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CHAPTER 4

Fundamental Concepts 
of Persistent Memory 
Programming
In Chapter 3, you saw how operating systems expose persistent memory to applications 

as memory-mapped files. This chapter builds on this fundamental model and examines 

the programming challenges that arise. Understanding these challenges is an essential 

part of persistent memory programming, especially when designing a strategy for 

recovery after application interruption due to issues like crashes and power failures. 

However, do not let these challenges deter you from persistent memory programming! 

Chapter 5 describes how to leverage existing solutions to save you programming time 

and reduce complexity.

�What’s Different?
Application developers typically think in terms of memory-resident data structures and 

storage-resident data structures. For data center applications, developers are careful to 

maintain consistent data structures on storage, even in the face of a system crash. This 

problem is commonly solved using logging techniques such as write-ahead logging, 

where changes are first written to a log and then flushed to persistent storage. If the data 

modification process is interrupted, the application has enough information in the log 

to finish the operation on restart. Techniques like this have been around for many years; 

however, correct implementations are challenging to develop and time-consuming to 

maintain. Developers often rely on a combination of databases, libraries, and modern 

file systems to provide consistency. Even so, it is ultimately the application developer’s 
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responsibility to design in a strategy to maintain consistent data structures on storage, 

both at runtime and when recovering from application and system crashes.

Unlike storage-resident data structures, application developers are concerned 

about maintaining consistency of memory-resident data structures at runtime. When 

an application has multiple threads accessing the same data structure, techniques like 

locking are used so that one thread can perform complex changes to a data structure 

without another thread seeing only part of the change. When an application exits or 

crashes, or the system crashes, the memory contents are gone, so there is no need 

to maintain consistency of memory-resident data structures between runs of an 

application like there is with storage-resident data structures.

These explanations may seem obvious, but these assumptions that the storage state 

stays around between runs and memory contents are volatile are so fundamental in 

the way applications are developed that most developers don’t give it much thought. 

What’s different about persistent memory is, of course, that it is persistent, so all the 

considerations of both storage and memory apply. The application is responsible for 

maintaining consistent data structures between runs and reboots, as well as the thread-

safe locking used with memory-resident data structures.

If persistent memory has these attributes and requirements just like storage, why 

not use code developed over the years for storage? This approach does work; using the 

storage APIs on persistent memory is part of the programming model we described 

in Chapter 3. If the existing storage APIs on persistent memory are fast enough and 

meet the application’s needs, then no further work is necessary. But to fully leverage 

the advantages of persistent memory, where data structures are read and written in 

place on persistence and accesses happen at the byte granularity, instead of using the 

block storage stack, applications will want to memory map it and access it directly. This 

eliminates the buffer-based storage APIs in the data path.

�Atomic Updates
Each platform supporting persistent memory will have a set of native memory 

operations that are atomic. On Intel hardware, the atomic persistent store is 8 bytes. 

Thus, if the program or system crashes while an aligned 8-byte store to persistent 

memory is in-flight, on recovery those 8 bytes will either contain the old contents or 

the new contents. The Intel processor has instructions that store more than 8 bytes, 

but those are not failure atomic, so they can be torn by events like a power failure. 
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Sometimes an update to a memory-resident data structure will require multiple 

instructions, so naturally those changes can be torn by power failure as well since power 

could be lost between any two instructions. Runtime locking prevents other threads from 

seeing a partially done change, but locking doesn’t provide any failure atomicity. When 

an application needs to make a change that is larger than 8 bytes to persistent memory, it 

must construct the atomic operation by building on top of the basic atomics provided by 

hardware, such as the 8-byte failure atomicity provided by Intel hardware.

�Transactions
Combining multiple operations into a single atomic operation is usually referred to as 

a transaction. In the database world, the acronym ACID describes the properties of a 

transaction: atomicity, consistency, isolation, and durability.

�Atomicity
As described earlier, atomicity is when multiple operations are composed into a single 

atomic action that either happens entirely or does not happen at all, even in the face of 

system failure. For persistent memory, the most common techniques used are

•	 Redo logging, where the full change is first written to a log, so during 

recovery, it can be rolled forward if interrupted.

•	 Undo logging, where information is logged that allows a partially 

done change to be rolled back during recovery.

•	 Atomic pointer updates, where a change is made active by updating 

a single pointer atomically, usually changing it from pointing to old 

data to new data.

The preceding list is not exhaustive, and it ignores the details that can get relatively 

complex. One common consideration is that transactions often include memory 

allocation/deallocation. For example, a transaction that adds a node to a tree data 

structure usually includes the allocation of the new node. If the transaction is rolled back, 

the memory must be freed to prevent a memory leak. Now imagine a transaction that 

performs multiple persistent memory allocations and free operations, all of which must 

be part of the same atomic operation. The implementation of this transaction is clearly 

more complex than just writing the new value to a log or updating a single pointer.
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�Consistency
Consistency means that a transaction can only move a data structure from one valid 

state to another. For persistent memory, programmers usually find that the locking they 

use to make updates thread-safe often indicates consistency points as well. If it is not 

valid for a thread to see an intermediate state, locking prevents it from happening, and 

when it is safe to drop the lock, that is because it is safe for another thread to observe the 

current state of the data structure.

�Isolation
Multithreaded (concurrent) execution is commonplace in modern applications. When 

making transactional updates, the isolation is what allows the concurrent updates 

to have the same effect as if they were executed sequentially. At runtime, isolation 

for persistent memory updates is typically achieved by locking. Since the memory is 

persistent, the isolation must be considered for transactions that were in-flight when 

the application was interrupted. Persistent memory programmers typically detect 

this situation on restart and roll partially done transactions forward or backward 

appropriately before allowing general-purpose threads access to the data structures.

�Durability
A transaction is considered durable if it is on persistent media when it is complete. Even if the 

system loses power or crashes at that point, the transaction remains completed. As described 

in Chapter 2, this usually means the changes must be flushed from the CPU caches. This can 

be done using standard APIs, such as the Linux msync() call, or platform-specific instructions 

such as Intel’s CLWB. When implementing transactions on persistent memory, pay careful 

attention to ensure that log entries are flushed to persistence before changes are started and 

flush changes to persistence before a transaction is considered complete.

Another aspect of the durable property is the ability to find the persistent 

information again when an application starts up. This is so fundamental to how storage 

works that we take it for granted. Metadata such as file names and directory names are 

used to find the durable state of an application on storage. For persistent memory, the 

same is true due to the programming model described in Chapter 3, where persistent 

memory is accessed by first opening a file on a direct access (DAX) file system and then 

memory mapping that file. However, a memory-mapped file is just a range of raw data; 
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how does the application find the data structures resident in that range? For persistent 

memory, there must be at least one well-known location of a data structure to use as a 

starting point. This is often referred to as a root object (described in Chapter 7). The root 

object is used by many of the higher-level libraries within PMDK to access the data.

�Flushing Is Not Transactional
It is important to separate the ideas of flushing to persistence from transactional 

updates. Flushing changes to storage using calls like msync() or fsync() on Linux 

and FlushFileBuffers() on Windows have never provided transactional updates. 

Applications assume the responsibility for maintaining consistent storage data structures 

in addition to flushing changes to storage. With persistent memory, the same is true. In 

Chapter 3, a simple program stored a string to persistent memory and then flushed it to 

make sure the change was persistent. But that code was not transactional, and in the face 

of failure, the change could be in just about any state – from completely lost to partially 

lost to fully completed.

A fundamental property of caches is that they hold data temporarily for 

performance, but they do not typically hold data until a transaction is ready to commit. 

Normal system activity can cause cache pressure and evict data at any time and in any 

order. If the examples in Chapter 3 were interrupted by power failure, it is possible for 

any part of the string being stored to be lost and any part to be persistent, in any order. 

It is important to think of the cache flush operation as flush anything that hasn’t already 

been flushed and not as flush all my changes now.

Finally, we showed a decision tree in Chapter 2 (Figure 2-5) where an application can 

determine at startup that no cache flushing is required for persistent memory. This can 

be the case on platforms where the CPU cache is flushed automatically on power failure, 

for example. Even on platforms where flush instructions are not needed, transactions are 

still required to keep data structures consistent in the face of failure.

�Start-Time Responsibilities
In Chapter 2 (Figures 2-5 and 2-6), we showed flowcharts outlining the application’s 

responsibilities when using persistent memory. These responsibilities included 

detecting platform details, available instructions, media failures, and so on. For storage, 

these types of things happen in the storage stack in the operating system. Persistent 
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memory, however, allows direct access, which removes the kernel from the data path 

once the file is memory mapped.

As a programmer, you may be tempted to map persistent memory and start using it, 

as shown in the Chapter 3 examples. For production-quality programming, you want to 

ensure these start-time responsibilities are met. For example, if you skip the checks in 

Figure 2-5, you will end up with an application that flushes CPU caches even when it is 

not required, and that will perform poorly on hardware that does not need the flushing. 

If you skip the checks in Figure 2-6, you will have an application that ignores media 

errors and may use corrupted data resulting in unpredictable and undefined behavior.

�Tuning for Hardware Configurations
When storing a large data structure to persistent memory, there are several ways to copy 

the data and make it persistent. You can either copy the data using the common store 

operations and then flush the caches (if required) or use special instructions like Intel’s 

non-temporal store instructions that bypass the CPU caches. Another consideration 

is that persistent memory write performance may be slower than writing to normal 

memory, so you may want to take steps to store to persistent memory as efficiently as 

possible, by combining multiple small writes into larger changes before storing them to 

persistent memory. The optimal write size for persistent memory will depend on both 

the platform it is plugged into and the persistent memory product itself. These examples 

show that different platforms will have different characteristics when using persistent 

memory, and any production-quality application will be tuned to perform best on the 

intended target platforms. Naturally, one way to help with this tuning work is to leverage 

libraries or middleware that has already been tuned and validated.

�Summary
This chapter provides an overview of the fundamental concepts of persistent memory 

programming. When developing an application that uses persistent memory, you must 

carefully consider several areas:

•	 Atomic updates.

•	 Flushing is not transactional.
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•	 Start-time responsibilities.

•	 Tuning for hardware configurations.

Handling these challenges in a production-quality application requires some 

complex programming and extensive testing and performance analysis. The next chapter 

introduces the Persistent Memory Development Kit, designed to assist application 

developers in solving these challenges.

Open Access  This chapter is licensed under the terms of the Creative 

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the 

original author(s) and the source, provide a link to the Creative Commons license and 

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s 

Creative Commons license, unless indicated otherwise in a credit line to the material. If 

material is not included in the chapter’s Creative Commons license and your intended 

use is not permitted by statutory regulation or exceeds the permitted use, you will need 

to obtain permission directly from the copyright holder.
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