
1
© The Author(s) 2020
S. Scargall, Programming Persistent Memory, https://doi.org/10.1007/978-1-4842-4932-1_1

CHAPTER 1

Introduction to Persistent
Memory Programming
This book describes programming techniques for writing applications that use persistent

memory. It is written for experienced software developers, but we assume no previous

experience using persistent memory. We provide many code examples in a variety of

programming languages. Most programmers will understand these examples, even if

they have not previously used the specific language.

Note  All code examples are available on a GitHub repository (https://
github.com/Apress/programming-persistent-memory), along with
instructions for building and running it.

Additional documentation for persistent memory, example programs, tutorials, and

details on the Persistent Memory Development Kit (PMDK), which is used heavily in this

book, can be found on http://pmem.io.

The persistent memory products on the market can be used in various ways, and

many of these ways are transparent to applications. For example, all persistent memory

products we encountered support the storage interfaces and standard file API’s just like

any solid-state disk (SSD). Accessing data on an SSD is simple and well-understood, so

we consider these use cases outside the scope of this book. Instead, we concentrate on

memory-style access, where applications manage byte-addressable data structures that

reside in persistent memory. Some use cases we describe are volatile, using the persistent

memory only for its capacity and ignoring the fact it is persistent. However, most of this

book is dedicated to the persistent use cases, where data structures placed in persistent

memory are expected to survive crashes and power failures, and the techniques

described in this book keep those data structures consistent across those events.

https://doi.org/10.1007/978-1-4842-4932-1_1
https://github.com/Apress/programming-persistent-memory
https://github.com/Apress/programming-persistent-memory
http://pmem.io

2

�A High-Level Example Program
To illustrate how persistent memory is used, we start with a sample program

demonstrating the key-value store provided by a library called libpmemkv. Listing 1-1

shows a full C++ program that stores three key-value pairs in persistent memory and

then iterates through the key-value store, printing all the pairs. This example may seem

trivial, but there are several interesting components at work here. Descriptions below the

listing show what the program does.

Listing 1-1.  A sample program using libpmemkv

 37 #include <iostream>

 38 #include <cassert>

 39 #include <libpmemkv.hpp>

 40

 41 using namespace pmem::kv;

 42 using std::cerr;

 43 using std::cout;

 44 using std::endl;

 45 using std::string;

 46

 47 /*

 48 * for this example, create a 1 Gig file

 49 * called "/daxfs/kvfile"

 50 */

 51 auto PATH = "/daxfs/kvfile";

 52 const uint64_t SIZE = 1024 * 1024 * 1024;

 53

 54 /*

 55 * kvprint -- print a single key-value pair

 56 */

 57 int kvprint(string_view k, string_view v) {

 58 cout << "key: " << k.data() <<

 59 " value: " << v.data() << endl;

 60 return 0;

 61 }

 62

Chapter 1 Introduction to Persistent Memory Programming

3

 63 int main() {

 64 // start by creating the db object

 65 db *kv = new db();

 66 assert(kv != nullptr);

 67

 68 // create the config information for

 69 // libpmemkv's open method

 70 config cfg;

 71

 72 if (cfg.put_string("path", PATH) != status::OK) {

 73 cerr << pmemkv_errormsg() << endl;

 74 exit(1);

 75 }

 76 if (cfg.put_uint64("force_create", 1) != status::OK) {

 77 cerr << pmemkv_errormsg() << endl;

 78 exit(1);

 79 }

 80 if (cfg.put_uint64("size", SIZE) != status::OK) {

 81 cerr << pmemkv_errormsg() << endl;

 82 exit(1);

 83 }

 84

 85

 86 // open the key-value store, using the cmap engine

 87 if (kv->open("cmap", std::move(cfg)) != status::OK) {

 88 cerr << db::errormsg() << endl;

 89 exit(1);

 90 }

 91

 92 // add some keys and values

 93 if (kv->put("key1", "value1") != status::OK) {

 94 cerr << db::errormsg() << endl;

 95 exit(1);

 96 }

Chapter 1 Introduction to Persistent Memory Programming

4

 97 if (kv->put("key2", "value2") != status::OK) {

 98 cerr << db::errormsg() << endl;

 99 exit(1);

 100 }

 101 if (kv->put("key3", "value3") != status::OK) {

 102 cerr << db::errormsg() << endl;

 103 exit(1);

 104 }

 105

 106 // iterate through the key-value store, printing them

 107 kv->get_all(kvprint);

 108

 109 // stop the pmemkv engine

 110 delete kv;

 111

 112 exit(0);

 113 }

•	 Line 57: We define a small helper routine, kvprint(), which prints a

key-value pair when called.

•	 Line 63: This is the first line of main() which is where every C++

program begins execution. We start by instantiating a key-value

engine using the engine name "cmap". We discuss other engine types

in Chapter 9.

•	 Line 70: The cmap engine takes config parameters from a config

structure. The parameter "path" is configured to "/daxfs/kvfile",

which is the path to a persistent memory file on a DAX file system;

the parameter "size" is set to SIZE. Chapter 3 describes how to

create and mount DAX file systems.

•	 Line 93: We add several key-value pairs to the store. The trademark

of a key-value store is the use of simple operations like put() and

get(); we only show put() in this example.

•	 Line 107: Using the get_all() method, we iterate through the

entire key-value store, printing each pair when get_all() calls our

kvprint() routine.

Chapter 1 Introduction to Persistent Memory Programming

https://doi.org/10.1007/978-1-4842-4932-1_9
https://doi.org/10.1007/978-1-4842-4932-1_3

5

�What’s Different?
A wide variety of key-value libraries are available in practically every programming

language. The persistent memory example in Listing 1-1 is different because the key-

value store itself resides in persistent memory. For comparison, Figure 1-1 shows how a

key-value store using traditional storage is laid out.

When the application in Figure 1-1 wants to fetch a value from the key-value store,

a buffer must be allocated in memory to hold the result. This is because the values are

kept on block storage, which cannot be addressed directly by the application. The only

way to access a value is to bring it into memory, and the only way to do that is to read

full blocks from the storage device, which can only be accessed via block I/O. Now

consider Figure 1-2, where the key-value store resides in persistent memory like our

sample code.

Figure 1-1.  A key-value store on traditional storage

Chapter 1 Introduction to Persistent Memory Programming

6

With the persistent memory key-value store, values are accessed by the application

directly, without the need to first allocate buffers in memory. The kvprint() routine in

Listing 1-1 will be called with references to the actual keys and values, directly where

they live in persistence – something that is not possible with traditional storage. In

fact, even the data structures used by the key-value store library to organize its data are

accessed directly. When a storage-based key-value store library needs to make a small

update, for example, 64 bytes, it must read the block of storage containing those 64 bytes

into a memory buffer, update the 64 bytes, and then write out the entire block to make it

persistent. That is because storage accesses can only happen using block I/O, typically

4K bytes at a time, so the task to update 64 bytes requires reading 4K and then writing

4K. But with persistent memory, the same example of changing 64 bytes would only

write the 64 bytes directly to persistence.

�The Performance Difference
Moving a data structure from storage to persistent memory does not just mean smaller

I/O sizes are supported; there is a fundamental performance difference. To illustrate this,

Figure 1-3 shows a hierarchy of latency among the different types of media where data

can reside at any given time in a program.

Figure 1-2.  A key-value store in persistent memory

Chapter 1 Introduction to Persistent Memory Programming

7

As the pyramid shows, persistent memory provides latencies similar to memory,

measured in nanoseconds, while providing persistency. Block storage provides

persistency with latencies starting in the microseconds and increasing from there,

depending on the technology. Persistent memory is unique in its ability to act like both

memory and storage at the same time.

�Program Complexity
Perhaps the most important point of our example is that the programmer still uses

the familiar get/put interfaces normally associated with key-value stores. The fact that

the data structures are in persistent memory is abstracted away by the high-level API

provided by libpmemkv. This principle of using the highest level of abstraction possible,

as long as it meets the application’s needs, will be a recurring theme throughout this

book. We start by introducing very high-level APIs; later chapters delve into the lower-

level details for programmers who need them. At the lowest level, programming directly

to raw persistent memory requires detailed knowledge of things like hardware atomicity,

cache flushing, and transactions. High-level libraries like libpmemkv abstract away all

that complexity and provide much simpler, less error-prone interfaces.

Figure 1-3.  The memory/storage hierarchy pyramid with estimated latencies

Chapter 1 Introduction to Persistent Memory Programming

8

�How Does libpmemkv Work?
All the complexity hidden by high-level libraries like libpmemkv are described more fully

in later chapters, but let’s look at the building blocks used to construct a library like this.

Figure 1-4 shows the full software stack involved when an application uses libpmemkv.

Starting from the bottom of Figure 1-4 and working upward are these components:

•	 The persistent memory hardware, typically connected to the system

memory bus and accessed using common memory load/store

operations.

•	 A pmem-aware file system, which is a kernel module that exposes

persistent memory to applications as files. Those files can be memory

mapped to give applications direct access (abbreviated as DAX).

This method of exposing persistent memory was published by SNIA

(Storage Networking Industry Association) and is described in detail

in Chapter 3.

•	 The libpmem library is part of the PMDK. This library abstracts

away some of the low-level hardware details like cache flushing

instructions.

Figure 1-4.  The software stack when using libpmemkv

Chapter 1 Introduction to Persistent Memory Programming

https://doi.org/10.1007/978-1-4842-4932-1_3

9

•	 The libpmemobj library is a full-featured transaction and allocation

library for persistent memory. (Chapters 7 and 8 describe libpmemobj

and its C++ cousin in more detail.) If you cannot find data structures

that meet your needs, you will most likely have to implement what

you need using this library, as described in Chapter 11.

•	 The cmap engine, a concurrent hash map optimized for persistent

memory.

•	 The libpmemkv library, providing the API demonstrated in Listing 1-1.

•	 And finally, the application that uses the API provided by libpmemkv.

Although there is quite a stack of components in use here, it does not mean there

is necessarily a large amount of code that runs for each operation. Some components

are only used during the initial setup. For example, the pmem-aware file system is

used to find the persistent memory file and perform permission checks; it is out of the

application’s data path after that. The PMDK libraries are designed to leverage the direct

access allowed by persistent memory as much as possible.

�What’s Next?
Chapters 1 through 3 provide the essential background that programmers need to know to

start persistent memory programming. The stage is now set with a simple example; the next

two chapters provide details about persistent memory at the hardware and operating system

levels. The later and more advanced chapters provide much more detail for those interested.

Because the immediate goal is to get you programming quickly, we recommend

reading Chapters 2 and 3 to gain the essential background and then dive into Chapter 4

where we start to show more detailed persistent memory programming examples.

�Summary
This chapter shows how high-level APIs like libpmemkv can be used for persistent

memory programming, hiding complex details of persistent memory from the

application developer. Using persistent memory can allow finer-grained access and

higher performance than block-based storage. We recommend using the highest-level,

simplest APIs possible and only introducing the complexity of lower-level persistent

memory programming as necessary.

Chapter 1 Introduction to Persistent Memory Programming

https://doi.org/10.1007/978-1-4842-4932-1_7
https://doi.org/10.1007/978-1-4842-4932-1_8
https://doi.org/10.1007/978-1-4842-4932-1_11
https://doi.org/10.1007/978-1-4842-4932-1_1
https://doi.org/10.1007/978-1-4842-4932-1_3
https://doi.org/10.1007/978-1-4842-4932-1_2
https://doi.org/10.1007/978-1-4842-4932-1_3
https://doi.org/10.1007/978-1-4842-4932-1_4

10

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 1 Introduction to Persistent Memory Programming

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Chapter 1: Introduction to Persistent Memory Programming
	A High-Level Example Program
	What’s Different?
	The Performance Difference
	Program Complexity
	How Does libpmemkv Work?

	What’s Next?
	Summary

