
55
© The Author(s) 2020
S. Scargall, Programming Persistent Memory, https://doi.org/10.1007/978-1-4842-4932-1_4

CHAPTER 4

Fundamental Concepts
of Persistent Memory
Programming
In Chapter 3, you saw how operating systems expose persistent memory to applications

as memory-mapped files. This chapter builds on this fundamental model and examines

the programming challenges that arise. Understanding these challenges is an essential

part of persistent memory programming, especially when designing a strategy for

recovery after application interruption due to issues like crashes and power failures.

However, do not let these challenges deter you from persistent memory programming!

Chapter 5 describes how to leverage existing solutions to save you programming time

and reduce complexity.

�What’s Different?
Application developers typically think in terms of memory-resident data structures and

storage-resident data structures. For data center applications, developers are careful to

maintain consistent data structures on storage, even in the face of a system crash. This

problem is commonly solved using logging techniques such as write-ahead logging,

where changes are first written to a log and then flushed to persistent storage. If the data

modification process is interrupted, the application has enough information in the log

to finish the operation on restart. Techniques like this have been around for many years;

however, correct implementations are challenging to develop and time-consuming to

maintain. Developers often rely on a combination of databases, libraries, and modern

file systems to provide consistency. Even so, it is ultimately the application developer’s

https://doi.org/10.1007/978-1-4842-4932-1_4
https://doi.org/10.1007/978-1-4842-4932-1_3
https://doi.org/10.1007/978-1-4842-4932-1_5

56

responsibility to design in a strategy to maintain consistent data structures on storage,

both at runtime and when recovering from application and system crashes.

Unlike storage-resident data structures, application developers are concerned

about maintaining consistency of memory-resident data structures at runtime. When

an application has multiple threads accessing the same data structure, techniques like

locking are used so that one thread can perform complex changes to a data structure

without another thread seeing only part of the change. When an application exits or

crashes, or the system crashes, the memory contents are gone, so there is no need

to maintain consistency of memory-resident data structures between runs of an

application like there is with storage-resident data structures.

These explanations may seem obvious, but these assumptions that the storage state

stays around between runs and memory contents are volatile are so fundamental in

the way applications are developed that most developers don’t give it much thought.

What’s different about persistent memory is, of course, that it is persistent, so all the

considerations of both storage and memory apply. The application is responsible for

maintaining consistent data structures between runs and reboots, as well as the thread-

safe locking used with memory-resident data structures.

If persistent memory has these attributes and requirements just like storage, why

not use code developed over the years for storage? This approach does work; using the

storage APIs on persistent memory is part of the programming model we described

in Chapter 3. If the existing storage APIs on persistent memory are fast enough and

meet the application’s needs, then no further work is necessary. But to fully leverage

the advantages of persistent memory, where data structures are read and written in

place on persistence and accesses happen at the byte granularity, instead of using the

block storage stack, applications will want to memory map it and access it directly. This

eliminates the buffer-based storage APIs in the data path.

�Atomic Updates
Each platform supporting persistent memory will have a set of native memory

operations that are atomic. On Intel hardware, the atomic persistent store is 8 bytes.

Thus, if the program or system crashes while an aligned 8-byte store to persistent

memory is in-flight, on recovery those 8 bytes will either contain the old contents or

the new contents. The Intel processor has instructions that store more than 8 bytes,

but those are not failure atomic, so they can be torn by events like a power failure.

Chapter 4 Fundamental Concepts of Persistent Memory Programming

https://doi.org/10.1007/978-1-4842-4932-1_3

57

Sometimes an update to a memory-resident data structure will require multiple

instructions, so naturally those changes can be torn by power failure as well since power

could be lost between any two instructions. Runtime locking prevents other threads from

seeing a partially done change, but locking doesn’t provide any failure atomicity. When

an application needs to make a change that is larger than 8 bytes to persistent memory, it

must construct the atomic operation by building on top of the basic atomics provided by

hardware, such as the 8-byte failure atomicity provided by Intel hardware.

�Transactions
Combining multiple operations into a single atomic operation is usually referred to as

a transaction. In the database world, the acronym ACID describes the properties of a

transaction: atomicity, consistency, isolation, and durability.

�Atomicity
As described earlier, atomicity is when multiple operations are composed into a single

atomic action that either happens entirely or does not happen at all, even in the face of

system failure. For persistent memory, the most common techniques used are

•	 Redo logging, where the full change is first written to a log, so during

recovery, it can be rolled forward if interrupted.

•	 Undo logging, where information is logged that allows a partially

done change to be rolled back during recovery.

•	 Atomic pointer updates, where a change is made active by updating

a single pointer atomically, usually changing it from pointing to old

data to new data.

The preceding list is not exhaustive, and it ignores the details that can get relatively

complex. One common consideration is that transactions often include memory

allocation/deallocation. For example, a transaction that adds a node to a tree data

structure usually includes the allocation of the new node. If the transaction is rolled back,

the memory must be freed to prevent a memory leak. Now imagine a transaction that

performs multiple persistent memory allocations and free operations, all of which must

be part of the same atomic operation. The implementation of this transaction is clearly

more complex than just writing the new value to a log or updating a single pointer.

Chapter 4 Fundamental Concepts of Persistent Memory Programming

58

�Consistency
Consistency means that a transaction can only move a data structure from one valid

state to another. For persistent memory, programmers usually find that the locking they

use to make updates thread-safe often indicates consistency points as well. If it is not

valid for a thread to see an intermediate state, locking prevents it from happening, and

when it is safe to drop the lock, that is because it is safe for another thread to observe the

current state of the data structure.

�Isolation
Multithreaded (concurrent) execution is commonplace in modern applications. When

making transactional updates, the isolation is what allows the concurrent updates

to have the same effect as if they were executed sequentially. At runtime, isolation

for persistent memory updates is typically achieved by locking. Since the memory is

persistent, the isolation must be considered for transactions that were in-flight when

the application was interrupted. Persistent memory programmers typically detect

this situation on restart and roll partially done transactions forward or backward

appropriately before allowing general-purpose threads access to the data structures.

�Durability
A transaction is considered durable if it is on persistent media when it is complete. Even if the

system loses power or crashes at that point, the transaction remains completed. As described

in Chapter 2, this usually means the changes must be flushed from the CPU caches. This can

be done using standard APIs, such as the Linux msync() call, or platform-specific instructions

such as Intel’s CLWB. When implementing transactions on persistent memory, pay careful

attention to ensure that log entries are flushed to persistence before changes are started and

flush changes to persistence before a transaction is considered complete.

Another aspect of the durable property is the ability to find the persistent

information again when an application starts up. This is so fundamental to how storage

works that we take it for granted. Metadata such as file names and directory names are

used to find the durable state of an application on storage. For persistent memory, the

same is true due to the programming model described in Chapter 3, where persistent

memory is accessed by first opening a file on a direct access (DAX) file system and then

memory mapping that file. However, a memory-mapped file is just a range of raw data;

Chapter 4 Fundamental Concepts of Persistent Memory Programming

https://doi.org/10.1007/978-1-4842-4932-1_2
https://doi.org/10.1007/978-1-4842-4932-1_3

59

how does the application find the data structures resident in that range? For persistent

memory, there must be at least one well-known location of a data structure to use as a

starting point. This is often referred to as a root object (described in Chapter 7). The root

object is used by many of the higher-level libraries within PMDK to access the data.

�Flushing Is Not Transactional
It is important to separate the ideas of flushing to persistence from transactional

updates. Flushing changes to storage using calls like msync() or fsync() on Linux

and FlushFileBuffers() on Windows have never provided transactional updates.

Applications assume the responsibility for maintaining consistent storage data structures

in addition to flushing changes to storage. With persistent memory, the same is true. In

Chapter 3, a simple program stored a string to persistent memory and then flushed it to

make sure the change was persistent. But that code was not transactional, and in the face

of failure, the change could be in just about any state – from completely lost to partially

lost to fully completed.

A fundamental property of caches is that they hold data temporarily for

performance, but they do not typically hold data until a transaction is ready to commit.

Normal system activity can cause cache pressure and evict data at any time and in any

order. If the examples in Chapter 3 were interrupted by power failure, it is possible for

any part of the string being stored to be lost and any part to be persistent, in any order.

It is important to think of the cache flush operation as flush anything that hasn’t already

been flushed and not as flush all my changes now.

Finally, we showed a decision tree in Chapter 2 (Figure 2-5) where an application can

determine at startup that no cache flushing is required for persistent memory. This can

be the case on platforms where the CPU cache is flushed automatically on power failure,

for example. Even on platforms where flush instructions are not needed, transactions are

still required to keep data structures consistent in the face of failure.

�Start-Time Responsibilities
In Chapter 2 (Figures 2-5 and 2-6), we showed flowcharts outlining the application’s

responsibilities when using persistent memory. These responsibilities included

detecting platform details, available instructions, media failures, and so on. For storage,

these types of things happen in the storage stack in the operating system. Persistent

Chapter 4 Fundamental Concepts of Persistent Memory Programming

https://doi.org/10.1007/978-1-4842-4932-1_7
https://doi.org/10.1007/978-1-4842-4932-1_3
https://doi.org/10.1007/978-1-4842-4932-1_3
https://doi.org/10.1007/978-1-4842-4932-1_2
https://doi.org/10.1007/978-1-4842-4932-1_2Fig#5
https://doi.org/10.1007/978-1-4842-4932-1_2
https://doi.org/10.1007/978-1-4842-4932-1_2Fig#5
https://doi.org/10.1007/978-1-4842-4932-1_2Fig#6

60

memory, however, allows direct access, which removes the kernel from the data path

once the file is memory mapped.

As a programmer, you may be tempted to map persistent memory and start using it,

as shown in the Chapter 3 examples. For production-quality programming, you want to

ensure these start-time responsibilities are met. For example, if you skip the checks in

Figure 2-5, you will end up with an application that flushes CPU caches even when it is

not required, and that will perform poorly on hardware that does not need the flushing.

If you skip the checks in Figure 2-6, you will have an application that ignores media

errors and may use corrupted data resulting in unpredictable and undefined behavior.

�Tuning for Hardware Configurations
When storing a large data structure to persistent memory, there are several ways to copy

the data and make it persistent. You can either copy the data using the common store

operations and then flush the caches (if required) or use special instructions like Intel’s

non-temporal store instructions that bypass the CPU caches. Another consideration

is that persistent memory write performance may be slower than writing to normal

memory, so you may want to take steps to store to persistent memory as efficiently as

possible, by combining multiple small writes into larger changes before storing them to

persistent memory. The optimal write size for persistent memory will depend on both

the platform it is plugged into and the persistent memory product itself. These examples

show that different platforms will have different characteristics when using persistent

memory, and any production-quality application will be tuned to perform best on the

intended target platforms. Naturally, one way to help with this tuning work is to leverage

libraries or middleware that has already been tuned and validated.

�Summary
This chapter provides an overview of the fundamental concepts of persistent memory

programming. When developing an application that uses persistent memory, you must

carefully consider several areas:

•	 Atomic updates.

•	 Flushing is not transactional.

Chapter 4 Fundamental Concepts of Persistent Memory Programming

https://doi.org/10.1007/978-1-4842-4932-1_3
https://doi.org/10.1007/978-1-4842-4932-1_2Fig#5
https://doi.org/10.1007/978-1-4842-4932-1_2Fig#6

61

•	 Start-time responsibilities.

•	 Tuning for hardware configurations.

Handling these challenges in a production-quality application requires some

complex programming and extensive testing and performance analysis. The next chapter

introduces the Persistent Memory Development Kit, designed to assist application

developers in solving these challenges.

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 4 Fundamental Concepts of Persistent Memory Programming

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Chapter 4: Fundamental Concepts of Persistent Memory Programming
	What’s Different?
	Atomic Updates
	Transactions
	Atomicity
	Consistency
	Isolation
	Durability

	Flushing Is Not Transactional
	Start-Time Responsibilities
	Tuning for Hardware Configurations
	Summary

