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CHAPTER 15

Programming for GPUs

Over the last few decades, Graphics Processing Units (GPUs) have evolved 

from specialized hardware devices capable of drawing images on a screen 

to general-purpose devices capable of executing complex parallel kernels. 

Nowadays, nearly every computer includes a GPU alongside a traditional 

CPU, and many programs may be accelerated by offloading part of a 

parallel algorithm from the CPU to the GPU.

In this chapter, we will describe how a typical GPU works, how 

GPU software and hardware execute a SYCL application, and tips and 

techniques to keep in mind when we are writing and optimizing parallel 

kernels for a GPU.
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�Performance Caveats
As with any processor type, GPUs differ from vendor to vendor or even from 

product generation to product generation; therefore, best practices for one 

device may not be best practices for a different device. The advice in this 

chapter is likely to benefit many GPUs, both now and in the future, but…

To achieve optimal performance for a particular GPU, always consult 
the GPU vendor’s documentation!

Links to documentation from many GPU vendors are provided at the 

end of this chapter.

�How GPUs Work
This section describes how typical GPUs work and how GPUs differ from 

other accelerator types.

�GPU Building Blocks
Figure 15-1 shows a very simplified GPU consisting of three high-level 

building blocks:

	 1.	 Execution resources: A GPU’s execution resources 

are the processors that perform computational 

work. Different GPU vendors use different names 

for their execution resources, but all modern GPUs 

consist of multiple programmable processors. The 

processors may be heterogeneous and specialized for 

particular tasks, or they may be homogeneous and 

interchangeable. Processors for most modern GPUs 

are homogeneous and interchangeable.
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	 2.	 Fixed functions: GPU fixed functions are hardware 

units that are less programmable than the execution 

resources and are specialized for a single task. 

When a GPU is used for graphics, many parts of the 

graphics pipeline such as rasterization or raytracing 

are performed using fixed functions to improve 

power efficiency and performance. When a GPU is 

used for data-parallel computation, fixed functions 

may be used for tasks such as workload scheduling, 

texture sampling, and dependence tracking.

	 3.	 Caches and memory: Like other processor types, 

GPUs frequently have caches to store data accessed 

by the execution resources. GPU caches may be 

implicit, in which case they require no action from 

the programmer, or may be explicit scratchpad 

memories, in which case a programmer must 

purposefully move data into a cache before using 

it. Many GPUs also have a large pool of memory to 

provide fast access to data used by the execution 

resources.

Figure 15-1.  Typical GPU building blocks—not to scale!

Chapter 15  Programming for GPUs



356

�Simpler Processors (but More of Them)
Traditionally, when performing graphics operations, GPUs process large 

batches of data. For example, a typical game frame or rendering workload 

involves thousands of vertices that produce millions of pixels per frame. 

To maintain interactive frame rates, these large batches of data must be 

processed as quickly as possible.

A typical GPU design tradeoff is to eliminate features from the 

processors forming the execution resources that accelerate single-

threaded performance and to use these savings to build additional 

processors, as shown in Figure 15-2. For example, GPU processors may 

not include sophisticated out-of-order execution capabilities or branch 

prediction logic used by other types of processors. Due to these tradeoffs, 

a single data element may be processed on a GPU slower than it would on 

another processor, but the larger number of processors enables GPUs to 

process many data elements quickly and efficiently.

Figure 15-2.  GPU processors are simpler, but there are more of them
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To take advantage of this tradeoff when executing kernels, it is 

important to give the GPU a sufficiently large range of data elements to 

process. To demonstrate the importance of offloading a large range of data, 

consider the matrix multiplication kernel we have been developing and 

modifying throughout this book.

A REMINDER ABOUT MATRIX MULTIPLICATION

In this book, matrix multiplication kernels are used to demonstrate how changes 

in a kernel or the way it is dispatched affects performance. Although matrix 

multiplication performance are significantly improved using the techniques 

described in this chapter, matrix multiplication is such an important and 

common operation that many hardware (GPU, CPU, FPGA, DSP, etc.) vendors 

have implemented highly tuned versions of many routines including matrix 

multiplication. Such vendors invest significant time and effort implementing 

and validating functions for specific devices and in some cases may use 

functionality or techniques that are difficult or impossible to use in standard 

kernels.

USE VENDOR-PROVIDED LIBRARIES!

When a vendor provides a library implementation of a function, it is almost 

always beneficial to use it rather than re-implementing the function as a 

kernel! For matrix multiplication, one can look to oneMKL as part of Intel’s 

oneAPI toolkits for solutions appropriate for DPC++ programmers.

A matrix multiplication kernel may be trivially executed on a GPU 

by submitting it into a queue as a single task. The body of this matrix 

multiplication kernel looks exactly like a function that executes on the host 

CPU and is shown in Figure 15-3.
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If we try to execute this kernel on a CPU, it will probably perform 

okay—not great, since it is not expected to utilize any parallel capabilities 

of the CPU, but potentially good enough for small matrix sizes. As shown in 

Figure 15-4, if we try to execute this kernel on a GPU, however, it will likely 

perform very poorly, because the single task will only utilize a single GPU 

processor.

h.single_task([=]() {
for (int m = 0; m < M; m++) {
for (int n = 0; n < N; n++) {
T sum = 0;
for (int k = 0; k < K; k++)
sum += matrixA[m * K + k] * matrixB[k * N + n];

matrixC[m * N + n] = sum;
}

}
});

Figure 15-3.  A single task matrix multiplication looks a lot like CPU 
host code

Figure 15-4.  A single task kernel on a GPU leaves many execution 
resources idle

Chapter 15  Programming for GPUs



359

h.parallel_for(range{M}, [=](id<1> idx) {
int m = idx[0];

for (int n = 0; n < N; n++) {
T sum = 0;
for (int k = 0; k < K; k++)
sum += matrixA[m * K + k] * matrixB[k * N + n];

matrixC[m * N + n] = sum;
}

});

Figure 15-5.  Somewhat-parallel matrix multiplication

�Expressing Parallelism

To improve the performance of this kernel for both CPUs and GPUs, 

we can instead submit a range of data elements to process in parallel, 

by converting one of the loops to a parallel_for. For the matrix 

multiplication kernel, we can choose to submit a range of data elements 

representing either of the two outermost loops. In Figure 15-5, we’ve 

chosen to process rows of the result matrix in parallel.

CHOOSING HOW TO PARALLELIZE

Choosing which dimension to parallelize is one very important way to tune an 

application for both GPUs and other device types. Subsequent sections in this 

chapter will describe some of the reasons why parallelizing in one dimension 

may perform better than parallelizing in a different dimension.

Even though the somewhat-parallel kernel is very similar to the single 

task kernel, it should run better on a CPU and much better on a GPU. As 

shown in Figure 15-6, the parallel_for enables work-items representing 

rows of the result matrix to be processed on multiple processor resources 

in parallel, so all execution resources stay busy.
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Figure 15-6.  Somewhat-parallel kernel keeps more processor 
resources busy

Note that the exact way that the rows are partitioned and assigned to 

different processor resources is not specified, giving an implementation 

flexibility to choose how best to execute the kernel on a device. For 

example, instead of executing individual rows on a processor, an 

implementation may choose to execute consecutive rows on the same 

processor to gain locality benefits.

�Expressing More Parallelism

We can parallelize the matrix multiplication kernel even more by choosing 

to process both outer loops in parallel. Because parallel_for can express 

parallel loops over up to three dimensions, this is straightforward, as 

shown in Figure 15-7. In Figure 15-7, note that both the range passed 

to parallel_for and the item representing the index in the parallel 

execution space are now two-dimensional.
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Exposing additional parallelism will likely improve the performance 

of the matrix multiplication kernel when run on a GPU. This is likely to be 

true even when the number of matrix rows exceeds the number of GPU 

processors. The next few sections describe possible reasons why this may 

be the case.

�Simplified Control Logic (SIMD Instructions)
Many GPU processors optimize control logic by leveraging the fact that 

most data elements tend to take the same control flow path through a 

kernel. For example, in the matrix multiplication kernel, each data element 

executes the innermost loop the same number of times since the loop 

bounds are invariant.

When data elements take the same control flow path through a kernel, 

a processor may reduce the costs of managing an instruction stream by 

sharing control logic among multiple data elements and executing them as 

a group. One way to do this is to implement a Single Instruction, Multiple 

Data or SIMD instruction set, where multiple data elements are processed 

simultaneously by a single instruction.

h.parallel_for(range{M, N}, [=](id<2> idx) {
int m = idx[0];
int n = idx[1];
T sum = 0;
for (int k = 0; k < K; k++)

sum += matrixA[m * K + k] * matrixB[k * N + n];
matrixC[m * N + n] = sum;

});

Figure 15-7.  Even more parallel matrix multiplication
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THREADS VS. INSTRUCTION STREAMS

In many parallel programming contexts and GPU literature, the term “thread” 

is used to mean an “instruction stream.” In these contexts, a “thread” is 

different than a traditional operating system thread and is typically much more 

lightweight. This isn’t always the case, though, and in some cases, a “thread” 

is used to describe something completely different.

Since the term “thread” is overloaded and easily misunderstood, this chapter 

uses the term “instruction stream” instead.

Figure 15-8.  Four-wide SIMD processor: The four ALUs share fetch/
decode logic

The number of data elements that are processed simultaneously by 

a single instruction is sometimes referred to as the SIMD width of the 

instruction or the processor executing the instruction. In Figure 15-8, four 

ALUs share the same control logic, so this may be described as a four-wide 

SIMD processor.

GPU processors are not the only processors that implement SIMD 

instruction sets. Other processor types also implement SIMD instruction 

sets to improve efficiency when processing large sets of data. The main 

difference between GPU processors and other processor types is that GPU 
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processors rely on executing multiple data elements in parallel to achieve 

good performance and that GPU processors may support wider SIMD 

widths than other processor types. For example, it is not uncommon for 

GPU processors to support SIMD widths of 16, 32, or more data elements.

PROGRAMMING MODELS: SPMD AND SIMD

Although GPU processors implement SIMD instruction sets with varying widths, 

this is usually an implementation detail and is transparent to the application 

executing data-parallel kernels on the GPU processor. This is because many GPU 

compilers and runtime APIs implement a Single Program, Multiple Data or SPMD 

programming model, where the GPU compiler and runtime API determine the 

most efficient group of data elements to process with a SIMD instruction stream, 

rather than expressing the SIMD instructions explicitly. The “Sub-Groups” section 

of Chapter 9 explores cases where the grouping of data elements is visible to 

applications.

In Figure 15-9, we have widened each of our execution resources to 

support four-wide SIMD, allowing us to process four times as many matrix 

rows in parallel.

Figure 15-9.  Executing a somewhat-parallel kernel on SIMD processors
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The use of SIMD instructions that process multiple data elements 

in parallel is one of the ways that the performance of the parallel matrix 

multiplication kernels in Figures 15-5 and 15-7 is able to scale beyond the 

number of processors alone. The use of SIMD instructions also provides 

natural locality benefits in many cases, including matrix multiplication, by 

executing consecutive data elements on the same processor.

Kernels benefit from parallelism across processors and parallelism 
within processors!

�Predication and Masking

Sharing an instruction stream among multiple data elements works well 

so long as all data elements take the same path through conditional code 

in a kernel. When data elements take different paths through conditional 

code, control flow is said to diverge. When control flow diverges in a SIMD 

instruction stream, usually both control flow paths are executed, with 

some channels masked off or predicated. This ensures correct behavior, 

but the correctness comes at a performance cost since channels that are 

masked do not perform useful work.

To show how predication and masking works, consider the kernel in 

Figure 15-10, which multiplies each data element with an “odd” index by 

two and increments each data element with an “even” index by one.

h.parallel_for(array_size, [=](id<1> i) {
auto condition = i[0] & 1;
if (condition)

dataAcc[i] = dataAcc[i] * 2; // odd
else
dataAcc[i] = dataAcc[i] + 1; // even

});

Figure 15-10.  Kernel with divergent control flow
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Let’s say that we execute this kernel on the four-wide SIMD processor 

shown in Figure 15-8 and that we execute the first four data elements in 

one SIMD instruction stream and the next four data elements in a different 

SIMD instruction stream and so on. Figure 15-11 shows one of the ways 

channels may be masked and execution may be predicated to correctly 

execute this kernel with divergent control flow.

3 2 1 0

Figure 15-11.  Possible channel masks for a divergent kernel

�SIMD Efficiency

SIMD efficiency measures how well a SIMD instruction stream performs 

compared to equivalent scalar instruction streams. In Figure 15-11, 

since control flow partitioned the channels into two equal groups, each 

instruction in the divergent control flow executes with half efficiency. 

In a worst-case scenario, for highly divergent kernels, efficiency may be 

reduced by a factor of the processor’s SIMD width.
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All processors that implement a SIMD instruction set will suffer 

from divergence penalties that affect SIMD efficiency, but because GPU 

processors typically support wider SIMD widths than other processor 

types, restructuring an algorithm to minimize divergent control flow 

and maximize converged execution may be especially beneficial when 

optimizing a kernel for a GPU. This is not always possible, but as an 

example, choosing to parallelize along a dimension with more converged 

execution may perform better than parallelizing along a different 

dimension with highly divergent execution.

�SIMD Efficiency and Groups of Items

All kernels in this chapter so far have been basic data-parallel kernels that 

do not specify any grouping of items in the execution range, which gives 

an implementation freedom to choose the best grouping for a device. For 

example, a device with a wider SIMD width may prefer a larger grouping, but 

a device with a narrower SIMD width may be fine with smaller groupings.

When a kernel is an ND-range kernel with explicit groupings of work-

items, care should be taken to choose an ND-range work-group size 

that maximizes SIMD efficiency. When a work-group size is not evenly 

divisible by a processor’s SIMD width, part of the work-group may execute 

with channels disabled for the entire duration of the kernel. The kernel 

preferred_work_group_size_multiple query can be used to choose an 

efficient work-group size. Please refer to Chapter 12 for more information 

on how to query properties of a device.

Choosing a work-group size consisting of a single work-item will likely 

perform very poorly since many GPUs will implement a single-work-item 

work-group by masking off all SIMD channels except for one. For example, 

the kernel in Figure 15-12 will likely perform much worse than the very 

similar kernel in Figure 15-5, even though the only significant difference 

between the two is a change from a basic data-parallel kernel to an 

inefficient single-work-item ND-range kernel (nd_range<1>{M, 1}).
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�Switching Work to Hide Latency
Many GPUs implement one more technique to simplify control logic, 

maximize execution resources, and improve performance: instead of 

executing a single instruction stream on a processor, many GPUs allow 

multiple instruction streams to be resident on a processor simultaneously.

Having multiple instruction streams resident on a processor is 

beneficial because it gives each processor a choice of work to execute. If 

one instruction stream is performing a long-latency operation, such as 

a read from memory, the processor can switch to a different instruction 

stream that is ready to run instead of waiting for the operation to complete. 

With enough instruction streams, by the time that the processor switches 

back to the original instruction stream, the long-latency operation may 

have completed without requiring the processor to wait at all.

Figure 15-13 shows how a processor uses multiple simultaneous 

instruction streams to hide latency and improve performance. Even 

though the first instruction stream took a little longer to execute with 

multiple streams, by switching to other instruction streams, the processor 

was able to find work that was ready to execute and never needed to idly 

wait for the long operation to complete.

// A work-group consisting of a single work-item is inefficient!
h.parallel_for(nd_range<1>{M, 1}, [=](nd_item<1> idx) {
int m = idx.get_global_id(0);

for (int n = 0; n < N; n++) {
T sum = 0;
for (int k = 0; k < K; k++)

sum += matrixA[m * K + k] * matrixB[k * N + n];
matrixC[m * N + n] = sum;

}
});

Figure 15-12.  Inefficient single-item, somewhat-parallel matrix 
multiplication
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GPU profiling tools may describe the number of instruction streams 

that a GPU processor is currently executing vs. the theoretical total number 

of instruction streams using a term such as occupancy.

Low occupancy does not necessarily imply low performance, since 

it is possible that a small number of instruction streams will keep a 

processor busy. Likewise, high occupancy does not necessarily imply high 

performance, since a GPU processor may still need to wait if all instruction 

streams perform inefficient, long-latency operations. All else being equal 

though, increasing occupancy maximizes a GPU processor’s ability to hide 

latency and will usually improve performance. Increasing occupancy is 

another reason why performance may improve with the even more parallel 

kernel in Figure 15-7.

This technique of switching between multiple instruction streams 

to hide latency is especially well-suited for GPUs and data-parallel 

processing. Recall from Figure 15-2 that GPU processors are frequently 

simpler than other processor types and hence lack complex latency-hiding 

features. This makes GPU processors more susceptible to latency issues, 

but because data-parallel programming involves processing a lot of data, 

GPU processors usually have plenty of instruction streams to execute!

Op OpLong
Operation

Wait for Operation 
to Complete...

Op OpLong
Operation Switch!

Switch!

vs.

Wait for Operation 
to Complete...

Op Long
Operation

Wait for Operation 
to Complete...

Op Long
Operation Wait...Switch!

Figure 15-13.  Switching instruction streams to hide latency
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�Offloading Kernels to GPUs
This section describes how an application, the SYCL runtime library, 

and the GPU software driver work together to offload a kernel on GPU 

hardware. The diagram in Figure 15-14 shows a typical software stack with 

these layers of abstraction. In many cases, the existence of these layers 

is transparent to an application, but it is important to understand and 

account for them when debugging or profiling our application.

GPU Hardware

GPU Software Driver

SYCL Runtime Library

SYCL Application

Figure 15-14.  Offloading parallel kernels to GPUs (simplified)

�SYCL Runtime Library
The SYCL runtime library is the primary software library that SYCL 

applications interface with. The runtime library is responsible for 

implementing classes such as queues, buffers, and accessors and the 

member functions of these classes. Parts of the runtime library may be in 

header files and hence directly compiled into the application executable. 

Other parts of the runtime library are implemented as library functions, 

which are linked with the application executable as part of the application 

build process. The runtime library is usually not device-specific, and the 

same runtime library may orchestrate offload to CPUs, GPUs, FPGAs, or 

other devices.
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�GPU Software Drivers
Although it is theoretically possible that a SYCL runtime library could 

offload directly to a GPU, in practice, most SYCL runtime libraries interface 

with a GPU software driver to submit work to a GPU.

A GPU software driver is typically an implementation of an API, 

such as OpenCL, Level Zero, or CUDA. Most of a GPU software driver is 

implemented in a user-mode driver library that the SYCL runtime calls 

into, and the user-mode driver may call into the operating system or 

a kernel-mode driver to perform system-level tasks such as allocating 

memory or submitting work to the device. The user-mode driver may also 

invoke other user-mode libraries; for example, the GPU driver may invoke 

a GPU compiler to just-in-time compile a kernel from an intermediate 

representation to GPU ISA (Instruction Set Architecture). These software 

modules and the interactions between them are shown in Figure 15-15.

GPU Hardware

GPU Software User-Mode Driver

GPU Software Kernel-Mode DriverOperating Systems 
Services

User-Mode Support
Libraries or Compilers

SYCL Runtime Library

API Calls

User Mode
Kernel Mode

Software
Hardware

Figure 15-15.  Typical GPU software driver modules
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�GPU Hardware
When the runtime library or the GPU software user-mode driver is 

explicitly requested to submit work or when the GPU software heuristically 

determines that work should begin, it will typically call through the 

operating system or a kernel-mode driver to start executing work on the 

GPU. In some cases, the GPU software user-mode driver may submit work 

directly to the GPU, but this is less common and may not be supported by 

all devices or operating systems.

When the results of work executed on a GPU are consumed by the host 

processor or another accelerator, the GPU must issue a signal to indicate 

that work is complete. The steps involved in work completion are very 

similar to the steps for work submission, executed in reverse: the GPU 

may signal the operating system or kernel-mode driver that it has finished 

execution, then the user-mode driver will be informed, and finally the 

runtime library will observe that work has completed via GPU software API 

calls.

Each of these steps introduces latency, and in many cases, the runtime 

library and the GPU software are making a tradeoff between lower latency 

and higher throughput. For example, submitting work to the GPU more 

frequently may reduce latency, but submitting frequently may also reduce 

throughput due to per-submission overheads. Collecting large batches 

of work increases latency but amortizes submission overheads over 

more work and introduces more opportunities for parallel execution. 

The runtime and drivers are tuned to make the right tradeoff and usually 

do a good job, but if we suspect that driver heuristics are submitting 

work inefficiently, we should consult documentation to see if there are 

ways to override the default driver behavior using API-specific or even 

implementation-specific mechanisms.
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�Beware the Cost of Offloading!
Although SYCL implementations and GPU vendors are continually 

innovating and optimizing to reduce the cost of offloading work to a GPU, 

there will always be overhead involved both when starting work on a 

GPU and observing results on the host or another device. When choosing 

where to execute an algorithm, consider both the benefit of executing 

an algorithm on a device and the cost of moving the algorithm and any 

data that it requires to the device. In some cases, it may be most efficient 

to perform a parallel operation using the host processor—or to execute a 

serial part of an algorithm inefficiently on the GPU—to avoid the overhead 

of moving an algorithm from one processor to another.

Consider the performance of our algorithm as a whole—it may be 
most efficient to execute part of an algorithm inefficiently on one 
device than to transfer execution to another device!

�Transfers to and from Device Memory

On GPUs with dedicated memory, be especially aware of transfer costs 

between dedicated GPU memory and memory on the host or another 

device. Figure 15-16 shows typical memory bandwidth differences 

between different memory types in a system.
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Recall from Chapter 3 that GPUs prefer to operate on dedicated 

device memory, which can be faster by an order of magnitude or more, 

instead of operating on host memory or another device’s memory. Even 

though accesses to dedicated device memory are significantly faster than 

accesses to remote memory or system memory, if the data is not already in 

dedicated device memory then it must be copied or migrated.

So long as the data will be accessed frequently, moving it into 

dedicated device memory is beneficial, especially if the transfer can 

be performed asynchronously while the GPU execution resources are 

busy processing another task. When the data is accessed infrequently or 

unpredictably though, it may preferable to save transfer costs and operate 

on the data remotely or in system memory, even if per-access costs are 

higher. Chapter 6 describes ways to control where memory is allocated 

and different techniques to copy and prefetch data into dedicated device 

memory. These techniques are important when optimizing program 

execution for GPUs.

Figure 15-16.  Typical differences between device memory, remote 
memory, and host memory
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�GPU Kernel Best Practices
The previous sections described how the dispatch parameters passed to a 

parallel_for affect how kernels are assigned to GPU processor resources 

and the software layers and overheads involved in executing a kernel on a GPU.  

This section describes best practices when a kernel is executing on a GPU.

Broadly speaking, kernels are either memory bound, meaning that their 

performance is limited by data read and write operations into or out of the 

execution resources on the GPU, or are compute bound, meaning that their 

performance is limited by the execution resources on the GPU. A good first 

step when optimizing a kernel for a GPU—and many other processors!—is 

to determine whether our kernel is memory bound or compute bound, 

since the techniques to improve a memory-bound kernel frequently will 

not benefit a compute-bound kernel and vice versa. GPU vendors often 

provide profiling tools to help make this determination.

Different optimization techniques are needed depending whether our 
kernel is memory bound or compute bound!

Because GPUs tend to have many processors and wide SIMD widths, 

kernels tend to be memory bound more often than they are compute 

bound. If we are unsure where to start, examining how our kernel accesses 

memory is a good first step.

�Accessing Global Memory
Efficiently accessing global memory is critical for optimal application 

performance, because almost all data that a work-item or work-group 

operates on originates in global memory. If a kernel operates on global 

memory inefficiently, it will almost always perform poorly. Even though 

GPUs often include dedicated hardware gather and scatter units for 
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reading and writing arbitrary locations in memory, the performance 

of accesses to global memory is usually driven by the locality of data 

accesses. If one work-item in a work-group is accessing an element in 

memory that is adjacent to an element accessed by another work-item 

in the work-group, the global memory access performance is likely to 

be good. If work-items in a work-group instead access memory that is 

strided or random, the global memory access performance will likely be 

worse. Some GPU documentation describes operating on nearby memory 

accesses as coalesced memory accesses.

Recall that for our somewhat-parallel matrix multiplication kernel in 

Figure 15-15, we had a choice whether to process a row or a column of 

the result matrix in parallel, and we chose to operate on rows of the result 

matrix in parallel. This turns out to be a poor choice: if one work-item with 

id equal to m is grouped with a neighboring work-item with id equal to m-1 

or m+1, the indices used to access matrixB are the same for each work-item, 

but the indices used to access matrixA differ by K, meaning the accesses 

are highly strided. The access pattern for matrixA is shown in Figure 15-17.

Figure 15-17.  Accesses to matrixA are highly strided and inefficient
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If, instead, we choose to process columns of the result matrix in 

parallel, the access patterns have much better locality. The kernel in 

Figure 15-18 is structurally very similar to that in Figure 15-5 with the only 

difference being that each work-item in Figure 15-18 operates on a column 

of the result matrix, rather than a row of the result matrix.

// This kernel processes columns of the result matrix in parallel.
h.parallel_for(N, [=](item<1> idx) {

int n = idx[0];

for (int m = 0; m < M; m++) {
T sum = 0;
for (int k = 0; k < K; k++)
sum += matrixA[m * K + k] * matrixB[k * N + n];

matrixC[m * N + n] = sum;
}

});

Figure 15-18.  Computing columns of the result matrix in parallel, 
not rows

Even though the two kernels are structurally very similar, the kernel 

that operates on columns of data will significantly outperform the kernel 

that operates on rows of data on many GPUs, purely due to the more 

efficient memory accesses: if one work-item with id equal to n is grouped 

with a neighboring work-item with id equal to n-1 or n+1, the indices used 

to access matrixA are now the same for each work-item, and the indices 

used to access matrixB are consecutive. The access pattern for matrixB is 

shown in Figure 15-19.
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Accesses to consecutive data are usually very efficient. A good rule of 

thumb is that the performance of accesses to global memory for a group of 

work-items is a function of the number of GPU cache lines accessed. If all 

accesses are within a single cache line, the access will execute with peak 

performance. If an access requires two cache lines, say by accessing every 

other element or by starting from a cache-misaligned address, the access 

may operate at half performance. When each work-item in the group 

accesses a unique cache line, say for a very strided or random accesses, the 

access is likely to operate at lowest performance.

Figure 15-19.  Accesses to matrixB are consecutive and efficient
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PROFILING KERNEL VARIANTS

For matrix multiplication, choosing to parallelize along one dimension clearly 

results in more efficient memory accesses, but for other kernels, the choice 

may not be as obvious. For kernels where it is important to achieve the best 

performance, if it is not obvious which dimension to parallelize, it is sometimes 

worth developing and profiling different kernel variants that parallelize along 

each dimension to see what works better for a device and data set.

�Accessing Work-Group Local Memory
In the previous section, we described how accesses to global memory benefit 

from locality, to maximize cache performance. As we saw, in some cases we 

can design our algorithm to efficiently access memory, such as by choosing 

to parallelize in one dimension instead of another. This technique isn’t 

possible in all cases, however. This section describes how we can use work-

group local memory to efficiently support more memory access patterns.

Recall from Chapter 9 that work-items in a work-group can cooperate 

to solve a problem by communicating through work-group local memory 

and synchronizing using work-group barriers. This technique is especially 

beneficial for GPUs, since typical GPUs have specialized hardware 

to implement both barriers and work-group local memory. Different 

GPU vendors and different products may implement work-group local 

memory differently, but work-group local memory frequently has two 

benefits compared to global memory: local memory may support higher 

bandwidth and lower latency than accesses to global memory, even when 

the global memory access hits a cache, and local memory is often divided 

into different memory regions, called banks. So long as each work-item in 

a group accesses a different bank, the local memory access executes with 

full performance. Banked accesses allow local memory to support far more 

access patterns with peak performance than global memory.
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Many GPU vendors will assign consecutive local memory addresses 

to different banks. This ensures that consecutive memory accesses always 

operate at full performance, regardless of the starting address. When 

memory accesses are strided, though, some work-items in a group may 

access memory addresses assigned to the same bank. When this occurs, 

it is considered a bank conflict and results in serialized access and lower 

performance.

For maximum global memory performance, minimize the number of 
cache lines accessed.

For maximum local memory performance, minimize the number of 
bank conflicts!

A summary of access patterns and expected performance for global 

memory and local memory is shown in Figure 15-20. Assume that 

when ptr points to global memory, the pointer is aligned to the size of a 

GPU cache line. The best performance when accessing global memory 

can be achieved by accessing memory consecutively starting from a 

cache-aligned address. Accessing an unaligned address will likely lower 

global memory performance because the access may require accessing 

additional cache lines. Because accessing an unaligned local address will 

not result in additional bank conflicts, the local memory performance is 

unchanged.

The strided case is worth describing in more detail. Accessing every 

other element in global memory requires accessing more cache lines and 

will likely result in lower performance. Accessing every other element 

in local memory may result in bank conflicts and lower performance, but 

only if the number of banks is divisible by two. If the number of banks is 

odd, this case will operate at full performance also.
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When the stride between accesses is very large, each work-item 

accesses a unique cache line, resulting in the worst performance. For local 

memory though, the performance depends on the stride and the number 

of banks. When the stride N is equal to the number of banks, each access 

results in a bank conflict, and all accesses are serialized, resulting in the 

worst performance. If the stride M and the number of banks share no 

common factors, however, the accesses will run at full performance. For 

this reason, many optimized GPU kernels will pad data structures in local 

memory to choose a stride that reduces or eliminates bank conflicts.

ptr[ id ]

ptr[ id + 1 ]

ptr[ id * 2 ]

ptr[ id * N ]

ptr[ id * M ]

Worst Performance

Worst Performance

Lower Performance

Global Memory:

Lower Performance

Full Performance!

Local Memory:

Worst Performance

Full Performance!

Lower Performance

Full Performance!

Full Performance!

Figure 15-20.  Possible performance for different access patterns, for 
global and local memory

�Avoiding Local Memory Entirely with  
Sub-Groups
As discussed in Chapter 9, sub-group collective functions are an 

alternative way to exchange data between work-items in a group. For many 

GPUs, a sub-group represents a collection of work-items processed by a 
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single instruction stream. In these cases, the work-items in the sub-group 

can inexpensively exchange data and synchronize without using work-

group local memory. Many of the best-performing GPU kernels use sub-

groups, so for expensive kernels, it is well worth examining if our algorithm 

can be reformulated to use sub-group collective functions.

�Optimizing Computation Using Small Data Types
This section describes techniques to optimize kernels after eliminating 

or reducing memory access bottlenecks. One very important perspective 

to keep in mind is that GPUs have traditionally been designed to draw 

pictures on a screen. Although pure computational capabilities of GPUs 

have evolved and improved over time, in some areas their graphics 

heritage is still apparent.

Consider support for kernel data types, for example. Many GPUs 

are highly optimized for 32-bit floating-point operations, since these 

operations tend to be common in graphics and games. For algorithms that 

can cope with lower precision, many GPUs also support a lower-precision 

16-bit floating-point type that trades precision for faster processing. 

Conversely, although many GPUs do support 64-bit double-precision 

floating-point operations, the extra precision will come at a cost, and 32-bit 

operations usually perform much better than their 64-bit equivalents.

The same is true for integer data types, where 32-bit integer data types 

typically perform better than 64-bit integer data types and 16-bit integers 

may perform even better still. If we can structure our computation to use 

smaller integers, our kernel may perform faster. One area to pay careful 

attention to are addressing operations, which typically operate on 64-bit 

size_t data types, but can sometimes be rearranged to perform most of 

the calculation using 32-bit data types. In some local memory cases, 16 bits 

of indexing is sufficient, since most local memory allocations are small.
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�Optimizing Math Functions
Another area where a kernel may trade off accuracy for performance 

involves SYCL built-in functions. SYCL includes a rich set of math functions 

with well-defined accuracy across a range of inputs. Most GPUs do not 

support these functions natively and implement them using a long sequence 

of other instructions. Although the math function implementations are 

typically well-optimized for a GPU, if our application can tolerate lower 

accuracy, we should consider a different implementation with lower 

accuracy and higher performance instead. Please refer to Chapter 18 for 

more information about SYCL built-in functions.

For commonly used math functions, the SYCL library includes fast 

or native function variants with reduced or implementation-defined 

accuracy requirements. For some GPUs, these functions can be an order 

of magnitude faster than their precise equivalents, so they are well worth 

considering if they have enough precision for an algorithm. For example, 

many image postprocessing algorithms have well-defined inputs and can 

tolerate lower accuracy and hence are good candidates for using fast or 

native math functions.

If an algorithm can tolerate lower precision, we can use smaller data 
types or lower-precision math functions to increase performance!

�Specialized Functions and Extensions
One final consideration when optimizing a kernel for a GPU are 

specialized instructions that are common in many GPUs. As one example, 

nearly all GPUs support a mad or fma multiply-and-add instruction that 

performs two operations in a single clock. GPU compilers are generally 

very good at identifying and optimizing individual multiplies and adds 

to use a single instruction instead, but SYCL also includes mad and fma 

Chapter 15  Programming for GPUs

https://doi.org/10.1007/978-1-4842-5574-2_18


383

functions that can be called explicitly. Of course, if we expect our GPU 

compiler to optimize multiplies and adds for us, we should be sure that we 

do not prevent optimizations by disabling floating-point contractions!

Other specialized GPU instructions may only be available via compiler 

optimizations or extensions to the SYCL language. For example, some 

GPUs support a specialized dot-product-and-accumulate instruction that 

compilers will try to identify and optimize for or that can be called directly. 

Refer to Chapter 12 for more information on how to query the extensions 

that are supported by a GPU implementation.

�Summary
In this chapter, we started by describing how typical GPUs work and how 

GPUs are different than traditional CPUs. We described how GPUs are 

optimized for large amounts of data, by trading processor features that 

accelerate a single instruction stream for additional processors.

We described how GPUs process multiple data elements in parallel 

using wide SIMD instructions and how GPUs use predication and masking 

to execute kernels with complex flow control using SIMD instructions. 

We discussed how predication and masking can reduce SIMD efficiency 

and decrease performance for kernels that are highly divergent and how 

choosing to parallelize along one dimension vs. another may reduce SIMD 

divergence.

Because GPUs have so many processing resources, we discussed how 

it is important to give GPUs enough work to keep occupancy high. We also 

described how GPUs use instruction streams to hide latency, making it 

even more crucial to give GPUs lots of work to execute.

Next, we discussed the software and hardware layers involved in 

offloading a kernel to a GPU and the costs of offloading. We discussed how 

it may be more efficient to execute an algorithm on a single device than it 

is to transfer execution from one device to another.
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Finally, we described best practices for kernels once they are executing 

on a GPU. We described how many kernels start off memory bound and 

how to access global memory and local memory efficiently or how to 

avoid local memory entirely by using sub-group operations. When kernels 

are compute bound instead, we described how to optimize computation 

by trading lower precision for higher performance or using custom GPU 

extensions to access specialized instructions.

�For More Information
There is much more to learn about GPU programming, and this chapter 

just scratched the surface!

GPU specifications and white papers are a great way to learn more 

about specific GPUs and GPU architectures. Many GPU vendors provide 

very detailed information about their GPUs and how to program them.

At the time of this writing, relevant reading about major GPUs can be 

found on software.intel.com, devblogs.nvidia.com, and amd.com.

Some GPU vendors have open source drivers or driver components. 

When available, it can be instructive to inspect or step through driver code, 

to get a sense for which operations are expensive or where overheads may 

exist in an application.

This chapter focused entirely on traditional accesses to global memory 

via buffer accessors or Unified Shared Memory, but most GPUs also 

include a fixed-function texture sampler that can accelerate operations on 

images. For more information about images and samplers, please refer to 

the SYCL specification.
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Open Access  This chapter is licensed under the terms 

of the Creative Commons Attribution 4.0 International 

License (http://creativecommons.org/licenses/by/4.0/), which permits 

use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and 

the source, provide a link to the Creative Commons license and indicate if 

changes were made.

The images or other third party material in this chapter are included 

in the chapter’s Creative Commons license, unless indicated otherwise 

in a credit line to the material. If material is not included in the chapter’s 

Creative Commons license and your intended use is not permitted by 

statutory regulation or exceeds the permitted use, you will need to obtain 

permission directly from the copyright holder.
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