
81
© The Author(s) 2020 
S. Scargall, Programming Persistent Memory, https://doi.org/10.1007/978-1-4842-4932-1_7

CHAPTER 7

libpmemobj: A Native 
Transactional Object Store
In the previous chapter, we described libpmem, the low-level persistent memory library 

that provides you with an easy way to directly access persistent memory. libpmem is a 

small, lightweight, and feature-limited library that is designed for software that tracks 

every store to pmem and needs to flush those changes to persistence. It excels at what 

it does. However, most developers will find higher-level libraries within the Persistent 

Memory Development Kit (PMDK), like libpmemobj, to be much more convenient.

This chapter describes libpmemobj, which builds upon libpmem and turns persistent 

memory-mapped files into a flexible object store. It supports transactions, memory 

management, locking, lists, and several other features.

�What is libpmemobj?
The libpmemobj library provides a transactional object store in persistent memory for 

applications that require transactions and persistent memory management using direct 

access (DAX) to the memory. Briefly recapping our DAX discussion in Chapter 3, DAX 

allows applications to memory map files on a persistent memory-aware file system to 

provide direct load/store operations without paging blocks from a block storage device. 

It bypasses the kernel, avoids context switches and interrupts, and allows applications to 

read and write directly to the byte-addressable persistent storage.

https://doi.org/10.1007/978-1-4842-4932-1_7
https://doi.org/10.1007/978-1-4842-4932-1_3


82

�Why not malloc( )?
Using libpmem seems simple. You need to flush anything you have written and use 

discipline when ordering such that data needs to be persisted before any pointers to it 

go live.

If only persistent memory programming were so simple. Apart from some specific 

patterns that can be done in a simpler way, such as append-only records that can be 

efficiently handled by libpmemlog, any new piece of data needs to have its memory 

allocated. When and how should the allocator mark the memory as in use? Should the 

allocator mark the memory as allocated before writing data or after? Neither approach 

works for these reasons:

•	 If the allocator marks the memory as allocated before the data is 

written, a power outage during the write can cause torn updates and 

a so-called “persistent leak.”

•	 If the allocator writes the data, then marks it as allocated, a power 

outage that occurs between the write completing and the allocator 

marking it as allocated can overwrite the data when the application 

restarts since the allocator believes the block is available.

Another problem is that a significant number of data structures include cyclical 

references and thus do not form a tree. They could be implemented as a tree, but this 

approach is usually harder to implement.

Byte-addressable memory guarantees atomicity of only a single write. For current 

processors, that is generally one 64-bit word (8-bytes) that should be aligned, but this is 

not a requirement in practice.

All of the preceding problems could be solved if multiple writes occurred 

simultaneously. In the event of a power failure, any incomplete writes should either 

be replayed as though the power failure never happened or discarded as though the 

write never occurred. Applications solve this in different ways using atomic operations, 

transactions, redo/undo logging, etc. Using libpmemobj can solve those problems 

because it uses atomic transactions and redo/undo logs.

Chapter 7  libpmemobj: A Native Transactional Object Store



83

�Grouping Operations
With the exception of modifying a single scalar value that fits within the processor’s 

word, a series of data modifications must be grouped together and accompanied by a 

means of detecting an interruption before completion.

�Memory Pools
Memory-mapped files are at the core of the persistent memory programming model. 

The libpmemobj library provides a convenient API to easily manage pool creation and 

access, avoiding the complexity of directly mapping and synchronizing data. PMDK 

also provides a pmempool utility to administer memory pools from the command line. 

Memory pools reside on DAX-mounted file systems.

�Creating Memory Pools
Use the pmempool utility to create persistent memory pools for use with applications. 

Several pool types can be created including pmemblk, pmemlog, and pmemobj. When using 

libpmemobj in applications, you want to create a pool of type obj (pmemobj). Refer 

to the pmempool-create(1) man page for all available commands and options. The 

following examples are for reference:

Example 1.  Create a libpmemobj (obj) type pool of minimum allowed size and 

layout called “my_layout” in the mounted file system /mnt/pmemfs0/

$ pmempool create --layout my_layout obj /mnt/pmemfs0/pool.obj

Example 2.  Create a libpmemobj (obj) pool of 20GiB and layout called “my_

layout” in the mounted file system /mnt/pmemfs0/

$ pmempool create --layout my_layout –-size 20G obj \

/mnt/pmemfs0/pool.obj

Chapter 7  libpmemobj: A Native Transactional Object Store



84

Example 3.  Create a libpmemobj (obj) pool using all available capacity within 

the /mnt/pmemfs0/ file system using the layout name of “my_layout”

$ pmempool create --layout my_layout –-max-size obj \

/mnt/pmemfs0/pool.obj

Applications can programmatically create pools that do not exist at application start 

time using pmemobj_create(). pmemobj_create() has the following arguments:

PMEMobjpool *pmemobj_create(const char *path,

    const char *layout, size_t poolsize, mode_t mode);

•	 path specifies the name of the memory pool file to be created, 

including a full or relative path to the file.

•	 layout specifies the application’s layout type in the form of a string to 

identify the pool.

•	 poolsize specifies the required size for the pool. The memory pool 

file is fully allocated to the size poolsize using posix_fallocate(3). 

The minimum size for a pool is defined as PMEMOBJ_MIN_POOL in 

<libpmemobj.h>. If the pool already exists, pmemobj_create() will 

return an EEXISTS error. Specifying poolsize as zero will take the 

pool size from the file size and will verify that the file appears to be 

empty by searching for any nonzero data in the pool header at the 

beginning of the file.

•	 mode specifies the ACL permissions to use when creating the file, as 

described by create(2).

Listing 7-1 shows how to create a pool using the pmemobj_create() function.

Listing 7-1.  pwriter.c – An example showing how to create a pool using 

pmemobj_create()

    33  /*

    34   * pwriter.c -  Write a string to a

    35   *              persistent memory pool

    36   */

    37

Chapter 7  libpmemobj: A Native Transactional Object Store



85

    38  #include <stdio.h>

    39  #include <string.h>

    40  #include <libpmemobj.h>

    41

    42  #define LAYOUT_NAME "rweg"

    43  #define MAX_BUF_LEN 31

    44

    45  struct my_root {

    46      size_t len;

    47      char buf[MAX_BUF_LEN];

    48  };

    49

    50  int

    51  main(int argc, char *argv[])

    52  {

    53      if (argc != 2) {

    54          printf("usage: %s file-name\n", argv[0]);

    55          return 1;

    56      }

    57

    58      PMEMobjpool *pop = pmemobj_create(argv[1],

    59          LAYOUT_NAME, PMEMOBJ_MIN_POOL, 0666);

    60

    61      if (pop == NULL) {

    62          perror("pmemobj_create");

    63          return 1;

    64      }

    65

    66      PMEMoid root = pmemobj_root(pop,

    67          sizeof(struct my_root));

    68

    69      struct my_root *rootp = pmemobj_direct(root);

    70

    71      char buf[MAX_BUF_LEN] = "Hello PMEM World";

    72

Chapter 7  libpmemobj: A Native Transactional Object Store



86

    73      rootp->len = strlen(buf);

    74      pmemobj_persist(pop, &rootp->len,

    75          sizeof(rootp->len));

    76

    77      pmemobj_memcpy_persist(pop, rootp->buf, buf,

    78          rootp->len);

    79

    80      pmemobj_close(pop);

    81

    82      return 0;

    83  }

•	 Line 42: We define the name for our pool layout to be “rweg” (read-

write example). This is just a name and can be any string that 

uniquely identifies the pool to the application. A NULL value is valid. 

In the case where multiple pools are opened by the application, this 

name uniquely identifies it.

•	 Line 43: We define the maximum length of the write buffer.

•	 Lines 45-47: This defines the root object data structure which has 

members len and buf. buf contains the string we want to write, and 

the len is the length of the buffer.

•	 Lines 53- 56: The pwriter command accepts one argument: the path 

and pool name to write to. For example, /mnt/pmemfs0/helloworld_

obj.pool. The file name extension is arbitrary and optional.

•	 Lines 58-59: We call pmemobj_create() to create the pool using 

the file name passed in from the command line, the layout name 

of “rweg,” a size we set to be the minimum size for an object pool 

type, and permissions of 0666. We cannot create a pool smaller than 

defined by PMEMOBJ_MIN_POOL or larger than the available space 

on the file system. Since the string in our example is very small, we 

only require a minimally sized pool. On success, pmemobj_create() 

returns a pool object pointer (POP) of type PMEMobjpool, that we can 

use to acquire a pointer to the root object.

Chapter 7  libpmemobj: A Native Transactional Object Store



87

•	 Lines 61-64: If pmemobj_create() fails, we will exit the program and 

return an error.

•	 Line 66: Using the pop acquired from line 58, we use the pmemobj_

root() function to locate the root object.

•	 Line 69: We use the pmemobj_direct() function to get a pointer to the 

root object we found in line 66.

•	 Line 71: We set the string/buffer to “Hello PMEM World.”

•	 Lines 73-78. After determining the length of the buffer, we first write 

the len and then the buf member of our root object to persistent 

memory.

•	 Line 80: We close the persistent memory pool by unmapping it.

�Pool Object Pointer (POP) and the Root Object
Due to the address space layout randomization (ASLR) feature used by most operating 

systems, the location of the pool – once memory mapped into the application address 

space – can differ between executions and system reboots. Without a way to access 

the data within the pool, you would find it challenging to locate the data within a pool. 

PMDK-based pools have a small amount of metadata to solve this problem.

Every pmemobj (obj) type pool has a root object. This root object is necessary 

because it is used as an entry point from which to find all the other objects created in a 

pool, that is, user data. An application will locate the root object using a special object 

called pool object pointer (POP). The POP object resides in volatile memory and is 

created with every program invocation. It keeps track of metadata related to the pool, 

such as the offset to the root object inside the pool. Figure 7-1 depicts the POP and 

memory pool layout.

Chapter 7  libpmemobj: A Native Transactional Object Store



88

Using a valid pop pointer, you can use the pmemobj_root() function to get a pointer 

of the root object. Internally, this function creates a valid pointer by adding the current 

memory address of the mapped pool plus the internal offset to the root.

�Opening and Reading from Memory Pools
You create a pool using pmemobj_create(), and you open an existing pool using 

pmemobj_open(). Both functions return a PMEMobjpool *pop pointer. The pwriter 

example in Listing 7-1 shows how to create a pool and write a string to it. Listing 7-2 

shows how to open the same pool to read and display the string.

Listing 7-2.  preader.c – An example showing how to open a pool and access the 

root object and data

    33  /*

    34   * preader.c -  Read a string from a

    35   *              persistent memory pool

    36   */

    37

    38  #include <stdio.h>

    39  #include <string.h>

    40  #include <libpmemobj.h>

    41

Figure 7-1.  A high-level overview of a persistent memory pool with a pool object 
pointer (POP) pointing to the root object

Chapter 7  libpmemobj: A Native Transactional Object Store



89

    42  #define LAYOUT_NAME "rweg"

    43  #define MAX_BUF_LEN 31

    44

    45  struct my_root {

    46      size_t len;

    47      char buf[MAX_BUF_LEN];

    48  };

    49

    50  int

    51  main(int argc, char *argv[])

    52  {

    53      if (argc != 2) {

    54          printf("usage: %s file-name\n", argv[0]);

    55          return 1;

    56      }

    57

    58      PMEMobjpool *pop = pmemobj_open(argv[1],

    59          LAYOUT_NAME);

    60

    61      if (pop == NULL) {

    62          perror("pmemobj_open");

    63          return 1;

    64      }

    65

    66      PMEMoid root = pmemobj_root(pop,

    67          sizeof(struct my_root));

    68      struct my_root *rootp = pmemobj_direct(root);

    69

    70      if (rootp->len == strlen(rootp->buf))

    71          printf("%s\n", rootp->buf);

    72

    73      pmemobj_close(pop);

    74

    75      return 0;

    76  }

Chapter 7  libpmemobj: A Native Transactional Object Store



90

•	 Lines 42-48: We use the same data structure declared in pwriter.c. In 

practice, this should be declared in a header file for consistency.

•	 Line 58: Open the pool and return a pop pointer to it

•	 Line 66: Upon success, pmemobj_root() returns a handle to the root 

object associated with the persistent memory pool pop.

•	 Line 68: pmemobj_direct() returns a pointer to the root object.

•	 Lines 70-71: Determine the length of the buffer pointed to by  

rootp->buf. If it matches the length of the buffer we wrote, the 

contents of the buffer is printed to STDOUT.

�Memory Poolsets
The capacity of multiple pools can be combined into a poolset. Besides providing a 

way to increase the available space, a poolset can be used to span multiple persistent 

memory devices and provide both local and remote replication.

You open a poolset the same way as a single pool using pmemobj_open(). (At the 

time of publication, pmemobj_create() and the pmempool utility cannot create poolsets. 

Enhancement requests exist for these features.) Although creating poolsets requires 

manual administration, poolset management can be automated via libpmempool or the 

pmempool utility; full details appear in the poolset(5) man page.

�Concatenated Poolsets
Individual pools can be concatenated using pools on a single or multiple file systems. 

Concatenation only works with the same pool type: block, object, or log pools. Listing 7-3 

shows an example “myconcatpool.set” poolset file that concatenates three smaller pools 

into a larger pool. For illustrative purposes, each pool is a different size and located on 

different file systems. An application using this poolset would see a single 700GiB memory 

pool.

Chapter 7  libpmemobj: A Native Transactional Object Store



91

Listing 7-3.  myconcatpool.set – An example of a concatenated poolset created 

from three individual pools on three different file systems

PMEMPOOLSET

OPTION NOHDRS

100G /mountpoint0/myfile.part0

200G /mountpoint1/myfile.part1

400G /mountpoint2/myfile.part2

Note  Data will be preserved if it exists in /mountpoint0/myfile.part0, but 
any data in /mountpoint0/myfile.part1 or /mountpoint0/myfile.part2 
will be lost. We recommend that you only add new and empty pools to a poolset.

�Replica Poolsets
Besides combining multiple pools to provide more space, a poolset can also maintain 

multiple copies of the same data to increase resiliency. Data can be replicated to another 

poolset on a different file of the local host and a poolset on a remote host.

Listing 7-4 shows a poolset file called “myreplicatedpool.set” that will replicate 

local writes into the /mnt/pmem0/pool1 pool to another local pool, /mnt/pmem1/pool1, 

on a different file system, and to a remote-objpool.set poolset on a remote host called 

example.com.

Listing 7-4.  myreplicatedpool.set – An example demonstrating how to replicate 

local data locally and remote host

PMEMPOOLSET

256G /mnt/pmem0/pool1

REPLICA

256G /mnt/pmem1/pool1

REPLICA user@example.com remote-objpool.set

The librpmem library, a remote persistent memory support library, underpins this 

feature. Chapter 18 discusses librpmem and replica pools in more detail.

Chapter 7  libpmemobj: A Native Transactional Object Store

https://doi.org/10.1007/978-1-4842-4932-1_18


92

�Managing Memory Pools and Poolsets
The pmempool utility has several features that developers and system administrators 

may find useful. We do not present their details here because each command has a 

detailed man page:

•	 pmempool info prints information and statistics in human-readable 

format about the specified pool.

•	 pmempool check checks the pool’s consistency and repairs pool if it 

is not consistent.

•	 pmempool create creates a pool of specified type with additional 

properties specific for this type of pool.

•	 pmempool dump dumps usable data from a pool in hexadecimal or 

binary format.

•	 pmempool rm removes pool file or all pool files listed in pool set 

configuration file.

•	 pmempool convert updates the pool to the latest available layout 

version.

•	 pmempool sync synchronizes replicas within a poolset.

•	 pmempool transform modifies the internal structure of a poolset.

•	 pmempool feature toggles or queries a poolset’s features.

�Typed Object Identifiers (TOIDs)
When we write data to a persistent memory pool or device, we commit it at a physical 

address. With the ASLR feature of operating systems, when applications open a pool and 

memory map it into the address space, the virtual address will change each time. For this 

reason, a type of handle (pointer) that does not change is needed; this handle is called 

an OID (object identifier). Internally, it is a pair of the pool or poolset unique identifier 

(UUID) and an offset within the pool or poolset. The OID can be translated back and 

forth between its persistent form and pointers that are fit for direct use by this particular 

instance of your program.

Chapter 7  libpmemobj: A Native Transactional Object Store



93

At a low level, the translation can be done manually via functions such as 

pmemobj_direct() that appear in the preader.c example in Listing 7-2. Because manual 

translations require explicit type casts and are error prone, we recommend tagging every 

object with a type. This allows some form of type safety, and thanks to macros, can be 

checked at compile time.

For example, a persistent variable declared via TOID(struct foo) x can be read via 

D_RO(x)->field. In a pool with the following layout: 

POBJ_LAYOUT_BEGIN(cathouse);

POBJ_LAYOUT_TOID(cathouse, struct canaries);

POBJ_LAYOUT_TOID(cathouse, int);

POBJ_LAYOUT_END(cathouse);

The field val declared on the first line can be accessed using any of the subsequent 

three operations: 

TOID(int) val;

TOID_ASSIGN(val, oid_of_val); // Assigns 'oid_of_val' to typed OID 'val' 

D_RW(val) = 42; // Returns a typed write pointer to 'val' and writes 42 

return D_RO(val); // Returns a typed read-only (const) pointer to 'val' 

�Allocating Memory
Using malloc() to allocate memory is quite normal to C developers and those who use 

languages that do not fully handle automatic memory allocation and deallocation. For 

persistent memory, you can use pmemobj_alloc(), pmemobj_reserve(), or pmemobj_

xreserve() to reserve memory for a transient object and use it the same way you would 

use malloc(). We recommend that you free allocated memory using pmemobj_free() or 

POBJ_FREE() when the application no longer requires it to avoid a runtime memory leak. 

Because these are volatile memory allocations, they will not cause a persistent leak after 

a crash or graceful application exit.

Chapter 7  libpmemobj: A Native Transactional Object Store



94

�Persisting Data
The typical intent of using persistent memory is to save data persistently. For this, you 

need to use one of three APIs that libpmemobj provides:

•	 Atomic operations

•	 Reserve/publish

•	 Transactional

�Atomic Operations
The pmemobj_alloc() and its variants shown below are easy to use, but they are limited 

in features, so additional coding is required by the developer:

int pmemobj_alloc(PMEMobjpool *pop, PMEMoid *oidp,

    size_t size, uint64_t type_num, pmemobj_constr

    constructor, void *arg);

int pmemobj_zalloc(PMEMobjpool *pop, PMEMoid *oidp,

    size_t size, uint64_t type_num);

void pmemobj_free(PMEMoid *oidp);

int pmemobj_realloc(PMEMobjpool *pop, PMEMoid *oidp,

    size_t size, uint64_t type_num);

int pmemobj_zrealloc(PMEMobjpool *pop, PMEMoid *oidp,

    size_t size, uint64_t type_num);

int pmemobj_strdup(PMEMobjpool *pop, PMEMoid *oidp,

    const char *s, uint64_t type_num);

int pmemobj_wcsdup(PMEMobjpool *pop, PMEMoid *oidp,

    const wchar_t *s, uint64_t type_num);

The TOID-based wrappers for most of these functions include: 

POBJ_NEW(PMEMobjpool *pop, TOID *oidp, TYPE,

    pmemobj_constr constructor, void *arg)

POBJ_ALLOC(PMEMobjpool *pop, TOID *oidp, TYPE, size_t size,

    pmemobj_constr constructor, void *arg)

POBJ_ZNEW(PMEMobjpool *pop, TOID *oidp, TYPE)

POBJ_ZALLOC(PMEMobjpool *pop, TOID *oidp, TYPE, size_t size)

Chapter 7  libpmemobj: A Native Transactional Object Store



95

POBJ_REALLOC(PMEMobjpool *pop, TOID *oidp, TYPE, size_t size)

POBJ_ZREALLOC(PMEMobjpool *pop, TOID *oidp, TYPE, size_t size)

POBJ_FREE(TOID *oidp)

These functions reserve the object in a temporary state, call the constructor you 

provided, and then in one atomic action, mark the allocation as persistent. They will 

insert the pointer to the newly initialized object into a variable of your choice.

If the new object needs to be merely zeroed, pmemobj_zalloc() does so without 

requiring a constructor.

Because copying NULL-terminated strings is a common operation, libpmemobj 

provides pmemobj_strdup() and its wide-char variant pmemobj_wcsdup() to handle 

this. pmemobj_strdup() provides the same semantics as strdup(3) but operates on the 

persistent memory heap associated with the memory pool.

Once you are done with the object, pmemobj_free() will deallocate the object while 

zeroing the variable that stored the pointer to it. The pmemobj_free() function frees the 

memory space represented by oidp, which must have been allocated by a previous call 

to pmemobj_alloc(), pmemobj_xalloc(), pmemobj_zalloc(), pmemobj_realloc(), 

or pmemobj_zrealloc(). The pmemobj_free() function provides the same semantics as 

free(3), but instead of operating on the process heap supplied by the system, it operates 

on the persistent memory heap.

Listing 7-5 shows a small example of allocating and freeing memory using the 

libpmemobj API.

Listing 7-5.  Using pmemobj_alloc() to allocate memory and using pmemobj_

free() to free it

    33  /*

    34   * pmemobj_alloc.c - An example to show how to use

    35   *                   pmemobj_alloc()

    36   */

    ..

    47  typedef uint32_t color;

    48

    49  static int paintball_init(PMEMobjpool *pop,

    50          void *ptr, void *arg)

    51  {

    52      *(color *)ptr = time(0) & 0xffffff;

Chapter 7  libpmemobj: A Native Transactional Object Store



96

    53      pmemobj_persist(pop, ptr, sizeof(color));

    54      return 0;

    55  }

    56

    57  int main()

    58  {

    59      PMEMobjpool *pool = pmemobj_open(POOL, LAYOUT);

    60      if (!pool) {

    61          pool = pmemobj_create(POOL, LAYOUT,

    62          PMEMOBJ_MIN_POOL, 0666);

    63          if (!pool)

    64              die("Couldn't open pool: %m\n");

    65

    66      }

    67      PMEMoid root = pmemobj_root(pool,

    68              sizeof(PMEMoid) * 6);

    69      if (OID_IS_NULL(root))

    70          die("Couldn't access root object.\n");

    71

    72      PMEMoid *chamber = (PMEMoid *)pmemobj_direct(root)

    73          + (getpid() % 6);

    74      if (OID_IS_NULL(*chamber)) {

    75          printf("Reloading.\n");

    76          if (pmemobj_alloc(pool, chamber, sizeof(color)

    77              , 0, paintball_init, 0))

    78              die("Failed to alloc: %m\n");

    79      } else {

    80          printf("Shooting %06x colored bullet.\n",

    81          *(color *)pmemobj_direct(*chamber));

    82          pmemobj_free(chamber);

    83      }

    84

    85      pmemobj_close(pool);

    86      return 0;

    87  }

Chapter 7  libpmemobj: A Native Transactional Object Store



97

•	 Line 47: Defines a color that will be stored in the pool.

•	 Lines 49-54: The paintball_init() function is called when we 

allocate memory (line 76). This function takes a pool and object 

pointer, calculates a random hex value for the paintball color, and 

persistently writes it to the pool. The program exits when the write 

completes.

•	 Lines 59-70: Opens or creates a pool and acquires a pointer to the 

root object within the pool.

•	 Line 72: Obtain a pointer to an offset within the pool.

•	 Lines 74-78: If the pointer in line 72 is not a valid object, we allocate 

some space and call paintball_init().

•	 Lines 79-80: If the pointer in line 72 is a valid object, we read the color 

value, print the string, and free the object.

�Reserve/Publish API
The atomic allocation API will not help if

•	 There is more than one reference to the object that needs to be 

updated

•	 There are multiple scalars that need to be updated

For example, if your program needs to subtract money from account A and add it 

to account B, both operations must be done together. This can be done via the reserve/

publish API.

To use it, you specify any number of operations to be done. The operations may be 

setting a scalar 64-bit value using pmemobj_set_value(), freeing an object with pmemobj_

defer_free(), or allocating it using pmemobj_reserve(). Of these, only the allocation 

happens immediately, letting you do any initialization of the newly reserved object. 

Modifications will not become persistent until pmemobj_publish() is called.

Functions provided by libpmemobj related to the reserve/publish feature are

PMEMoid pmemobj_reserve(PMEMobjpool *pop,

    struct pobj_action *act, size_t size, uint64_t type_num);

void pmemobj_defer_free(PMEMobjpool *pop, PMEMoid oid,

Chapter 7  libpmemobj: A Native Transactional Object Store



98

    struct pobj_action *act);

void pmemobj_set_value(PMEMobjpool *pop,

    struct pobj_action *act, uint64_t *ptr, uint64_t value);

int pmemobj_publish(PMEMobjpool *pop,

    struct pobj_action *actv, size_t actvcnt);

void pmemobj_cancel(PMEMobjpool *pop,

    struct pobj_action *actv, size_t actvcnt);

Listing 7-6 is a simple banking example that demonstrates how to change multiple 

scalars (account balances) before publishing the updates into the pool.

Listing 7-6.  Using the reserve/publish API to modify bank account balances

    32

    33  /*

    34   * reserve_publish.c – An example using the

    35   *                     reserve/publish libpmemobj API

    36   */

    37

    ..

    44  #define POOL "/mnt/pmem/balance"

    45

    46  static PMEMobjpool *pool;

    47

    48  struct account {

    49      PMEMoid name;

    50      uint64_t balance;

    51  };

    52  TOID_DECLARE(struct account, 0);

    53

    ..

    60  static PMEMoid new_account(const char *name,

    61                  int deposit)

    62  {

    63      int len = strlen(name) + 1;

    64

    65      struct pobj_action act[2];

Chapter 7  libpmemobj: A Native Transactional Object Store



99

    66      PMEMoid str = pmemobj_reserve(pool, act + 0,

    67                      len, 0);

    68      if (OID_IS_NULL(str))

    69          die("Can't allocate string: %m\n");

    ..

    75      pmemobj_memcpy(pool, pmemobj_direct(str), name,

    76                      len, PMEMOBJ_F_MEM_NODRAIN);

    77      TOID(struct account) acc;

    78      PMEMoid acc_oid = pmemobj_reserve(pool, act + 1,

    79                      sizeof(struct account), 1);

    80      TOID_ASSIGN(acc, acc_oid);

    81      if (TOID_IS_NULL(acc))

    82          die("Can't allocate account: %m\n");

    83      D_RW(acc)->name = str;

    84      D_RW(acc)->balance = deposit;

    85      pmemobj_persist(pool, D_RW(acc),

    86                      sizeof(struct account));

    87      pmemobj_publish(pool, act, 2);

    88      return acc_oid;

    89  }

    90

    91  int main()

    92  {

    93      if (!(pool = pmemobj_create(POOL, " ",

    94                             PMEMOBJ_MIN_POOL, 0600)))

    95          die("Can't create pool "%s": %m\n", POOL);

    96

    97      TOID(struct account) account_a, account_b;

    98      TOID_ASSIGN(account_a,

    99                    new_account("Julius Caesar", 100));

   100      TOID_ASSIGN(account_b,

   101                    new_account("Mark Anthony", 50));

   102

   103      int price = 42;

   104      struct pobj_action act[2];

Chapter 7  libpmemobj: A Native Transactional Object Store



100

   105      pmemobj_set_value(pool, &act[0],

   106                      &D_RW(account_a)->balance,

   107                      D_RW(account_a)->balance – price);

   108      pmemobj_set_value(pool, &act[1],

   109                      &D_RW(account_b)->balance,

   110                      D_RW(account_b)->balance + price);

   111      pmemobj_publish(pool, act, 2);

   112

   113      pmemobj_close(pool);

   114      return 0;

   115  }

•	 Line 44: Defines the location of the memory pool.

•	 Lines 48-52: Declares an account data structure with a name and 

balance.

•	 Lines 60-89: The new_account() function reserves the memory (lines 

66 and 78), updates the name and balance (lines 83 and 84), persists 

the changes (line 85), and then publishes the updates (line 87).

•	 Lines 93-95: Create a new pool or exit on failure.

•	 Line 97: Declare two account instances.

•	 Lines 98-101: Create a new account for each owner with initial 

balances.

•	 Lines 103-111: We subtract 42 from Julius Caesar’s account and add 

42 to Mark Anthony’s account. The modifications are published on 

line 111.

�Transactional API
The reserve/publish API is fast, but it does not allow reading data you have just written. 

In such cases, you can use the transactional API.

The first time a variable is written, it must be explicitly added to the transaction. This 

can be done via pmemobj_tx_add_range() or its variants (xadd, _direct). Convenient 

macros such as TX_ADD() or TX_SET() can perform the same operation. The transaction-

based functions and macros provided by libpmemobj include

Chapter 7  libpmemobj: A Native Transactional Object Store



101

int pmemobj_tx_add_range(PMEMoid oid, uint64_t off,

    size_t size);

int pmemobj_tx_add_range_direct(const void *ptr, size_t size);

TX_ADD(TOID o)

TX_ADD_FIELD(TOID o, FIELD)

TX_ADD_DIRECT(TYPE *p)

TX_ADD_FIELD_DIRECT(TYPE *p, FIELD)

TX_SET(TOID o, FIELD, VALUE)

TX_SET_DIRECT(TYPE *p, FIELD, VALUE)

TX_MEMCPY(void *dest, const void *src, size_t num)

TX_MEMSET(void *dest, int c, size_t num)

The transaction may also allocate entirely new objects, reserve their memory, and 

then persistently allocate them only one transaction commit. These functions include

PMEMoid pmemobj_tx_alloc(size_t size, uint64_t type_num);

PMEMoid pmemobj_tx_zalloc(size_t size, uint64_t type_num);

PMEMoid pmemobj_tx_realloc(PMEMoid oid, size_t size,

    uint64_t type_num);

PMEMoid pmemobj_tx_zrealloc(PMEMoid oid, size_t size,

    uint64_t type_num);

PMEMoid pmemobj_tx_strdup(const char *s, uint64_t type_num);

PMEMoid pmemobj_tx_wcsdup(const wchar_t *s,

    uint64_t type_num);

We can rewrite the banking example from Listing 7-6 using the transaction API. Most 

of the code remains the same except when we want to add or subtract amounts from the 

balance; we encapsulate those updates in a transaction, as shown in Listing 7-7.

Listing 7-7.  Using the transaction API to modify bank account balances

    33  /*

    34   * tx.c - An example using the transaction API

    35   */

    36

    ..

Chapter 7  libpmemobj: A Native Transactional Object Store



102

    94  int main()

    95  {

    96      if (!(pool = pmemobj_create(POOL, " ",

    97                          PMEMOBJ_MIN_POOL, 0600)))

    98          die("Can't create pool "%s": %m\n", POOL);

    99

   100      TOID(struct account) account_a, account_b;

   101      TOID_ASSIGN(account_a,

   102                    new_account("Julius Caesar", 100));

   103      TOID_ASSIGN(account_b,

   104                    new_account("Mark Anthony", 50));

   105

   106      int price = 42;

   107      TX_BEGIN(pool) {

   108          TX_ADD_DIRECT(&D_RW(account_a)->balance);

   109          TX_ADD_DIRECT(&D_RW(account_b)->balance);

   110          D_RW(account_a)->balance -= price;

   111          D_RW(account_b)->balance += price;

   112      } TX_END

   113

   114      pmemobj_close(pool);

   115      return 0;

   116  }

•	 Line 107: We start the transaction.

•	 Lines 108-111: Make balance modifications to multiple accounts.

•	 Line 112: Finish the transaction. All updates will either complete 

entirely or they will be rolled back if the application or system crashes 

before the transaction completes.

Each transaction has multiple stages in which an application can interact. These 

transaction stages include

•	 TX_STAGE_NONE: No open transaction in this thread.

•	 TX_STAGE_WORK: Transaction in progress.

•	 TX_STAGE_ONCOMMIT: Successfully committed.

Chapter 7  libpmemobj: A Native Transactional Object Store



103

•	 TX_STAGE_ONABORT: The transaction start either failed or was aborted.

•	 TX_STAGE_FINALLY: Ready for cleanup.

The example in Listing 7-7 uses the two mandatory stages: TX_BEGIN and TX_END. 

However, we could easily have added the other stages to perform actions for the other 

stages, for example:

TX_BEGIN(Pop) {

        /* the actual transaction code goes here... */

} TX_ONCOMMIT {

        /*

         * optional - executed only if the above block

         * successfully completes

         */

} TX_ONABORT {

        /*

         * optional - executed only if starting the transaction

         * fails, or if transaction is aborted by an error or a

         * call to pmemobj_tx_abort()

         */

} TX_FINALLY {

        /*

         * optional - if exists, it is executed after

         * TX_ONCOMMIT or TX_ONABORT block

         */

} TX_END /* mandatory */

Optionally, you can provide a list of parameters for the transaction. Each parameter 

consists of a type followed by one of these type-specific number of values:

•	 TX_PARAM_NONE is used as a termination marker with no following 

value.

•	 TX_PARAM_MUTEX is followed by one value, a pmem-resident 

PMEMmutex.

Chapter 7  libpmemobj: A Native Transactional Object Store



104

•	 TX_PARAM_RWLOCK is followed by one value, a pmem-resident 

PMEMrwlock.

•	 TX_PARAM_CB is followed by two values: a callback function of type 

pmemobj_tx_callback and a void pointer.

Using TX_PARAM_MUTEX or TX_PARAM_RWLOCK causes the specified lock to be acquired 

at the beginning of the transaction. TX_PARAM_RWLOCK acquires the lock for writing. 

It is guaranteed that pmemobj_tx_begin() will acquire all locks prior to successful 

completion, and they will be held by the current thread until the outermost transaction 

is finished. Locks are taken in order from left to right. To avoid deadlocks, you are 

responsible for proper lock ordering.

TX_PARAM_CB registers the specified callback function to be executed at each 

transaction stage. For TX_STAGE_WORK, the callback is executed prior to commit. For all 

other stages, the callback is executed as the first operation after a stage change. It will 

also be called after each transaction.

�Optional Flags
Many of the functions discussed for the atomic, reserve/publish, and transactional APIs 

have a variant with a "flags" argument that accepts these values:

•	 POBJ_XALLOC_ZERO zeroes the object allocated.

•	 POBJ_XALLOC_NO_FLUSH suppresses automatic flushing. It is expected 

that you flush the data in some way; otherwise, it may not be durable 

in case of an unexpected power loss.

�Persisting Data Summary
The atomic, reserve/publish, and transactional APIs have different strengths:

•	 Atomic allocations are the simplest and fastest, but their use is 

limited to allocating and initializing wholly new blocks.

•	 The reserve/publish API can be as fast as atomic allocations when 

all operations involve either allocating or deallocating whole objects 

or modifying scalar values. However, being able to read the data you 

have just written may be desirable.

Chapter 7  libpmemobj: A Native Transactional Object Store



105

•	 The transactional API requires slow synchronization whenever 

a variable is added to the transaction. If the variable is changed 

multiple times during the transaction, subsequent operations are 

free. It also allows conveniently mutating pieces of data larger than a 

single machine word.

�Guarantees of libpmemobj's APIs
The transactional, atomic allocation, and reserve/publish APIs within libpmemobj all 

provide fail-safe atomicity and consistency.

The transactional API ensures the durability of any modifications of memory for 

an object that has been added to the transaction. An exception is when the POBJ_X***_

NO_FLUSH flag is used, in which case the application is responsible for either flushing 

that memory range itself or using the memcpy-like functions from libpmemobj. The 

no-flush flag does not provide any isolation between threads, meaning partial writes are 

immediately visible to other threads.

The atomic allocation API requires that applications flush the writes done by the 

object’s constructor. This ensures durability if the operation succeeded. It is the only API 

that provides full isolation between threads.

The reserve/publish API requires explicit flushes of writes to memory blocks 

allocated via pmemobj_reserve() that will flush writes done via pmemobj_set_value(). 

There is no isolation between threads, although no modifications go live until pmemobj_

publish() starts, allowing you to take explicit locks for just the publishing stage.

Using terms known from databases, the isolation levels provided are

•	 Transactional API: READ_UNCOMMITTED

•	 Atomic allocations API: READ_COMMITTED

•	 Reserve/publish API: READ_COMMITTED until publishing starts, then 

READ_UNCOMMITTED

Chapter 7  libpmemobj: A Native Transactional Object Store



106

�Managing Library Behavior
The pmemobj_set_funcs() function allows an application to override memory allocation 

calls used internally by libpmemobj. Passing in NULL for any of the handlers will cause 

the libpmemobj default function to be used. The library does not make heavy use of the 

system malloc() functions, but it does allocate approximately 4–8 kilobytes for each 

memory pool in use.

By default, libpmemobj supports up to 1024 parallel transactions/allocations. For 

debugging purposes, it is possible to decrease this value by setting the PMEMOBJ_NLANES 

shell environment variable to the desired limit. For example, at the shell prompt, run 

"export PMEMOBJ_NLANES=512" then run the application:

$ export PMEMOBJ_NLANES=512

$ ./my_app

To return to the default behavior, unset PMEMOBJ_NLANES using

$ unset PMEMOBJ_NLANES

�Debugging and Error Handling
If an error is detected during the call to a libpmemobj function, the application 

may retrieve an error message describing the reason for the failure from pmemobj_

errormsg(). This function returns a pointer to a static buffer containing the last error 

message logged for the current thread. If errno was set, the error message may include 

a description of the corresponding error code as returned by strerror(3). The error 

message buffer is thread local; errors encountered in one thread do not affect its value 

in other threads. The buffer is never cleared by any library function; its content is 

significant only when the return value of the immediately preceding call to a libpmemobj 

function indicated an error, or if errno was set. The application must not modify or free 

the error message string, but it may be modified by subsequent calls to other library 

functions.

Two versions of libpmemobj are typically available on a development system. The 

non-debug version is optimized for performance and used when a program is linked 

using the -lpmemobj option. This library skips checks that impact performance, never 

logs any trace information, and does not perform any runtime assertions.

Chapter 7  libpmemobj: A Native Transactional Object Store



107

A debug version of libpmemobj is provided and available in /usr/lib/pmdk_debug 

or /usr/local/lib64/pmdk_debug. The debug version contains runtime assertions and 

tracepoints.

The common way to use the debug version is to set the environment variable LD_

LIBRARY_PATH. Alternatively, you can use LD_PRELOAD to point to /usr/lib/pmdk_debug 

or /usr/lib64/pmdk_debug, as appropriate. These libraries may reside in a different 

location, such as /usr/local/lib/pmdk_debug and /usr/local/lib64/pmdk_debug, 

depending on your Linux distribution or if you compiled installed PMDK from source 

code and chose /usr/local as the installation path. The following examples are 

equivalent methods for loading and using the debug versions of libpmemobj with an 

application called my_app:

$ export LD_LIBRARY_PATH=/usr/lib64/pmdk_debug

$ ./my_app

Or

$ LD_PRELOAD=/usr/lib64/pmdk_debug ./my_app

The output provided by the debug library is controlled using the PMEMOBJ_LOG_LEVEL 

and PMEMOBJ_LOG_FILE environment variables. These variables have no effect on the 

non-debug version of the library.

PMEMOBJ_LOG_LEVEL
The value of PMEMOBJ_LOG_LEVEL enables tracepoints in the debug version of the 

library, as follows:

	 1.	 This is the default level when PMEMOBJ_LOG_LEVEL is not set. No 

log messages are emitted at this level.

	 2.	 Additional details on any errors detected are logged, in addition to 

returning the errno-based errors as usual. The same information 

may be retrieved using pmemobj_errormsg().

	 3.	 A trace of basic operations is logged.

	 4.	 Enables an extensive amount of function-call tracing in the 

library.

	 5.	 Enables voluminous and fairly obscure tracing information that is 

likely only useful to the libpmemobj developers.

Chapter 7  libpmemobj: A Native Transactional Object Store



108

Debug output is written to STDERR unless PMEMOBJ_LOG_FILE is set. To set a debug 

level, use

$ export PMEMOBJ_LOG_LEVEL=2

$ ./my_app

PMEMOBJ_LOG_FILE
The value of PMEMOBJ_LOG_FILE includes the full path and file name of a file where all 

logging information should be written. If PMEMOBJ_LOG_FILE is not set, logging output is 

written to STDERR.

The following example defines the location of the log file to /var/tmp/libpmemobj_

debug.log, ensures we are using the debug version of libpmemobj when executing 

my_app in the background, sets the debug log level to 2, and monitors the log in real time 

using tail -f:

$ export PMEMOBJ_LOG_FILE=/var/tmp/libpmemobj_debug.log

$ export PMEMOBJ_LOG_LEVEL=2

$ LD_PRELOAD=/usr/lib64/pmdk_debug ./my_app &

$ tail –f /var/tmp/libpmemobj_debug.log

If the last character in the debug log file name is "-", the process identifier (PID) of 

the current process will be appended to the file name when the log file is created. This is 

useful if you are debugging multiple processes.

�Summary
This chapter describes the libpmemobj library, which is designed to simplify persistent 

memory programming. By providing APIs that deliver atomic operations, transactions, 

and reserve/publish features, it makes creating applications less error prone while 

delivering guarantees for data integrity.

Chapter 7  libpmemobj: A Native Transactional Object Store



109

Open Access  This chapter is licensed under the terms of the Creative 

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the 

original author(s) and the source, provide a link to the Creative Commons license and 

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s 

Creative Commons license, unless indicated otherwise in a credit line to the material. If 

material is not included in the chapter’s Creative Commons license and your intended 

use is not permitted by statutory regulation or exceeds the permitted use, you will need 

to obtain permission directly from the copyright holder.

Chapter 7  libpmemobj: A Native Transactional Object Store

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Chapter 7: libpmemobj: A Native Transactional Object Store
	What is libpmemobj?
	Why not malloc()?
	Grouping Operations
	Memory Pools
	Creating Memory Pools
	Pool Object Pointer (POP) and the Root Object
	Opening and Reading from Memory Pools

	Memory Poolsets
	Concatenated Poolsets
	Replica Poolsets

	Managing Memory Pools and Poolsets
	Typed Object Identifiers (TOIDs)
	Allocating Memory
	Persisting Data
	Atomic Operations
	Reserve/Publish API
	Transactional API
	Optional Flags
	Persisting Data Summary

	Guarantees of libpmemobj's APIs
	Managing Library Behavior
	Debugging and Error Handling
	Summary




