
471© Intel Corporation 2021
J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-5574-2_18

CHAPTER 18

Libraries

We have spent the entire book promoting the art of writing our own code.
Now we finally acknowledge that some great programmers have already
written code that we can just use. Libraries are the best way to get our work
done. This is not a case of being lazy—it is a case of having better things to
do than reinvent the work of others. This is a puzzle piece worth having.

The open source DPC++ project includes some libraries. These
libraries can help us continue to use libstdc++, libc++, and MSVC library
functions even within our kernel code. The libraries are included as part of
DPC++ and the oneAPI products from Intel. These libraries are not tied to
the DPC++ compiler so they can be used with any SYCL compiler.

The DPC++ library provides an alternative for programmers who create
heterogeneous applications and solutions. Its APIs are based on familiar
standards—C++ STL, Parallel STL (PSTL), and SYCL—to provide high-
productivity APIs to programmers. This can minimize programming effort
across CPUs, GPUs, and FPGAs while leading to high-performance parallel

applications that are portable.

https://doi.org/10.1007/978-1-4842-5574-2_18#DOI

472

The SYCL standard defines a rich set of built-in functions that provide

functionality, for host and device code, worth considering as well. DPC++

and many SYCL implementations implement key math built-ins with math

libraries.

The libraries and built-ins discussed within this chapter are compiler

agnostic. In other words, they are equally applicable to DPC++ compilers

or SYCL compilers. The fpga_device_policy class is a DPC++ feature for

FPGA support.

Since there is overlap in naming and functionality, this chapter will

start with a brief introduction to the SYCL built-in functions.

�Built-In Functions
DPC++ provides a rich set of SYCL built-in functions with respect to

various data types. These built-in functions are available in the sycl

namespace on host and device with low-, medium-, and high-precision

support for the target devices based on compiler options, for example,

the -mfma, -ffast-math, and -ffp-contract=fast provided by the DPC++

compiler. These built-in functions on host and device can be classified as

in the following:

•	 Floating-point math functions: asin, acos, log, sqrt,

floor, etc. listed in Figure 18-2.

•	 Integer functions: abs, max, min, etc. listed in

Figure 18-3.

•	 Common functions: clamp, smoothstep, etc. listed in

Figure 18-4.

•	 Geometric functions: cross, dot, distance, etc. listed

in Figure 18-5.

•	 Relational functions: isequal, isless, isfinite, etc.

listed in Figure 18-6.

Chapter 18 Libraries

473

If a function is provided by the C++ std library, as listed in Figure 18-8, as

well as a SYCL built-in function, then DPC++ programmers are allowed to

use either. Figure 18-1 demonstrates the C++ std::log function and SYCL

built-in sycl::log function for host and device, and both functions produce

the same numeric results. In the example, the built-in relational function

sycl::isequal is used to compare the results of std:log and sycl:log.

constexpr int size = 9;
std::array<double, size> A;
std::array<double, size> B;

bool pass = true;

for (int i = 0; i < size; ++i) { A[i] = i; B[i] = i; }

queue Q;
range sz{size};

buffer<double> bufA(A);
buffer<double> bufB(B);
buffer<bool> bufP(&pass, 1);

Q.submit([&](handler &h) {
accessor accA{ bufA, h};
accessor accB{ bufB, h};
accessor accP{ bufP, h};

h.parallel_for(size, [=](id<1> idx) {
accA[idx] = std::log(accA[idx]);
accB[idx] = sycl::log(accB[idx]);
if (!sycl::isequal(accA[idx], accB[idx])) {

accP[0] = false;
}

});
});

Figure 18-1.  Using std::log and sycl::log

Chapter 18 Libraries

474

In addition to the data types supported in SYCL, the DPC++

device library provides support for std:complex as a data type and the

corresponding math functions defined in the C++ std library.

�Use the sycl:: Prefix with Built-In Functions
The SYCL built-in functions should be invoked with an explicit

sycl:: prepended to the name. With the current SYCL specification,

calling just sqrt() is not guaranteed to invoke the SYCL built-in on all

implementations even if “using namespace sycl;” has been used.

SYCL built-in functions should always be invoked with an explicit
sycl:: in front of the built-in name. Failure to follow this advice may
result in strange and non-portable results.

If a built-in function name conflicts with a non-templated function

in our application, in many implementations (including DPC++), our

function will prevail, thanks to C++ overload resolution rules that prefer

a non-templated function over a templated one. However, if our code has

a function name that is the same as a built-in name, the most portable

thing to do is either avoid using namespace sycl; or make sure no actual

conflict happens. Otherwise, some SYCL compilers will refuse to compile

the code due to an unresolvable conflict within their implementation.

Such a conflict will not be silent. Therefore, if our code compiles today, we

can safely ignore the possibility of future problems.

Chapter 18 Libraries

475

Figure 18-2.  Built-in math functions

Chapter 18 Libraries

476

Figure 18-3.  Built-in integer functions

Chapter 18 Libraries

477

Figure 18-4.  Built-in common functions

Figure 18-5.  Built-in geometric functions

Chapter 18 Libraries

478

�DPC++ Library
The DPC++ library consists of the following components:

•	 A set of tested C++ standard APIs—we simply need to

include the corresponding C++ standard header files

and use the std namespace.

•	 Parallel STL that includes corresponding header files.

We simply use #include <dpstd/...> to include them.

The DPC++ library uses namespace dpstd for the

extended API classes and functions.

Figure 18-6.  Built-in relational functions

Chapter 18 Libraries

479

�Standard C++ APIs in DPC++
The DPC++ library contains a set of tested standard C++ APIs. The basic

functionality for a number of C++ standard APIs has been developed so

that these APIs can be employed in device kernels similar to how they are

employed in code for a typical C++ host application. Figure 18-7 shows an

example of how to use std::swap in device code.

class KernelSwap;
std::array <int,2> arr{8,9};
buffer<int> buf{arr};

{
host_accessor host_A(buf);
std::cout << "Before: " << host_A[0] << ", " << host_A[1] << "\n";

} // End scope of host_A so that upcoming kernel can operate on buf

queue Q;
Q.submit([&](handler &h) {
accessor A{buf, h};
h.single_task([=]() {
// Call std::swap!
std::swap(A[0], A[1]);
});

});

host_accessor host_B(buf);
std::cout << "After: " << host_B[0] << ", " << host_B[1] << "\n";

Figure 18-7.  Using std::swap in device code

Chapter 18 Libraries

480

We can use the following command to build and run the program

(assuming it resides in the stdswap.cpp file):

dpcpp –std=c++17 stdswap.cpp –o stdswap.exe

./stdswap.exe

The printed result is:

8, 9

9, 8

Figure 18-8 lists C++ standard APIs with “Y” to indicate those that have

been tested for use in DPC++ kernels for CPU, GPU, and FPGA devices,

at the time of this writing. A blank indicates incomplete coverage (not all

three device types) at the time of publication for this book. A table is also

included as part of the online DPC++ language reference guide and will be

updated over time—the library support in DPC++ will continue to expand

its support.

In the DPC++ library, some C++ std functions are implemented based

on their corresponding built-in functions on the device to achieve the

same level of performance as the SYCL versions of these functions.

Chapter 18 Libraries

481

Figure 18-8.  Library support with CPU/GPU/FPGA coverage (at
time of book publication)

Chapter 18 Libraries

482

The tested standard C++ APIs are supported in libstdc++ (GNU) with

gcc 7.4.0 and libc++ (LLVM) with clang 10.0 and MSVC Standard C++

Library with Microsoft Visual Studio 2017 for the host CPU as well.

On Linux, GNU libstdc++ is the default C++ standard library for

the DPC++ compiler, so no compilation or linking option is required.

If we want to use libc++, use the compile options -stdlib=libc++

-nostdinc++ to leverage libc++ and to not include C++ std headers from

the system. The DPC++ compiler has been verified using libc++ in DPC++

kernels on Linux, but the DPC++ runtime needs to be rebuilt with libc++

instead of libstdc++. Details are in https://intel.github.io/llvm-

docs/GetStartedGuide.html#build-dpc-toolchain-with-libc-library.

Because of these extra steps, libc++ is not the recommended C++ standard

library for us to use in general.

On FreeBSD, libc++ is the default standard library, and

the -stdlib=libc++ option is not required. More details are in https://

libcxx.llvm.org/docs/UsingLibcxx.html. On Windows, only the MSVC

C++ library can be used.

To achieve cross-architecture portability, if a std function is not
marked with “Y” in Figure 18-8, we need to keep portability in mind
when we write device functions!

Figure 18.8.  (continued)

Chapter 18 Libraries

https://intel.github.io/llvm-docs/GetStartedGuide.html#build-dpc-toolchain-with-libc-library
https://intel.github.io/llvm-docs/GetStartedGuide.html#build-dpc-toolchain-with-libc-library
https://libcxx.llvm.org/docs/UsingLibcxx.html
https://libcxx.llvm.org/docs/UsingLibcxx.html

483

�DPC++ Parallel STL
Parallel STL is an implementation of the C++ standard library algorithms

with support for execution policies, as specified in the ISO/IEC 14882:2017

standard, commonly called C++17. The existing implementation also

supports the unsequenced execution policy specified in Parallelism TS

version 2 and proposed for the next version of the C++ standard in the C++

working group paper P1001R1.

When using algorithms and execution policies, specify the namespace

std::execution if there is no vendor-specific implementation of the

C++17 standard library or pstl::execution otherwise.

For any of the implemented algorithms, we can pass one of the

values seq, unseq, par, or par_unseq as the first parameter in a call to the

algorithm to specify the desired execution policy. The policies have the

following meanings:

Execution Policy Meaning

seq Sequential execution.

unseq Unsequenced SIMD execution. This policy requires that all

functions provided are safe to execute in SIMD.

par Parallel execution by multiple threads.

par_unseq Combined effect of unseq and par.

Parallel STL for DPC++ is extended with support for DPC++ devices

using special execution policies. The DPC++ execution policy specifies

where and how a Parallel STL algorithm runs. It inherits a standard C++

execution policy, encapsulates a SYCL device or queue, and allows us to

set an optional kernel name. DPC++ execution policies can be used with

all standard C++ algorithms that support execution policies according to

the C++17 standard.

Chapter 18 Libraries

484

�DPC++ Execution Policy

Currently, only the parallel unsequenced policy (par_unseq) is supported

by the DPC++ library. In order to use the DPC++ execution policy, there

are three steps:

	 1.	 Add #include <dpstd/execution> into our code.

	 2.	 Create a policy object by providing a standard

policy type, a class type for a unique kernel name

as a template argument (optional), and one of the

following constructor arguments:

•	 A SYCL queue

•	 A SYCL device

•	 A SYCL device selector

•	 An existing policy object with a different kernel

name

	 3.	 Pass the created policy object to a Parallel STL

algorithm.

A dpstd::execution::default_policy object is a predefined device_

policy created with a default kernel name and default queue. This can be

used to create custom policy objects or passed directly when invoking an

algorithm if the default choices are sufficient.

Figure 18-9 shows examples that assume use of the using namespace

dpstd::execution; directive when referring to policy classes and

functions.

Chapter 18 Libraries

485

�FPGA Execution Policy

The fpga_device_policy class is a DPC++ policy tailored to achieve

better performance of parallel algorithms on FPGA hardware devices. Use

the policy when running the application on FPGA hardware or an FPGA

emulation device:

	 1.	 Define the _PSTL_FPGA_DEVICE macro to run on

FPGA devices and additionally _PSTL_FPGA_EMU to

run on an FPGA emulation device.

	 2.	 Add #include <dpstd/execution> to our code.

	 3.	 Create a policy object by providing a class type for

a unique kernel name and an unroll factor (see

Chapter 17) as template arguments (both optional)

and one of the following constructor arguments:

•	 A SYCL queue constructed for the FPGA selector (the

behavior is undefined with any other device type)

•	 An existing FPGA policy object with a different

kernel name and/or unroll factor

	 4.	 Pass the created policy object to a Parallel STL algorithm.

auto policy_b =
device_policy<parallel_unsequenced_policy, class PolicyB>

{sycl::device{sycl::gpu_selector{}}};
std::for_each(policy_b, …);

auto policy_c =
device_policy<parallel_unsequenced_policy, class PolicyС>

{sycl::default_selector{}};
std::for_each(policy_c, …);

auto policy_d = make_device_policy<class PolicyD>(default_policy);
std::for_each(policy_d, …);

auto policy_e = make_device_policy<class PolicyE>(sycl::queue{});
std::for_each(policy_e, …);

Figure 18-9.  Creating execution policies

Chapter 18 Libraries

https://doi.org/10.1007/978-1-4842-5574-2_17
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/IntelFPGA/FPGASelector.md

486

The default constructor of fpga_device_policy creates an object with

a SYCL queue constructed for fpga_selector, or for fpga_emulator_

selector if _PSTL_FPGA_EMU is defined.

dpstd::execution::fpga_policy is a predefined object of the fpga_

device_policy class created with a default kernel name and default unroll

factor. Use it to create customized policy objects or pass it directly when

invoking an algorithm.

Code in Figure 18-10 assumes using namespace dpstd::execution;

for policies and using namespace sycl; for queues and device selectors.

Specifying an unroll factor for a policy enables loop unrolling in the

implementation of algorithms. The default value is 1. To find out how to

choose a better value, see Chapter 17.

auto fpga_policy_a = fpga_device_policy<class FPGAPolicyA>{};

auto fpga_policy_b = make_fpga_policy(queue{intel::fpga_selector{}});

constexpr auto unroll_factor = 8;
auto fpga_policy_c =
make_fpga_policy<class FPGAPolicyC, unroll_factor>(fpga_policy);

Figure 18-10.  Using FPGA policy

�Using DPC++ Parallel STL

In order to use the DPC++ Parallel STL, we need to include Parallel STL

header files by adding a subset of the following set of lines. These lines are

dependent on the algorithms we intend to use:

•	 #include <dpstd/algorithm>

•	 #include <dpstd/numeric>

•	 #include <dpstd/memory>

Chapter 18 Libraries

https://doi.org/10.1007/978-1-4842-5574-2_17

487

dpstd::begin and dpstd::end are special helper functions that allow

us to pass SYCL buffers to Parallel STL algorithms. These functions accept

a SYCL buffer and return an object of an unspecified type that satisfies the

following requirements:

•	 Is CopyConstructible, CopyAssignable, and

comparable with operators == and !=.

•	 The following expressions are valid: a + n, a – n, and

a – b, where a and b are objects of the type and n is an

integer value.

•	 Has a get_buffer method with no arguments.

The method returns the SYCL buffer passed to

dpstd::begin and dpstd::end functions.

To use these helper functions, add #include <dpstd/iterators> to

our code. See the code in Figures 18-11 and 18-12 using the std::fill

function as examples that use the begin/end helpers.

#include <dpstd/execution>
#include <dpstd/algorithm>
#include <dpstd/iterators>

sycl::queue Q;
sycl::buffer<int> buf { 1000 };

auto buf_begin = dpstd::begin(buf);
auto buf_end = dpstd::end(buf);

auto policy = dpstd::execution::make_device_policy<class fill>(Q);
std::fill(policy, buf_begin, buf_end, 42);
// each element of vec equals to 42

Figure 18-11.  Using std::fill

Chapter 18 Libraries

488

REDUCE DATA COPYING BETWEEN THE HOST AND DEVICE

Parallel STL algorithms can be called with ordinary (host-side) iterators, as

seen in the code example in Figure 18-11.

In this case, a temporary SYCL buffer is created, and the data is copied to

this buffer. After processing of the temporary buffer on a device is complete,

the data is copied back to the host. Working directly with existing SYCL

buffers, where possible, is recommended to reduce data movement between

the host and device and any unnecessary overhead of buffer creations and

destructions.

#include <dpstd/execution>
#include <dpstd/algorithm>

std::vector<int> v(1000000);
std::fill(dpstd::execution::default_policy, v.begin(), v.end(), 42);
// each element of vec equals to 42

Figure 18-12.  Using std::fill with default policy

Figure 18-13 shows an example which performs a binary search of the

input sequence for each of the values in the search sequence provided. As

the result of a search for the ith element of the search sequence, a Boolean

value indicating whether the search value was found in the input sequence

is assigned to the ith element of the result sequence. The algorithm returns

an iterator that points to one past the last element of the result sequence

that was assigned a result. The algorithm assumes that the input sequence

has been sorted by the comparator provided. If no comparator is provided,

then a function object that uses operator< to compare the elements will

be used.

Chapter 18 Libraries

489

The complexity of the preceding description highlights that we

should leverage library functions where possible, instead of writing our

own implementations of similar algorithms which may take significant

debugging and tuning time. Authors of the libraries that we can take

advantage of are often experts in the internals of the device architectures to

which they are coding, and may have access to information that we do not,

so we should always leverage optimized libraries when they are available.

The code example shown in Figure 18-13 demonstrates the three

typical steps when using a DPC++ Parallel STL algorithm:

•	 Create DPC++ iterators.

•	 Create a named policy from an existing policy.

•	 Invoke the parallel algorithm.

The example in Figure 18-13 uses the dpstd::binary_search

algorithm to perform binary search on a CPU, GPU, or FPGA, based on our

device selection.

Chapter 18 Libraries

490

#include <dpstd/execution>
#include <dpstd/algorithm>
#include <dpstd/iterator>

buffer<uint64_t, 1> kB{ range<1>(10) };
buffer<uint64_t, 1> vB{ range<1>(5) };
buffer<uint64_t, 1> rB{ range<1>(5) };

accessor k{kB};
accessor v{vB};

// create dpc++ iterators
auto k_beg = dpstd::begin(kB);
auto k_end = dpstd::end(kB);
auto v_beg = dpstd::begin(vB);
auto v_end = dpstd::end(vB);
auto r_beg = dpstd::begin(rB);

// create named policy from existing one
auto policy = dpstd::execution::make_device_policy<class bSearch>
(dpstd::execution::default_policy);

// call algorithm
dpstd::binary_search(policy, k_beg, k_end, v_beg, v_end, r_beg);

// check data
accessor r{rB};
if ((r[0] == false) && (r[1] == true) &&

(r[2] == false) && (r[3] == true) && (r[4] == true)) {
std::cout << "Passed.\nRun on "

<< policy.queue().get_device().get_info<info::device::name>()
<< "\n";

} else
std::cout << "failed: values do not match.\n";

Figure 18-13.  Using binary_search

�Using Parallel STL with USM

The following examples describe two ways to use the Parallel STL

algorithms in combination with USM:

•	 Through USM pointers

•	 Through USM allocators

If we have a USM allocation, we can pass the pointers to the start and

(one past the) end of the allocation to a parallel algorithm. It is important

to be sure that the execution policy and the allocation itself were created

for the same queue or context, to avoid undefined behavior at runtime.

Chapter 18 Libraries

491

If the same allocation is to be processed by several algorithms, either

use an in-order queue or explicitly wait for completion of each algorithm

before using the same allocation in the next one (this is typical operation

ordering when using USM). Also wait for completion before accessing the

data on the host, as shown in Figure 18-14.

Alternatively, we can use std::vector with a USM allocator as shown

in Figure 18-15.

#include <dpstd/execution>
#include <dpstd/algorithm>

sycl::queue q;
const int n = 10;
int* d_head = static_cast<int*>(
sycl::malloc_device(n * sizeof(int),

q.get_device(),
q.get_context()));

std::fill(dpstd::execution::make_device_policy(q),
d_head, d_head + n, 78);

q.wait();

sycl::free(d_head, q.get_context());

Figure 18-14.  Using Parallel STL with a USM pointer

#include <dpstd/execution>
#include <dpstd/algorithm>

sycl::queue Q;
const int n = 10;
sycl::usm_allocator<int, sycl::usm::alloc::shared>

alloc(Q.get_context(), Q.get_device());
std::vector<int, decltype(alloc)> vec(n, alloc);

std::fill(dpstd::execution::make_device_policy(Q),
vec.begin(), vec.end(), 78);

Q.wait();

Figure 18-15.  Using Parallel STL with a USM allocator

Chapter 18 Libraries

492

�Error Handling with DPC++ Execution Policies
As detailed in Chapter 5, the DPC++ error handling model supports two

types of errors. With synchronous errors, the runtime throws exceptions,

while asynchronous errors are only processed in a user-supplied error

handler at specified times during program execution.

For Parallel STL algorithms executed with DPC++ policies, handling

of all errors, synchronous or asynchronous, is a responsibility of the caller.

Specifically

•	 No exceptions are thrown explicitly by algorithms.

•	 Exceptions thrown by the runtime on the host CPU,

including DPC++ synchronous exceptions, are passed

through to the caller.

•	 DPC++ asynchronous errors are not handled by the

Parallel STL, so must be handled (if any handling is

desired) by the calling application.

To process DPC++ asynchronous errors, the queue associated with

a DPC++ policy must be created with an error handler object. The

predefined policy objects (default_policy and others) have no error

handlers, so we should create our own policies if we need to process

asynchronous errors.

�Summary
The DPC++ library is a companion to the DPC++ compiler. It helps us with

solutions for portions of our heterogeneous applications, using pre-built

and tuned libraries for common functions and parallel patterns. The

DPC++ library allows explicit use of the C++ STL API within kernels, it

streamlines cross-architecture programming with Parallel STL algorithm

extensions, and it increases the successful application of parallel

Chapter 18 Libraries

https://doi.org/10.1007/978-1-4842-5574-2_5

493

algorithms with custom iterators. In addition to support for familiar

libraries (libstdc++, libc++, MSVS), DPC++ also provides full support for

SYCL built-in functions. This chapter overviewed options for leveraging

the work of others instead of having to write everything ourselves, and

we should use that approach wherever practical to simplify application

development and often to realize superior performance.

Open Access  This chapter is licensed under the terms

of the Creative Commons Attribution 4.0 International

License (http://creativecommons.org/licenses/by/4.0/), which permits

use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter’s Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter’s

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 18 Libraries

http://creativecommons.org/licenses/by/4.0/

	Chapter 18: Libraries
	Built-In Functions
	Use the sycl:: Prefix with Built-In Functions

	DPC++ Library
	Standard C++ APIs in DPC++
	DPC++ Parallel STL
	DPC++ Execution Policy
	FPGA Execution Policy
	Using DPC++ Parallel STL
	Using Parallel STL with USM

	Error Handling with DPC++ Execution Policies

	Summary

