
353© Intel Corporation 2021
J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-5574-2_15

CHAPTER 15

Programming for GPUs

Over the last few decades, Graphics Processing Units (GPUs) have evolved

from specialized hardware devices capable of drawing images on a screen

to general-purpose devices capable of executing complex parallel kernels.

Nowadays, nearly every computer includes a GPU alongside a traditional

CPU, and many programs may be accelerated by offloading part of a

parallel algorithm from the CPU to the GPU.

In this chapter, we will describe how a typical GPU works, how

GPU software and hardware execute a SYCL application, and tips and

techniques to keep in mind when we are writing and optimizing parallel

kernels for a GPU.

https://doi.org/10.1007/978-1-4842-5574-2_15#DOI

354

�Performance Caveats
As with any processor type, GPUs differ from vendor to vendor or even from

product generation to product generation; therefore, best practices for one

device may not be best practices for a different device. The advice in this

chapter is likely to benefit many GPUs, both now and in the future, but…

To achieve optimal performance for a particular GPU, always consult
the GPU vendor’s documentation!

Links to documentation from many GPU vendors are provided at the

end of this chapter.

�How GPUs Work
This section describes how typical GPUs work and how GPUs differ from

other accelerator types.

�GPU Building Blocks
Figure 15-1 shows a very simplified GPU consisting of three high-level

building blocks:

	 1.	 Execution resources: A GPU’s execution resources

are the processors that perform computational

work. Different GPU vendors use different names

for their execution resources, but all modern GPUs

consist of multiple programmable processors. The

processors may be heterogeneous and specialized for

particular tasks, or they may be homogeneous and

interchangeable. Processors for most modern GPUs

are homogeneous and interchangeable.

Chapter 15 Programming for GPUs

355

	 2.	 Fixed functions: GPU fixed functions are hardware

units that are less programmable than the execution

resources and are specialized for a single task.

When a GPU is used for graphics, many parts of the

graphics pipeline such as rasterization or raytracing

are performed using fixed functions to improve

power efficiency and performance. When a GPU is

used for data-parallel computation, fixed functions

may be used for tasks such as workload scheduling,

texture sampling, and dependence tracking.

	 3.	 Caches and memory: Like other processor types,

GPUs frequently have caches to store data accessed

by the execution resources. GPU caches may be

implicit, in which case they require no action from

the programmer, or may be explicit scratchpad

memories, in which case a programmer must

purposefully move data into a cache before using

it. Many GPUs also have a large pool of memory to

provide fast access to data used by the execution

resources.

Figure 15-1.  Typical GPU building blocks—not to scale!

Chapter 15 Programming for GPUs

356

�Simpler Processors (but More of Them)
Traditionally, when performing graphics operations, GPUs process large

batches of data. For example, a typical game frame or rendering workload

involves thousands of vertices that produce millions of pixels per frame.

To maintain interactive frame rates, these large batches of data must be

processed as quickly as possible.

A typical GPU design tradeoff is to eliminate features from the

processors forming the execution resources that accelerate single-

threaded performance and to use these savings to build additional

processors, as shown in Figure 15-2. For example, GPU processors may

not include sophisticated out-of-order execution capabilities or branch

prediction logic used by other types of processors. Due to these tradeoffs,

a single data element may be processed on a GPU slower than it would on

another processor, but the larger number of processors enables GPUs to

process many data elements quickly and efficiently.

Figure 15-2.  GPU processors are simpler, but there are more of them

Chapter 15 Programming for GPUs

357

To take advantage of this tradeoff when executing kernels, it is

important to give the GPU a sufficiently large range of data elements to

process. To demonstrate the importance of offloading a large range of data,

consider the matrix multiplication kernel we have been developing and

modifying throughout this book.

A REMINDER ABOUT MATRIX MULTIPLICATION

In this book, matrix multiplication kernels are used to demonstrate how changes

in a kernel or the way it is dispatched affects performance. Although matrix

multiplication performance are significantly improved using the techniques

described in this chapter, matrix multiplication is such an important and

common operation that many hardware (GPU, CPU, FPGA, DSP, etc.) vendors

have implemented highly tuned versions of many routines including matrix

multiplication. Such vendors invest significant time and effort implementing

and validating functions for specific devices and in some cases may use

functionality or techniques that are difficult or impossible to use in standard

kernels.

USE VENDOR-PROVIDED LIBRARIES!

When a vendor provides a library implementation of a function, it is almost

always beneficial to use it rather than re-implementing the function as a

kernel! For matrix multiplication, one can look to oneMKL as part of Intel’s

oneAPI toolkits for solutions appropriate for DPC++ programmers.

A matrix multiplication kernel may be trivially executed on a GPU

by submitting it into a queue as a single task. The body of this matrix

multiplication kernel looks exactly like a function that executes on the host

CPU and is shown in Figure 15-3.

Chapter 15 Programming for GPUs

358

If we try to execute this kernel on a CPU, it will probably perform

okay—not great, since it is not expected to utilize any parallel capabilities

of the CPU, but potentially good enough for small matrix sizes. As shown in

Figure 15-4, if we try to execute this kernel on a GPU, however, it will likely

perform very poorly, because the single task will only utilize a single GPU

processor.

h.single_task([=]() {
for (int m = 0; m < M; m++) {
for (int n = 0; n < N; n++) {
T sum = 0;
for (int k = 0; k < K; k++)
sum += matrixA[m * K + k] * matrixB[k * N + n];

matrixC[m * N + n] = sum;
}

}
});

Figure 15-3.  A single task matrix multiplication looks a lot like CPU
host code

Figure 15-4.  A single task kernel on a GPU leaves many execution
resources idle

Chapter 15 Programming for GPUs

359

h.parallel_for(range{M}, [=](id<1> idx) {
int m = idx[0];

for (int n = 0; n < N; n++) {
T sum = 0;
for (int k = 0; k < K; k++)
sum += matrixA[m * K + k] * matrixB[k * N + n];

matrixC[m * N + n] = sum;
}

});

Figure 15-5.  Somewhat-parallel matrix multiplication

�Expressing Parallelism

To improve the performance of this kernel for both CPUs and GPUs,

we can instead submit a range of data elements to process in parallel,

by converting one of the loops to a parallel_for. For the matrix

multiplication kernel, we can choose to submit a range of data elements

representing either of the two outermost loops. In Figure 15-5, we’ve

chosen to process rows of the result matrix in parallel.

CHOOSING HOW TO PARALLELIZE

Choosing which dimension to parallelize is one very important way to tune an

application for both GPUs and other device types. Subsequent sections in this

chapter will describe some of the reasons why parallelizing in one dimension

may perform better than parallelizing in a different dimension.

Even though the somewhat-parallel kernel is very similar to the single

task kernel, it should run better on a CPU and much better on a GPU. As

shown in Figure 15-6, the parallel_for enables work-items representing

rows of the result matrix to be processed on multiple processor resources

in parallel, so all execution resources stay busy.

Chapter 15 Programming for GPUs

360

Figure 15-6.  Somewhat-parallel kernel keeps more processor
resources busy

Note that the exact way that the rows are partitioned and assigned to

different processor resources is not specified, giving an implementation

flexibility to choose how best to execute the kernel on a device. For

example, instead of executing individual rows on a processor, an

implementation may choose to execute consecutive rows on the same

processor to gain locality benefits.

�Expressing More Parallelism

We can parallelize the matrix multiplication kernel even more by choosing

to process both outer loops in parallel. Because parallel_for can express

parallel loops over up to three dimensions, this is straightforward, as

shown in Figure 15-7. In Figure 15-7, note that both the range passed

to parallel_for and the item representing the index in the parallel

execution space are now two-dimensional.

Chapter 15 Programming for GPUs

361

Exposing additional parallelism will likely improve the performance

of the matrix multiplication kernel when run on a GPU. This is likely to be

true even when the number of matrix rows exceeds the number of GPU

processors. The next few sections describe possible reasons why this may

be the case.

�Simplified Control Logic (SIMD Instructions)
Many GPU processors optimize control logic by leveraging the fact that

most data elements tend to take the same control flow path through a

kernel. For example, in the matrix multiplication kernel, each data element

executes the innermost loop the same number of times since the loop

bounds are invariant.

When data elements take the same control flow path through a kernel,

a processor may reduce the costs of managing an instruction stream by

sharing control logic among multiple data elements and executing them as

a group. One way to do this is to implement a Single Instruction, Multiple

Data or SIMD instruction set, where multiple data elements are processed

simultaneously by a single instruction.

h.parallel_for(range{M, N}, [=](id<2> idx) {
int m = idx[0];
int n = idx[1];
T sum = 0;
for (int k = 0; k < K; k++)

sum += matrixA[m * K + k] * matrixB[k * N + n];
matrixC[m * N + n] = sum;

});

Figure 15-7.  Even more parallel matrix multiplication

Chapter 15 Programming for GPUs

362

THREADS VS. INSTRUCTION STREAMS

In many parallel programming contexts and GPU literature, the term “thread”

is used to mean an “instruction stream.” In these contexts, a “thread” is

different than a traditional operating system thread and is typically much more

lightweight. This isn’t always the case, though, and in some cases, a “thread”

is used to describe something completely different.

Since the term “thread” is overloaded and easily misunderstood, this chapter

uses the term “instruction stream” instead.

Figure 15-8.  Four-wide SIMD processor: The four ALUs share fetch/
decode logic

The number of data elements that are processed simultaneously by

a single instruction is sometimes referred to as the SIMD width of the

instruction or the processor executing the instruction. In Figure 15-8, four

ALUs share the same control logic, so this may be described as a four-wide

SIMD processor.

GPU processors are not the only processors that implement SIMD

instruction sets. Other processor types also implement SIMD instruction

sets to improve efficiency when processing large sets of data. The main

difference between GPU processors and other processor types is that GPU

Chapter 15 Programming for GPUs

363

processors rely on executing multiple data elements in parallel to achieve

good performance and that GPU processors may support wider SIMD

widths than other processor types. For example, it is not uncommon for

GPU processors to support SIMD widths of 16, 32, or more data elements.

PROGRAMMING MODELS: SPMD AND SIMD

Although GPU processors implement SIMD instruction sets with varying widths,

this is usually an implementation detail and is transparent to the application

executing data-parallel kernels on the GPU processor. This is because many GPU

compilers and runtime APIs implement a Single Program, Multiple Data or SPMD

programming model, where the GPU compiler and runtime API determine the

most efficient group of data elements to process with a SIMD instruction stream,

rather than expressing the SIMD instructions explicitly. The “Sub-Groups” section

of Chapter 9 explores cases where the grouping of data elements is visible to

applications.

In Figure 15-9, we have widened each of our execution resources to

support four-wide SIMD, allowing us to process four times as many matrix

rows in parallel.

Figure 15-9.  Executing a somewhat-parallel kernel on SIMD processors

Chapter 15 Programming for GPUs

https://doi.org/10.1007/978-1-4842-5574-2_9

364

The use of SIMD instructions that process multiple data elements

in parallel is one of the ways that the performance of the parallel matrix

multiplication kernels in Figures 15-5 and 15-7 is able to scale beyond the

number of processors alone. The use of SIMD instructions also provides

natural locality benefits in many cases, including matrix multiplication, by

executing consecutive data elements on the same processor.

Kernels benefit from parallelism across processors and parallelism
within processors!

�Predication and Masking

Sharing an instruction stream among multiple data elements works well

so long as all data elements take the same path through conditional code

in a kernel. When data elements take different paths through conditional

code, control flow is said to diverge. When control flow diverges in a SIMD

instruction stream, usually both control flow paths are executed, with

some channels masked off or predicated. This ensures correct behavior,

but the correctness comes at a performance cost since channels that are

masked do not perform useful work.

To show how predication and masking works, consider the kernel in

Figure 15-10, which multiplies each data element with an “odd” index by

two and increments each data element with an “even” index by one.

h.parallel_for(array_size, [=](id<1> i) {
auto condition = i[0] & 1;
if (condition)

dataAcc[i] = dataAcc[i] * 2; // odd
else
dataAcc[i] = dataAcc[i] + 1; // even

});

Figure 15-10.  Kernel with divergent control flow

Chapter 15 Programming for GPUs

365

Let’s say that we execute this kernel on the four-wide SIMD processor

shown in Figure 15-8 and that we execute the first four data elements in

one SIMD instruction stream and the next four data elements in a different

SIMD instruction stream and so on. Figure 15-11 shows one of the ways

channels may be masked and execution may be predicated to correctly

execute this kernel with divergent control flow.

3 2 1 0

Figure 15-11.  Possible channel masks for a divergent kernel

�SIMD Efficiency

SIMD efficiency measures how well a SIMD instruction stream performs

compared to equivalent scalar instruction streams. In Figure 15-11,

since control flow partitioned the channels into two equal groups, each

instruction in the divergent control flow executes with half efficiency.

In a worst-case scenario, for highly divergent kernels, efficiency may be

reduced by a factor of the processor’s SIMD width.

Chapter 15 Programming for GPUs

366

All processors that implement a SIMD instruction set will suffer

from divergence penalties that affect SIMD efficiency, but because GPU

processors typically support wider SIMD widths than other processor

types, restructuring an algorithm to minimize divergent control flow

and maximize converged execution may be especially beneficial when

optimizing a kernel for a GPU. This is not always possible, but as an

example, choosing to parallelize along a dimension with more converged

execution may perform better than parallelizing along a different

dimension with highly divergent execution.

�SIMD Efficiency and Groups of Items

All kernels in this chapter so far have been basic data-parallel kernels that

do not specify any grouping of items in the execution range, which gives

an implementation freedom to choose the best grouping for a device. For

example, a device with a wider SIMD width may prefer a larger grouping, but

a device with a narrower SIMD width may be fine with smaller groupings.

When a kernel is an ND-range kernel with explicit groupings of work-

items, care should be taken to choose an ND-range work-group size

that maximizes SIMD efficiency. When a work-group size is not evenly

divisible by a processor’s SIMD width, part of the work-group may execute

with channels disabled for the entire duration of the kernel. The kernel

preferred_work_group_size_multiple query can be used to choose an

efficient work-group size. Please refer to Chapter 12 for more information

on how to query properties of a device.

Choosing a work-group size consisting of a single work-item will likely

perform very poorly since many GPUs will implement a single-work-item

work-group by masking off all SIMD channels except for one. For example,

the kernel in Figure 15-12 will likely perform much worse than the very

similar kernel in Figure 15-5, even though the only significant difference

between the two is a change from a basic data-parallel kernel to an

inefficient single-work-item ND-range kernel (nd_range<1>{M, 1}).

Chapter 15 Programming for GPUs

https://doi.org/10.1007/978-1-4842-5574-2_12

367

�Switching Work to Hide Latency
Many GPUs implement one more technique to simplify control logic,

maximize execution resources, and improve performance: instead of

executing a single instruction stream on a processor, many GPUs allow

multiple instruction streams to be resident on a processor simultaneously.

Having multiple instruction streams resident on a processor is

beneficial because it gives each processor a choice of work to execute. If

one instruction stream is performing a long-latency operation, such as

a read from memory, the processor can switch to a different instruction

stream that is ready to run instead of waiting for the operation to complete.

With enough instruction streams, by the time that the processor switches

back to the original instruction stream, the long-latency operation may

have completed without requiring the processor to wait at all.

Figure 15-13 shows how a processor uses multiple simultaneous

instruction streams to hide latency and improve performance. Even

though the first instruction stream took a little longer to execute with

multiple streams, by switching to other instruction streams, the processor

was able to find work that was ready to execute and never needed to idly

wait for the long operation to complete.

// A work-group consisting of a single work-item is inefficient!
h.parallel_for(nd_range<1>{M, 1}, [=](nd_item<1> idx) {
int m = idx.get_global_id(0);

for (int n = 0; n < N; n++) {
T sum = 0;
for (int k = 0; k < K; k++)

sum += matrixA[m * K + k] * matrixB[k * N + n];
matrixC[m * N + n] = sum;

}
});

Figure 15-12.  Inefficient single-item, somewhat-parallel matrix
multiplication

Chapter 15 Programming for GPUs

368

GPU profiling tools may describe the number of instruction streams

that a GPU processor is currently executing vs. the theoretical total number

of instruction streams using a term such as occupancy.

Low occupancy does not necessarily imply low performance, since

it is possible that a small number of instruction streams will keep a

processor busy. Likewise, high occupancy does not necessarily imply high

performance, since a GPU processor may still need to wait if all instruction

streams perform inefficient, long-latency operations. All else being equal

though, increasing occupancy maximizes a GPU processor’s ability to hide

latency and will usually improve performance. Increasing occupancy is

another reason why performance may improve with the even more parallel

kernel in Figure 15-7.

This technique of switching between multiple instruction streams

to hide latency is especially well-suited for GPUs and data-parallel

processing. Recall from Figure 15-2 that GPU processors are frequently

simpler than other processor types and hence lack complex latency-hiding

features. This makes GPU processors more susceptible to latency issues,

but because data-parallel programming involves processing a lot of data,

GPU processors usually have plenty of instruction streams to execute!

Op OpLong
Operation

Wait for Operation
to Complete...

Op OpLong
Operation Switch!

Switch!

vs.

Wait for Operation
to Complete...

Op Long
Operation

Wait for Operation
to Complete...

Op Long
Operation Wait...Switch!

Figure 15-13.  Switching instruction streams to hide latency

Chapter 15 Programming for GPUs

369

�Offloading Kernels to GPUs
This section describes how an application, the SYCL runtime library,

and the GPU software driver work together to offload a kernel on GPU

hardware. The diagram in Figure 15-14 shows a typical software stack with

these layers of abstraction. In many cases, the existence of these layers

is transparent to an application, but it is important to understand and

account for them when debugging or profiling our application.

GPU Hardware

GPU Software Driver

SYCL Runtime Library

SYCL Application

Figure 15-14.  Offloading parallel kernels to GPUs (simplified)

�SYCL Runtime Library
The SYCL runtime library is the primary software library that SYCL

applications interface with. The runtime library is responsible for

implementing classes such as queues, buffers, and accessors and the

member functions of these classes. Parts of the runtime library may be in

header files and hence directly compiled into the application executable.

Other parts of the runtime library are implemented as library functions,

which are linked with the application executable as part of the application

build process. The runtime library is usually not device-specific, and the

same runtime library may orchestrate offload to CPUs, GPUs, FPGAs, or

other devices.

Chapter 15 Programming for GPUs

370

�GPU Software Drivers
Although it is theoretically possible that a SYCL runtime library could

offload directly to a GPU, in practice, most SYCL runtime libraries interface

with a GPU software driver to submit work to a GPU.

A GPU software driver is typically an implementation of an API,

such as OpenCL, Level Zero, or CUDA. Most of a GPU software driver is

implemented in a user-mode driver library that the SYCL runtime calls

into, and the user-mode driver may call into the operating system or

a kernel-mode driver to perform system-level tasks such as allocating

memory or submitting work to the device. The user-mode driver may also

invoke other user-mode libraries; for example, the GPU driver may invoke

a GPU compiler to just-in-time compile a kernel from an intermediate

representation to GPU ISA (Instruction Set Architecture). These software

modules and the interactions between them are shown in Figure 15-15.

GPU Hardware

GPU Software User-Mode Driver

GPU Software Kernel-Mode DriverOperating Systems
Services

User-Mode Support
Libraries or Compilers

SYCL Runtime Library

API Calls

User Mode
Kernel Mode

Software
Hardware

Figure 15-15.  Typical GPU software driver modules

Chapter 15 Programming for GPUs

371

�GPU Hardware
When the runtime library or the GPU software user-mode driver is

explicitly requested to submit work or when the GPU software heuristically

determines that work should begin, it will typically call through the

operating system or a kernel-mode driver to start executing work on the

GPU. In some cases, the GPU software user-mode driver may submit work

directly to the GPU, but this is less common and may not be supported by

all devices or operating systems.

When the results of work executed on a GPU are consumed by the host

processor or another accelerator, the GPU must issue a signal to indicate

that work is complete. The steps involved in work completion are very

similar to the steps for work submission, executed in reverse: the GPU

may signal the operating system or kernel-mode driver that it has finished

execution, then the user-mode driver will be informed, and finally the

runtime library will observe that work has completed via GPU software API

calls.

Each of these steps introduces latency, and in many cases, the runtime

library and the GPU software are making a tradeoff between lower latency

and higher throughput. For example, submitting work to the GPU more

frequently may reduce latency, but submitting frequently may also reduce

throughput due to per-submission overheads. Collecting large batches

of work increases latency but amortizes submission overheads over

more work and introduces more opportunities for parallel execution.

The runtime and drivers are tuned to make the right tradeoff and usually

do a good job, but if we suspect that driver heuristics are submitting

work inefficiently, we should consult documentation to see if there are

ways to override the default driver behavior using API-specific or even

implementation-specific mechanisms.

Chapter 15 Programming for GPUs

372

�Beware the Cost of Offloading!
Although SYCL implementations and GPU vendors are continually

innovating and optimizing to reduce the cost of offloading work to a GPU,

there will always be overhead involved both when starting work on a

GPU and observing results on the host or another device. When choosing

where to execute an algorithm, consider both the benefit of executing

an algorithm on a device and the cost of moving the algorithm and any

data that it requires to the device. In some cases, it may be most efficient

to perform a parallel operation using the host processor—or to execute a

serial part of an algorithm inefficiently on the GPU—to avoid the overhead

of moving an algorithm from one processor to another.

Consider the performance of our algorithm as a whole—it may be
most efficient to execute part of an algorithm inefficiently on one
device than to transfer execution to another device!

�Transfers to and from Device Memory

On GPUs with dedicated memory, be especially aware of transfer costs

between dedicated GPU memory and memory on the host or another

device. Figure 15-16 shows typical memory bandwidth differences

between different memory types in a system.

Chapter 15 Programming for GPUs

373

Recall from Chapter 3 that GPUs prefer to operate on dedicated

device memory, which can be faster by an order of magnitude or more,

instead of operating on host memory or another device’s memory. Even

though accesses to dedicated device memory are significantly faster than

accesses to remote memory or system memory, if the data is not already in

dedicated device memory then it must be copied or migrated.

So long as the data will be accessed frequently, moving it into

dedicated device memory is beneficial, especially if the transfer can

be performed asynchronously while the GPU execution resources are

busy processing another task. When the data is accessed infrequently or

unpredictably though, it may preferable to save transfer costs and operate

on the data remotely or in system memory, even if per-access costs are

higher. Chapter 6 describes ways to control where memory is allocated

and different techniques to copy and prefetch data into dedicated device

memory. These techniques are important when optimizing program

execution for GPUs.

Figure 15-16.  Typical differences between device memory, remote
memory, and host memory

Chapter 15 Programming for GPUs

https://doi.org/10.1007/978-1-4842-5574-2_3
https://doi.org/10.1007/978-1-4842-5574-2_6

374

�GPU Kernel Best Practices
The previous sections described how the dispatch parameters passed to a

parallel_for affect how kernels are assigned to GPU processor resources

and the software layers and overheads involved in executing a kernel on a GPU.

This section describes best practices when a kernel is executing on a GPU.

Broadly speaking, kernels are either memory bound, meaning that their

performance is limited by data read and write operations into or out of the

execution resources on the GPU, or are compute bound, meaning that their

performance is limited by the execution resources on the GPU. A good first

step when optimizing a kernel for a GPU—and many other processors!—is

to determine whether our kernel is memory bound or compute bound,

since the techniques to improve a memory-bound kernel frequently will

not benefit a compute-bound kernel and vice versa. GPU vendors often

provide profiling tools to help make this determination.

Different optimization techniques are needed depending whether our
kernel is memory bound or compute bound!

Because GPUs tend to have many processors and wide SIMD widths,

kernels tend to be memory bound more often than they are compute

bound. If we are unsure where to start, examining how our kernel accesses

memory is a good first step.

�Accessing Global Memory
Efficiently accessing global memory is critical for optimal application

performance, because almost all data that a work-item or work-group

operates on originates in global memory. If a kernel operates on global

memory inefficiently, it will almost always perform poorly. Even though

GPUs often include dedicated hardware gather and scatter units for

Chapter 15 Programming for GPUs

375

reading and writing arbitrary locations in memory, the performance

of accesses to global memory is usually driven by the locality of data

accesses. If one work-item in a work-group is accessing an element in

memory that is adjacent to an element accessed by another work-item

in the work-group, the global memory access performance is likely to

be good. If work-items in a work-group instead access memory that is

strided or random, the global memory access performance will likely be

worse. Some GPU documentation describes operating on nearby memory

accesses as coalesced memory accesses.

Recall that for our somewhat-parallel matrix multiplication kernel in

Figure 15-15, we had a choice whether to process a row or a column of

the result matrix in parallel, and we chose to operate on rows of the result

matrix in parallel. This turns out to be a poor choice: if one work-item with

id equal to m is grouped with a neighboring work-item with id equal to m-1

or m+1, the indices used to access matrixB are the same for each work-item,

but the indices used to access matrixA differ by K, meaning the accesses

are highly strided. The access pattern for matrixA is shown in Figure 15-17.

Figure 15-17.  Accesses to matrixA are highly strided and inefficient

Chapter 15 Programming for GPUs

376

If, instead, we choose to process columns of the result matrix in

parallel, the access patterns have much better locality. The kernel in

Figure 15-18 is structurally very similar to that in Figure 15-5 with the only

difference being that each work-item in Figure 15-18 operates on a column

of the result matrix, rather than a row of the result matrix.

// This kernel processes columns of the result matrix in parallel.
h.parallel_for(N, [=](item<1> idx) {

int n = idx[0];

for (int m = 0; m < M; m++) {
T sum = 0;
for (int k = 0; k < K; k++)
sum += matrixA[m * K + k] * matrixB[k * N + n];

matrixC[m * N + n] = sum;
}

});

Figure 15-18.  Computing columns of the result matrix in parallel,
not rows

Even though the two kernels are structurally very similar, the kernel

that operates on columns of data will significantly outperform the kernel

that operates on rows of data on many GPUs, purely due to the more

efficient memory accesses: if one work-item with id equal to n is grouped

with a neighboring work-item with id equal to n-1 or n+1, the indices used

to access matrixA are now the same for each work-item, and the indices

used to access matrixB are consecutive. The access pattern for matrixB is

shown in Figure 15-19.

Chapter 15 Programming for GPUs

377

Accesses to consecutive data are usually very efficient. A good rule of

thumb is that the performance of accesses to global memory for a group of

work-items is a function of the number of GPU cache lines accessed. If all

accesses are within a single cache line, the access will execute with peak

performance. If an access requires two cache lines, say by accessing every

other element or by starting from a cache-misaligned address, the access

may operate at half performance. When each work-item in the group

accesses a unique cache line, say for a very strided or random accesses, the

access is likely to operate at lowest performance.

Figure 15-19.  Accesses to matrixB are consecutive and efficient

Chapter 15 Programming for GPUs

378

PROFILING KERNEL VARIANTS

For matrix multiplication, choosing to parallelize along one dimension clearly

results in more efficient memory accesses, but for other kernels, the choice

may not be as obvious. For kernels where it is important to achieve the best

performance, if it is not obvious which dimension to parallelize, it is sometimes

worth developing and profiling different kernel variants that parallelize along

each dimension to see what works better for a device and data set.

�Accessing Work-Group Local Memory
In the previous section, we described how accesses to global memory benefit

from locality, to maximize cache performance. As we saw, in some cases we

can design our algorithm to efficiently access memory, such as by choosing

to parallelize in one dimension instead of another. This technique isn’t

possible in all cases, however. This section describes how we can use work-

group local memory to efficiently support more memory access patterns.

Recall from Chapter 9 that work-items in a work-group can cooperate

to solve a problem by communicating through work-group local memory

and synchronizing using work-group barriers. This technique is especially

beneficial for GPUs, since typical GPUs have specialized hardware

to implement both barriers and work-group local memory. Different

GPU vendors and different products may implement work-group local

memory differently, but work-group local memory frequently has two

benefits compared to global memory: local memory may support higher

bandwidth and lower latency than accesses to global memory, even when

the global memory access hits a cache, and local memory is often divided

into different memory regions, called banks. So long as each work-item in

a group accesses a different bank, the local memory access executes with

full performance. Banked accesses allow local memory to support far more

access patterns with peak performance than global memory.

Chapter 15 Programming for GPUs

https://doi.org/10.1007/978-1-4842-5574-2_9

379

Many GPU vendors will assign consecutive local memory addresses

to different banks. This ensures that consecutive memory accesses always

operate at full performance, regardless of the starting address. When

memory accesses are strided, though, some work-items in a group may

access memory addresses assigned to the same bank. When this occurs,

it is considered a bank conflict and results in serialized access and lower

performance.

For maximum global memory performance, minimize the number of
cache lines accessed.

For maximum local memory performance, minimize the number of
bank conflicts!

A summary of access patterns and expected performance for global

memory and local memory is shown in Figure 15-20. Assume that

when ptr points to global memory, the pointer is aligned to the size of a

GPU cache line. The best performance when accessing global memory

can be achieved by accessing memory consecutively starting from a

cache-aligned address. Accessing an unaligned address will likely lower

global memory performance because the access may require accessing

additional cache lines. Because accessing an unaligned local address will

not result in additional bank conflicts, the local memory performance is

unchanged.

The strided case is worth describing in more detail. Accessing every

other element in global memory requires accessing more cache lines and

will likely result in lower performance. Accessing every other element

in local memory may result in bank conflicts and lower performance, but

only if the number of banks is divisible by two. If the number of banks is

odd, this case will operate at full performance also.

Chapter 15 Programming for GPUs

380

When the stride between accesses is very large, each work-item

accesses a unique cache line, resulting in the worst performance. For local

memory though, the performance depends on the stride and the number

of banks. When the stride N is equal to the number of banks, each access

results in a bank conflict, and all accesses are serialized, resulting in the

worst performance. If the stride M and the number of banks share no

common factors, however, the accesses will run at full performance. For

this reason, many optimized GPU kernels will pad data structures in local

memory to choose a stride that reduces or eliminates bank conflicts.

ptr[id]

ptr[id + 1]

ptr[id * 2]

ptr[id * N]

ptr[id * M]

Worst Performance

Worst Performance

Lower Performance

Global Memory:

Lower Performance

Full Performance!

Local Memory:

Worst Performance

Full Performance!

Lower Performance

Full Performance!

Full Performance!

Figure 15-20.  Possible performance for different access patterns, for
global and local memory

�Avoiding Local Memory Entirely with
Sub-Groups
As discussed in Chapter 9, sub-group collective functions are an

alternative way to exchange data between work-items in a group. For many

GPUs, a sub-group represents a collection of work-items processed by a

Chapter 15 Programming for GPUs

https://doi.org/10.1007/978-1-4842-5574-2_9

381

single instruction stream. In these cases, the work-items in the sub-group

can inexpensively exchange data and synchronize without using work-

group local memory. Many of the best-performing GPU kernels use sub-

groups, so for expensive kernels, it is well worth examining if our algorithm

can be reformulated to use sub-group collective functions.

�Optimizing Computation Using Small Data Types
This section describes techniques to optimize kernels after eliminating

or reducing memory access bottlenecks. One very important perspective

to keep in mind is that GPUs have traditionally been designed to draw

pictures on a screen. Although pure computational capabilities of GPUs

have evolved and improved over time, in some areas their graphics

heritage is still apparent.

Consider support for kernel data types, for example. Many GPUs

are highly optimized for 32-bit floating-point operations, since these

operations tend to be common in graphics and games. For algorithms that

can cope with lower precision, many GPUs also support a lower-precision

16-bit floating-point type that trades precision for faster processing.

Conversely, although many GPUs do support 64-bit double-precision

floating-point operations, the extra precision will come at a cost, and 32-bit

operations usually perform much better than their 64-bit equivalents.

The same is true for integer data types, where 32-bit integer data types

typically perform better than 64-bit integer data types and 16-bit integers

may perform even better still. If we can structure our computation to use

smaller integers, our kernel may perform faster. One area to pay careful

attention to are addressing operations, which typically operate on 64-bit

size_t data types, but can sometimes be rearranged to perform most of

the calculation using 32-bit data types. In some local memory cases, 16 bits

of indexing is sufficient, since most local memory allocations are small.

Chapter 15 Programming for GPUs

382

�Optimizing Math Functions
Another area where a kernel may trade off accuracy for performance

involves SYCL built-in functions. SYCL includes a rich set of math functions

with well-defined accuracy across a range of inputs. Most GPUs do not

support these functions natively and implement them using a long sequence

of other instructions. Although the math function implementations are

typically well-optimized for a GPU, if our application can tolerate lower

accuracy, we should consider a different implementation with lower

accuracy and higher performance instead. Please refer to Chapter 18 for

more information about SYCL built-in functions.

For commonly used math functions, the SYCL library includes fast

or native function variants with reduced or implementation-defined

accuracy requirements. For some GPUs, these functions can be an order

of magnitude faster than their precise equivalents, so they are well worth

considering if they have enough precision for an algorithm. For example,

many image postprocessing algorithms have well-defined inputs and can

tolerate lower accuracy and hence are good candidates for using fast or

native math functions.

If an algorithm can tolerate lower precision, we can use smaller data
types or lower-precision math functions to increase performance!

�Specialized Functions and Extensions
One final consideration when optimizing a kernel for a GPU are

specialized instructions that are common in many GPUs. As one example,

nearly all GPUs support a mad or fma multiply-and-add instruction that

performs two operations in a single clock. GPU compilers are generally

very good at identifying and optimizing individual multiplies and adds

to use a single instruction instead, but SYCL also includes mad and fma

Chapter 15 Programming for GPUs

https://doi.org/10.1007/978-1-4842-5574-2_18

383

functions that can be called explicitly. Of course, if we expect our GPU

compiler to optimize multiplies and adds for us, we should be sure that we

do not prevent optimizations by disabling floating-point contractions!

Other specialized GPU instructions may only be available via compiler

optimizations or extensions to the SYCL language. For example, some

GPUs support a specialized dot-product-and-accumulate instruction that

compilers will try to identify and optimize for or that can be called directly.

Refer to Chapter 12 for more information on how to query the extensions

that are supported by a GPU implementation.

�Summary
In this chapter, we started by describing how typical GPUs work and how

GPUs are different than traditional CPUs. We described how GPUs are

optimized for large amounts of data, by trading processor features that

accelerate a single instruction stream for additional processors.

We described how GPUs process multiple data elements in parallel

using wide SIMD instructions and how GPUs use predication and masking

to execute kernels with complex flow control using SIMD instructions.

We discussed how predication and masking can reduce SIMD efficiency

and decrease performance for kernels that are highly divergent and how

choosing to parallelize along one dimension vs. another may reduce SIMD

divergence.

Because GPUs have so many processing resources, we discussed how

it is important to give GPUs enough work to keep occupancy high. We also

described how GPUs use instruction streams to hide latency, making it

even more crucial to give GPUs lots of work to execute.

Next, we discussed the software and hardware layers involved in

offloading a kernel to a GPU and the costs of offloading. We discussed how

it may be more efficient to execute an algorithm on a single device than it

is to transfer execution from one device to another.

Chapter 15 Programming for GPUs

https://doi.org/10.1007/978-1-4842-5574-2_12

384

Finally, we described best practices for kernels once they are executing

on a GPU. We described how many kernels start off memory bound and

how to access global memory and local memory efficiently or how to

avoid local memory entirely by using sub-group operations. When kernels

are compute bound instead, we described how to optimize computation

by trading lower precision for higher performance or using custom GPU

extensions to access specialized instructions.

�For More Information
There is much more to learn about GPU programming, and this chapter

just scratched the surface!

GPU specifications and white papers are a great way to learn more

about specific GPUs and GPU architectures. Many GPU vendors provide

very detailed information about their GPUs and how to program them.

At the time of this writing, relevant reading about major GPUs can be

found on software.intel.com, devblogs.nvidia.com, and amd.com.

Some GPU vendors have open source drivers or driver components.

When available, it can be instructive to inspect or step through driver code,

to get a sense for which operations are expensive or where overheads may

exist in an application.

This chapter focused entirely on traditional accesses to global memory

via buffer accessors or Unified Shared Memory, but most GPUs also

include a fixed-function texture sampler that can accelerate operations on

images. For more information about images and samplers, please refer to

the SYCL specification.

Chapter 15 Programming for GPUs

https://software.intel.com
https://devblogs.nvidia.com
https://amd.com

385

Open Access  This chapter is licensed under the terms

of the Creative Commons Attribution 4.0 International

License (http://creativecommons.org/licenses/by/4.0/), which permits

use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter’s Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter’s

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 15 Programming for GPUs

http://creativecommons.org/licenses/by/4.0/

	Chapter 15: Programming for GPUs
	Performance Caveats
	How GPUs Work
	GPU Building Blocks
	Simpler Processors (but More of Them)
	Expressing Parallelism
	Expressing More Parallelism

	Simplified Control Logic (SIMD Instructions)
	Predication and Masking
	SIMD Efficiency
	SIMD Efficiency and Groups of Items

	Switching Work to Hide Latency

	Offloading Kernels to GPUs
	SYCL Runtime Library
	GPU Software Drivers
	GPU Hardware
	Beware the Cost of Offloading!
	Transfers to and from Device Memory

	GPU Kernel Best Practices
	Accessing Global Memory
	Accessing Work-Group Local Memory
	Avoiding Local Memory Entirely with Sub-Groups
	Optimizing Computation Using Small Data Types
	Optimizing Math Functions
	Specialized Functions and Extensions

	Summary
	For More Information

