
187
© The Author(s) 2020 
S. Scargall, Programming Persistent Memory, https://doi.org/10.1007/978-1-4842-4932-1_11

CHAPTER 11

Designing Data Structures 
for Persistent Memory
Taking advantage of the unique characteristics of persistent memory, such as byte 

addressability, persistence, and update in place, allows us to build data structures that 

are much faster than any data structure requiring serialization or flushing to a disk. 

However, this comes at a cost. Algorithms must be carefully designed to properly persist 

data by flushing CPU caches or using non-temporal stores and memory barriers to 

maintain data consistency. This chapter describes how to design such data structures 

and algorithms and shows what properties they should have.

�Contiguous Data Structures and Fragmentation
Fragmentation is one of the most critical factors to consider when designing a data 

structure for persistent memory due to the length of heap life. A persistent heap can 

live for years with different versions of an application. In volatile use cases, the heap is 

destroyed when the application exits. The life of the heap is usually measured in hours, 

days, or weeks.

Using file-backed pages for memory allocation makes it difficult to take advantage 

of the operating system–provided mechanisms for minimizing fragmentation, such as 

presenting discontinuous physical memory as a contiguous virtual region. It is possible 

to manually manage virtual memory at a low granularity, producing a page-level 

defragmentation mechanism for objects in user space. But this mechanism could lead to 

complete fragmentation of physical memory and an inability to take advantage of huge 

pages. This can cause an increased number of translation lookaside buffer (TLB) misses, 

which significantly slows down the entire application. To make effective use of persistent 

memory, you should design data structures in a way that minimizes fragmentation.

https://doi.org/10.1007/978-1-4842-4932-1_11


188

�Internal and External Fragmentation
Internal fragmentation refers to space that is overprovisioned inside allocated blocks. 

An allocator always returns memory in fixed-sized chunks or buckets. The allocator must 

determine what size each bucket is and how many different sized buckets it provides.  

If the size of the memory allocation request does not exactly match a predefined bucket 

size, the allocator will return a larger memory bucket. For example, if the application 

requests a memory allocation of 200KiB, but the allocator has bucket sizes of 128KiB 

and 256KiB, the request is allocated from an available 256KiB bucket. The allocator must 

usually return a memory chunk with a size divisible by 16 due to its internal alignment 

requirements.

External fragmentation occurs when free memory is scattered in small blocks. 

For example, imagine using up the entire memory with 4KiB allocations. If we then 

free every other allocation, we have half of the memory available; however, we cannot 

allocate more than 4KiB at once because that is the maximum size of any contiguous free 

space. Figure 11-1 illustrates this fragmentation, where the red cells represent allocated 

space and the white cells represent free space.

When storing a sequence of elements in persistent memory, several possible data 

structures can be used:

•	 Linked list: Each node is allocated from persistent memory.

•	 Dynamic array (vector): A data structure that pre-allocates memory 

in bigger chunks. If there is no free space for new elements, it 

allocates a new array with bigger capacity and moves all elements 

from the old array to the new one.

•	 Segment vector: A list of fixed-size arrays. If there is no free space left 

in any segment, a new one is allocated.

Figure 11-1.  External fragmentation

Chapter 11  Designing Data Structures for Persistent Memory



189

Consider fragmentation for each of those data structures:

•	 For linked lists, fragmentation efficiency depends on the node size. If 

it is small enough, then high internal fragmentation can be expected. 

During node allocation, every allocator will return memory with a 

certain alignment that will likely be different than the node size.

•	 Using dynamic array results in fewer memory allocations, but every 

allocation will have a different size (most implementations double 

the previous one), which results in a higher external fragmentation.

•	 Using a segment vector, the size of a segment is fixed, so every allocation 

has the same size. This practically eliminates external fragmentation 

because we can allocate a new one for each freed segment.1

�Atomicity and Consistency
Guaranteeing consistency requires the proper ordering of stores and making sure data 

is stored persistently. To make an atomic store bigger than 8 bytes, you must use some 

additional mechanisms. This section describes several mechanisms and discusses their 

memory and time overheads. For the time overhead, the focus is on analyzing the number 

of flushes and memory barriers used because they have the biggest impact on performance.

�Transactions

One way to guarantee atomicity and consistency is to use transactions (described in 

detail in Chapter 7). Here we focus on how to design a data structure to use transactions 

efficiently. An example data structure that uses transactions is described in the “Sorted 

Array with Versioning” section later in this chapter.

Transactions are the simplest solution for guaranteeing consistency. While using 

transactions can easily make most operations atomic, two items must be kept in mind. 

First, transactions that use logging always introduce memory and time overheads. 

Second, in the case of undo logging, the memory overhead is proportional to the size of 

data you modify, while the time overhead depends on the number of snapshots. Each 

snapshot must be persisted prior to the modification of snapshotted data.

1�Using the libpmemobj allocator, it is also possible to easily lower internal fragmentation by using 
allocation classes (see Chapter 7).

Chapter 11  Designing Data Structures for Persistent Memory

https://doi.org/10.1007/978-1-4842-4932-1_7
https://doi.org/10.1007/978-1-4842-4932-1_7


190

It is recommended to use a data-oriented approach when designing a data structure 

for persistent memory. The idea is to store data in such a way that its processing by the 

CPU is cache friendly. Imagine having to store a sequence of 1000 records that consist of 

2 integer values. This has two approaches: Either use two arrays of integers as shown in 

Listing 11-1, or use one array of pairs as shown in Listing 11-2. The first approach is SoA 

(Structure of Arrays), and the second is AoS (Array of Structures).

Listing 11-1.  SoA layout approach to store data

struct soa {

    int a[1000];

    int b[1000];

};

Listing 11-2.  AoS layout approach to store data

std::pair<int, int> aos_records[1000];

Depending on the access pattern to the data, you may prefer one solution over the 

other. If the program frequently updates both fields of an element, then the AoS solution 

is better. However, if the program only updates the first variable of all elements, then the 

SoA solution works best.

For applications that use volatile memory, the main concerns are usually cache 

misses and optimizations for single instruction, multiple data (SIMD) processing. SIMD 

is a class of parallel computers in Flynn’s taxonomy,2 which describes computers with 

multiple processing elements that simultaneously perform the same operation on 

multiple data points. Such machines exploit data-level parallelism, but not concurrency: 

There are simultaneous (parallel) computations but only a single process (instruction) at 

a given moment.

While those are still valid concerns for persistent memory, developers must consider 

snapshotting performance when transactions are used. Snapshotting one contiguous 

memory region is always better then snapshotting several smaller regions, mainly due to 

the smaller overhead incurred by using less metadata. Efficient data structure layout that 

takes these considerations into account is imperative for avoiding future problems when 

migrating data from DRAM-based implementations to persistent memory.

2�For a full definition of SIMD, see https://en.wikipedia.org/wiki/SIMD.

Chapter 11  Designing Data Structures for Persistent Memory

https://en.wikipedia.org/wiki/SIMD


191

Listing 11-3 presents both approaches; in this example, we want to increase the first 

integer by one.

Listing 11-3.  Layout and snapshotting performance

37 struct soa {

38   int a[1000];

39   int b[1000];

40 };

41

42 struct root {

43   soa soa_records;

44   std::pair<int, int aos_records[1000];

45 };

46

47 int main()

48 {

49   try {

50     auto pop = pmem::obj::pool<root>::create("/daxfs/pmpool",

51              "data_oriented", PMEMOBJ_MIN_POOL, 0666);

52

53   auto root = pop.root();

54

55   pmem::obj::transaction::run(pop, [&]{

56     pmem::obj::transaction::snapshot(&root->soa_records);

57     for (int i = 0; i < 1000; i++) {

58       root->soa_records.a[i]++;

59     }

60

61     for (int i = 0; i < 1000; i++) {

62       pmem::obj::transaction::snapshot(

63                       &root->aos_records[i].first);

64       root->aos_records[i].first++;

65     }

66   });

67

Chapter 11  Designing Data Structures for Persistent Memory



192

68   pop.close();

69   } catch (std::exception &e) {

70      std::cerr << e.what() << std::endl;

71   }

72 }

•	 Lines 37-45: We define two different data structures to store records 

of integers. The first one is SoA – where we store integers in two 

separate arrays. Line 44 shows a single array of pairs – AoS.

•	 Lines 56-59: We take advantage of the SoA layout by snapshotting the 

entire array at once. Then we can safely modify each element.

•	 Lines 61-65: When using AoS, we are forced to snapshot data in every 

iteration – elements we want to modify are not contiguous in memory.

Examples of data structures that use transactions are shown in the “Hash Table with 

Transactions” and “Hash Table with Transactions and Selective Persistence” sections, 

later in this chapter.

�Copy-on-Write and Versioning

Another way to maintain consistency is the copy-on-write (CoW) technique. In this 

approach, every modification creates a new version at a new location whenever you 

want to modify some part of a persistent data structure. For example, a node in a linked 

list can use the CoW approach as described in the following:

	 1.	 Create a copy of the element in the list. If a copy is dynamically 

allocated in persistent memory, you should also save the pointer 

in persistent memory to avoid a memory leak. If you fail to do 

that and the application crashes after the allocation, then on the 

application restart, newly allocated memory will be unreachable.

	 2.	 Modify the copy and persist the changes.

	 3.	 Atomically change the original element with the copy and persist 

the changes, then free the original node if needed. After this 

step successfully completes, the element is updated and is in a 

consistent state. If a crash occurs before this step, the original 

element is untouched.

Chapter 11  Designing Data Structures for Persistent Memory



193

Although using this approach compared to transactions can be faster, it is significantly 

harder to implement because you must manually persist data.

Copy-on-write usually works well in multithreaded systems where mechanisms 

like reference counting or garbage collection are used to free copies that are no longer 

used. Although such systems are beyond the scope of this book, Chapter 14 describes 

concurrency in multithreaded applications.

Versioning is a very similar concept to copy-on-write. The difference is that here 

you hold more than one version of a data field. Each modification creates a new version 

of the field and stores information about the current one. The example presented 

in “Sorted Array with Versioning” later in this chapter shows this technique in an 

implementation of the insert operation for a sorted array. In the preceding example, only 

two versions of a variable are kept, the old and current one as a two-element array. The 

insert operations alternately write data to the first and second element of this array.

�Selective Persistence
Persistent memory is faster than disk storage but potentially slower than DRAM. Hybrid 

data structures, where some parts are stored in DRAM and some parts are in persistent 

memory, can be implemented to accelerate performance. Caching previously computed 

values or frequently accessed parts of a data structure in DRAM can improve access 

latency and improve overall performance.

Data does not always need to be stored in persistent memory. Instead, it can be 

rebuilt during the restart of an application to provide a performance improvement 

during runtime given that it accesses data from DRAM and does not require 

transactions. An example of this approach appears in “Hash Table with Transactions and 

Selective Persistence.”

�Example Data Structures
This section presents several data structure examples that were designed using the 

previously described methods for guaranteeing consistency. The code is written in C++ 

and uses libpmemobj-cpp. See Chapter 8 for more information about this library.

Chapter 11  Designing Data Structures for Persistent Memory

https://doi.org/10.1007/978-1-4842-4932-1_14
https://doi.org/10.1007/978-1-4842-4932-1_8


194

�Hash Table with Transactions

 We present an example of a hash table implemented using transactions and containers 

using libpmemobj-cpp.

As a quick primer to some, and a refresher to other readers, a hash table is a data 

structure that maps keys to values and guarantees O(1) lookup time. It is usually 

implemented as an array of buckets (a bucket is a data structure that can hold one or 

more key-value pairs). When inserting a new element to the hash table, a hash function 

is applied to the element’s key. The resulting value is treated as an index of a bucket 

to which the element is inserted. It is possible that the result of the hash function for 

different keys will be the same; this is called a collision. One method for resolving 

collisions is to use separate chaining. This approach stores multiple key-value pairs in 

one bucket; the example in Listing 11-4 uses this method.

For simplicity, the hash table in Listing 11-4 only provides the const Value& 

get(const std::string &key) and void put(const std::string &key, const Value 

&value) methods. It also has a fixed number of buckets. Extending this data structure 

to support the remove operation and to have a dynamic number of buckets is left as an 

exercise to you.

Listing 11-4.  Implementation of a hash table using transactions

38   #include <functional>

39   #include <libpmemobj++/p.hpp>

40   #include <libpmemobj++/persistent_ptr.hpp>

41   #include <libpmemobj++/pext.hpp>

42   #include <libpmemobj++/pool.hpp>

43   #include <libpmemobj++/transaction.hpp>

44   #include <libpmemobj++/utils.hpp>

45   #include <stdexcept>

46   #include <string>

47

48   #include "libpmemobj++/array.hpp"

49   #include "libpmemobj++/string.hpp"

50   #include "libpmemobj++/vector.hpp"

51

Chapter 11  Designing Data Structures for Persistent Memory



195

52   /**

53    * Value - type of the value stored in hashmap

54    * N - number of buckets in hashmap

55    */

56   template <typename Value, std::size_t N>

57   class simple_kv {

58   private:

59     using key_type = pmem::obj::string;

60     using bucket_type = pmem::obj::vector<

61         std::pair<key_type, std::size_t>>;

62     using bucket_array_type = pmem::obj::array<bucket_type, N>;

63     using value_vector = pmem::obj::vector<Value>;

64

65     bucket_array_type buckets;

66     value_vector values;

67

68   public:

69     simple_kv() = default;

70

71     const Value &

72     get(const std::string &key) const

73    {

74     auto index = std::hash<std::string>{}(key) % N;

75

76     for (const auto &e : buckets[index]) {

77      if (e.first == key)

78        return values[e.second];

79    }

80

81    throw std::out_of_range("no entry in simplekv");

82   }

83

Chapter 11  Designing Data Structures for Persistent Memory



196

84   void

85   put(const std::string &key, const Value &val)

86   {

87    auto index = std::hash<std::string>{}(key) % N;

88

89    /* get pool on which this simple_kv resides */

90    auto pop = pmem::obj::pool_by_vptr(this);

91

92    /* search for element with specified key - if found

93     * update its value in a transaction*/

94    for (const auto &e : buckets[index]) {

95      if (e.first == key) {

96        pmem::obj::transaction::run(

97          pop, [&] { values[e.second] = val; });

98

99        return;

100      }

101    }

102

103    /* if there is no element with specified key, insert

104     * new value to the end of values vector and put

105     * reference in proper bucket */

106     pmem::obj::transaction::run(pop, [&] {

107      values.emplace_back(val);

108      buckets[index].emplace_back(key, values.size() - 1);

109       });

110     }

111   };

•	 Lines 58-66: Define the layout of a hash map as a pmem::obj::array 

of buckets, where each bucket is a pmem::obj::vector of key and 

index pairs and pmem::obj::vector contains the values. The index 

in a bucket entry always specifies a position of the actual value 

stored in a separate vector. For snapshotting optimization, the value 

is not saved next to a key in a bucket. When obtaining a non-const 

reference to an element in pmem::obj::vector, the element is always 

Chapter 11  Designing Data Structures for Persistent Memory



197

snapshotted. To avoid snapshotting unnecessary data, for example, 

if the key is immutable, we split keys and values into separate 

vectors. This also helps in the case of updating several values in 

one transaction. Recall the discussion in the “Copy-on-Write and 

Versioning” section. The result could turn out to be next to each other 

in a vector, and there could be fewer bigger regions to snapshot.

•	 Line 74: Calculate hash in a table using standard library feature.

•	 Lines 76-79: Search for entry with specified key by iterating over 

all buckets stored in the table under index. Note that e is a const 

reference to the key-value pair. Because of the way libpmemobj-cpp 

containers work, this has a positive impact on performance when 

compared to non-const reference; obtaining non-const reference 

requires a snapshot, while a const reference does not.

•	 Line 90: Get the instance of the pmemobj pool object, which is used to 

manage the persistent memory pool where our data structure resides.

•	 Lines 94-95: Find the position of a value in the values vector by 

iterating over all the entries in the designated bucket.

•	 Lines 96-98: If an element with the specified key is found, update its 

value using a transaction.

•	 Lines 106-109: If there is no element with the specified key, insert a 

value into the values vector, and put a reference to this value in the 

proper bucket; that is, create key, index pair. Those two operations 

must be completed in a single atomic transaction because we want 

them both to either succeed or fail.

�Hash Table with Transactions and Selective Persistence

This example shows how to modify a persistent data structure (hash table) by moving 

some data out of persistent memory. The data structure presented in Listing 11-5 is 

a modified version of the hash table in Listing 11-4 and contains the implementation 

of this hash table design. Here we store only the vector of keys and vector of values in 

persistent memory. On application startup, we build the buckets and store them in 

volatile memory for faster processing during runtime. The most noticeable performance 

gain would be in the get() method.

Chapter 11  Designing Data Structures for Persistent Memory



198

Listing 11-5.  Implementation of hash table with transactions and selective 

persistence

40 #include <array>

41 #include <functional>

42 #include <libpmemobj++/p.hpp>

43 #include <libpmemobj++/persistent_ptr.hpp>

44 #include <libpmemobj++/pext.hpp>

45 #include <libpmemobj++/pool.hpp>

46 #include <libpmemobj++/transaction.hpp>

47 #include <libpmemobj++/utils.hpp>

48 #include <stdexcept>

49 #include <string>

50 #include <vector>

51

52 #include "libpmemobj++/array.hpp"

53 #include "libpmemobj++/string.hpp"

54 #include "libpmemobj++/vector.hpp"

55

56 template <typename Value, std::size_t N>

57 struct simple_kv_persistent;

58

59 /**

60  * This class is runtime wrapper for simple_kv_peristent.

61  * Value - type of the value stored in hashmap

62  * N - number of buckets in hashmap

63  */

64 template <typename Value, std::size_t N>

65 class simple_kv_runtime {

66 private:

67   using volatile_key_type = std::string;

68   using bucket_entry_type = std::pair<volatile_key_type, std::size_t>;

69   using bucket_type = std::vector<bucket_entry_type>;

70   using bucket_array_type = std::array<bucket_type, N>;

71

Chapter 11  Designing Data Structures for Persistent Memory



199

72   bucket_array_type buckets;

73   simple_kv_persistent<Value, N> *data;

74

75 public:

76  simple_kv_runtime(simple_kv_persistent<Value, N> *data)

77  {

78   this->data = data;

79

80   for (std::size_t i = 0; i < data->values.size(); i++) {

81    auto volatile_key = std::string(data->keys[i].c_str(),

82                data->keys[i].size());

83

84    auto index = std::hash<std::string>{}(volatile_key)%N;

85    buckets[index].emplace_back(

86     bucket_entry_type{volatile_key, i});

87    }

88   }

89

90   const Value &

91   get(const std::string &key) const

92   {

93    auto index = std::hash<std::string>{}(key) % N;

94

95    for (const auto &e : buckets[index]) {

96     if (e.first == key)

97      return data->values[e.second];

98    }

99

100   throw std::out_of_range("no entry in simplekv");

101  }

102

103  void

104  put(const std::string &key, const Value &val)

105  {

106   auto index = std::hash<std::string>{}(key) % N;

107

Chapter 11  Designing Data Structures for Persistent Memory



200

108   /* get pool on which persistent data resides */

109      auto pop = pmem::obj::pool_by_vptr(data);

110

111    /* search for element with specified key - if found

112     * update its value in a transaction */

113    for (const auto &e : buckets[index]) {

114     if (e.first == key) {

115       pmem::obj::transaction::run(pop, [&] {

116         data->values[e.second] = val;

117       });

118

119      return;

120     }

121    }

122

123   /* if there is no element with specified key, insert new value

124    * to the end of values vector and key to keys vector

125    * in a transaction */

126    pmem::obj::transaction::run(pop, [&] {

127     data->values.emplace_back(val);

128     data->keys.emplace_back(key);

129    });

130

131    buckets[index].emplace_back(key, data->values.size() - 1);

132  }

133 };

134

135 /**

136  * Class which is stored on persistent memory.

137  * Value - type of the value stored in hashmap

138  * N - number of buckets in hashmap

139  */

140 template <typename Value, std::size_t N>

141 struct simple_kv_persistent {

142  using key_type = pmem::obj::string;

Chapter 11  Designing Data Structures for Persistent Memory



201

143  using value_vector = pmem::obj::vector<Value>;

144  using key_vector = pmem::obj::vector<key_type>;

145

146 /* values and keys are stored in separate vectors to optimize

147  * snapshotting. If they were stored as a pair in single vector

148  * entire pair would have to be snapshotted in case of value update */

149  value_vector values;

150  key_vector keys;

151

152  simple_kv_runtime<Value, N>

153  get_runtime()

154  {

155   return simple_kv_runtime<Value, N>(this);

156  }

157 };

•	 Line 67: We define the data types residing in volatile memory. These 

are very similar to the types used in the persistent version in “Hash 

Table with Transactions.” The only difference is that here we use std 

containers instead of pmem::obj.

•	 Line 72: We declare the volatile buckets array.

•	 Line 73: We declare the pointer to persistent data (simple_kv_

persistent structure).

•	 Lines 75-88: In the simple_kv_runtime constructor, we rebuild the 

bucket’s array by iterating over keys and values in persistent memory. 

In volatile memory, we store both the keys, which are a copy of the 

persistent data and the index for the values vector in persistent 

memory.

•	 Lines 90-101: The get() function looks for an element reference in 

the volatile buckets array. There is only one reference to persistent 

memory when we read the actual value on line 97.

•	 Lines 113-121: Similar to the get() function, we search for an 

element using the volatile data structure and, when found, update 

the value in a transaction.

Chapter 11  Designing Data Structures for Persistent Memory



202

•	 Lines 126-129: When there is no element with the specified key in the 

hash table, we insert both a value and a key to their respective vectors 

in persistent memory in a transaction.

•	 Line 131: After inserting data to persistent memory, we update the 

state of the volatile data structure. Note that this operation does not 

have to be atomic. If a program crashes, the bucket array will be 

rebuilt on startup.

•	 Lines 149-150: We define the layout of the persistent data. Key and 

values are stored in separate pmem::obj::vector.

•	 Lines 153-156: We define a function that returns the runtime object of 

this hash table.

�Sorted Array with Versioning

This section presents an overview of an algorithm for inserting elements into a sorted 

array and preserving the order of elements. This algorithm guarantees data consistency 

using the versioning technique.

First, we describe the layout of our sorted array. Figure 11-2 and Listing 11-6 show 

that there are two arrays of elements and two size fields. Additionally, one current field 

stores information about which array and size variable is currently used.

Figure 11-2.  Sorted array layout

Chapter 11  Designing Data Structures for Persistent Memory



203

Listing 11-6.  Sorted array layout

41  template <typename Value, uint64_t slots>

42  struct entries_t {

43    Value entries[slots];

44    size_t size;

45  };

46

47  template <typename Value, uint64_t slots>

48  class array {

49  public:

50   void insert(pmem::obj::pool_base &pop, const Value &);

51   void insert_element(pmem::obj::pool_base &pop, const Value&);

52

53   entries_t<Value, slots> v[2];

54   uint32_t current;

55  };

•	 Lines 41-45: We define the helper structure, which consists of an 

array of indexes and a size.

•	 Line 53: We define two elements array of entries_t structures. 

entries_t holds an array of elements (entries array) and the number 

of elements in the node as the size variable.

•	 Line 54: This variable determines which entries_t structure from 

line 53 is used. It can be only 0 or 1. Figure 11-2 shows the situation 

where the current is equal to 0 and points to the first element of the v 

array.

To understand why we need two versions of the entries_t structure and a current 

field, Figure 11-3 shows how the insert operation works, and the corresponding 

pseudocode appears in Listing 11-7.

Chapter 11  Designing Data Structures for Persistent Memory



204

Listing 11-7.  Pseudocode of a sorted tree insert operation

57  template <typename Value, uint64_t slots>

58  void array<Value, slots>::insert_element(pmem::obj::pool_base &pop,

59                     const Value &entry) {

60    auto &working_copy = v[1 - current];

61    auto &consistent_copy = v[current];

62

63    auto consistent_insert_position = std::lower_bound(

64     std::begin(consistent_copy.entries),

65     std::begin(consistent_copy.entries) +

66                consistent_copy.size, entry);

67     auto working_insert_position =

68         std::begin(working_copy.entries) + 

           std::distance(std::begin(consistent_copy.entries),

69         consistent_insert_position);

70

71          std::copy(std::begin(consistent_copy.entries),

72                    consistent_insert_position,

73                    std::begin(working_copy.entries));

74

75          *working_insert_position = entry;

76

77          std::copy(consistent_insert_position,

78                    std::begin(consistent_copy.entries) + 

                         consistent_copy.size,

79                    working_insert_position + 1);

Figure 11-3.  Overview of a sorted tree insert operation

Chapter 11  Designing Data Structures for Persistent Memory



205

80

81          working_copy.size = consistent_copy.size + 1;

82  }

83

84  template <typename V, uint64_t s>

85  void array<V,s>::insert(pmem::obj::pool_base &pop,

86                                   const Value &entry){

87   insert_element(pop, entry);

88   pop.persist(&(v[1 - current]), sizeof(entries_t<Value, slots>));

89

90   current = 1 - current;

91   pop.persist(&current, sizeof(current));

92 }

•	 Lines 60-61: We define references to the current version of entries 

array and to the working version.

•	 Line 63: We find the position in the current array where an entry 

should be inserted.

•	 Line 67: We create iterator to the working array.

•	 Line 71: We copy part of the current array to the working array (range 

from beginning of the current array to the place where a new element 

should be inserted).

•	 Line 75: We insert an entry to the working array.

•	 Line 77: We copy remaining elements from the current array to the 

working array after the element we just inserted.

•	 Line 81: We update the size of the working array to the size of the 

current array plus one, for the element inserted.

•	 Lines 87-88: We insert an element and persist the entire v[1-current] 

element.

•	 Lines 90-91: We update the current value and save it.

Chapter 11  Designing Data Structures for Persistent Memory



206

Let’s analyze whether this approach guarantees data consistency. In the first step, 

we copy elements from the original array to a currently unused one, insert the new 

element, and persist it to make sure data goes to the persistence domain. The persist 

call also ensures that the next operation (updating the current value) is not reordered 

before any of the previous stores. Because of this, any interruption before or after issuing 

the instruction to update the current field would not corrupt data because the current 

variable always points to a valid version.

The memory overhead of using versioning for the insert operation is equal to a size 

of the entries array and the current field. In terms of time overhead, we issued only two 

persist operations.

�Summary
This chapter shows how to design data structures for persistent memory, considering its 

characteristics and capabilities. We discuss fragmentation and why it is problematic in 

the case of persistent memory. We also present a few different methods of guaranteeing 

data consistency; using transactions is the simplest and least error-prone method. 

Other approaches, such as copy-on-write or versioning, can perform better, but they are 

significantly more difficult to implement correctly.

Open Access  This chapter is licensed under the terms of the Creative 

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the 

original author(s) and the source, provide a link to the Creative Commons license and 

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s 

Creative Commons license, unless indicated otherwise in a credit line to the material. If 

material is not included in the chapter’s Creative Commons license and your intended 

use is not permitted by statutory regulation or exceeds the permitted use, you will need 

to obtain permission directly from the copyright holder.

Chapter 11  Designing Data Structures for Persistent Memory

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Chapter 11: Designing Data Structures for Persistent Memory
	Contiguous Data Structures and Fragmentation
	Internal and External Fragmentation
	Atomicity and Consistency
	Transactions
	Copy-on-Write and Versioning

	Selective Persistence
	Example Data Structures
	Hash Table with Transactions
	Hash Table with Transactions and Selective Persistence
	Sorted Array with Versioning


	Summary




