
73
© The Author(s) 2020
S. Scargall, Programming Persistent Memory, https://doi.org/10.1007/978-1-4842-4932-1_6

CHAPTER 6

libpmem: Low-Level
Persistent Memory
Support
This chapter introduces libpmem, one of the smallest libraries in PMDK. This C library

is very low level, dealing with things like CPU instructions related to persistent memory,

optimal ways to copy data to persistence, and file mapping. Programmers who only want

completely raw access to persistent memory, without libraries to provide allocators or

transactions, will likely want to use libpmem as a basis for their development.

The code in libpmem that detects the available CPU instructions, for example, is a

mundane boilerplate code that you do not want to invent repeatedly in applications.

Leveraging this small amount of code from libpmem will save time, and you get the

benefit of fully tested and tuned code in the library.

For most programmers, libpmem is too low level, and you can safely skim this

chapter quickly (or skip it altogether) and move on to the higher-level, friendlier

libraries available in PMDK. All the PMDK libraries that deal with persistence, such as

libpmemobj, are built on top of libpmem to meet their low-level needs.

Like all PMDK libraries, online man pages are available. For libpmem, they are at

http://pmem.io/pmdk/libpmem/. This site includes links to the man pages for both the

Linux and Windows version. Although the goal of the PMDK project was to make the

interfaces similar across operating systems, some small differences appear as necessary.

The C code examples used in this chapter build and run on both Linux and Windows.

https://doi.org/10.1007/978-1-4842-4932-1_6
http://pmem.io/pmdk/libpmem/

74

The examples used in this chapter are

•	 simple_copy.c is a small program that copies a 4KiB block from a

source file to a destination file on persistent memory.

•	 full_copy.c is a more complete copy program, copying

the entire file.

•	 manpage.c is the simple example used in the libpmem man page.

�Using the Library
To use libpmem, start by including the appropriate header, as shown in Listing 6-1.

Listing 6-1.  Including the libpmem headers

 32

 33 /*
 34 * simple_copy.c

 35 *
 36 * usage: simple_copy src-file dst-file

 37 *
 38 * Reads 4KiB from src-file and writes it to dst-file.

 39 */

 40

 41 #include <sys/types.h>

 42 #include <sys/stat.h>

 43 #include <fcntl.h>

 44 #include <stdio.h>

 45 #include <errno.h>

 46 #include <stdlib.h>

 47 #ifndef _WIN32

 48 #include <unistd.h>

 49 #else

 50 #include <io.h>

 51 #endif

 52 #include <string.h>

 53 #include <libpmem.h>

Chapter 6 libpmem: Low-Level Persistent Memory Support

75

Notice the include on line 53. To use libpmem, use this include line, and link the C

program with libpmem using the -lpmem option when building under Linux.

�Mapping a File
The libpmem library contains some convenience functions for memory mapping files.

Of course, your application can call mmap() on Linux or MapViewOfFile() on Windows

directly, but using libpmem has some advantages:

•	 libpmem knows the correct arguments to the operating system

mapping calls. For example, on Linux, it is not safe to flush changes

to persistent memory using the CPU instructions directly unless the

mapping is created with the MAP_SYNC flag to mmap().

•	 libpmem detects if the mapping is actually persistent memory and if

using the CPU instructions directly for flushing is safe.

Listing 6-2 shows how to memory map a file on a persistent memory-aware file

system into the application.

Listing 6-2.  Mapping a persistent memory file

 80 /* create a pmem file and memory map it */

 81 if ((pmemaddr = pmem_map_file(argv[2], BUF_LEN,

 82 PMEM_FILE_CREATE|PMEM_FILE_EXCL,

 83 0666, &mapped_len, &is_pmem)) == NULL) {

 84 perror("pmem_map_file");

 85 exit(1);

 86 }

As part of the persistent memory detection mentioned earlier, the flag is_pmem is

returned by pmem_map_file. It is the caller’s responsibility to use this flag to determine

how to flush changes to persistence. When making a range of memory persistent, the

caller can use the optimal flush provided by libpmem, pmem_persist, only if the is_pmem

flag is set. This is illustrated in the man page example excerpt in Listing 6-3.

Chapter 6 libpmem: Low-Level Persistent Memory Support

76

Listing 6-3.  manpage.c: Using the is_pmem flag

 74 /* Flush above strcpy to persistence */

 75 if (is_pmem)

 76 pmem_persist(pmemaddr, mapped_len);

 77 else

 78 pmem_msync(pmemaddr, mapped_len);

Listing 6-3 shows the convenience function pmem_msync(), which is just a small

wrapper around msync() or the Windows equivalent. You do not need to build in

different logic for Linux and Windows because libpmem handles this.

�Copying to Persistent Memory
There are several interfaces in libpmem for optimally copying or zeroing ranges of

persistent memory. The simplest interface shown in Listing 6-4 is used to copy the block

of data from the source file to the persistent memory in the destination file and flush it to

persistence.

Listing 6-4.  simple_copy.c: Copying to persistent memory

 88 /* read up to BUF_LEN from srcfd */

 89 if ((cc = read(srcfd, buf, BUF_LEN)) < 0) {

 90 pmem_unmap(pmemaddr, mapped_len);

 91 perror("read");

 92 exit(1);

 93 }

 94

 95 /* write it to the pmem */

 96 if (is_pmem) {

 97 pmem_memcpy_persist(pmemaddr, buf, cc);

 98 } else {

 99 memcpy(pmemaddr, buf, cc);

 100 pmem_msync(pmemaddr, cc);

 101 }

Chapter 6 libpmem: Low-Level Persistent Memory Support

77

Notice how the is_pmem flag on line 96 is used just like it would be for calls to pmem_

persist(), since the pmem_memcpy_persist() function includes the flush to persistence.

The interface pmem_memcpy_persist() includes the flush to persistent because it

may determine that the copy is more optimally performed by using non-temporal stores,

which bypass the CPU cache and do not require subsequent cache flush instructions for

persistence. By providing this API, which both copies and flushes, libpmem is free to use

the most optimal way to perform both steps.

�Separating the Flush Steps
Flushing to persistence involves two steps:

	 1.	 Flush the CPU caches or bypass them entirely as explained in the

previous example.

	 2.	 Wait for any hardware buffers to drain, to ensure writes have

reached the media.

These steps are performed together when pmem_persist() is called, or they can be

called individually by calling pmem_flush() for the first step and pmem_drain() for the

second. Note that either of these steps may be unnecessary on a given platform, and

the library knows how to check for that and do what is correct. For example, on Intel

platforms, pmem_drain is an empty function.

When does it make sense to break flushing into steps? The example in Listing 6-5

illustrates one reason you might want to do this. Since the example copies data using

multiple calls to memcpy(), it uses the version of libpmem copy (pmem_memcpy_nodrain())

that only performs the flush, postponing the final drain step to the end. This works

because, unlike the flush step, the drain step does not take an address range; it is a

system-wide drain operation so can happen at the end of the loop that copies individual

blocks of data.

Listing 6-5.  full_copy.c: Separating the flush steps

 58 /*
 59 * do_copy_to_pmem

 60 */

 61 static void

 62 do_copy_to_pmem(char *pmemaddr, int srcfd, off_t len)

Chapter 6 libpmem: Low-Level Persistent Memory Support

78

 63 {

 64 char buf[BUF_LEN];

 65 int cc;

 66

 67 /*
 68 * Copy the file,

 69 * saving the last flush & drain step to the end

 70 */

 71 while ((cc = read(srcfd, buf, BUF_LEN)) > 0) {

 72 pmem_memcpy_nodrain(pmemaddr, buf, cc);

 73 pmemaddr += cc;

 74 }

 75

 76 if (cc < 0) {

 77 perror("read");

 78 exit(1);

 79 }

 80

 81 /* Perform final flush step */

 82 pmem_drain();

 83 }

In Listing 6-5, pmem_memcpy_nodrain() is specifically designed for persistent

memory. When using other libraries and standard functions like memcpy(), remember

they were written before persistent memory existed and do not perform any flushing

to persistence. In particular, the memcpy() provided by the C runtime environment

often chooses between regular stores (which require flushing) and non-temporal stores

(which do not require flushing). It is making that choice based on performance, not

persistence. Since you will not know which instructions it chooses, you will need to

perform the flush to persistence yourself using pmem_persist() or msync().

The choice of instructions used when copying ranges to persistent memory is fairly

important to the performance in many applications. The same is true when zeroing out

ranges of persistent memory. To meet these needs, libpmem provides pmem_memmove(),

pmem_memcpy(), and pmem_memset(), which all take a flags argument to give the

caller more control over which instructions they use. For example, passing the flag

Chapter 6 libpmem: Low-Level Persistent Memory Support

79

PMEM_F_MEM_NONTEMPORAL will tell these functions to use non-temporal stores instead of

choosing which instructions to use based on the size of the range. The full list of flags is

documented in the man pages for these functions.

�Summary
This chapter demonstrated some of the fairly small set of APIs provided by libpmem.

This library does not track what changed for you, does not provide power fail-safe

transactions, and does not provide an allocator. Libraries like libpmemobj (described in

the next chapter) provide all those tasks and use libpmem internally for simple flushing

and copying.

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 6 libpmem: Low-Level Persistent Memory Support

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Chapter 6: libpmem: Low-Level Persistent Memory Support
	Using the Library
	Mapping a File
	Copying to Persistent Memory
	Separating the Flush Steps
	Summary

