
11
© The Author(s) 2020
S. Scargall, Programming Persistent Memory, https://doi.org/10.1007/978-1-4842-4932-1_2

CHAPTER 2

Persistent Memory
Architecture
This chapter provides an overview of the persistent memory architecture while focusing

on the hardware to emphasize requirements and decisions that developers need to know.

Applications that are designed to recognize the presence of persistent memory in

a system can run much faster than using other storage devices because data does not

have to transfer back and forth between the CPU and slower storage devices. Because

applications that only use persistent memory may be slower than dynamic random-

access memory (DRAM), they should decide what data resides in DRAM, persistent

memory, and storage.

The capacity of persistent memory is expected to be many times larger than DRAM;

thus, the volume of data that applications can potentially store and process in place is

also much larger. This significantly reduces the number of disk I/Os, which improves

performance and reduces wear on the storage media.

On systems without persistent memory, large datasets that cannot fit into DRAM

must be processed in segments or streamed. This introduces processing delays as the

application stalls waiting for data to be paged from disk or streamed from the network.

If the working dataset size fits within the capacity of persistent memory and DRAM,

applications can perform in-memory processing without needing to checkpoint or page

data to or from storage. This significantly improves performance.

https://doi.org/10.1007/978-1-4842-4932-1_2

12

�Persistent Memory Characteristics
As with every new technology, there are always new things to consider. Persistent

memory is no exception. Consider these characteristics when architecting and

developing solutions:

•	 Performance (throughput, latency, and bandwidth) of persistent

memory is much better than NAND but potentially slower than

DRAM.

•	 Persistent memory is durable unlike DRAM. Its endurance is usually

orders of magnitude better than NAND and should exceed the

lifetime of the server without wearing out.

•	 Persistent memory module capacities can be much larger than

DRAM DIMMs and can coexist on the same memory channels.

•	 Persistent memory-enabled applications can update data in place

without needing to serialize/deserialize the data.

•	 Persistent memory is byte addressable like memory. Applications

can update only the data needed without any read-modify-write

overhead.

•	 Data is CPU cache coherent.

•	 Persistent memory provides direct memory access (DMA) and

remote DMA (RDMA) operations.

•	 Data written to persistent memory is not lost when power is removed.

•	 After permission checks are completed, data located on persistent

memory is directly accessible from user space. No kernel code, file

system page caches, or interrupts are in the data path.

Chapter 2 Persistent Memory Architecture

13

•	 Data on persistent memory is instantly available, that is:

•	 Data is available as soon as power is applied to the system.

•	 Applications do not need to spend time warming up caches. They

can access the data immediately upon memory mapping it.

•	 Data residing on persistent memory has no DRAM footprint

unless the application copies data to DRAM for faster access.

•	 Data written to persistent memory modules is local to the system.

Applications are responsible for replicating data across systems.

�Platform Support for Persistent Memory
Platform vendors such as Intel, AMD, ARM, and others will decide how persistent

memory should be implemented at the lowest hardware levels. We try to provide a

vendor-agnostic perspective and only occasionally call out platform-specific details.

For systems with persistent memory, failure atomicity guarantees that systems can

always recover to a consistent state following a power or system failure. Failure atomicity

for applications can be achieved using logging, flushing, and memory store barriers that

order such operations. Logging, either undo or redo, ensures atomicity when a failure

interrupts the last atomic operation from completion. Cache flushing ensures that

data held within volatile caches reach the persistence domain so it will not be lost if a

sudden failure occurs. Memory store barriers, such as an SFENCE operation on the x86

architecture, help prevent potential reordering in the memory hierarchy, as caches and

memory controllers may reorder memory operations. For example, a barrier ensures

that the undo log copy of the data gets persisted onto the persistent memory before the

actual data is modified in place. This guarantees that the last atomic operation can be

rolled back should a failure occur. However, it is nontrivial to add such failure atomicity

in user applications with low-level operations such as write logging, cache flushing, and

barriers. The Persistent Memory Development Kit (PMDK) was developed to isolate

developers from having to re-implement the hardware intricacies.

Failure atomicity should be a familiar concept, since most file systems implement

and perform journaling and flushing of their metadata to storage devices.

Chapter 2 Persistent Memory Architecture

14

�Cache Hierarchy
We use load and store operations to read and write to persistent memory rather than

using block-based I/O to read and write to traditional storage. We suggest reading the

CPU architecture documentation for an in-depth description because each successive

CPU generation may introduce new features, methods, and optimizations.

Using the Intel architecture as an example, a CPU cache typically has three

distinct levels: L1, L2, and L3. The hierarchy makes references to the distance

from the CPU core, its speed, and size of the cache. The L1 cache is closest to

the CPU. It is extremely fast but very small. L2 and L3 caches are increasingly

larger in capacity, but they are relatively slower. Figure 2-1 shows a typical CPU

microarchitecture with three levels of CPU cache and a memory controller with

three memory channels. Each memory channel has a single DRAM and persistent

memory attached. On platforms where the CPU caches are not contained within

the power-fail protected domain, any modified data within the CPU caches that has

not been flushed to persistent memory will be lost when the system loses power or

crashes. Platforms that do include CPU caches in the power-fail protected domain

will ensure modified data within the CPU caches are flushed to the persistent

memory should the system crash or loses power. We describe these requirements

and features in the upcoming “Power-Fail Protected Domains” section.

Chapter 2 Persistent Memory Architecture

15

The L1 (Level 1) cache is the fastest memory in a computer system. In terms of access

priority, the L1 cache has the data the CPU is most likely to need while completing a

specific task. The L1 cache is also usually split two ways, into the instruction cache (L1 I)

and the data cache (L1 D). The instruction cache deals with the information about the

operation that the CPU has to perform, while the data cache holds the data on which the

operation is to be performed.

The L2 (Level 2) cache has a larger capacity than the L1 cache, but it is slower. L2

cache holds data that is likely to be accessed by the CPU next. In most modern CPUs,

the L1 and L2 caches are present on the CPU cores themselves, with each core getting

dedicated caches.

The L3 (Level 3) cache is the largest cache memory, but it is also the slowest of the

three. It is also a commonly shared resource among all the cores on the CPU and may be

internally partitioned to allow each core to have dedicated L3 resources.

Data read from DRAM or persistent memory is transferred through the memory

controller into the L3 cache, then propagated into the L2 cache, and finally the L1 cache

where the CPU core consumes it. When the processor is looking for data to carry out an

operation, it first tries to find it into the L1 cache. If the CPU can find it, the condition is

called a cache hit. If the CPU cannot find the data within the L1 cache, it then proceeds to

Figure 2-1.  CPU cache and memory hierarchy

Chapter 2 Persistent Memory Architecture

16

search for it first within L2, then L3. If it cannot find the data in any of the three, it tries to

access it from memory. Each failure to find data in a cache is called a cache miss. Failure

to locate the data in memory requires the operating system to page the data into memory

from a storage device.

When the CPU writes data, it is initially written to the L1 cache. Due to ongoing

activity within the CPU, at some point in time, the data will be evicted from the L1 cache

into the L2 cache. The data may be further evicted from L2 and placed into L3 and

eventually evicted from L3 into the memory controller’s write buffers where it is then

written to the memory device.

In a system that does not possess persistent memory, software persists data by writing it

to a non-volatile storage device such as an SSD, HDD, SAN, NAS, or a volume in the cloud.

This protects data from application or system crashes. Critical data can be manually flushed

using calls such as msync(), fsync(), or fdatasync(), which flush uncommitted dirty

pages from volatile memory to the non-volatile storage device. File systems provide fdisk

or chkdsk utilities to check and attempt repairs on damaged file systems if required. File

systems do not protect user data from torn blocks. Applications have a responsibility to

detect and recovery from this situation. That’s why databases, for example, use a variety of

techniques such as transactional updates, redo/undo logging, and checksums.

 Applications memory map the persistent memory address range directly into its

own memory address space. Therefore, the application must assume responsibility

for checking and guaranteeing data integrity. The rest of this chapter describes

your responsibilities in a persistent memory environment and how to achieve data

consistency and integrity.

�Power-Fail Protected Domains
A computer system may include one or more CPUs, volatile or persistent memory

modules, and non-volatile storage devices such as SSDs or HDDs.

System platform hardware supports the concept of a persistence domain, also called

power-fail protected domains. Depending on the platform, a persistence domain may

include the persistent memory controller and write queues, memory controller write

queues, and CPU caches. Once data has reached the persistence domain, it may be

recoverable during a process that results from a system restart. That is, if data is located

within hardware write queues or buffers protected by power failure, domain applications

should assume it is persistent. For example, if a power failure occurs, the data will be flushed

Chapter 2 Persistent Memory Architecture

17

from the power-fail protected domain using stored energy guaranteed by the platform for

this purpose. Data that has not yet made it into the protected domain will be lost.

Multiple persistence domains may exist within the same system, for example, on

systems with more than one physical CPU. Systems may also provide a mechanism for

partitioning the platform resources for isolation. This must be done in such a way that

SNIA NVM programming model behavior is assured from each compliant volume or file

system. (Chapter 3 describes the programming model as it applies to operating systems

and file systems. The “Detecting Platform Capabilities” section in that chapter describes

the logic that applications should perform to detect platform capabilities including

power failure protected domains. Later chapters provide in-depth discussions into why,

how, and when applications should flush data, if required, to guarantee the data is safe

within the protected domain and persistent memory.)

Volatile memory loses its contents when the computer system’s power is interrupted.

Just like non-volatile storage devices, persistent memory keeps its contents even in the

absence of system power. Data that has been physically saved to the persistent memory

media is called data at rest. Data in-flight has the following meanings:

•	 Writes sent to the persistent memory device but have not yet been

physically committed to the media

•	 Any writes that are in progress but not yet complete

•	 Data that has been temporarily buffered or cached in either the CPU

caches or memory controller

When a system is gracefully rebooted or shut down, the system maintains power

and can ensure all contents of the CPU caches and memory controllers are flushed such

that any in-flight or uncommitted data is successfully written to persistent memory

or non-volatile storage. When an unexpected power failure occurs, and assuming no

uninterruptable power supply (UPS) is available, the system must have enough stored

energy within the power supplies and capacitors dotted around it to flush data before the

power is completely exhausted. Any data that is not flushed is lost and not recoverable.

Asynchronous DRAM Refresh (ADR) is a feature supported on Intel products which

flushes the write-protected data buffers and places the DRAM in self-refresh. This

process is critical during a power loss event or system crash to ensure the data is in a safe

and consistent state on persistent memory. By default, ADR does not flush the processor

caches. A platform that supports ADR only includes persistent memory and the memory

controller’s write pending queues within the persistence domain. This is the reason

Chapter 2 Persistent Memory Architecture

https://doi.org/10.1007/978-1-4842-4932-1_3

18

data in the CPU caches must be flushed by the application using the CLWB, CLFLUSHOPT,

CLFLUSH, non-temporal stores, or WBINVD machine instructions.

Enhanced Asynchronous DRAM Refresh (eADR) requires that a non-maskable

interrupt (NMI) routine be called to flush the CPU caches before the ADR event can begin.

Applications running on an eADR platform do not need to perform flush operations

because the hardware should flush the data automatically, but they are still required

to perform an SFENCE operation to maintain write order correctness. Stores should be

considered persistent only when they are globally visible, which the SFENCE guarantees.

Figure 2-2 shows both the ADR and eADR persistence domains.

ADR is a mandatory platform requirement for persistent memory. The write

pending queue (WPQ) within the memory controller acknowledges receipt of the data

to the writer once all the data is received. Although the data has not yet made it to the

persistent media, a platform supporting ADR guarantees that it will be successfully

written should a power loss event occur. During a crash or power failure, data that is in-

flight through the CPU caches can only be guaranteed to be flushed to persistent media

if the platform supports eADR. It will be lost on platforms that only support ADR.

The challenge with extending the persistence domain to include the CPU caches is

that the CPU caches are quite large and it would take considerably more energy than the

capacitors in a typical power supply can practically provide. This means the platform

would have to contain batteries or utilize an external uninterruptable power supply.

Requiring a battery for every server supporting persistent memory is not generally

practical or cost-effective. The lifetime of a battery is typically shorter than the server,

Figure 2-2.  ADR and eADR power-fail protection domains

Chapter 2 Persistent Memory Architecture

19

which introduces additional maintenance routines that reduce server uptime. There

is also an environmental impact when using batteries as they must be disposed of

or recycled correctly. It is entirely possible for server or appliance OEMs to include a

battery in their product.

Because some appliance and server vendors plan to use batteries, and because

platforms will someday include the CPU caches in the persistence domain, a property is

available within ACPI such that the BIOS can notify software when the CPU flushes can

be skipped. On platforms with eADR, there is no need for manual cache line flushing.

�The Need for Flushing, Ordering, and Fencing
Except for WBINVD, which is a kernel-mode-only operation, the machine instructions

in Table 2-1 (in the “Intel Machine Instructions for Persistent Memory” section)

are supported in user space by Intel and AMD CPUs. Intel adopted the SNIA NVM

programming model for working with persistent memory. This model allows for

direct access (DAX) using byte-addressable operations (i.e., load/store). However, the

persistence of the data in the cache is not guaranteed until it has entered the persistence

domain. The x86 architecture provides a set of instructions for flushing cache lines in

a more optimized way. In addition to existing x86 instructions, such as non-temporal

stores, CLFLUSH, and WBINVD, two new instructions were added: CLFLUSHOPT and

CLWB. Both new instructions must be followed by an SFENCE to ensure all flushes are

completed before continuing. Flushing a cache line using CLWB, CLFLUSHOPT, or CLFLUSH

and using non-temporal stores are all supported from user space. You can find details

for each machine instruction in the software developer manuals for the architecture.

On Intel platforms, for example, this information can be found in the Intel 64 and 32

Architectures Software Developer Manuals (https://software.intel.com/en-us/

articles/intel-sdm).

Non-temporal stores imply that the data being written is not going to be read again

soon, so we bypass the CPU caches. That is, there is no temporal locality, so there is no

benefit to keeping the data in the processor’s cache(s), and there may be a penalty if the

stored data displaces other useful data from the cache(s).

Flushing to persistent memory directly from user space negates calling into the

kernel, which makes it highly efficient. The feature is documented in the SNIA persistent

memory programming model specification as an optimized flush. The specification

Chapter 2 Persistent Memory Architecture

https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm

20

document1 describes optimized flush as optionally supported by the platform,

depending on the hardware and operating system support. Despite the CPU support,

it is essential for applications to use only optimized flushes when the operating system

indicates that it is safe to use. The operating system may require the control point

provided by calls like msync() when, for example, there are changes to file system

metadata that need to be written as part of the msync() operation.

To better understand instruction ordering, consider a very simple linked list

example. Our pseudocode described in the following has three simple steps to add a new

node into an existing list that already contains two nodes. These steps are depicted in

Figure 2-3.

	 1.	 Create the new node (Node 2).

	 2.	 Update the node pointer (next pointer) to point to the last node in

the list (Node 2 → Node 1).

	 3.	 Update the head pointer to point at the new node (Head → Node 2).

Figure 2-3 (Step 3) shows that the head pointer was updated in the CPU cached version,

but the Node 2 to Node 1 pointer has not yet been updated in persistent memory. This

is because the hardware can choose which cache lines to commit and the order may not

match the source code flow. If the system or application were to crash at this point, the

persistent memory state would be inconsistent, and the data structure would no longer

be usable.

1�SNIA NVM programming model spec: https://www.snia.org/tech_activities/standards/
curr_standards/npm

Chapter 2 Persistent Memory Architecture

https://www.snia.org/tech_activities/standards/curr_standards/npm
https://www.snia.org/tech_activities/standards/curr_standards/npm

21

To solve this problem, we introduce a memory store barrier to ensure the order of the

write operations is maintained. Starting from the same initial state, the pseudocode now

looks like this:

	 1.	 Create the new node.

	 2.	 Update the node pointer (next pointer) to point to the last node in

the list, and perform a store barrier/fence operation.

	 3.	 Update the head pointer to point at the new node.

Figure 2-4 shows that the addition of the store barrier allows the code to work as

expected and maintains a consistent data structure in the volatile CPU caches and on

Figure 2-3.  Adding a new node to an existing linked list without a store barrier

Chapter 2 Persistent Memory Architecture

22

persistent memory. We can see in Step 3 that the store barrier/fence operation waited

for the pointer from Node 2 to Node 1 to update before updating the head pointer. The

updates in the CPU cache matches the persistent memory version, so it now globally

visible. This is a simplistic approach to solving the problem because store barriers do not

provide atomicity or data integrity. A complete solution should also use transactions to

ensure the data is atomically updated.

The PMDK detects the platform, CPU, and persistent memory features when the

memory pool is opened and then uses the optimal instructions and fencing to preserve

write ordering. (Memory pools are files that are memory mapped into the process

address space; later chapters describe them in more detail.)

Figure 2-4.  Adding a new node to an existing linked list using a store barrier

Chapter 2 Persistent Memory Architecture

23

To insulate application developers from the complexities of the hardware and to keep

them from having to research and implement code specific to each platform or device,

the libpmem library provides a function that tells the application when optimized flush is

safe to use or fall back to the standard way of flushing stores to memory-mapped files.

To simplify programming, we encourage developers to use libraries, such as libpmem

and others within the PMDK. The libpmem library is also designed to detect the case of

the platform with a battery that automatically converts flush calls into simple SFENCE

instructions. Chapter 5 introduces and describes the core libraries within the PMDK in

more detail, and later chapters take an in-depth look into each of the libraries to help

you understand their APIs and features.

�Data Visibility
When data is visible to other processes or threads, and when it is safe in the persistence

domain, is critical to understand when using persistent memory in applications. In the

Figure 2-2 and 2-3 examples, updates made to data in the CPU caches could become

visible to other processes or threads. Visibility and persistence are often not the same

thing, and changes made to persistent memory are often visible to other running threads

in the system before they are persistent. Visibility works the same way as it does for

normal DRAM, described by the memory model ordering and visibility rules for a given

platform (for example, see the Intel Software Development Manual for the visibility rules

for Intel platforms). Persistence of changes is achieved in one of three ways: either by

calling the standard storage API for persistence (msync on Linux or FlushFileBuffers

on Windows), by using optimized flush when supported, or by achieving visibility on

a platform where the CPU caches are considered persistent. This is one reason we use

flushing and fencing operations.

A pseudo C code example may look like this:

open() // Open a file on a file system

...

mmap() // Memory map the file

...

strcpy() // Execute a store operation

... // Data is globally visible

msync() // Data is now persistent

Developing for persistent memory follows this decades-old model.

Chapter 2 Persistent Memory Architecture

https://doi.org/10.1007/978-1-4842-4932-1_5

24

�Intel Machine Instructions for Persistent Memory
Applicable to Intel- and AMD-based ADR platforms, executing an Intel 64 and 32 architecture

store instruction is not enough to make data persistent since the data may be sitting in the

CPU caches indefinitely and could be lost by a power failure. Additional cache flush actions

are required to make the stores persistent. Importantly, these non-privileged cache flush

operations can be called from user space, meaning applications decide when and where to

fence and flush data. Table 2-1 summarizes each of these instructions. For more detailed

information, the Intel 64 and 32 Architectures Software Developer Manuals are online at

https://software.intel.com/en-us/articles/intel-sdm.

Developers should primarily focus on CLWB and Non-Temporal Stores if available

and fall back to the others as necessary. Table 2-1 lists other opcodes for completeness.

Table 2-1.  Intel architecture instructions for persistent memory

OPCODE Description

CLFLUSH This instruction, supported in many generations of CPU, flushes a single

cache line. Historically, this instruction is serialized, causing multiple CLFLUSH

instructions to execute one after the other, without any concurrency.

CLFLUSHOPT
(followed by an
SFENCE)

This instruction, newly introduced for persistent memory support, is like

CLFLUSH but without the serialization. To flush a range, the software executes a

CLFLUSHOPT instruction for each 64-byte cache line in the range, followed by a

single SFENCE instruction to ensure the flushes are complete before continuing.

CLFLUSHOPT is optimized, hence the name, to allow some concurrency when

executing multiple CLFLUSHOPT instructions back-to-back.

CLWB (followed by
an SFENCE)

The effect of cache line writeback (CLWB) is the same as CLFLUSHOPT except

that the cache line may remain valid in the cache but is no longer dirty since it

was flushed. This makes it more likely to get a cache hit on this line if the data

is accessed again later.

Non-temporal
stores (followed
by an SFENCE)

This feature has existed for a while in x86 CPUs. These stores are “write

combining” and bypass the CPU cache; using them does not require a flush. A

final SFENCE instruction is still required to ensure the stores have reached the

persistence domain.

(continued)

Chapter 2 Persistent Memory Architecture

https://software.intel.com/en-us/articles/intel-sdm

25

�Detecting Platform Capabilities
Server platform, CPU, and persistent memory features and capabilities are exposed to

the operating system through the BIOS and ACPI that can be queried by applications.

Applications should not assume they are running on hardware with all the optimizations

available. Even if the physical hardware supports it, virtualization technologies may or

may not expose those features to the guests, or your operating system may or may not

implement them. As such, we encourage developers to use libraries, such as those in the

PMDK, that perform the required feature checks or implement the checks within the

application code base.

OPCODE Description

SFENCE Performs a serializing operation on all store-to-memory instructions that were

issued prior to the SFENCE instruction. This serializing operation guarantees

that every store instruction that precedes in program order the SFENCE

instruction is globally visible before any store instruction that follows the

SFENCE instruction can be globally visible. The SFENCE instruction is ordered

with respect to store instructions, other SFENCE instructions, any MFENCE

instructions, and any serializing instructions (such as the CPUID instruction). It is

not ordered with respect to load instructions or the LFENCE instruction.

WBINVD This kernel-mode-only instruction flushes and invalidates every cache line on

the CPU that executes it. After executing this on all CPUs, all stores to persistent

memory are certainly in the persistence domain, but all cache lines are empty,

impacting performance. Also, the overhead of sending a message to each CPU

to execute this instruction can be significant. Because of this, WBINVD is only

expected to be used by the kernel for flushing very large ranges (at least many

megabytes).

Table 2-1.  (continued)

Chapter 2 Persistent Memory Architecture

26

Figure 2-5 shows the flow implemented by libpmem, which initially verifies the

memory-mapped file (called a memory pool), resides on a file system that has the DAX

feature enabled, and is backed by physical persistent memory. Chapter 3 describes DAX

in more detail.

On Linux, direct access is achieved by mounting an XFS or ext4 file system with

the "-o dax" option. On Microsoft Windows, NTFS enables DAX when the volume

is created and formatted using the DAX option. If the file system is not DAX-enabled,

applications should fall back to the legacy approach of using msync(), fsync(), or

FlushFileBuffers(). If the file system is DAX-enabled, the next check is to determine

whether the platform supports ADR or eADR by verifying whether or not the CPU caches

are considered persistent. On an eADR platform where CPU caches are considered

persistent, no further action is required. Any data written will be considered persistent,

and thus there is no requirement to perform any flushes, which is a significant

performance optimization. On an ADR platform, the next sequence of events identifies

the most optimal flush operation based on Intel machine instructions previously

described.

Figure 2-5.  Flowchart showing how applications can detect platform features

Chapter 2 Persistent Memory Architecture

https://doi.org/10.1007/978-1-4842-4932-1_3

27

�Application Startup and Recovery
In addition to detecting platform features, applications should verify whether the

platform was previously stopped and restarted gracefully or ungracefully. Figure 2-6

shows the checks performed by the Persistent Memory Development Kit.

Some persistent memory devices, such as Intel Optane DC persistent memory,

provide SMART counters that can be queried to check the health and status. Several

libraries such as libpmemobj query the BIOS, ACPI, OS, and persistent memory module

information then perform the necessary validation steps to decide which flush operation

is most optimal to use.

We described earlier that if a system loses power, there should be enough stored

energy within the power supplies and platform to successfully flush the contents of

the memory controller’s WPQ and the write buffers on the persistent memory devices.

Data will be considered consistent upon successful completion. If this process fails,

due to exhausting all the stored energy before all the data was successfully flushed, the

persistent memory modules will report a dirty shutdown. A dirty shutdown indicates that

data on the device may be inconsistent. This may or may not result in needing to restore

the data from backups. You can find more information on this process – and what errors

and signals are sent – in the RAS (reliability, availability, serviceability) documentation

for your platform and the persistent memory device. Chapter 17 also discusses this

further.

Assuming no dirty shutdown is indicated, the application should check to see if

the persistent memory media is reporting any known poison blocks (see Figure 2-6).

Poisoned blocks are areas on the physical media that are known to be bad.

Chapter 2 Persistent Memory Architecture

https://doi.org/10.1007/978-1-4842-4932-1_17

28

If an application were not to check these things at startup, due to the persistent

nature of the media, it could get stuck in an infinite loop, for example:

	 1.	 Application starts.

	 2.	 Reads a memory address.

	 3.	 Encounters poison.

	 4.	 Crashes or system crashes and reboots.

	 5.	 Starts and resumes operation from where it left off.

	 6.	 Performs a read on the same memory address that triggered the

previous restart.

	 7.	 Application or system crashes.

	 8.	 …

	 9.	 Repeats infinitely until manual intervention.

The ACPI specification defines an Address Range Scrub (ARS) operation that the

operating system implements. This allows the operating system to perform a runtime

background scan operation across the memory address range of the persistent memory.

Figure 2-6.  Application startup and recovery flow

Chapter 2 Persistent Memory Architecture

29

System administrators may manually initiate an ARS. The intent is to identify bad

or potentially bad memory regions before the application does. If ARS identifies an

issue, the hardware can provide a status notification to the operating system and the

application that can be consumed and handled gracefully. If the bad address range

contains data, some method to reconstruct or restore the data needs to be implemented.

Chapter 17 describes ARS in more detail.

Developers are free to implement these features directly within the application code.

However, the libraries in the PMDK handle these complex conditions, and they will be

maintained for each product generation while maintaining stable APIs. This gives you

a future-proof option without needing to understand the intricacies of each CPU or

persistent memory product.

�What’s Next?
Chapter 3 continues to provide foundational information from the perspective of the

kernel and user spaces. We describe how operating systems such as Linux and Windows

have adopted and implemented the SNIA non-volatile programming model that defines

recommended behavior between various user space and operating system kernel

components supporting persistent memory. Later chapters build on the foundations

provided in Chapters 1 through 3.

�Summary
This chapter defines persistent memory and its characteristics, recaps how CPU caches

work, and describes why it is crucial for applications directly accessing persistent

memory to assume responsibility for flushing CPU caches. We focus primarily on

hardware implementations. User libraries, such as those delivered with the PMDK,

assume the responsibilities for architecture and hardware-specific operations and allow

developers to use simple APIs to implement them. Later chapters describe the PMDK

libraries in more detail and show how to use them in your application.

Chapter 2 Persistent Memory Architecture

https://doi.org/10.1007/978-1-4842-4932-1_17
https://doi.org/10.1007/978-1-4842-4932-1_3
https://doi.org/10.1007/978-1-4842-4932-1_1
https://doi.org/10.1007/978-1-4842-4932-1_3

30

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 2 Persistent Memory Architecture

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Chapter 2: Persistent Memory Architecture
	Persistent Memory Characteristics
	Platform Support for Persistent Memory
	Cache Hierarchy
	Power-Fail Protected Domains
	The Need for Flushing, Ordering, and Fencing
	Data Visibility
	Intel Machine Instructions for Persistent Memory
	Detecting Platform Capabilities
	Application Startup and Recovery
	What’s Next?
	Summary

