
277
© The Author(s) 2020
S. Scargall, Programming Persistent Memory, https://doi.org/10.1007/978-1-4842-4932-1_14

CHAPTER 14

Concurrency and
Persistent Memory
This chapter discusses what you need to know when building multithreaded

applications for persistent memory. We assume you already have experience with

multithreaded programming and are familiar with basic concepts such as mutexes,

critical section, deadlocks, atomic operations, and so on.

The first section of this chapter highlights common practical solutions for building

multithreaded applications for persistent memory. We describe the limitation of

the Persistent Memory Development Kit (PMDK) transactional libraries, such as

libpmemobj and libpmemobj-cpp, for concurrent execution. We demonstrate simple

examples that are correct for volatile memory but cause data inconsistency issues on

persistent memory in situations where the transaction aborts or the process crashes.

We also discuss why regular mutexes cannot be placed as is on persistent memory and

introduce the persistent deadlock term. Finally, we describe the challenges of building

lock-free algorithms for persistent memory and continue our discussion of visibility vs.

persistency from previous chapters.

The second section demonstrates our approach to designing concurrent data

structures for persistent memory. At the time of publication, we have two concurrent

associative C++ data structures developed for persistent memory - a concurrent

hash map and a concurrent map. More will be added over time. We discuss both

implementations within this chapter.

All code samples are implemented in C++ using the libpmemobj-cpp library

described in Chapter 8. In this chapter, we usually refer to libpmemobj because it

implements the features and libpmemobj-cpp is only a C++ extension wrapper for it.

The concepts are general and can apply to any programming language.

https://doi.org/10.1007/978-1-4842-4932-1_14
https://doi.org/10.1007/978-1-4842-4932-1_8

278

�Transactions and Multithreading
In computer science, ACID (atomicity, consistency, isolation, and durability) is a set of

properties of transactions intended to guarantee data validity and consistency in case

of errors, power failures, and abnormal termination of a process. Chapter 7 introduced

PMDK transactions and their ACID properties. This chapter focuses on the relevancy

of multithreaded programs for persistent memory. Looking forward, Chapter 16 will

provide some insights into the internals of libpmemobj transactions.

The small program in Listing 14-1 shows that the counter stored within the root

object is incremented concurrently by multiple threads. The program opens the

persistent memory pool and prints the value of counter. It then runs ten threads, each

of which calls the increment() function. Once all the threads complete successfully, the

program prints the final value of counter.

Listing 14-1.  Example to demonstrate that PMDK transactions do not

automatically support isolation

41 using namespace std;

42 namespace pobj = pmem::obj;

43

44 struct root {

45 pobj::p<int> counter;

46 };

47

48 using pop_type = pobj::pool<root>;

49

50 void increment(pop_type &pop) {

51 auto proot = pop.root();

52 pobj::transaction::run(pop, [&] {

53 proot->counter.get_rw() += 1;

54 });

55 }

56

57 int main(int argc, char *argv[]) {

58 pop_type pop =

59 pop_type::open("/pmemfs/file", "COUNTER_INC");

60

Chapter 14 Concurrency and Persistent Memory

https://doi.org/10.1007/978-1-4842-4932-1_7
https://doi.org/10.1007/978-1-4842-4932-1_16

279

61 auto proot = pop.root();

62

63 cout << "Counter = " << proot->counter << endl;

64

65 std::vector<std::thread> workers;

66 workers.reserve(10);

67 for (int i = 0; i < 10; ++i) {

68 workers.emplace_back(increment, std::ref(pop));

69 }

70

71 for (int i = 0; i < 10; ++i) {

72 workers[i].join();

73 }

74

75 cout << "Counter = " << proot->counter << endl;

76

77 pop.close();

78 return 0;

79 }

You might expect that the program in Listing 14-1 the prints a final counter value

of 10. However, PMDK transactions do not automatically support isolation from the

ACID properties set. The result of the increment operation on line 53 is visible to

other concurrent transactions before the current transaction has implicitly committed

its update on line 54. That is, a simple data race is occurring in this example. A race

condition occurs when two or more threads can access shared data and they try to

change it at the same time. Because the operating system’s thread scheduling algorithm

can swap between threads at any time, there is no way for the application to know the

order in which the threads will attempt to access the shared data. Therefore, the result

of the change of the data is dependent on the thread scheduling algorithm, that is, both

threads are “racing” to access/change the data.

If we run this example multiple times, the results will vary from run to run. We can

try to fix the race condition by acquiring a mutex lock before the counter increment as

shown in Listing 14-2.

Chapter 14 Concurrency and Persistent Memory

280

Listing 14-2.  Example of incorrect synchronization inside a PMDK transaction

46 struct root {

47 pobj::mutex mtx;

48 pobj::p<int> counter;

49 };

50

51 using pop_type = pobj::pool<root>;

52

53 void increment(pop_type &pop) {

54 auto proot = pop.root();

55 pobj::transaction::run(pop, [&] {

56 std::unique_lock<pobj::mutex> lock(proot->mtx);

57 proot->counter.get_rw() += 1;

58 });

59 }

•	 Line 47: We added a mutex to the root data structure.

•	 Line 56: We acquired the mutex lock within the transaction before

incrementing the value of counter to avoid a race condition. Each

thread increments the counter inside the critical section protected by

the mutex.

Now if we run this example multiple times, it will always increment the value of

the counter stored in persistent memory by 1. But we are not done yet. Unfortunately,

the example in Listing 14-2 is also wrong and can cause data inconsistency issues

on persistent memory. The example works well if there are no transaction aborts.

However, if the transaction aborts after the lock is released but before the transaction

has completed and successfully committed its update to persistent memory, other

threads can read a cached value of the counter that can cause data inconsistency issues.

To understand the problem, you need to know how libpmemobj transactions work

internally. For now, we discuss only the necessary details required to understand this

issue and leave the in-depth discussion of transactions and their implementation for

Chapter 16.

A libpmemobj transaction guarantees atomicity by tracking changes in the undo log.

In the case of a failure or transaction abort, the old values for uncommitted changes are

restored from the undo log. It is important to know that the undo log is a thread-specific

Chapter 14 Concurrency and Persistent Memory

https://doi.org/10.1007/978-1-4842-4932-1_16

281

entity. This means that each thread has its own undo log that is not synchronized with

undo logs of other threads.

Figure 14-1 illustrates the internals of what happens within the transaction when

we call the increment() function in Listing 14-2. For illustrative purposes, we only

describe two threads. Each thread executes concurrent transactions to increment the

value of counter allocated in persistent memory. We assume the initial value of counter

is 0 and the first thread acquires the lock, while the second thread waits on the lock.

Inside the critical section, the first thread adds the initial value of counter to the undo

log and increments it. The mutex is released when execution flow leaves the lambda

scope, but the transaction has not committed the update to persistent memory. The

changes become immediately visible to the second thread. After a user-provided lambda

is executed, the transaction needs to flush all changes to persistent memory to mark

the change(s) as committed. Concurrently, the second thread adds the current value of

counter, which is now 1, to its undo log and performs the increment operation. At that

moment, there are two uncommitted transactions. The undo log of Thread 1 contains

counter = 0, and the undo log of Thread 2 contains counter = 1. If Thread 2 commits

its transaction while Thread 1 aborts its transaction for some reason (crash or abort), the

incorrect value of counter will be restored from the undo log of Thread 1.

The solution is to hold the mutex until the transaction is fully committed, and the data

has been successfully flushed to persistent memory. Otherwise, changes made by one

transaction become visible to concurrent transactions before it is persisted and committed.

Listing 14-3 demonstrates how to implement the increment() function correctly.

Figure 14-1.  Illustrative execution of the Listing 14-2 example

Chapter 14 Concurrency and Persistent Memory

282

Listing 14-3.  Correct example for concurrent PMDK transaction

52 void increment(pop_type &pop) {

53 auto proot = pop.root();

54 pobj::transaction::run(pop, [&] {

55 proot->counter.get_rw() += 1;

56 }, proot->mtx);

57 }

The libpmemobj API allows us to specify locks that should be acquired and held for

the entire duration of the transaction. In the Listing 14-3 example, we pass the proot-

>mtx mutex object to the run() method as a third parameter.

�Mutexes on Persistent Memory
Our previous examples used pmem::obj::mutex as a type for the mtx member in our root

data structure instead of the regular std::mutex provided by Standard Template Library.

The mtx object is a member of the root object that resides in persistent memory. The

std::mutex type cannot be used on persistent memory because it may cause persistent

deadlock.

A persistent deadlock happens if an application crash occurs while holding a mutex.

When the program starts, if it does not release or reinitialize the mutex at startup,

threads that try to acquire it will wait forever. To avoid such situations, libpmemobj

provides synchronization primitives that reside in persistent memory. The main feature

of synchronization primitives is that they are automatically reinitialized every time the

persistent object store pool is open.

For C++ developers, the libpmemobj-cpp library provides C++11-like

synchronization primitives shown in Table 14-1.

Chapter 14 Concurrency and Persistent Memory

283

For C developers, the libpmemobj library provides pthread-like synchronization

primitives shown in Table 14-2. Persistent memory-aware locking implementations are

based on the standard POSIX Thread Library and provide semantics similar to standard

pthread locks.

Table 14-1.  Synchronization primitives provided by libpmemob++ library

Class Description

pmem::obj::mutex This class is an implementation of a persistent memory resident

mutex which mimics in behavior the C++11 std::mutex. This class

satisfies all requirements of the Mutex and StandardLayoutType

concepts.

pmem::obj::timed_mutex This class is an implementation of a persistent memory resident

timed_mutex which mimics in behavior the C++11 std::timed_

mutex. This class satisfies all requirements of TimedMutex and

StandardLayoutType concepts.

pmem::obj::shared_mutex This class is an implementation of a persistent memory resident

shared_mutex which mimics in behavior the C++17 std::shared_

mutex. This class satisfies all requirements of SharedMutex and

StandardLayoutType concepts.

pmem::obj:: condition_variable This class is an implementation of a persistent memory resident

condition variable which mimics in behavior the C++11

std::condition_variable. This class satisfies all requirements of

StandardLayoutType concept.

Table 14-2.  Synchronization primitives provided by the libpmemobj library

Structure Description

PMEMmutex The data structure represents a persistent memory resident mutex similar

to pthread_mutex_t.

PMEMrwlock The data structure represents a persistent memory resident read-write lock

similar to pthread_rwlock_t.

PMEMcond The data structure represents a persistent memory resident condition

variable similar to pthread_cond_t.

Chapter 14 Concurrency and Persistent Memory

284

These convenient persistent memory-aware synchronization primitives are available

for C and C++ developers. But what if a developer wants to use a custom synchronization

object that is more appropriate for a particular use case? As we mentioned earlier, the

main feature of persistent memory-aware synchronization primitives is that they are

reinitialized every time we open a persistent memory pool. The libpmemobj-cpp library

provides a more generic mechanism to reinitialize any user-provided type every time a

persistent memory pool is opened.

The libpmemobj-cpp provides the pmem::obj::v<T> class template which

allows creating a volatile field inside a persistent data structure. The mutex object

is semantically a volatile entity, and the state of a mutex should not survive an

application restart. On application restart, a mutex object should be in the unlocked

state. The pmem::obj::v<T> class template is targeted for this purpose. Listing 14-4

demonstrates how to use the pmem::obj::v<T> class template with std::mutex on

persistent memory.

Listing 14-4.  Example demonstrating usage of std::mutex on persistent memory

38 namespace pobj = pmem::obj;

39

40 struct root {

41 pobj::experimental::v<std::mutex> mtx;

42 };

43

44 using pop_type = pobj::pool<root>;

45

46 int main(int argc, char *argv[]) {

47 pop_type pop =

48 pop_type::open("/pmemfs/file", "MUTEX");

49

50 auto proot = pop.root();

51

52 proot->mtx.get().lock();

53

54 pop.close();

55 return 0;

56 }

Chapter 14 Concurrency and Persistent Memory

285

•	 Line 41: We are only storing the mtx object inside root object on

persistent memory.

•	 Lines 47-48: We open the persistent memory pool with the layout

name of “MUTEX”.

•	 Line 50: We obtain a pointer to the root data structure within the

pool.

•	 Line 52: We acquire the mutex.

•	 Lines 54-56: Close the pool and exit the program.

As you can see, we do not explicitly unlock the mutex within the main() function.

If we run this example several times, the main() function can always lock the mutex on

line 52. This works because the pmem::obj::v<T> class template implicitly calls a default

constructor, which is a wrapped std::mutex object type. The constructor is called every

time we open the persistent memory pool so we never run into a situation where the lock

is already acquired.

If we change the mtx object type on line 41 from pobj::experimental::v<std::mu

tex> to std::mutex and try to run the program again, the example will hang during the

second run on line 52 because mtx object was locked during the first run and we never

released it.

�Atomic Operations and Persistent Memory
Atomic operations cannot be used inside PMDK transactions for the reason described

in Figure 14-1. Changes made by atomic operations inside a transaction become

visible to other concurrent threads before the transaction is committed. It forces data

inconsistency issues in cases of abnormal program termination or transaction aborts.

Consider lock-free algorithms where concurrency is achieved by atomically updating the

state in memory.

�Lock-Free Algorithms and Persistent Memory
It is intuitive to think that lock-free algorithms are naturally fit for persistent memory. In

lock-free algorithms, thread-safety is achieved by atomic transitions between consistent

states, and this is exactly what we need to support data consistency in persistent

memory. But this assumption is not always correct.

Chapter 14 Concurrency and Persistent Memory

286

To understand the problem with lock-free algorithms, remember that a system

with persistent memory will usually have the virtual memory subsystem divided into

two domains: volatile and persistent (described in Chapter 2). The result of an atomic

operation may only update data in a CPU cache using a cache coherency protocol. There

is no guarantee that the data will be flushed unless an explicit flush operation is called.

CPU caches are only included within the persistence domain on platforms with eADR

support. This is not mandatory for persistent memory. ADR is the minimal platform

requirement for persistent memory, and in that case, CPU caches are not flushed in a

power failure.

Figure 14-2 assumes a system with ADR support. The example shows concurrent

lock-free insert operations to a singly linked list located in persistent memory. Two

threads are trying to insert new nodes to the tail of a linked list using a compare-and-

exchange (CMPXCHG instruction) operation followed by a cache flush operation (CLWB

instruction). Assume Thread 1 succeeds with its compare-and-exchange, so the change

appears in a volatile domain and becomes visible to the second thread. At this moment,

Thread 1 may be preempted (changes not flushed to a persistent domain), while Thread

2 inserts Node 5 after Node 4 and flushes it to a persistent domain. A possibility for data

inconsistency exists because Thread 2 performed an update based on the data that is not

yet persisted by Thread 1.

�Concurrent Data Structures for Persistent Memory
This section describes two concurrent data structures available in the libpmemobj-cpp

library: pmem::obj::concurrent_map and pmem::obj::concurrent_hash_map. Both are

associative data structures composed of a collection of key and value pairs, such that

each possible key appears at most once in the collection. The main difference between

them is that the concurrent hash map is unordered, while the concurrent map is ordered

by keys.

Figure 14-2.  Example of a concurrent lock-free insert operation to a singly linked
list located in persistent memory

Chapter 14 Concurrency and Persistent Memory

https://doi.org/10.1007/978-1-4842-4932-1_2

287

We define concurrent in this context to be the method of organizing data structures

for access by multiple threads. Such data structures are intended for use in a parallel

computing environment when multiple threads can concurrently call methods of a data

structure without additional synchronization required.

C++ Standard Template Library (STL) data structures can be wrapped in a coarse-

grained mutex to make them safe for concurrent access by letting only one thread

operate on the container at a time. However, that approach eliminates concurrency

and thereby restricts parallel speedup if implemented in performance-critical code.

Designing concurrent data structures is a challenging task. The difficulty increases

significantly when we need to develop concurrent data structures for persistent memory

and make them fault tolerant.

The pmem::obj::concurrent_map and pmem::obj::concurrent_hash_map structures

were inspired by the Intel Threading Building Blocks (Intel TBB),1 which provides

implementations of these concurrent data structures designed for volatile memory. You

can read the Pro TBB: C++ Parallel Programming with Threading Building Blocks book2

to get more information and learn how to use these concurrent data structures in your

application. The free electronic copy is available from Apress at https://www.apress.

com/gp/book/9781484243978.

There are three main methods in our concurrent associative data structures: find,

insert, and erase/delete. We describe each data structure with a focus on these three

methods.

�Concurrent Ordered Map
The implementation of the concurrent ordered map for persistent memory

(pmem::obj::concurrent_map) is based on a concurrent skip list data structure. Intel

TBB supplies tbb::concurrent_map, which is designed for volatile memory that we use

as a baseline for a port to persistent memory. The concurrent skip list data structure

can be implemented as a lock-free algorithm. But Intel chose a provably correct

1�Intel Threading Building Blocks library (https://github.com/intel/tbb).
2�Michael Voss, Rafael Asenjo, James Reinders. C++ Parallel Programming with Threading Building
Blocks; Apress, 2019; ISBN-13 (electronic): 978-1-4842-4398-5; https://www.apress.com/gp/
book/9781484243978.

Chapter 14 Concurrency and Persistent Memory

https://www.apress.com/gp/book/9781484243978
https://www.apress.com/gp/book/9781484243978
https://github.com/intel/tbb
https://www.apress.com/gp/book/9781484243978
https://www.apress.com/gp/book/9781484243978

288

scalable concurrent skip list3 implementation with fine-grain locking distinguished by

a combination of simplicity and scalability. Figure 14-3 demonstrates the basic idea of

the skip list data structure. It is a multilayered linked list-like data structure where the

bottom layer is an ordered linked list. Each higher layer acts as an “express lane” for

the following lists and allows it to skip elements during lookup operations. An element

in layer i appears in layer i+1 with some fixed probability p (in our implementation p

= 1/2). That is, the frequency of nodes of a particular height decreases exponentially

with the height. Such properties allow it to achieve O(log n) average time complexity

for lookup, insert, and delete operations. O(log n) means the running time grows at

most proportional to “log n”. You can learn more about Big O notation on Wikipedia at

https://en.wikipedia.org/wiki/Big_O_notation

For the implementation of pmem::obj::concurrent_map, the find and insert

operations are thread-safe and can be called concurrently with other find and insert

operations without requiring additional synchronizations.

�Find Operation

Because the find operation is non-modifying, it does not have to deal with data

consistency issues. The lookup operation for the target element always begins from the

topmost layer. The algorithm proceeds horizontally until the next element is greater

or equal to the target. Then it drops down vertically to the next lower list if it cannot

proceed on the current level. Figure 14-3 illustrates how the find operation works for the

element with key=9. The search starts from the highest level and immediately goes from

dummy head node to the node with key=4, skipping nodes with keys 1, 2, 3. On the node

with key=4, the search is dropped two layers down and goes to the node with key=8.

Then it drops one more layer down and proceeds to the desired node with key=9.

3�M. Herlihy, Y. Lev, V. Luchangco, N. Shavit. A provably correct scalable concurrent skip list. In
OPODIS ‘06: Proceedings of the 10th International Conference On Principles Of Distributed
Systems, 2006; https://www.cs.tau.ac.il/~shanir/nir-pubs-web/Papers/OPODIS2006-BA.
pdf.

Chapter 14 Concurrency and Persistent Memory

https://en.wikipedia.org/wiki/Big_O_notation
https://www.cs.tau.ac.il/~shanir/nir-pubs-web/Papers/OPODIS2006-BA.pdf
https://www.cs.tau.ac.il/~shanir/nir-pubs-web/Papers/OPODIS2006-BA.pdf

289

The find operation is wait-free. That is, every find operation is bound only by

the number of steps the algorithm takes. And a thread is guaranteed to complete

the operation regardless of the activity of other threads. The implementation of

pmem::obj::concurrent_map uses atomic load-with-acquire memory semantics when

reading pointers to the next node.

�Insert Operation

The insert operation, shown in Figure 14-4, employs fine-grained locking schema for

thread-safety and consists of the following basic steps to insert a new node with key=7

into the list:

	 1.	 Allocate the new node with randomly generated height.

	 2.	 Find a position to insert the new node. We must find the

predecessor and successor nodes on each level.

	 3.	 Acquire locks for each predecessor node and check that the

successor nodes have not been changed. If successor nodes have

changed, the algorithm returns to step 2.

	 4.	 Insert the new node to all layers starting from the bottom one.

Since the find operation is lock-free, we must update pointers on

each level atomically using store-with-release memory semantics.

Figure 14-3.  Finding key=9 in the skip list data structure

Chapter 14 Concurrency and Persistent Memory

290

The algorithm described earlier is thread-safe, but it is not enough to be fault

tolerant on persistent memory. There is a possible persistent memory leak if a program

unexpectedly terminates between the first and fourth steps of our algorithm.

The implementation of pmem::obj::concurrent_map does not use transactions

to support data consistency because transactions do not support isolation and by not

using transactions, it can achieve better performance. For this linked list data structure,

data consistency is maintained because a newly allocated node is always reachable

(to avoid persistent memory leak) and the linked list data structure is always valid. To

support these two properties, persistent thread-local storage is used, which is a member

of the concurrent skip list data structure. Persistent thread-local storage guarantees that

each thread has its own location in persistent memory to assign the result of persistent

memory allocation for the new node.

Figure 14-5 illustrates the approach of this fault-tolerant insert algorithm. When a

thread allocates a new node, the pointer to that node is kept in persistent thread-local

storage, and the node is reachable through this persistent thread-local storage. Then

the algorithm inserts the new node to the skip list by linking it to all layers using the

thread-safe algorithm described earlier. Finally, the pointer in the persistent thread-local

storage is removed because the new node is reachable now via skip list itself. In case of

failure, a special function traverses all nonzero pointers in persistent thread-local storage

and completes the insert operation.

Figure 14-4.  Inserting a new node with key=7 into the concurrent skip list

Chapter 14 Concurrency and Persistent Memory

291

�Erase Operation

The implementation of the erase operation for pmem::obj::concurrent_map is not

thread-safe. This method cannot be called concurrently with other methods of the

concurrent ordered map because this is a memory reclamation problem that is hard to

solve in C++ without a garbage collector. There is a way to logically extract a node from

a skip list in a thread-safe manner, but it is not trivial to detect when it is safe to delete

the removed node because other threads may still have access to the node. There are

possible solutions, such as hazard pointers, but these can impact the performance of the

find and insert operations.

�Concurrent Hash Map
The concurrent hash map designed for persistent memory is based on tbb::concurrent_

hash_map that exists in the Intel TBB. The implementation is based on a concurrent hash

table algorithm where elements assigned to buckets based on a hash code are calculated

from a key. In addition to concurrent find, insert, and erase operations, the algorithm

employs concurrent resizing and on-demand per-bucket rehashing.4

Figure 14-6 illustrates the basic idea of the concurrent hash table. The hash table

consists of an array of buckets, and each bucket consists of a list of nodes and a read-

write lock to control concurrent access by multiple threads.

4�Anton Malakhov. Per-bucket concurrent rehashing algorithms, 2015, arXiv:1509.02235v1;
https://arxiv.org/ftp/arxiv/papers/1509/1509.02235.pdf.

Figure 14-5.  Fault-tolerant insert operation using persistent thread-local storage

Chapter 14 Concurrency and Persistent Memory

https://arxiv.org/ftp/arxiv/papers/1509/1509.02235.pdf

292

�Find Operation

The find operation is a read-only event that does not change the hash map state.

Therefore, data consistency is maintained while performing a find request. The find

operation works by first calculating the hash value for a target key and acquires read

lock for the corresponding bucket. The read lock guarantees that there is no concurrent

modifications to the bucket while we are reading it. Inside the bucket, the find operation

performs a linear search through the list of nodes.

�Insert Operation

The insert method of the concurrent hash map uses the same technique to support

data consistency as the concurrent skip list data structure. The operation consists of the

following steps:

	 1.	 Allocate the new node, and assign a pointer to the new node to

persistent thread-local storage.

	 2.	 Calculate the hash value of the new node, and find the

corresponding bucket.

Figure 14-6.  The concurrent hash map data structure

Chapter 14 Concurrency and Persistent Memory

293

	 3.	 Acquire the write lock to the bucket.

	 4.	 Insert the new node to the bucket by linking it to the list of nodes.

Because only one pointer has to be updated, a transaction is not

needed. Because only one pointer is updated, a transaction is not

required.

�Erase Operation

Although the erase operation is similar to an insert (the opposite action), its

implementation is even simpler than the insert. The erase implementation

acquires the write lock for the required bucket and, using a transaction, removes the

corresponding node from the list of nodes within that bucket.

�Summary
Although building an application for persistent memory is a challenging task, it is more

difficult when you need to create a multithreaded application for persistent memory.

You need to handle data consistency in a multithreaded environment when multiple

threads can update the same data in persistent memory.

If you develop concurrent applications, we encourage you to use existing libraries

that provide concurrent data structures designed to store data in persistent memory.

You should develop custom algorithms only if the generic ones do not fit your needs.

See the implementations of concurrent cmap and csmap engines in pmemkv, described

in Chapter 9, which are implemented using pmem::obj::concurrent_hash_map and

pmem::obj::concurrent_map, respectively.

If you need to develop a custom multithreaded algorithm, be aware of the limitation

PMDK transactions have for concurrent execution. This chapter shows that transactions

do not automatically provide isolation out of the box. Changes made inside one

transaction become visible to other concurrent transactions before they are committed.

You will need to implement additional synchronization if it is required by an algorithm.

We also explain that atomic operations cannot be used inside a transaction while

building lock-free algorithms without transactions. This is a very complicated task if your

platform does not support eADR.

Chapter 14 Concurrency and Persistent Memory

https://doi.org/10.1007/978-1-4842-4932-1_9

294

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 14 Concurrency and Persistent Memory

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Chapter 14: Concurrency and Persistent Memory
	Transactions and Multithreading
	Mutexes on Persistent Memory
	Atomic Operations and Persistent Memory
	Lock-Free Algorithms and Persistent Memory

	Concurrent Data Structures for Persistent Memory
	Concurrent Ordered Map
	Find Operation
	Insert Operation
	Erase Operation

	Concurrent Hash Map
	Find Operation
	Insert Operation
	Erase Operation

	Summary

