameter Type-Hinting
	Default Parameter Values
	Variable Parameters
	Named Keyword Arguments

	Classes and Objects
	The Anatomy of a Class
	Instantiating the Class
	Inheritance
	Polymorphism
	Composition
	Magic Methods

	Exceptions
	The Anatomy of an Exception
	Raising an Exception
	Catching an Exception
	Writing an Exception

	Imports
	Static Access to Classes
	Cheat Sheet
	Scope
	Variables
	Arrays
	Lists
	Tuples
	Dictionaries

	Control statements
	if
	while
	for

	Functions
	Classes
	Exceptions
	Catching an Exception
	Raising an Exception
	Creating an Exception

	Import

	Reference

	Chapter 5: Object Calisthenics, Coding Styles, and Refactoring
	Object Calisthenics
	1. Do not exceed one level of indentation per method. (Or rather, limit the levels of indentation as much as you can.)
	2. Do not use the else keyword
	3. Wrap all primitives and strings
	4. Use only one dot per line
	5. Do not abbreviate
	6. Keep entities small
	7. Limit classes to use no more than two instance variables
	8. Use first-class collections

	Refactoring Code
	Coding Styles
	Linting
	Commenting Your Code
	Block Comments
	Inline Comments
	Docstrings: Commenting Your Classes

	Maximum Line Length
	Indentation
	Indenting Line Wraps

	Blank Lines
	Encoding
	Imports
	Whitespace
	Naming Conventions
	Package and Module Names in snake-case
	Class Names in PascalCase
	Method Names in snake-case
	Internal Methods
	Preventing Inheritance

	Variable Names in snake-case
	Internal Variables
	Preventing Variable Overwriting in Inheritance

	Constants in snake-case

	Chapter Summary
	References

	Chapter 6: Databases and Database Design
	Three Things You Can Do with Data
	Overview of Database System Components
	Setting Up Your DBMS
	Ports
	Environment
	Volumes
	The Final Docker File
	Viewing Your Database Using Adminer
	Cleaning Up and Pushing to the Remote

	Preparing Your Database
	Primary Keys
	Indexes
	Index Caveats

	Data Types
	Creating a Database
	Creating the Table
	salutation
	firstname
	mobile
	city
	languages

	Filling the Database with Data
	Your First SQL Queries
	SELECT
	INSERT
	UPDATE
	DELETE

	Normalizing the Current Classes Table�
	First Normal Form
	Second Normal Form
	One-to-Many Relationships, Joins, and Foreign Keys
	Querying on a Join
	Many-to-Many

	Third Normal Form
	Last Word on Joins

	Conclusion
	Cheatsheet and Checklist
	References

	Chapter 7: Creating a RESTful API: Flask
	The Project
	What Is REST?
	JSON
	HTTP Verbs
	REST Query Routes
	HTTP Status Code
	HATEOAS

	The Technology You Will Use
	Setting Up the Environment
	Creating the GitLab Project
	Project Layout
	Creating the docker-compose and Docker Files
	File Changes to docker-compose.yml
	Docker File
	docker-compose.yml: DB Server and Adminer Sections
	Bringing Up the New System
	Testing the Application
	Testing the Application with Postman
	Migrations
	Migration Preparation Step

	The Final Steps: Coding
	Step 1
	Step 2
	Step 3, A Bit of Refactoring
	Step 4
	Step 5
	Anatomy of an Endpoint
	Anatomy of the Code Inside the Function

	Step 6
	Step 7
	Step 8

	The ORM Version
	GET Endpoint
	POST Endpoint
	PATCH Endpoint
	DELETE Endpoint

	Takeaway of This Chapter
	References

	Chapter 8: Testing and Code Quality
	Overview of Code Quality Steps
	Automated Testing
	Unit Tests
	Writing a Unit Test
	Anatomy of the Unit Test

	How to Run the Unit Test
	Integration Tests
	How to Run the Integration Test
	Why Do We Need the Flask App Instance?

	A Last Issue and Some Refactoring
	Testing the New Code

	The Downside of Automated Testing
	The Validity of the Tests
	Time Pressure

	Peer Reviews
	Walk-Through
	Staging Environment and UAT

	Chapter 9: Planning and Designing Your Code
	Software Development Lifecycle
	Why Use a Software Development Lifecycle?
	The Reality of Scope Creep and Not Pinning Down Requirements

	Steps in the SDLC
	Phase One: Planning
	Phase Two: Requirements
	Phase Three: Design
	Phase Four: Development
	Phase Five: Testing (But Not the Sole Testing Phase)
	Phase Six: Deployment
	Phase Seven: Support and Maintenance

	Modelling
	Where Does Modelling Fit In the SDLC?
	Why Create Diagrams and Models?
	Tools
	High-Level Models and Diagrams
	Activity Diagram
	Use Case Diagram
	Swimlanes
	Database Diagrams
	Modelling Relationships

	Low-Level Models
	Types of Objects
	Cohesion and Coupling
	Coupling
	Cohesion

	SOLID
	Single Responsibility
	Open/Close Principle
	Liskov Substitution Principle
	Interface Segregation Principle
	Dependency Inversion Principle

	DRY
	Composition

	Summary

	Chapter 10: Security
	Securing Your Code
	Code-Level Security
	SQL Injection
	Cleaning Variables
	Keeping Errors a Secret
	XSS
	CSRF
	Session Management

	System-Level Security
	Keep Your Systems Up to Date
	Database Users
	Ports
	Docker Images
	HTTPS
	Password Policy

	Social Engineering
	Summary

	Chapter 11: Hosting and CI/CD
	Types of Hosting
	Cloud and Serverless Technologies
	Shared Hosting
	Virtual Private Hosting
	Cloud Hosting
	Serverless
	Which Hosting Technology to Choose?

	Continuous Integration and Continuous Deployment (CI/CD)
	Creating the Pipeline
	Continuous Integration
	Continuous Deployment

	Summary

	Index

